
Formal Verification
of Transmission Window Timing

for the Time-Triggered Architecture

John Rushby
Computer Science Laboratory

SRI International
Menlo Park CA 94025 USA

March 2001

Deliverable 24b for SRI Project 11003; Subcontract to Honeywell Tuc-
son under Cooperative Agreement NCC-1-377 with NASA Langley enti-
tled Design, Implementation, and Verification of Fault-Tolerant Modular
Aerospace Controls.

Abstract

We formally verify the parameters on the timing of message windows in transmitters,
receivers, and bus guardians for the Time-Triggered Architecture.

i

ii

Contents

1 Transmission Window Timing in the Time-Triggered Architecture 1

2 Verification of Window Timing Parameters 3
2.1 Validity and Agreement . 4
2.2 Nonoverlapping Slots . 7

3 Formal Verification of Window Timing Parameters with PVS 11

4 Conclusion 17

Bibliography 18

iii

iv

Chapter 1

Transmission Window Timing in the
Time-Triggered Architecture

Message transmissions in TTP are governed by a global schedule which records the identity
of the node that is to transmit in each slot, and also the start time and duration of the slot.
The transmitter starts to send its message some time after the start of the slot, and finishes
some time before the allowed duration has elapsed. Dually, receiving nodes start to listen
at the beginning of the slot and cease when the duration has expired. The timings of events
at transmitters and receivers are driven by their local clocks; these clocks are synchronized
to within some threshold, but will not be exactly the same as each other. Consequently,
it is possible that clock skew may allow a transmitter to start to send its message before
some receivers are ready to listen, or to finish after others have ceased to listen. This could
cause some nodes to reject messages that others accept—which violates the fault hypothesis
of the TTP group membership algorithm, and could lead to failure.1 The parameters that
govern timing of the transmit and receive windows must be chosen so that this circumstance
cannot arise. In addition to transmitters and receivers, bus guardians are used to ensure that
faulty transmitters cannot broadcast outside their allotted windows. Parameter selection
must therefore also consider window timing for the bus guardians.

The TTP protocol specification provides some discussion of bus guardian window tim-
ing [TTT99, pp. 114–115], but this has recently been supplanted by a new analysis [Bau01].
The new analysis assumes that all clocks (of TTP controllers and bus guardians) are syn-
chronized within some parameter

�
and proposes the following design rules (i.e., parameter

selections), which are illustrated in Figure 1.1.

1The TTP membership algorithm has a clique-avoidance component that ensures well-defined behavior in
this circumstance, but that behavior is not desirable and is intended only to ensure recovery from multiple
faults—whereas no faults are present in this scenario.

1

TF

BF

RF

Transmitter

Bus Guardian

Receiver

skew

(2Π)

(Π)

(0)

(2Π)

(3Π)

(4Π)RS

BS

TS

(Π)

For each component, the solid line indicates its nominal slot, and the shaded line its window.

Figure 1.1: Illustration of Window Timing Parameters

� The receive window extends from the beginning of the slot to
� �

beyond its allotted
duration.

� Transmission begins �
�

units after the beginning of the slot and should last no longer
than the allotted duration.

� The bus guardian for a transmitter opens its window
�

units after the beginning of
the slot and closes it �

�
beyond its allotted duration.

These rules are intended to ensure the following requirements.

Agreement: If any nonfaulty node accepts a transmission, then all nonfaulty nodes do.

Validity: If any nonfaulty node transmits a message, then all nonfaulty nodes will accept
the transmission.

A detailed, but informal, analysis has been developed showing that these rules do indeed
ensure the requirements [Bau01]. Our goal is to formally verify this analysis. We do this
both because it is an interesting and important property that needs strong assurance, and
because it is a comparatively simple topic that can serve as a tutorial introduction to formal
verification in this domain.

