TCONS RED BOOK REVIEW INPUTS

Part 2

1. In section 3.3.1 (GUARANTEED SERVICE OVERVIEW) :

“When a packet is sent a timeout timer is started at the source. When a packet arrives at its destination its safe receipt is acknowledged. The acknowledgement will arrive at the source of the original packet telling the source that the packet arrived safely at its destination. If no acknowledge is received before the source timeout timer expires then the source assumes that the packet did not arrive safely and it resends the packet. When this resent packet arrives at the destination it can be passed up to the application. If the original packet had actually arrived safely and it was the acknowledgement that went missing, then the resent packet is a duplicate of an already received packet and is discarded. The duplicate packet is acknowledged so that the source knows that one of the packets reached the receiver
.”

…

 “The maximum size of a TCONS network packet is limited to the MTU
. The Guaranteed service can send units of data of an arbitrary size by splitting them into a series of smaller packets of size less than or equal to the MTU. This process is known as segmentation. At the destination TCONS reconstructs the original network Packet from the received segments.
Note that the MTU is required to ensure that different sources of data get fair access to the transmission medium, by multiplexing traffic on a packet (Network PDU) by packet basis. When a large data unit is being sent, other sources can get a look in after each segment of the large data unit has been sent
.”

2. In section 3.3.2 (Guaranteed Service Primitives):

“There are fourteen primitives used by this service:

· Listen Request, which listens for an incoming connection request,

· Open Connection Request, which opens a connection between two end points,

· Open Connection Confirmation, which confirms that a request for a connection has been accepted and a connection established,

· Established Indication, which indicates that an accepted request to open a connection has been completed and the connection has been established,

· Open Connection Failure Indication, which indicates that an open has failed,

· Send Request which requests to send a block of data across a connection
,

· Send Confirmation, which confirms that a Send Request has completed successfully,

· Send Fail, which indicates that a Send Request has failed,

· Receive Request which registers a buffer for receiving data into,

· Receive Indication which indicates that a block of data has
been received on a connection, and placed in a registered buffer provided by a previous Receive Request,

· Receive Fail Indication which indicates that a receive request has failed,

· Close Connection Request, which closes a connection at both end points,
· Close Connection Confirmation, which confirms that a request for closing a connection has been completed.
· Close Connection Indication, which indicates that a request for closing a connection has been received from the remote end point.
”

3. In section 3.3.2.1. (Listen):

“In order for an End System to accept a connection it must be listening for incoming open requests. The Listen.Request primitive requests to receive on a specific port from a specific source SAP, on a specific port from any source SAP, or on any port either from a specific SAP or from any SAP.

”

4. In section 3.3.2.2 (Open Connection):

“3.3.2.2 Open Connection Request”

5. In section 3.3.2.5 (Open Failure):

“Name: T_G_OpenFailure.Indication

Parameters: None

The Open Failure indication indicates that a connection request has failed
.

”
6. In section 3.3.2 (GUARANTEED SERVICE PRIMITIVES):

In this section the service primitives for the Prioritized, Guaranteed, Data Delivery service are presented.

There are fourteen primitives used by this service:

· Listen Request
, which listens for an incoming connection request,

· Open Connection Request, which opens a connection between two end points,

· Open Connection Confirmation, which confirms that a request for a connection has been accepted and a connection established,

· Established Indication, which indicates that an accepted request to open a connection has been completed and the connection has been established,

· Open Connection Failure Indication, which indicates that an open has failed,

· Send Request which requests to send a packet of data across a connection,

· Send Confirmation, which confirms that a Send Request has completed successfully,

· Send Fail, which indicates that a Send Request has failed
,

· Receive Request
which registers a buffer for receiving data into,

· Receive Indication which indicates that a packet has been received on a connection, and placed in a registered buffer provided by a previous Receive Request,

· Receive Fail Indication
which indicates that a receive request has failed,

· Close Connection Request, which closes a connection at both end points.

