SOIS TCONS INTRA-NETWORK SERVICE API

[image: image1.emf]
Draft Recommendation for
Space Data System Standards

	SOIS TCONS Intranetworking service API

DRAFT RECOMMENDED STANDARD

CCSDS 000.0-R-0
RED BOOK

May 2006
AUTHORITY

	
	
	
	

	
	Issue:
	Red Book, Issue 0
	

	
	Date:
	May 2006
	

	
	Location:
	Not Applicable
	

	
	
	
	

(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF AUTHORITY:)

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS Recommendations is detailed in the Procedures Manual for the Consultative Committee for Space Data Systems, and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the address below.

This document is published and maintained by:

CCSDS Secretariat

Office of Space Communication (Code M-3)

National Aeronautics and Space Administration

Washington, DC 20546, USA

STATEMENT OF INTENT

(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF INTENT:)

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of its members. The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed Recommended Standards and are not considered binding on any Agency.

This Recommended Standard is issued by, and represents the consensus of, the CCSDS members. Endorsement of this Recommendation is entirely voluntary. Endorsement, however, indicates the following understandings:

o
Whenever a member establishes a CCSDS-related standard, this standard will be in accord with the relevant Recommended Standard. Establishing such a standard does not preclude other provisions which a member may develop.

o
Whenever a member establishes a CCSDS-related standard, that member will provide other CCSDS members with the following information:

--
The standard itself.

--
The anticipated date of initial operational capability.

--
The anticipated duration of operational service.

o
Specific service arrangements shall be made via memoranda of agreement. Neither this Recommended Standard nor any ensuing standard is a substitute for a memorandum of agreement.

No later than five years from its date of issuance, this Recommended Standard will be reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect the impact of new technologies, new requirements, or new directions; or (3) be retired or canceled.

In those instances when a new version of a Recommended Standard is issued, existing CCSDS-related member standards and implementations are not negated or deemed to be non-CCSDS compatible. It is the responsibility of each member to determine when such standards or implementations are to be modified. Each member is, however, strongly encouraged to direct planning for its new standards and implementations towards the later version of the Recommended Standard.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· British National Space Centre (BNSC)/United Kingdom.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Federal Space Agency (Roskosmos)/Russian Federation.
· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency (JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Belgian Federal Science Policy Office (BFSPO)/Belgium.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· Centro Tecnico Aeroespacial (CTA)/Brazil.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· Danish Space Research Institute (DSRI)/Denmark.

· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· Korea Aerospace Research Institute (KARI)/Korea.

· MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

· Ministry of Communications (MOC)/Israel.

· National Institute of Information and Communications Technology (NICT)/Japan.
· National Oceanic & Atmospheric Administration (NOAA)/USA.

· National Space Program Office (NSPO)/Taipei.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· United States Geological Survey (USGS)/USA.

PREFACE

This document is a draft CCSDS Recommended Standard. Its ‘Red Book’ status indicates that the CCSDS believes the document to be technically mature and has released it for formal review by appropriate technical organizations. As such, its technical contents are not stable, and several iterations of it may occur in response to comments received during the review process.

Implementers are cautioned not to fabricate any final equipment in accordance with this document’s technical content.

Contents

71
Introduction

1.1
purpose
7
1.2
limitations
7
2
API specification
8
2.1
Definitions
8
2.2
packet lengths
8
3
Programming interface
10
3.1
data types
10
3.2
required functions
12
3.3
optional functions
15
4
USAGE
19
4.1
protocols and protocol data units
19
4.2
buffers and descriptors
19
4.3
transmitting packets
20
4.4
receiving packets
20
4.5
Queueing issues
21
4.6
Transmit queue flushes
22

1 Introduction

1.1 purpose

The purpose of this Red Book is to detail the minimum normative core of a C language Application Programming Interface to the CCSDS SOIS Intra-Networking Service. It addresses only the API elements required for packet exchange between the Intra-Networking Service and client software and is not intended to limit in any way additional functionality that an implementation may contain. This normative API is intended to supply part of an interface against which Intra-Networking Services and client software may be implemented.

1.2 limitations

The design of the SOIS Intra-Networking Service anticipates a range of scales of implementation from dedicated firmware with few network interfaces up to full network stacks hosted by several operating systems servicing numbers of network links of varying types.

