Proposed SOIS Intranetwork Layer API, 1/9/2006

 1 Definitions

 1.1 Protocol Data Unit (PDU) - A packet generated or received by a Protocol Handler.

 1.2 Service Data Unit (SDU) - A PDU that is being sent or received within the Intra-Network Service.

 1.3 Protocol Handler - A software client of the Intra-Network Service that uses the api described in this document to exchange Service Data Units with inter-operable services located on other End Systems on a SOIS sub-network.

 1.4 End System – a host with at least one Interface connecting to a SOIS sub-network under the control of a conformant Intra-Network Service implementation.

 1.5 Interface – a connection to a communication medium over which the Intra-Network Service will deliver packets. The Intra-Network Service on an End System numbers the Interfaces under its control from 0 upwards.

 1.6 Address – the logical address corresponding to exactly one End System. Assignment of addresses to End Systems is a system engineering activity. There is no address discovery function implemented in the Intra-Networking Service.

 1.7 Intra-Network Service - The software layers comprising the SOIS Intra-networking functionality on a given End System.

 1.8 Packet Descriptor - A data object containing meta-data used to direct the transmission or reception of protocol data units by the Intra-network service. Each packet descriptor is prepared by a Protocol Handler and passed to the Intra-Network Service when a packet is to be sent or received.

 2 Packet Lengths

 2.1 Maximum Transmission Unit (MTU) – The maximum size of a packet that an interface will transmit or receive.

 2.2 Maximum Data Unit (MDU) – A maximum packet size limit may be imposed by mission/implementation requirements. This imposes an upper limit on the length of PDUs that the Intra-Network Service will transmit or receive. Receive packets of length greater than the MDU are truncated, transmit packets of length greater than the MDU are not accepted for transmission. The MDU may be smaller than some of the respective MTUs of the interfaces under control of the Intra-Network Service.

 2.3 Fragmentation – When a transmit packet of length <= the MDU but of length > the MTU of the interface through which it will be sent, the packet is broken up into fragments of up to MTU length. The fragments are delivered serially to the destination End System where the packet is reassembled for submission to the Protocol Handler. This process is invisible to the Protocol Handler and is implemented entirely within the Intra-Network Service. The impact of fragmentation upon communications timing is handled through systems engineering and beyond observing that fragmentation of data-units can affect traffic timing, is beyond the scope of this document.

 3 Types

 3.1 struct sois_pktdesc

 3.1.1 The packet descriptor struct represents a protocol SDU while it is in transit through the Intra-Network Service. Each packet is associated with a descriptor while it is owned by the Intra-Network Service.

 3.1.2 Packet descriptors are allocated & managed by the Protocol Handler, allowing each protocol to configure buffering resources suitable for the application.

 3.1.3 Numeric fields of this struct are in local byte order. Field alignment is the default for the local compiler and architecture.

 3.1.4 Definition

struct sois_pktdesc

{

uint32

protocol_id;

uint32

source_address;

uint32

destination_address;

uint32

traffic_class;

uint32

packet_buffer_length;

uint32
packet_data_length;

uchar8

*pktbuffer;

uint32

protocol_data;

void

*next_pdes;

void

*prev_pdes;

}

 3.1.4.1 protocol_id – canonical abstract identifier of the protocol transmitting or receiving the packet.

 3.1.4.2 source_address – source address of the End System sending the packet. For transmit packets, this field is set by the Intra-Network Service. For receive packets, source_address contains the address of the transmitting End System.

 3.1.4.3 destination_address – address of an End System on one of the SOIS sub-network links attached to the sending End System.

 3.1.4.4 traffic_class – Implementation-specific parameter identifying the Priority, Bandwidth Reserved Channel, Reliability and Redundancy options with which the packet will be transmitted. If 0, all implementations shall assume default priority, default channel, non-reliable, non-redundant parameters for the packet transmission.

 3.1.4.5 packet_buffer_length – length of packet data buffer in octets, not the length of the data unit.

 3.1.4.6 packet_data_length – length of the transmit or receive data unit in octets.

 3.1.4.7 pktbuffer – pointer to buffer memory owned by the Protocol Handler and addressable by the Intra-Network Service. For transmit packets, this buffer contains the PDU ready for transmit. For receive packets, identifies the buffer into which a receive PDU will be placed. While a packet descriptor is in transit through the Intra-Network Service, the Protocol Handler shall leave the buffer inviolate.

 3.1.4.8 protocol_data – unused by the Intra-Network Service, reserved for use by the Protocol Handler.