2

Chapter 2

Verification of Window Timing
Parameters

The issue that complicates analysis of window timings is that clock synchronization is im-
perfect: the clocks of nonfaulty nodes are maintained close together, but they cannot be
expected to be in exact agreement. To analyze window timings, we need to formalize the no-
tion of synchronization, which in turn requires that we formalize the notion of clocks. There
is a standard way to do this, which was introduced by Lamport and Melliar-Smith [LMS85],
and which we have used in formal treatments of problems similar to this [RvH93, Rus99].

Following [LMS85], we distinguish two notions of time: clocktime, denoted
�

is the
local notion of time supplied by each component’s clock, while realtime, denoted � is an
abstract global quantity. We follow the usual convention and denote clocktime quantities
by uppercase Roman or Greek letters, and realtime quantities by lowercase letters.

Formally, processor � ’s clock is a function �������
	 �
. The intended interpretation

is that ������
�� is the value of � ’s clock at realtime
 .1 Two clocks are synchronized if their
readings at the same realtime instant
 are within some small clocktime bound

�
of each

other.

Definition 1 Clock Synchronization.

� ������
�����������
�� ��� ���

We assume that the clocks of nonfaulty components are always synchronized within
�

; this
assumption is discharged by the clock synchronization algorithm of TTP/C, which has been
formally verified to do so [PSvH99].

1In the terminology of [LMS85], these are actually “inverse” clocks.

3

2.1 Validity and Agreement

We first consider the Validity requirement on window timing; this decomposes into two
subrequirements: one on message timing from a transmitter to its bus guardian, and one on
message timing from bus guardians to receivers.

Lemma 1 (Transmitter to Bus Guardian Validity) If a nonfaulty controller transmits a
message, and its bus guardian is also nonfaulty, then its bus guardian will pass the message.

Proof: Suppose that the slot for message � begins at
������� ���
	��
� � � � and the message is

of maximum duration
������� ������	�������� � � � . Suppose that the transmitter starts to send the

message at some offset � � after the start of the slot and finishes ��� after its maximum
message duration; that is, at

������� ���
	���� � � ��� ������� ������	�������� � � ��� ��� . Suppose also that
its bus guardian opens its window ! � clocktime units after the start of the slot, and closes it
��� after its maximum message duration; that is, at

������� ���
	��
� � � ��� ������� ������	�������� � � ���
!"� .

Let
 be the realtime such that

������
 �$# ������� ����	��
� � � �%�&� �(' (2.1)

where � is the transmitter (i.e.,
 is the realtime at which the transmission begins). The bus
guardian window must already be open at this time, so we need

�*) ��
��,+ ������� ���
	��
� � � �%�-! � (2.2)

where . is the bus guardian for � . Now clock synchronization gives

� � � �*) ��
���� ������
�� � �

and so substituting (2.1) gives

�) ��
��,+ ������� ���
	��
� � � �%�/� � � � '

and satisfaction of (2.2) then requires

� � +0! � � ���
(2.3)

As noted in Chapter 1, the parameters chosen for TTP/C are � � # �
�

and ! � # �
; these

clearly satisfy the constraint (2.3).
If we now let 1 be the realtime such that

������1 �2# ������� ����	��
� � � �%� ������� �3�4��	�������� � � �%�/��� (2.4)

then 1 is the latest that � ’s transmission can continue (clearly ���5+6� �). We require that
the bus guardian’s window is still open at this time.

�*) ��1 � � ������� ���
	���� � � �7� ������� ������	�������� � � �%�8!"� � (2.5)

4

As before, clock synchronization gives

� � � �*) ��1 � � ������1 � � �

and substituting (2.4) gives

�*) ��1 � � ������� ���
	��
� � � �%�/���6� ������� �3�4��	�������� � � �%� � '

so that satisfaction of (2.5) requires

!"� +-���6� ���
alsoIf we select � � # ! � � �

to satisfy (2.3), and ��� #6� � , this yields

!"� + ! � � �
� �

(2.6)

As noted in Chapter 1, the parameters chosen for TTP/C are ! � # �
and !"� # �

�
; these

clearly satisfy the constraint (2.6).
�

Lemma 2 (Bus Guardian to Receiver Validity) If a nonfaulty bus guardian passes a
message, then it will be accepted by all nonfaulty nodes.