Since startup, administrative, and initialization procedures will vary widely, this API does not attempt to define them. Instead, this API documents only the operational portion of the interface. Alone, it is not sufficient to fully document the programming interface of an implementation.

2 API specification
2.1 Definitions

Protocol Data Unit (PDU) - A packet generated or received by a Protocol Handler.

Service Data Unit (SDU) - A PDU that is being sent or received within the Intra-Network Service.

Address – the logical address corresponding to exactly one End System. Assignment of addresses to End Systems is a system engineering activity. There is no peer discovery function implemented in the Intra-Networking Service.

Logical Address – An abstract numeric address given to a host.

Physical Address – An address associated with an Interface on an End System, of type specific to the type of interface. Physical addresses are wholly contained within the Intra-Networking Service which implements a bi-directional translation mechanism between logical and physical addresses. Protocol Handlers work exclusively with Logical Addresses.

Protocol Handler - A software client of the Intra-Network Service that uses the API described in this document to exchange Service Data Units with inter-operable services located on other End Systems on a SOIS sub-network.

End System – a host with at least one Interface connecting to a SOIS sub-network under the control of a conformant Intra-Network Service implementation.

Interface – a connection to a communication medium over which the Intra-Network Service will transmit and receive packets. The Intra-Network Service on an End System numbers the Interfaces under its control from 0 upwards.

Intra-Network Service - The software layers comprising the SOIS Intra-networking functionality on a given End System.

Packet Descriptor - A data object containing meta-data used to direct the transmission or reception of SDUs by the Intra-network service. Each packet descriptor is prepared by a Protocol Handler and passed to the Intra-Network Service when a packet is to be sent or received.

2.2 packet lengths

Maximum Transmission Unit (MTU) – The maximum size of a packet that an interface will transmit or receive.

Maximum Data Unit (MDU) – A maximum packet size limit may be imposed by mission/implementation requirements. This imposes an upper limit on the length of PDUs that the Intra-Network Service will transmit or receive. Receive packets of length greater than the MDU are truncated, transmit packets of length greater than the MDU are not accepted for transmission. The MDU may be smaller than some of the respective MTUs of the interfaces under control of the Intra-Network Service.

Fragmentation – Given a transmit packet of length <= the MDU but of length > the MTU of the interface through which it will be sent, the packet is broken up into fragments of up to MTU length. The fragments are delivered serially to the destination End System where the packet is reassembled for submission to the Protocol Handler. This process is invisible to the Protocol Handler and is implemented entirely within the Intra-Network Service. The impact of fragmentation upon communications timing is handled through systems engineering and aside from observing that fragmentation of data-units can affect traffic timing, is beyond the scope of this document.

3 Programming interface

3.1 data types

3.1.1 struct sois_pktdesc

The packet descriptor struct represents a protocol SDU while it is in transit through the Intra-Network Service. Each packet is associated with a descriptor while it is owned by the Intra-Network Service.

Packet descriptors are allocated & managed by the Protocol Handler, allowing each protocol to configure buffering resources suitable for the application.

Numeric fields of this struct are in local byte order. Field alignment is the default for the local compiler and architecture.

3.1.1.1 Definition

struct sois_pktdesc

{

uint32

protocol_id;

uint32

source_address;

uint32

destination_address;

uint32

traffic_class;

uint32

packet_buffer_length;

uint32
packet_data_length;

uchar8

*pktbuffer;

uint32

protocol_data;

void

*next_pdes;

void

*prev_pdes;

}

protocol_id – canonical abstract identifier of the protocol transmitting or receiving the packet.

source_address – source Logical Address of the End System sending the packet. For transmit packets, this field is automatically set by the Intra-Network Service. For receive packets, source_address contains the address of the transmitting End System.

destination_address – Logical Address of a destination End System on one of the SOIS sub-network links attached to the sending End System.

traffic_class – Implementation-specific parameter identifying the Priority, Bandwidth Reserved Channel, Reliability and Redundancy options with which the packet will be transmitted. If 0, all implementations shall assume default priority, default channel, non-reliable, non-redundant parameters for the packet transmission.

packet_buffer_length – length of packet data buffer in octets, not the length of the data unit.