 3.1.4.9 next_pdes and prev_pdes – descriptor management pointers, used to maintain lists of packet descriptors. Protocol Handlers may employ these fields to keep lists of descriptors not currently located in the Intra-Network Service. However either or both fields may be overwritten at any time while the descriptor is in transit through the Intra-Network Service. When a descriptor exits the Intra-Network Service, the Protocol Handler shall not assume a known value is present in either field.

 3.2 struct sois_tx_queue_state

 3.2.1 This struct is the means by which the Intra-Network Service communicates transmit queue state to Protocol Handlers.

 3.2.2 Numeric fields of this struct are in local byte order. Field alignment is the default for the local compiler and architecture.

 3.2.3 Definition

struct sois_tx_queue_state

{

uint32

protocol_id;

uint32

max_tx_queue;

uint32

current_tx_queue;

}

 3.2.3.1 protocol_id – canonical abstract identifier of the protocol with which the queuing information is associated.

 3.2.3.2 max_tx_queue – the current maximum number of outstanding transmit PDU's.

 3.2.3.3 current_tx_queue – the current number of outstanding transmit PDU's. current_tx_queue may be greater than max_tx_queue if the Intra-Network Servce has recently changed the max_tx_queue and the outstanding transmit PDU's have not yet cleared the system.

 4 Required Functions

 4.1 sois_attach_protocol

 4.1.1 Connects a protocol hander to the SOIS Intra-Network Service.

 4.1.2 Depending upon the implementation, the callback routines specified here may be invoked from within an interrupt context. Unless acting under specific design information from an Intra-Network Service implementation, Protocol Handlers should not assume application or operating system resources are available- instead each Protocol Handler should maintain its own pre-prepared packet descriptor & buffer pools, avoid calls into non-reentrant libraries and should generally minimize the time spent processing protocol events.

 4.1.3 Prototype;

int sois_attach_protocol(

int protocolID,

void (*protocol_event)(uint32 event, struct sois_pktdesc *pdes),

struct sois_pktdesc * (*alloc_pdes)(uint32 num_bytes));

 4.1.4 Parameters;

 4.1.4.1 protocolID - canonical abstract identifier of the protocol.

 4.1.4.2 protocol_event – C callback routine that will receive all events for this protocol from the Intra-Network Service. No return values are defined.

 4.1.4.2.1 event – one of a list of event identifiers;

 4.1.4.2.1.1 EVENT_TX_DONE – packet was transmitted. For packets with reliable QoS, this code indicates the packet was delivered, otherwise it means only the packet was sent.

 4.1.4.2.1.2 EVENT_TX_DROPPED – indicates transmit packet was dropped. Only produced when a packet with reliable QoS was not acknowleged by the destination End System.

 4.1.4.2.1.3 EVENT_TX_UNDELIVERABLE – transmit packet routing failure, meaning no route to destination End System or that the destination address is invalid.

 4.1.4.2.1.4 EVENT_TX_SCHEDULE_OVERFLOW – on implementations with scheduled bandwidth, indicates a scheduled packet was dropped because transmitting it would cause the schedule to be violated.

 4.1.4.2.1.5 EVENT_TX_QUEUE_FULL – indicates the transmit packet was dropped by the Intra-Network Service because of internal queuing issues. The dropped packet may be at any stage of processing and the queuing issue may have been caused by any combination of the other protocols active on the End System. When this event is received, the Protocol Handler should attempt to defer further transmit traffic if at all possible because it indicates the Intra-Network Service is at the extremity of a transmit overload. Since the dropped packet represents a traffic loss condition and it is not possible to re-insert the packet back into the transmit stream at its proper point, the Protocol Handler should issue warnings as required and take management action so that application layer software may fail-safe. This event shall not be used to trigger routine traffic throttling mechanisms.

 4.1.4.2.1.6 EVENT_TX_FLUSHED – the transmit packet was dropped by the Intra-Network Service because sois_flush_transmit_descriptors was called, either clearing the protocol's transmit packets or those associated with a given interface. The Protocol Handler should issue warnings as required and take management action so that application layer software may fail-safe. The Protocol Handler may continue to submit new transmit packets as desired.

 4.1.4.2.1.7 EVENT_RX – packet descriptor identifies a received packet.

 4.1.4.2.1.8 EVENT_RX_TRUNCATED – the packet_buffer_length was too small to contain the packet, so the packet was truncated to the length given by packet_data_length. This event indicates the Intra-Network Service received a data-unit larger than the Protocol Handler expected, or larger than the MDU, whichever is smaller.

 4.1.4.2.2 pdes – the packet descriptor identifying the packet associated with this event.