Proof: We know that the transmitter’s bus guardian opens its window ! � clocktime units
after the start of the slot, and closes it at

������� ���
	��
� � � � � ������� �3�4��	�������� � � � � ! � .
Suppose that the receiver is ready to receive

� �
clocktime units after the start of the slot,

and ceases receiving at
������� ����	��
� � � �%� ������� �3�4��	�������� � � �7� � � .

Let
 be the realtime such that

�) ��
�� # ������� ���
	��
� � � �%�8! �(' (2.7)

where . is the bus guardian (i.e.,
 is the realtime at which the bus guardian opens its
window). The receiver must already be ready at this time, so we need

��� ��
��,+ ������� ���
	��
� � � �%� � �
(2.8)

where � is the receiver. Now clock synchronization gives

� � � � � ��
���� �) ��
�� � �

and so substituting (2.7) gives

��� ��
��,+ ������� ���
	��
� � � �%�8! � � � '

and satisfaction of (2.8) then requires

! � + � � � ���
(2.9)

5

As noted in Chapter 1, the parameters chosen for TTP/C are ! � # �
and

� � # �
; these

clearly satisfy the constraint (2.9).
If we now let 1 be the realtime such that

�*) ��1 �$# ������� ���
	���� � � �7� ������� ������	�������� � � �%�8!"� (2.10)

then 1 is the latest that . ’s window is open. We require that the receiver’s window is still
open at this time.

������1 � � ������� ���
	���� � � �7� ������� ������	�������� � � �%� � � � (2.11)

As before, clock synchronization gives

� � � ������1 � ���*) ��1 � � �

and substituting (2.10) gives

������1 � � ������� ���
	���� � � �7�8!"�6� ������� �3�4�
	�������� � � �%� � '

so that satisfaction of (2.11) requires
� � +0!"�6� ���

(2.12)

As noted in Chapter 1, the parameters chosen for TTP/C are !"� # �
�

and
� � # � �

;
these clearly satisfy the constraint (2.12).

�

Theorem 1 (Validity) If any nonfaulty node transmits a message, then all nonfaulty nodes
will accept the transmission.

Proof: This is a simple consequence of the previous two lemmas: the first ensures that the
message from any nonfaulty transmitter will be passed by its nonfaulty bus guardian, and
the second ensures that any message passed by a nonfaulty bus guardian will be accepted
by a nonfaulty receiver.

�

Theorem 2 (Agreement) If any nonfaulty node accepts a transmission, then all nonfaulty
nodes do.

Proof: The previous theorem ensures that any message sent by a nonfaulty node will be
accepted by all nonfaulty nodes. This theorem focuses on the case where the transmitting
node is faulty. The fault hypothesis of TTP/C is that at most one fault containment unit
(FCU) may fail in any two consecutive rounds. Each node comprises two FCUs that are
assumed to fail independently: the controller and the bus guardian.

If a controller fails, it may attempt to transmit a message at an incorrect time. If its
message nonetheless falls within its bus guardian’s window, then Lemma 2 ensures that it

6

will be accepted (assuming it is correctly formatted) by all nonfaulty receivers. Otherwise,
the bus guardian will block the message (if it falls entirely outside its window) or truncate it
(if it falls partly outside its window). Blocked messages are not seen by any receivers, and
truncated messages will be malformed and rejected by all nonfaulty receivers.

A similar argument obtains if the bus guardian fails. If it fails in such a way that it
passes its controller’s message, then a lemma similar to those given earlier establishes that
the timing of the nonfaulty controller’s message is such that it is accepted by all nonfaulty
receivers. If the guardian blocks or truncates the message, then it will not be accepted by
any nonfaulty receiver.

�

Notice that the Agreement property can be violated if there are multiple faults: the
windows of a controller and its guardian that are both faulty could slide to a point where
they transmit messages that arrive within the windows of some nonfaulty receivers, but not
others (because of clock skew).