· Close Connection Confirmation

· Close Connection Indication

Guaranteed Service Protocol

In this section the protocols used by the Prioritized, Guaranteed, Data Delivery service are described with the aid of sequence diagrams
.

Example of a Composed set of sequence diagram: This represent the set of scenario for the connection with the Source point of view: The “open request” scenario which is triggered by the call of the Open Request primitive sends an Open PDU and sets a timer. It is followed (Sequence) either by the “Open Failure” scenario or by the “Established” Scenario. In the first case, the timer has expired so the Open failure indication is sent, and in the other case, the Accept PDU has been received, the timer is reset and the EST PDU is sent:
[image: image17.emf]open_request

open_request

open_pdu

source_entity

source_entity

open_timeout

opening

Open

The Open protocol used to establish a connection is described in this section. To establish a connection the events shown in the sequence diagram of Figure Error! No text of specified style in document.‑1 have to take place.

[image: image1.emf]OPENING

ESTABLISHED

EST.

LISTENING

OPEN.REQ

OPEN.CONF

LISTEN.REQ

ACCEPTANCE

CRITERIA AND CALL

BACK SET UP

BLOCKING

Opener Listener

= TCONS state

EST.IND

HALF OPEN

CALL BACK INVOKED

TO INDICATE THAT

CONNECTION

ESTABLISHED

EST. = ESTABLISHED

OPEN

ACCEPT

EST.

Figure Error! No text of specified style in document.‑1 Open Sequence

1. LISTEN.REQ registers the acceptance criteria (destination port number and source SAP) for accepting an incoming call and sets up a call-back to the process that wants the connection.

2. OPEN.REQ requests to make connection. The OPEN.REQ blocks until the OPEN.CONF or a call-back can be registered. At the Opening end a state machine for the connection is created and put in the Opening state
.

3. When the OPEN PDU reaches the Listener the connection parameters sent with the OPEN are checked against all the acceptance criteria registered by with the various Listen requests.

4. Assuming that the incoming OPEN is acceptable, TCONS will then send the ACCEPT PDU to the Opening end of the emerging connection. A state machine for the connection is created at the Listener end and put into the Half Open state.

5. When the ACCEPT PDU reaches the Opening end it causes the Opening application to be unblocked, or the call-back to be invoked, and an EST PDU to be sent back to the Listener end. The state machine moves to the Established state.

6. When the EST PDU reaches the Listener end the connection is established. The state machine moves to the Established state.

7. TCONS only accepts send and receive requests when the connection is established i.e. when the connection state machine within TCONS is in the Established state.

Figure Error! No text of specified style in document.‑2
 shows what happens when multiple connections are to be established. Separate state machines are created for each connection at each end
.

[image: image2.emf]OPENING

ESTABLISHED

ESTABLISHED

LISTENING

OPEN.REQ

OPEN.CONF

LISTEN.REQ

CALL BACK SET UP

BLOCKING

Opener Listener

= TCONS state

EST.IND

HALF OPEN

CALL BACK INVOKED

TO INDICATE THAT

CONNECTION

ESTABLISHED

OPEN

ACCEPT

EST

OPENING

ESTABLISHED

EST.

OPEN.REQ

OPEN.CONF

BLOCKING

EST.IND

HALF OPEN

CALL BACK INVOKED

TO INDICATE THAT

CONNECTION

ESTABLISHED

OPEN

ACCEPT

EST

Figure Error! No text of specified style in document.‑2 Opening of Multiple Connections

It is possible for both ends of a potential connection to be listening for the connection and to request to open the connection at the same time. This situation is illustrated in Figure Error! No text of specified style in document.‑3.

[image: image3.emf]LISTENING

OPENG

ESTABLISHED

LISTENING

OPEN.REQ

OPEN.CONF

LISTEN.REQ

CALL BACK SET UP

BLOCKING

= TCONS state

HALF OPEN

OPEN

ACCEPT

EST

OPEN.REQ

HALF OP

EST.