 4.1.4.3 alloc_pdes – C callback routine which the Intra-Network Service will invoke when it receives a packet for the protocol but has no descriptor ready to accept it. If this parameter is NULL and no descriptor is ready, the Intra-Network Service drops the received packet. If this parameter is given, when the Intra-Network Service invokes the callback, the Protocol Handler should prepare a packet descriptor & packet buffer, filling in only the packet_buffer_length, pktbuffer and optionally the protocol_data fields, returning a pointer to the descriptor. If the callback returns NULL, the Intra-Network Service drops the received packet.

 4.1.4.3.1 num_bytes – length in octets of the packet to be received.

 4.1.5 Return values;

 4.1.5.1 SUCCESS – protocol is registered. The Protocol Handler should be prepared to begin receiving packets immediately.

 4.1.5.2 PROTOCOL_ALREADY_REGISTERED – a Protocol Handler has already registered the given protocolID.

 4.2 sois_transmit_pdu

 4.2.1 Used by the Protocol Handler to submit a descriptor for a transmit packet to the Intra-Network Service. If the packet descriptor is accepted, it will be returned to the Protocol Handler at a later time by an event callback once the disposition of the transmit packet is known. If the packet descriptor is not accepted, the Protocol Handler retains ownership of the descriptor.

 4.2.2 The Protocol Handler shall not assume descriptors will be returned from the Intra-Network Service in the order they were supplied.

 4.2.3 When SUCCESS is returned, the Protocol Handler shall not assume the packet has been sent, only that it has been accepted for an attempt to transmit and that the descriptor will eventually be returned with a result code that indicates what happened to the packet.

 4.2.4 Depending upon the Intra-Network Service's interpretation of the descriptor’s traffic_class field, the Protocol Handler may or may not be able to assume the destination End System will receive the packets in the order they were given to the Intra-network layer. The Protocol Handler should select the traffic_class for each packet in accordance with mission & traffic requirements, the Intra-Network Service documentation and the SOIS QoS Whitepaper.

 4.2.5 Prototype;

int sois_transmit_pdu(struct sois_pktdesc *pdes);

 4.2.6 Parameters;

 4.2.6.1 pdes – a filled in packet descriptor. The Protocol Handler need not initialize the next_pdes or prev_pdes fields as they may be overwritten at any time by the Intra-Network Service. The source_address field will be overwritten with the source address of the End System from which it was transmitted.

 4.2.7 Return values;

 4.2.7.1 SUCCESS – the Intra-Network Service has accepted the packet for transmit.

 4.2.7.2 PROTOCOL_UNKNOWN – no Protocol Handler is registered with the given protocolID.

 4.2.7.3 PACKET_ERROR – the packet_buffer_length, packet_data_length and pktbuffer fields have issues. Examples are; pktbuffer == NULL, packet_data_length > packet_buffer_length, packet_data_length == 0, packet_data_length > MDU.

 4.2.7.4 QUEUE_TX_LIMIT_REACHED – the maximum number of outstanding transmit PDU's for this Protocol Handler has been reached.

 4.2.7.5 QUEUEING_ERROR – the Intra-Network-Service could not accept the transmit packet for implementation-dependent reasons.

 5 Optional Functions

 5.1 sois_register_descriptor

 5.1.1 Supply a packet descriptor to the Intra-Network Service ahead of the arrival of receive packets. A Protocol Handler may register any number of receive packet buffers up to the implementation's limit.

 5.1.2 While pre-loaded descriptors are present in the Intra-Network Service, the alloc_pdes callback registered when the Protocol Handler was attached is not invoked.

 5.1.3 Prototype;

int sois_register_descriptor(

int protocolID,

struct sois_pktdesc *pdes);

 5.1.4 Parameters;

 5.1.4.1 protocolID - canonical abstract identifier of the protocol.

 5.1.4.2 pdes – A packet descriptor configured with the packet_buffer_length and pktbuffer fields and optionally, the protocol_data field. All other fields are filled in by the Intra-Network Service when a packet is received.

 5.1.5 Return values;

 5.1.5.1 SUCCESS – the Intra-Network Service has accepted the packet descriptor.

 5.1.5.2 PROTOCOL_UNKNOWN – no Protocol Handler is registered with the given protocol ID.

 5.1.5.3 PACKET_ERROR – the packet_buffer_length and pktbuffer fields have issues. Examples are; pktbuffer == NULL, packet_buffer_length == 0.

 5.1.5.4 DESCRIPTOR_QUEUE_FULL – the Intra-Network Service cannot queue any more receive descriptors for the given protocol ID.

 5.2 sois_detach_protocol

 5.2.1 Disconnects a Protocol Handler from the Intra-Network Service. All pending transmit and receive descriptors and buffers are immediately dropped, no further callbacks to the Protocol Handler are invoked and all incoming packets for the protocol are dropped by the Intra-Network Service.