2.2 Nonoverlapping Slots

The properties established in the previous section ensure that the windows for a given slot
line up appropriately. However, another concern is that the windows for adjacent slots must
not overlap (this issue was raised by Tom Phinney of Honeywell when we used this material
in a PVS training session).

We need to ensure that a message sent by a nonfaulty transmitter (or passed by a non-
faulty guardian) cannot reach another nonfaulty component that still has its window open
from the previous slot, or that has already opened its window for the next slot. The design
rule we propose is the following.

� A slot can start no earlier than
� �

after the end of the previous slot.

This is formalized as follows
������� ���
	��
� � � � � �,+ ������� ����	��
� � � �%� ������� ������	�������� � � �7� � � �

(2.13)

The property we require is that the window of one component must not overlap the
window of another component in the following slot (by symmetry, this also takes care of
the previous slot). This means that the realtime at which the first component closes its
window at the end of one slot should be no earlier than the realtime at which the second
opens its window for the start of the next slot. We only need consider cases where one of
the components can be sending or passing a message (i.e., a transmitter or bus guardian),
and the other can be passing or receiving a message (i.e., a bus guardian or receiver).

Lemma 3 (Transmitter to Bus Guardian Separation) A nonfaulty controller finishes
transmitting its message before its nonfaulty bus guardian opens its window for the next
slot.

7

Proof: Let
 be the realtime at which transmitter � finishes sending its message in slot � .
Then

������
 �$# ������� ����	��
� � � �%� ������� �3�4�
	�������� � � �%�&� � � (2.14)

We require that the window of its bus guardian . opens for the next slot no earlier than

 . That is,

�*) ��
�� � ������� ���
	��
� � � � � �%�8! � � (2.15)

Now clock synchronization gives

� � � �*) ��
���� ������
�� � �

and so substituting (2.14) gives

�) ��
�� � ������� ���
	��
� � � �%� ������� ������	�������� � � �%�&���6� �

and satisfaction of (2.15) then requires

������� ���
	���� � � � � �,+ ������� ���
	��
� � � �%� ������� ������	�������� � � �%�&���6� � � ! � �

As noted in Chapter 1, the parameters chosen for TTP/C are ��� # �
�

and ! � # �
; these

clearly satisfy the constraint (2.13).
�

The dual case is the following.

Lemma 4 (Bus Guardian to Transmitter Separation) A nonfaulty controller does not
start transmitting its message until after its nonfaulty bus guardian closes its window at
the end of the previous slot.

Proof: The proofs are more uniform if we reinterpret the lemma as requiring that the bus
guardian closes its window before the transmitter starts transmitting in the next round.

Let
 be the realtime at which bus guardian . closes its window in slot � . Then

�*) ��
�� # ������� ���
	��
� � � �%� ������� ������	�������� � � �%�8!"� � (2.16)

We require that the window of its transmitter � opens for the next slot no earlier than
 .
That is,

������
 � � ������� ����	��
� � � � � �%�&� � � (2.17)

Now clock synchronization gives

� � � �*) ��
���� ������
�� � �

8

and so substituting (2.16) gives

� � ��
�� � ������� ���
	���� � � �7� ������� ������	�������� � � �%�8!"�6� �

and satisfaction of (2.15) then requires

������� ���
	��
� � � � � �,+ ������� ����	��
� � � �%� ������� ������	�������� � � �7�8!"�6� � � � � �

As noted in Chapter 1, the parameters chosen for TTP/C are � � # �
�

and !"� # �
�

;
these clearly satisfy the constraint (2.13).

�

Theorem 3 (Separation) Messages sent or passed by nonfaulty components do not arrive
before other compnents have finished the previous slot, nor after they have started the fol-
lowing one.

Proof: The previous two lemmas are representative of the arguments involved; the other
cases that need to be considered are bus guardian to receiver and the reverse (these are
the cases where the

� �
in (2.13) is tight), transmitter to receiver and the reverse, and bus

guardian to bus guardian.
Notice that it is possible for two receivers to be in different slots at the same realtime

(unless the separation is increased to
� �

).
�

We also need to be sure that no component is required to start its next slot before it has
finished its previous one. This follows because each of ��� , !"� , and

� � is less than the� �
constraint in (2.13).