packet_data_length – length of the transmit or receive data unit in octets.

pktbuffer – pointer to buffer memory owned by the Protocol Handler and addressable by the Intra-Network Service. For transmit packets, this buffer contains the PDU ready for transmit. For receive packets, identifies the buffer into which a receive PDU will be placed. While a packet descriptor is in transit through the Intra-Network Service, the Protocol Handler shall leave the buffer inviolate.

protocol_data – unused by the Intra-Network Service, reserved for use by the Protocol Handler.

next_pdes and prev_pdes – descriptor management pointers, used to maintain lists of packet descriptors. Protocol Handlers may employ these fields to keep lists of descriptors not currently located in the Intra-Network Service. However either or both fields may be overwritten at any time while the descriptor is in transit through the Intra-Network Service. When a descriptor exits the Intra-Network Service, the Protocol Handler shall not assume a known value is present in either field.

3.1.2 struct sois_tx_queue_state

This struct is the means by which the Intra-Network Service communicates transmit queue state to Protocol Handlers.

Numeric fields of this struct are in local byte order. Field alignment is the default for the local compiler and architecture.

3.1.2.1 Definition

struct sois_tx_queue_state

{

uint32

protocol_id;

uint32

max_tx_queue;

uint32

current_tx_queue;

}

protocol_id – canonical abstract identifier of the protocol with which the queuing information is associated.

max_tx_queue – the current maximum number of outstanding transmit PDU's.

current_tx_queue – the current number of outstanding transmit PDU's. current_tx_queue may be greater than max_tx_queue if the Intra-Network Servce has recently changed the max_tx_queue and the outstanding transmit PDU's have not yet cleared the system.
3.2 required functions

3.2.1 sois_attach_protocol

Connects a protocol handler to the SOIS Intra-Network Service.

Depending upon the implementation, the callback routines specified with this function may be invoked from within an interrupt context. Unless acting under specific design information from an Intra-Network Service implementation, Protocol Handlers shall not assume application or operating system resources are available. Instead, each Protocol Handler should maintain its own pre-prepared packet descriptor & buffer pools, avoid calls into non-reentrant libraries and generally minimize the time spent processing protocol events.

3.2.1.1 Prototype;

int sois_attach_protocol(

int protocolID,

void (*protocol_event)(uint32 event, struct sois_pktdesc *pdes),

struct sois_pktdesc * (*alloc_pdes)(uint32 source_address, uint32 num_bytes));

3.2.1.2 Parameters;

protocolID - canonical abstract identifier of the protocol.

protocol_event – C callback routine that will receive all events for this protocol from the Intra-Network Service. No return values are defined.

event – one of a list of event identifiers;

EVENT_TX_DONE – packet was transmitted. For packets with reliable QoS, this code indicates the packet was delivered, otherwise it means only the packet was sent.

EVENT_TX_DROPPED – indicates transmit packet was dropped. Only produced when a packet with reliable QoS was not acknowleged by the destination End System.

EVENT_TX_UNDELIVERABLE – transmit packet routing failure, meaning no route to destination End System or that the destination address is invalid.

EVENT_TX_SCHEDULE_OVERFLOW – on implementations with scheduled bandwidth, indicates a scheduled packet was dropped because transmitting it would cause the schedule to be violated.

EVENT_TX_QUEUE_FULL – indicates the transmit packet was dropped by the Intra-Network Service because of internal queuing issues. The dropped packet may be at any stage of processing and the queuing problem may have been caused by any combination of other Intra-Network Service protocols active on the End System. When this event is received, the Protocol Handler should attempt to defer further transmit traffic if at all possible because it indicates the Intra-Network Service is at the extremity of a transmit overload. Since the dropped packet represents a traffic loss condition and it is not possible to re-insert the packet back into the transmit stream at its proper point, the Protocol Handler should issue warnings as required and take management action so that application layer software may fail-safe. This event shall not be used to trigger routine traffic throttling mechanisms.

EVENT_TX_FLUSHED – the transmit packet was dropped by the Intra-Network Service because sois_flush_transmit_descriptors was called, either clearing the protocol's transmit packets or those associated with a given interface. The Protocol Handler should issue warnings as required and take management action so that application layer software may fail-safe. The Protocol Handler may continue to submit new transmit packets as desired.