 5.2.2 All descriptors for the given Protocol Handler located in the Intra-Network Service are immediately un-linked and abandoned.

 5.2.3 Prototype;

int sois_detach_protocol(int protocolID);

 5.2.4 Parameters;

 5.2.4.1 protocolID - canonical abstract identifier of the protocol.

 5.2.5 Return values;

 5.2.5.1 SUCCESS – the Intra-Network Service has detached the Protocol Handler.

 5.2.5.2 PROTOCOL_UNKNOWN – no Protocol Handler is registered with the given protocol ID.

 5.3 sois_flush_transmit_descriptors

 5.3.1 When a pending transmit packet is flushed because of a call to this function, the transmit descriptor is returned to its Protocol Handler with the event code EVENT_TX_FLUSHED via the protocol event callback. Receive descriptors are not affected by this function. The Protocol Handler shall not assume flushed descriptors will arrive in a particular order or that they will not be interspersed with other protocol events.

 5.3.2 Prototype;

int sois_flush_transmit_descriptors(

int protocolID,

int ifnumber);

 5.3.3 Parameters;

 5.3.3.1 protocolID - canonical abstract identifier of the protocol or '-1' to indicate all protocols.

 5.3.3.2 ifnumber - the ordinal number of the interface to be flushed. Assignment of numbers to interfaces and the maintenance of interface numbers is implementation-specific, however all implementations shall number SOIS-controlled interfaces from '0'. Supply '-1' to indicate all interfaces.

 5.3.4 Return values;

 5.3.4.1 SUCCESS – Extant packets of the given protocol(s) on the given interface(s) were flushed. If no packets were flushed, SUCCESS is also returned. Flushed descriptors can be returned to their Protocol Handlers before and/or after this call returns.

 5.3.4.2 PROTOCOL_UNKNOWN – no Protocol Handler is registered with the given protocol ID.

 5.3.4.3 INTERFACE_UNKNOWN – no SOIS interface is present with the given number.

 5.4 sois_set_queue_policy

 5.4.1 Allows the Protocol Handler to express its preference for the queuing policy to be used for handling its transmit traffic.

 5.4.2 Implementations shall supply an implementation default queue policy for each Protocol Handler until changed by the use of this function.

 5.4.3 The Intra-Network Service may deliver different policy than that requested.

 5.4.4 The Intra-Network Service may unilaterally change the queuing policy for any Protocol Handler.

 5.4.5 If the Intra-Network Service changes the max_tx_queue such that Protocol Handler's current outstanding transmit count is greater, then the Protocol Handler will be prevented from introducing more transmit packets until the current outstanding packet count decreases below max_tx_queue.

 5.4.6 Prototype;

int sois_set_queue_policy(

int protocolID,

int max_tx_queue);

 5.4.7 Parameters;

 5.4.7.1 protocolID - canonical abstract identifier of the protocol.

 5.4.7.2 max_tx_queue – the requested maximum queue depth for this protocol. This parameter limits the total number of transmit PDU's a Protocol Handler can have outstanding in the Intra-Network Service at any time. When the maximum queue depth is reached, the Intra-Network service shall not accept transmit PDU's from the Protocol Handler.

 5.4.8 Return values;

 5.4.8.1 SUCCESS – The Protocol Handler's queue policy was successfully updated.

 5.4.8.2 PROTOCOL_UNKNOWN – no Protocol Handler is registered with the given protocol ID.

 5.5 sois_get_queue_state

 5.5.1 Allows a Protocol Handler to retrieve information about the state of its transmit queue.

 5.5.2 This function may be called from within an event callback.

 5.5.3 It is preferred that a Protocol Handler manage its own outstanding transmit packets by accounting for the difference between the count of packet descriptors submitted versus those returned, however the transmit queue policy and queue depth counts are provided to assist the Protocol Handler in maintaining state.

 5.5.4 Prototype;

int sois_get_queue_state(

int protocolID,

struct sois_tx_queue_state *txqstate);

 5.5.5 Parameters;

 5.5.5.1 protocolID - canonical abstract identifier of the protocol.

 5.5.5.2 txqstate – Pointer to memory owned by the Protocol Handler & addressable by the Intra-Network Service, into which the Protocol Handler's tx queue state will be copied.

 5.5.6 Return values;

 5.5.6.1 SUCCESS – The Protocol Handler's queue state was successfully retrieved.

 5.5.6.2 PROTOCOL_UNKNOWN – no Protocol Handler is registered with the given protocol ID.