9

10

Chapter 3

Formal Verification of Window
Timing Parameters with PVS

In this chapter, we use the formal verification system PVS [OSRSC98] to check the analyses
performed in the previous chapter. Readers are assumed to have some familiarity with
PVS. We begin by introducing types and variables corresponding to the various entities
introduced in the analysis,

windowtiming: THEORY
BEGIN
realtime: TYPE = real
t: VAR realtime

clocktime: TYPE = nat

slot: TYPE = nat
n: VAR slot

Slot_Start: [slot -> clocktime]
Slot_Duration: [slot ->

�
c: clocktime | c>0 �]

proc: TYPE+
p, q, g: VAR proc

Most of this is straightforward. The range type of the function Slot Duration uses a
predicate subtype (one of the most powerful features of the PVS type system) to ensure that
slot durations are always strictly positive. We use the nonempty type proc to represent
both controllers and bus guardians.

Next, we introduce the function C(p, t) that represents clocks (written � ����
�� in the
previous chapter), the uninterpreted constant Pi and state the axiom synchronized,
which asserts that clocks (implicitly of nonfaulty processors) are synchronized within Pi.

11

C(p, t): clocktime
Pi: clocktime

synchronized: AXIOM abs(C(p,t) - C(q,t)) < Pi

Then, we introduce the constants TS, BS, and BF and define Tstart(n) as the clock-
time at which the transmitter starts to send its message in the n’th slot. We similarly define
Tfinish(n),Bstart(n), and Bfinish(n) as the times when the transmitter finishes
its transmission, the bus guardian opens its window, and closes it, respectively.

TS, TF, BS, BF: clocktime

Tstart(n): clocktime = Slot_Start(N) + TS
Tfinish(n): clocktime = Slot_Start(n) + Slot_Duration(n) + TF

Bstart(n): clocktime = Slot_Start(n) + BS
Bfinish(n): clocktime = Slot_Start(n) + Slot_Duration(n) + BF

Now, we can define a predicate that captures the first of the properties in which we are
interested.

T_BG_Start_OK(p, g): bool = FORALL n, t:
C(p, t) = Tstart(n) IMPLIES C(g, t) >= Bstart(n)

This predicate is true of two processors p and g (implicitly a transmitter and its bus
guardian) if, whenever t is the realtime at which p starts its transmission, the corresponding
clocktime at g is already greater than the time at which it opens its window.

We want to prove that this property is true provided TS > BS + Pi. We state this as
a lemma.

T_BG_Start: SUBLEMMA TS >= BS + Pi IMPLIES T_BG_Start_OK(p, g)

We know, from the proof used in the previous chapter, that this result is a consequence
of the various definitions employed, plus the clock synchronization assumption. The PVS
proof command grind-with-lemmas is a very powerful command that expands defini-
tions, instantiates named lemmas, and applies decision procedures. The default version of
the command guesses the wrong instantiations in this case, so we need the following more
muscular version of the command to discharge the lemma.

(GRIND-WITH-LEMMAS :IF-MATCH all :LEMMAS "synchronized")

The keyword argument :IF-MATCH all tells the PVS theorem prover to search for all
ways to instantiate the axiom synchronized.

An exactly similar specification and proof is used to state and prove the corresponding
result for the end of the window,

12

T_BG_end_OK(p, g): bool = FORALL n, t:
C(p, t) = Tfinish(n) IMPLIES C(g, t) <= Bfinish(n)

T_BG_end: SUBLEMMA TF + Pi <= BF IMPLIES T_BG_end_OK(p, g)

Finally, we can state the result (corresponding to Lemma 1 in the previous chapter) that
asserts that the TTP/C parameter selections ensure validity of transmitter to bus guardian
window timing.

T_BG_validity: LEMMA
TS=2*Pi AND TF=2*Pi AND BS = Pi AND BF = 4* Pi =>

T_BG_Start_OK(p, g) AND T_BG_end_OK(p, g)

This result is a straightforward consequence of the previous two sublemmas; we again
use the grind-with-lemmas proof command, but this time we specify the keyword
argument :DEFS NIL to avoid expanding the defined terms.