OPENG

OPEN.CONF

EST

ACCEPT

OPEN

BLOCKING

RETURN WITH CONNECTION

ESTABLISHED

RETURN WITH CONNECTION

ESTABLISHED

LISTEN.REQ

CALL BACK SET UP

Figure Error! No text of specified style in document.‑3 Both Ends Opening at Same Time

1. Both ends of the potential connection register to listen for an incoming open request.

2. The local application requests to open a connection. A connection state machine is created and initialised to the Opening state. An OPEN PDU is then sent to the other end.

3. Shortly afterward an OPEN PDU arrives from the other end.

4. The parameters of the OPEN PDU are compared to the list of expected connections and the Open accepted. The connection state machine is moved to the Half Open state and an ACCEPT PDU is sent to the other end.

5. An ACCEPT PDU arrives from the other end. The connection state machine is moved to the Established state and an EST PDU is sent to the other end of the connection.

6. The call-back function registered with the Open request is invoked to tell the application that the connection has been established.

7. The connection is now in the Established state so can be used for data transfer.

8. An EST PDU arrives from the far end of the connection. Since the connection is already in the Established state the EST PDU is effectively ignored.

The main thing to note in this situation is that the two ends do not have to wait for the EST PDUs to complete the connection.

Figure Error! No text of specified style in document.‑4 shows what happens if an attempt to open a connection fails because of a communications failure.

[image: image4.emf]OPENING

LISTENING

OPEN.REQ

OPEN_FAILURE.IND

LISTEN.REQ CALL BACK SET UP

BLOCKING

Opener Listener

= TCONS state

OPEN_FAILURE.IND

HALF OPEN

OPEN

ACCEPT

TCONS TIMES OUT

TCONS TIMES OUT

CALL BACK INVOKED

OPEN FAILURE

Figure Error! No text of specified style in document.‑4 Failure to Open
a Connection

1. LISTEN.REQ sets up the connection acceptance criteria and call-back to the application.

2. OPEN.REQ requests to make connection. An OPEN PDU is sent to the Listener end.

3. When the OPEN PDU reaches the Listener end it is accepted and a connection state machine created and set to the Half Open state.

4. An ACCEPT PDU is sent to the Opening end. This gets lost or corrupted on the way.

5. Since the ACCEPT PDU has been lost or corrupted it does not arrive at the Opener end. A timeout timer set during the Open request will expire and cause an Open Failure indication to be made to the application that requested the Open. At this point the connection state machine is destroyed.

6. At the Listener end a timeout set when the ACCEPT PDU was sent will expire because no EST PDU is received. An Open Failure indication is then made to the listening application at that end and the connection state machine is destroyed.

Data Transfer

Once a connection has been established then data transfer can take place between the two End Systems connected by the connection.

The normal transfer of data is illustrated by the sequence diagram of Figure Error! No text of specified style in document.‑5.

[image: image5.emf]ESTABLISHED

SEND.REQ

RECEIVE.IND

RECEIVE.REQ

CALL BACK INVOKED

CALL BACK SET UP

Source Destination

= TCONS state

CALL BACK SET UP

OR BLOCKING

ESTABLISHED

DATA

ACK

SEND.CONF

CALL BACK INVOKED

OR UNBLOCKED

Figure Error! No text of specified style in document.‑5 Nominal Send and Receive

1. RECEIVE.REQ
sets up buffer for incoming data and associated call-back for a particular connection.

2. SEND.REQ
sends data to the destination across the connection. This can be a blocking send or one with a call-back.

3. Data
 arrives at destination through the connection, is put in the receive buffer and the receive call-back routine is invoked.

4. When the call-back routine returns, an ACK is sent back to the source via the connection.

5. The ACK arrives at the source the send is confirmed either by returning from the call or calling the registered call-back routine.

If the connection has not been established then send or receive requests are rejected as illustrated in Figure Error! No text of specified style in document.‑6.