EVENT_RX – packet descriptor identifies a received packet.

EVENT_RX_INVALID – the Intra-Network Service discovered a problem with the descriptor and/or buffer was discovered that prevents filling the buffer with the received packet.
EVENT_RX_TRUNCATED – the packet_buffer_length was too small to contain the packet, so the packet was truncated to the length given by packet_data_length. This event indicates the Intra-Network Service received a data-unit larger than the Protocol Handler expected, or larger than the MDU, whichever is smaller.

pdes – the packet descriptor identifying the packet associated with this event.

alloc_pdes – C callback routine which the Intra-Network Service will invoke when it receives a packet for the protocol but has no descriptor ready to accept it. If this parameter is NULL and no descriptor is ready, the Intra-Network Service drops the received packet. If this parameter is given, when the Intra-Network Service invokes the callback, the Protocol Handler should prepare a packet descriptor & buffer, filling in only the packet_buffer_length, pktbuffer and optionally the protocol_data fields, finally returning a pointer to the descriptor. If the callback returns NULL, the Intra-Network Service drops the received packet.

source_address – logical address of the sender of the packet.
num_bytes – length in octets of the packet to be received.

3.2.1.3 Return values;

SUCCESS – protocol is registered. The Protocol Handler should be prepared to begin receiving packets immediately.

PROTOCOL_ALREADY_REGISTERED – a Protocol Handler has already registered the given protocolID.

3.2.2 sois_transmit_pdu

Used by the Protocol Handler to submit a descriptor representing a transmit packet to the Intra-Network Service. If the packet descriptor is accepted, it will be returned to the Protocol Handler at a later time by an event callback once the disposition of the transmit packet is known. If the packet descriptor is not accepted, the Protocol Handler retains ownership of the descriptor.

The Protocol Handler shall not assume descriptors will be returned from the Intra-Network Service in the order they were supplied.

The Protocol Handler shall not transmit packets from within an event callback.

When SUCCESS is returned, the Protocol Handler shall not assume the packet has been sent. The Protocol Handler shall conclude that the packet has been accepted for an attempt to transmit and that the descriptor will eventually be returned with a result code that indicates what happened to the packet.

Depending upon the Intra-Network Service's interpretation of the descriptor’s traffic_class field, the Protocol Handler may or may not be able to assume the destination End System will receive the packets in the order they were given to the Intra-network layer. The Protocol Handler should select the traffic_class for each packet in accordance with mission & traffic requirements, the Intra-Network Service documentation and the SOIS QoS Whitepaper.

3.2.2.1 Prototype;

int sois_transmit_pdu(struct sois_pktdesc *pdes);

3.2.2.2 Parameters;

pdes – a filled in packet descriptor. The Protocol Handler need not initialize the next_pdes or prev_pdes fields as they may be overwritten at any time by the Intra-Network Service. The source_address field will be overwritten with the address of the End System from which it was transmitted.

3.2.2.3 Return values;

SUCCESS – the Intra-Network Service has accepted the packet for transmit.

PROTOCOL_UNKNOWN – no Protocol Handler is registered with the given protocolID.

PACKET_ERROR – the packet_buffer_length, packet_data_length and/or pktbuffer fields have issues. Examples are; pktbuffer == NULL, packet_data_length > packet_buffer_length, packet_data_length == 0, packet_data_length > MDU.

QUEUE_TX_LIMIT_REACHED – the maximum number of outstanding transmit PDU's for this Protocol Handler has been reached.

QUEUEING_ERROR – the Intra-Network-Service could not accept the transmit packet for implementation-dependent reasons.

3.3 optional functions

3.3.1 sois_register_descriptor

Supply a packet descriptor to the Intra-Network Service ahead of the arrival of receive packets. A Protocol Handler may register any number of receive packet buffers up to the implementation's limit.

While pre-loaded descriptors for the Protocol Handler are present in the Intra-Network Service, the alloc_pdes callback registered when the handler was attached is not invoked.

Descriptors may be registered with the Intra-Network Service at any time.

3.3.1.1 Prototype;

int sois_register_descriptor(

int protocolID,

struct sois_pktdesc *pdes);

3.3.1.2 Parameters;

protocolID - canonical abstract identifier of the protocol.

pdes – A packet descriptor configured with the packet_buffer_length and pktbuffer fields and optionally, the protocol_data field. All other fields are filled in by the Intra-Network Service when a packet is received.