(GRIND-WITH-LEMMAS :DEFS NIL :LEMMAS ("T_BG_Start" "T_BG_end"))

The specifications and proofs given above can be adapted straightforwardly to establish
Validity in the bus guardian to receiver case (corresponding to Lemma 2 in the previous
chapter), and also for transmitter to receiver validity (corresponding to the case in the argu-
ment for Agreement where the bus guardian is faulty). However, all these specifications and
proofs have a similar form, so that it is more attractive and economical to state and prove
the general result once and for all.

We can define a window to be a record comprising a pair of clocktimes where the
second is strictly greater than the first (this requires dependent predicate subtyping). Then
we can define what it means for one window w1 to be within another window w2, which
we write as w1 <= w2. Infix operators such as <= can be overloaded in PVS by defining
them in prefix form.

window: TYPE = [# start: clocktime,
finish:

�
c: clocktime | c>start � #]

w1, w2: VAR window

<=(w1, w2): bool = FORALL (p1, p2: proc), (s,f: realtime):
C(p1, s) = w1‘start AND C(p1, f) = w1‘finish

IMPLIES C(p2, s) >= w2‘start AND C(p2, f) <= w2‘finish

This definition says that w1 <= w2 if, whenever s and f are realtimes at which some
processor’s clock corresponds to the start and finish of w1, then any other processor’s clock
will already be beyond the start, but before the end, of w2, respectively.

Then we can state the theorem that says w1 will always be within w2, provided w1
always starts at least Pi after w2, and ends at least Pi earlier.

13

timing: LEMMA w1‘start >= w2‘start + Pi
AND w1‘finish <= w2‘finish - Pi

IMPLIES w1 <= w2

The proof is similar to the more specific cases seen earlier.

(SKOSIMP)
(EXPAND "<=" +)
(SKOSIMP)
(GROUND)
(("1" (GRIND-WITH-LEMMAS :IF-MATCH ALL :LEMMAS "synchronized"))
("2" (GRIND-WITH-LEMMAS :IF-MATCH ALL :LEMMAS "synchronized")))

First we Skolemize to eliminate the universal-strength quantifiers, expand the new definition
of <= and Skolemize again, then case-split and use grind-with-lemmas as before on
each branch.

Then, we can specify the parameters that define the transmission windows for each kind
of component.

send_window(n: slot): window =
(# start := Slot_Start(n)+2*Pi,

finish := Slot_Start(n)+Slot_Duration(n)+2*Pi #)
guardian_window(n: slot): window =

(# start := Slot_Start(n)+Pi,
finish := Slot_Start(n)+Slot_Duration(n)+3*Pi #)

rcv_window(n: slot): window =
(# start := Slot_Start(n),

finish := Slot_Start(n)+Slot_Duration(n)+4*Pi #)

And then we specify the three required relationships between the various windows.

% Bus guardian is within receiver window
bg_rcv: LEMMA guardian_window(n) <= rcv_window(n)

% Transmitter is within guardian window
send_bg: LEMMA send_window(n) <= guardian_window(n)

% Transmitter is within receiver window (in case bg is faulty)
send_rcv: LEMMA send_window(n) <= rcv_window(n)

Each of these is proved by the following command, which invokes the powerful grind
strategy, with the information that the timing theorem can be used as a rewrite rule.

(GRIND :REWRITES "timing")

We state the conditions on nonoverlapping windows in terms of the following function.

14

|>(w1,w2): bool = FORALL (p1, p2: proc), (f: realtime):
C(p1, f) = w1‘finish IMPLIES C(p2, f) <= w2‘start

We can then say w1 |> w2 to indicate that the end of window w1 is no later (in realtime)
than the start of window w2, for all pairs of processors. The following theorem establishes
that this relationship holds providing at least Pi separates the respective clocktimes.

separation: THEOREM w2‘start >= w1‘finish+Pi => w1 |> w2

This is proved by the following command.