[image: image6.emf]NOT ESTABLISHED

SEND.REQ

FAILURE.IND

RECEIVE.REQ

= TCONS state

ERROR RETURNED

IMMEDIATELY

NOT ESTABLISHED

FAILURE.IND

ERROR RETURNED

IMMEDIATELY

Source Destination

Figure Error! No text of specified style in document.‑6 Rejected Send and Receive

1. TCONS rejects RECEIVE.REQ because connection not established. Call-back not registered by TCONS because of error.

2. TCONS rejects SEND.REQ because connection not established. Call-back not registered by TCONS because of error.

Figure Error! No text of specified style in document.‑7 shows what happens when a data packet is lost.

[image: image7.emf]ESTABLISHED

SEND.REQ

RECEIVE.IND

RECEIVE.REQ

CALL BACK INVOKED

CALL BACK SET UP

Source Destination

= TCONS state

DATA

CALL BACK SET UP

OR BLOCKING

ESTABLISHED

DATA

TIMEOUT AND RETRY

ACK

SEND.CONF

CALL BACK INVOKED

OR UNBLOCKED

RETRY = 1

Figure Error! No text of specified style in document.‑7 Send Retry Due To Lost Data

1. RECEIVE.REQ prepares TCONS to receive data i.e. gives it a buffer. TCONS sets up call-back to indicate when data received.

2. SEND.REQ sends data. TCONS sets up call-back and also starts timeout timer.

3. Data gets lost, is not received by Destination, so no ACK is set back to the Source.

4. No ACK received by Source so it times out and retries, sending the data once again. The timeout timer is restarted.

5. This time the data does get through. The data arrives at destination, is put in the receive buffer and the receive call-back routine is invoked.

6. When the call-back routine returns an ACK is sent back to the source.

7. The ACK arrives at the source and the send is confirmed either by returning from the call or calling the registered call-back routine.

The retry has “guaranteed” that the data will be delivered successfully even though the original data packet was lost.

A similar situation arises, when an ACK is lost. This is shown in Figure Error! No text of specified style in document.‑8.

[image: image8.emf]ESTABLISHED

SEND.REQ

RECEIVE.IND

RECEIVE.REQ

CALL BACK INVOKED

CALL BACK SET UP

Source Destination

= TCONS state

DATA

ACK

CALL BACK SET UP

OR BLOCKING

ESTABLISHED

DATA

TIMEOUT AND RETRY

DATA WITH SAME SEQUENCE

NUMBER SO NOT PASSED TO

APPLICATION

ACK

SEND.CONF

CALL BACK INVOKED

OR UNBLOCKED

RETRY = 1

Figure Error! No text of specified style in document.‑8 Send Retry Due To Lost ACK

1. RECEIVE.REQ prepares TCONS to receive data i.e. gives it a buffer. TCONS sets up call-back to indicate when data received.

2. SEND.REQ sends data. TCONS sets up call-back and also starts timeout timer.

3. Data arrives at destination through the connection, is put in the receive buffer and the receive call-back routine is invoked.

4. When the call-back routine returns an ACK is sent back to the source via the connection.

5. The ACK gets lost.

6. No ACK is received by Source so it times out and retries, sending the data once again. The timeout timer is restarted.

7. The data arrives for a second time at destination. Since the data packet has the same sequence number as the previous data packet it is not put in a receive buffer and the receive call-back routine is not invoked. An ACK is, however, sent back to the source to indicate that the packet has been received.

8. This time the ACK arrives safely at the source and the send is confirmed either by returning from the call or calling the registered call-back routine.

If the data arrives at the source but has been corrupted then TCONS uses a negative acknowledge (NACK) to indicate this to the source enabling the source to respond more quickly to the fault by resending the corrupted packet. This is illustrated in Figure Error! No text of specified style in document.‑9.

[image: image9.emf]ESTABLISHED

SEND.REQ

RECEIVE.IND

RECEIVE.REQ

CALL BACK INVOKED

CALL BACK SET UP

Source Destination

= TCONS state

DATA

CALL BACK SET UP

OR BLOCKING

ESTABLISHED

DATA

NACK RECEIVED SO RETRY

ACK

SEND.CONF

CALL BACK INVOKED

OR UNBLOCKED

CORRUPTED DATA

RECEIVED

NACK

Figure Error! No text of specified style in document.‑9 Use of NACK to Hasten Retry

1. RECEIVE.REQ prepares TCONS to receive data i.e. gives it a buffer. TCONS sets up call-back to indicate when data received.