3.3.1.3 Return values;

SUCCESS – the Intra-Network Service has accepted the packet descriptor.

PROTOCOL_UNKNOWN – no Protocol Handler is registered with the given protocol ID.

PACKET_ERROR – the packet_buffer_length and/or pktbuffer fields have issues. Examples are; pktbuffer == NULL, packet_buffer_length == 0.

DESCRIPTOR_QUEUE_FULL – the Intra-Network Service cannot queue any more receive descriptors for the given protocol ID.

3.3.2 sois_detach_protocol

Disconnects a Protocol Handler from the Intra-Network Service. All pending transmit and receive descriptors are immediately dropped, no further callbacks to the Protocol Handler are invoked and all incoming packets for the protocol are dropped by the Intra-Network Service.

All descriptors for the given Protocol Handler located in the Intra-Network Service are immediately un-linked and are not returned to the Protocol Handler by the event callback. It is the Protocol Handler’s responsibility to recover its buffer and descriptor memory.

3.3.2.1 Prototype;

int sois_detach_protocol(int protocolID);

3.3.2.2 Parameters;

protocolID - canonical abstract identifier of the protocol.

3.3.2.3 Return values;

SUCCESS – the Intra-Network Service has detached the Protocol Handler.

PROTOCOL_UNKNOWN – no Protocol Handler is registered with the given protocol ID.

3.3.3 sois_flush_transmit_descriptors

When a pending transmit packet is flushed because of a call to this function, the transmit descriptor is returned to its Protocol Handler with the event code EVENT_TX_FLUSHED via the protocol event callback. Receive descriptors are not affected by this function.

The Protocol Handler shall not assume flushed descriptors will arrive in a particular order, that they will not be interspersed with other protocol events or that they will be returned within a given time limit.

3.3.3.1 Prototype;

int sois_flush_transmit_descriptors(

int protocolID,

int ifnumber);

3.3.3.2 Parameters;

protocolID - canonical abstract identifier of the protocol or '-1' to indicate all protocols.

ifnumber - the ordinal number of the interface to be flushed. Assignment of numbers to interfaces and the maintenance of interface numbers is implementation-specific, however all implementations shall number Intra-Network Service controlled interfaces from '0'. Supply '-1' to indicate all interfaces.

3.3.3.3 Return values;

SUCCESS – Extant packets of the given protocol(s) on the given interface(s) were flushed. If no packets were flushed, SUCCESS is also returned. Flushed descriptors may be returned to their Protocol Handlers before and/or after this call returns.

PROTOCOL_UNKNOWN – no Protocol Handler is registered with the given protocol ID.

INTERFACE_UNKNOWN – no SOIS interface is present with the given number.

3.3.4 sois_set_queue_policy

Allows a Protocol Handler to express its preference for the queuing policy to be used for handling its transmit traffic.

Implementations shall supply an implementation default queue policy for each Protocol Handler until changed by the use of this function.

The Intra-Network Service may deliver different policy than that requested.

The Intra-Network Service may unilaterally change the queuing policy for any Protocol Handler.

If the Intra-Network Service changes the max_tx_queue such that Protocol Handler's current outstanding transmit count is greater, then further transmit packets from the Protocol Handler are refused until the current outstanding packet count decreases below max_tx_queue.

3.3.4.1 Prototype;

int sois_set_queue_policy(

int protocolID,

int max_tx_queue);

3.3.4.2 Parameters;

protocolID - canonical abstract identifier of the protocol.

max_tx_queue – the requested maximum queue depth for this protocol. This parameter limits the total number of transmit PDU's a Protocol Handler can have outstanding in the Intra-Network Service at any time. When the maximum queue depth is reached, the Intra-Network service shall not accept transmit PDU's from the Protocol Handler.

3.3.4.3 Return values;

SUCCESS – The Protocol Handler's queue policy was successfully updated.

PROTOCOL_UNKNOWN – no Protocol Handler is registered with the given protocol ID.

3.3.5 sois_get_queue_state

Allows a Protocol Handler to retrieve information about the state of its transmit queue.