(GRIND-WITH-LEMMAS :IF-MATCH ALL :LEMMAS "synchronized")

The seven lemmas that establish separation between various combinations of compo-
nents are then stated as follows. In the previous chapter, we asserted that these are all
ensured by the bound

� �
; here, we state the tight bound for each pair.

send_bg_sep: LEMMA
Slot_Start(n+1) >= Slot_Start(n)+Slot_Duration(n)+2*Pi =>

send_window(n) |> guardian_window(n+1)

send_rcv_sep: LEMMA
Slot_Start(n+1) >= Slot_Start(n)+Slot_Duration(n)+3*Pi =>

send_window(n) |> rcv_window(n+1)

rcv_send_sep: LEMMA
Slot_Start(n+1) >= Slot_Start(n)+Slot_Duration(n)+3*Pi =>

rcv_window(n) |> send_window(n+1)

rcv_bg_sep: LEMMA
Slot_Start(n+1) >= Slot_Start(n)+Slot_Duration(n)+4*Pi =>

rcv_window(n) |> guardian_window(n+1)

bg_send_sep: LEMMA
Slot_Start(n+1) >= Slot_Start(n)+Slot_Duration(n)+2*Pi =>

guardian_window(n) |> send_window(n+1)

bg_bg_sep: LEMMA
Slot_Start(n+1) >= Slot_Start(n)+Slot_Duration(n)+3*Pi =>

guardian_window(n) |> guardian_window(n+1)

bg_rcv_sep: LEMMA
Slot_Start(n+1) >= Slot_Start(n)+Slot_Duration(n)+4*Pi =>

guardian_window(n) |> rcv_window(n+1)

All these lemmas are proved by the following command.

(GRIND-WITH-LEMMAS :IF-MATCH ALL :LEMMAS "separation")

15

16

Chapter 4

Conclusion

We have formally verified that the design rules (i.e., choices of parameters) on the timing
of message windows in TTP/C ensure desirable and necessary properties. In particular,
messages sent by nonfaulty transmitters will never be cut off by nonfaulty bus guardians
and will be accepted by nonfaulty receivers. We have also verified that there is no overlap
between the windows of one slot and those of the next.

Our formal proofs are no longer than the informal arguments in [Bau01], while the
mechanically checked PVS proofs are actually shorter—because we can use the expressive
logic of PVS to state and prove key results in their general form, and then simply instantiate
them to obtain the desired cases.

In addition to their intrinsic value, we have found the formulas stated and proved in this
report to be useful as introductions to the techniques of mechanized formal methods and to
PVS.

17

18

Bibliography

[Bau01] Günther Bauer. Bus guardian window timing. Unpublished draft, Technische
Universität Wien, Real-Time Systems Group, Vienna, Austria, April 2001.

[LMS85] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of
faults. Journal of the ACM, 32(1):52–78, January 1985.

[OSRSC98] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. User Guide
for the PVS Specification and Verification System. Computer Science Labo-
ratory, SRI International, Menlo Park, CA, September 1998. Three volumes:
Language, System, and Prover Reference Manuals.

[PSvH99] Holger Pfeifer, Detlef Schwier, and Friedrich W. von Henke. Formal veri-
fication for time-triggered clock synchronization. In Charles B. Weinstock
and John Rushby, editors, Dependable Computing for Critical Applications—
7, volume 12 of Dependable Computing and Fault Tolerant Systems, pages
207–226, San Jose, CA, January 1999. IEEE Computer Society.

[Rus99] John Rushby. Systematic formal verification for fault-tolerant time-triggered
algorithms. IEEE Transactions on Software Engineering, 25(5):651–660,
September/October 1999.

[RvH93] John Rushby and Friedrich von Henke. Formal verification of algorithms for
critical systems. IEEE Transactions on Software Engineering, 19(1):13–23,
January 1993.

[TTT99] Time-Triggered Technology TTTech Computertechnik AG, Vienna, Austria.
Specification of the TTP/C Protocol, July 1999.

19