2. SEND.REQ sends data. TCONS sets up call-back and also starts timeout timer.

3. Data gets corrupted but is received by Destination.

4. The Destination detects that the Data has been corrupted. If the Network PDU header checksum and Guaranteed PDU header checksum indicate that the headers are still valid then the information about the source SAP contained in the Data PDU is still valid. It is the data field that has been corrupted. In this case a NACK (negative Acknowledgement) can be sent back to the Source to speed up the resending of the packet.

5. The NACK is received by Source
so retries immediately, sending the data once again. The timeout timer is restarted.

6. This time the data does get through safely. The data arrives at destination, is put in the receive buffer and the receive call-back routine is invoked.

7. When the call-back routine returns an ACK is sent back to the source.

8. The ACK arrives at the source and the send is confirmed either by returning from the call or calling the registered call-back routine.

The use of the NACK has allowed the source to resend the data quickly without having to wait for the send timeout to expire.

It is possible that a connection has completely failed in which case TCONS will retry several times, the number of retries depending on the value set in the connection management parameters. This is illustrated in Figure Error! No text of specified style in document.‑10.

[image: image10.emf]ESTABLISHED

SEND.REQ

RECEIVE.IND

RECEIVE.REQ

CALL BACK

INVOKED

CALL BACK

SET UP

= TCONS state

DATA

ACK

CALL BACK SET UP

OR BLOCKING

ESTABLISHED

DATA

TIMEOUT AND RETRY

(RETRY = 1)

CALL BACK INVOKED

OR UNBLOCKED

FAILURE.IND

Source Destination

Figure Error! No text of specified style in document.‑10 Failed Connection

1. RECEIVE.REQ prepares TCONS to receive data i.e. gives it a buffer. TCONS sets up call-back to indicate when data received.

2. SEND.REQ sends data. TCONS sets up call-back and also starts timeout timer.

3. Data arrives at destination through the connection, is put in the receive buffer and the receive call-back routine is invoked.

4. When the call-back routine returns an ACK is sent back to the source via the connection.

5. The ACK gets lost.

6. No ACK is received by Source so it times out and retries, sending the data once again. The timeout timer is restarted.

7. Since the physical connection has broken the data does reach the Destination, so no ACK is sent back to the Source.

8. No ACK received by Source so it times out and retries, sending the data once again.

9. Eventually all the permitted retries will have been sent and the failure is indicated to the Source End System.

10. The network manager application on the Source is also informed that a communications failure has occurred.

When a total failure of a connection happens the Network Manager, once informed of the failure may reconfigure the network to use a redundant bus or alternative route through the network.

Another situation that may possibly arise is shown in Figure Error! No text of specified style in document.‑11. A source has an Established connection but at the Destination has no connection. In effect the connection is broken and the two ends of the connection do not agree on the state of the connection. In this case both ends of the connection are closed. If necessary a new connection can then be established.

[image: image11.emf]ESTABLISHED

SEND.REQ

Source Destination

= TCONS state

DATA

CALL BACK SET UP

OR BLOCKING

CLOSE

CLOSE.IND

CALL BACK INVOKED

OR UNBLOCKED

Figure Error! No text of specified style in document.‑11 Sending to a Closed Connection

1. SEND.REQ sends data. TCONS sets up call-back and also starts timeout timer.

2. Data arrives at the destination through the connection, but the receiver has no knowledge of the connection so is not expecting data from this connection.

3. The destination sends a Close PDU to the source of the original data packet.

4. The Close PDU arrives at the source and terminates the connection.

5. The Application that set up the connection is informed of the closure of the connection through the close indication invoked by a call to the call-back routine registered during the open of the connection.