This function may be called at any time.

It is preferred that a Protocol Handler manage its own outstanding transmit packets by accounting for the difference between the number of transmit packet descriptors submitted versus those returned, however access to the transmit queue policy and queue depth counts is provided to assist the Protocol Handler in maintaining state and conforming to changes in Intra-Network Service queueing parameters.

3.3.5.1 Prototype;

int sois_get_queue_state(

int protocolID,

struct sois_tx_queue_state *txqstate);

3.3.5.2 Parameters;

protocolID - canonical abstract identifier of the protocol.

txqstate – Pointer to memory owned by the Protocol Handler & addressable by the Intra-Network Service, into which the Protocol Handler's tx queue state will be copied.

3.3.5.3 Return values;

SUCCESS – The Protocol Handler's queue state was successfully retrieved.

PROTOCOL_UNKNOWN – no Protocol Handler is registered with the given protocol ID.

4 USAGE

4.1 protocols and protocol data units

Users of the Intra-Networking Service interface with it by means of Protocol Handlers. A Protocol Handler emits and receives packets of a given type. The Intra-Network Service uses the protocolID to identify a packet as belonging to its Protocol Handler, thus the handlers on both the sending and receiving End Systems must use the same protocol identifier in order to communicate with each other.

A Protocol Data Unit is the data packet generated and consumed by a Protocol Handler. Each PDU is encapsulated by the Intra-Networking service for delivery over a network link, so the Protocol Handler may freely arrange the packet data, constrained only by the system’s MDU.

Each PDU is sent with a traffic class. A traffic class regulates how the Intra-Networking service transmits (and possibly receives) the PDU. The set of available traffic classes and their respective characteristics are largely determined by mission requirements and the characteristics of the sending and receiving Intra-Network service implementations. A Protocol Handler wishing to transmit a packet must pick one traffic class from the available set, or accept the default class. The list of accepted traffic classes is a necessary result of systems engineering.
The set of traffic classes enumerate the available priorities, reliability options, redundancy options, and channels with which the local Intra-Networking service may transmit a packet. By exploiting these classes, a Protocol Handler can shape its network utilization to best meet its objectives. Since all Protocol Handlers on a given End System will be competing to varying degrees for network access, it is necessary to regulate the use of traffic classes. The Intra-Networking service does not take a position on allocation of traffic classes to Protocol Handlers, instead it employs the classes as a mechanism of supplying service to and imposing policy on the Protocol Handlers to ensure its own bandwidth management requirements are met.
By using different traffic classes, a Protocol Handler can affect the order of delivery of its data units. Therefore, as an element of proper design, the Protocol Handler should address the possibility of out-of-order delivery even when such an event is unexpected. Likewise, reliability and redundancy do not absolutely guarantee packet delivery, so the PDU design should include measures to detect traffic loss and disruption.
4.2 buffers and descriptors

Each Protocol Handler is responsible for its own packet buffer memory as well as memory for descriptors. The Intra-Network service specifications impose no constraint on the number of buffers, their sizes or the number of descriptors, however implementations may. The only requirements the Intra-Network service levies are the memory used for buffers and descriptors must be directly addressable by the Intra-Network service and that while a buffer and its descriptor are being processed for transmit or receive by the Intra-Network service, the Protocol Handler must not change the contents of either.

A buffer is memory containing a transmit or receive PDU. The address and length of a buffer is recorded in its associated descriptor. Each descriptor represents exactly one PDU while it is being processed inside the Intra-Network service. All transmit buffers supplied by a Protocol Handler need not be the same size, however for pre-registered receive descriptors, the Protocol Handler should prepare buffers of MDU length unless the protocol guarantees some maximum size by design.
The Intra-Networking service maintains no links to buffers and descriptors not being processed for transmit or receive, leaving the Protocol Handler to freely queue and re-use them.
4.2.1 Buffer Memory alignment

Intra-Network service implementations may choose to exploit local hardware features such as DMA in order to gain performance. To gain maximum benefit, Protocol Handlers may be required to allocate memory from particular pools and/or align the packet buffers in a particular way. This should be done under design guidance of the Intra-Network service implementation and should not be considered a general rule of implementation.
4.3 transmitting packets

Packet transmission is a straightforward use of the API. The Protocol Handler finalizes the contents of the Packet Buffer and fills in the associated descriptor as per guidance in section 3.
4.4 receiving packets

There are two variations of packet reception. The architecture of Protocol Handlers will vary by author and the characteristics of the protocol. The intent of the two receive methods is to provide the implementor a degree of choice.

A Protocol Handler may use the two methods simultaneously.
4.4.1 using alloc_pdes callback

When a Protocol Handler employs this method, the Intra-Networking service will make a call into the Protocol Handler whenever a packet for the handler has been received. The handler must then prepare a descriptor and a buffer of appropriate size, returning them to the Intra-Networking service. At an indeterminate time later, the descriptor & buffer containing the packet will be delivered to the Protocol Handler by the receive callback.

If the callback does not return a descriptor, the Intra-Networking service will discard the received packet.

Protocol Handlers that maintain pools of packet buffers of varying sizes may find this method advantageous since the callback is given the sender address and size of the receive packet so the most suitable buffer can be used.
4.4.2 using pre-registered descriptors

When this method is employed, the Protocol Handler prepares a quantity of descriptors and buffers ahead of time, registering each with the Intra-Networking service. When a receive packet arrives bound for that Protocol Handler, the Intra-Networking service will use one of the pre-registered descriptors & its buffer, passing it on to the receive callback. Additional descriptors can be pre-registered at any time, including from within the receive callback. Implementations of the Intra-Network service may impose arbitrary limits on the quantity of pre-registered descriptors.
If no pre-registered descriptors are present for the Protocol Handler, the Intra-Networking service will attempt an alloc_pdes callback in order to receive the packet.

If no pre-registered descriptor is present and the Protocol Handler has not supplied an alloc_pdes callback, then the receive packet is discarded.

Protocol Handlers expecting bursty traffic may find this method advantageous because the pool of pre-registered descriptors can absorb traffic spikes without involving a rapid and possibly inefficient sequence of callbacks into the Protocol Handler.

4.5 Queueing issues

Although the queuing methodologies of implementations are not specified, this API allows Protocol Handlers a degree of feedback regarding the number of outstanding transmit packets. In the minimum case, an implementation may limit a Protocol Handler to exactly one transmit packet, whereas in the maximum case, complex queuing and scheduling procedures may allow many outstanding transmits. The common denominator is a concept of maximum transmit queue depth and current transmit queue depth for each Protocol Handler.
When a Protocol Handler attaches to an Intra-Networking service implementation, it is granted a default maximum queue depth and may begin submitting packets for transmit immediately. If the handler submits packets faster then they are transmitted, the transmit queue will begin to fill. Once the maximum queue depth is reached, the Intra-Networking service will reject new packets until space in the queue is recovered.
Protocol Handlers may retrieve the maximum and current queue depths of their queue from the Intra-Networking service at any time so internal measures to adjust the transmit rate can be employed. It is important that Protocol Handlers periodically check the queue depths because some Intra-Networking service implementations may include features that adjust the maximum queue depth. In such a case, a Protocol Handler may be given additional queue space or have space taken away, potentially affecting its bandwidth share. A maximum queue depth of zero is valid, indicating that the Intra-Networking service is refusing to accept more transmit packets from the Protocol Handler at present.
Intra-Networking services with complex queuing models may have several queuing stages for transmit packets. If these queues overflow, transmit packets are possibly discarded. Each affected packet is returned to its Protocol Handler with the EVENT_TX_QUEUE_FULL event message. The Protocol Handlers should consider this a fault condition because it indicates the Intra-Networking service is unable to manage an outgoing traffic load and measures must be taken to limit the situation.
4.6 Transmit queue flushes
As a systems management feature, the Intra-Networking implementation allows interfaces or protocols to be cleared of transmit traffic. Packets affected are returned to their Protocol Handlers with the EVENT_TX_FLUSHED event message, indicating a management action affecting network connectivity, which is not necessarily a fault condition. The descriptors are returned in an arbitrary order, possibility intermixed with other protocol events.
Protocol Handlers may choose to reset their own transmit queues as required by internal state, quickly relieving the End System of transmit traffic.

CCSDS 000.0-R-0

April 2006
PAGE
7
CCSDS 000.0-R-0

April 2006