Note: If there is a catch-all connection (i.e. receives on the port that the data arrives on regardless of the Source SAP of the data, or receive on any port from any Source SAP) then the data will be passed to that connection.

Close

The Close protocol used to terminate a connection is described in this section. The termination of a connection is shown in Figure Error! No text of specified style in document.‑12.

[image: image12.emf]ESTABLISHED

CLOSE.REQ

CLOSE.CONF

Source Destination

= TCONS state

CALL BACK INVOKED

TO INDICATE THAT

CONNECTION HAS

BEEN CLOSED

CLOSE

ESTABLISHED

CLOSE.IND

Figure Error! No text of specified style in document.‑12 Closing a Connection

1. The End System at the source address
requests to close the connection (CLOSE.REQ).

2. TCONS sends out a CLOSE PDU to the other end of the connection, deletes the connection state machine at the source and confirms to the End System that the connection has been closed (CLOSE.CONF).

3. The CLOSE PDU arrives at the other end of the connection. TCONS deletes the connection state machine at the destination and indicates to the End System on the destination that was using the connection that the connection has been closed.

It is possible that, due to the loss of a CLOSE PDU, one end of a connection remains open while the other end is closed. In this case when a data PDU is sent from the open end of the connection to the closed end, the closed end will send a CLOSE PDU to the open end, finally closing the connection. This has been illustrated in Figure Error! No text of specified style in document.‑11.

Another situation can arise when one end of a connection is open and the other end is closed. If the open end requests to close the connection then a CLOSE PDU will be sent to the closed end. When it arrives at an already closed connection the CLOSED PDU is ignored. The result is that the connection is now properly closed, see Figure Error! No text of specified style in document.‑13.

[image: image13.emf]ESTABLISHED

LISTENING

CLOSE.REQ

CLOSE.CONF

Source Destination

= TCONS state

CONNECTION NOT

OPEN SO CLOSE

IGNORED

CLOSE

Figure Error! No text of specified style in document.‑13 Close When Destination Already Closed

Guaranteed Service Protocol Data Units

In this section the Protocol Data Units used by the Prioritized, Guaranteed, Data Delivery service are described.

Generic PDU

The generic PDU format
used by the Guaranteed service is illustrated in Figure Error! No text of specified style in document.‑14. This diagram shows both the Network PDU
and the generic Guaranteed Service PDU.

[image: image14.emf]DP USER DATA SP LEN

2 2 2 N

SEQ

TYPE/

FLAGS

4 1

G_HDR

CHK

1

ODA

QoS/

TYPE

OSA CRC TTL

HDR

CHK

2 1 1 2 2

2

DATA

N + 12

Guaranteed PDU

Network PDU

DP SP

2 2

RSV

(0)

OPEN/

FLAGS

4 1

G_HDR

CHK

1

OPEN PDU

DP SP

2 2

SEQ

ACK/

FLAGS

4 1

G_HDR

CHK

1

ACK PDU

RSV

(0)

2

RSV

(0)

2

Figure Error! No text of specified style in document.‑14 Guaranteed Service PDU Format

In ASN.1 the representation of this PDU could be:

Network_PDU ::= SEQUENCE {

oda
Address-ty,

ttl
INTEGER (0..255),

qos
QoS-ty,

osa
Address-ty,

hdr-chk
INTEGER (0..65535),

data
CHOICE {

best-effort-pdu
Best-effort-ty,

guaranteed-pdu
Guaranteed-pdu-ty,

scheduled-pdu
Scheduled-pdu-ty

},

crc
INTEGER (0..65535)
}
Guaranteed-pdu-ty ::= {
dp
Port-ty,
sp
Port-ty,
seq
Seq-num-ty,
pdu
CHOICE {

open

Open-pdu,

accept

Accept-pdu,

established
Est-pdu,

data

Data-pdu,

ack

ack-pdu,

nack

nack-pdu,

close

close-pdu,

… -- formal extensibility marker for future versions
},
g_hdr_chk
INTEGER (0..255),

}
Note that with this approach, the focus is only on application semantics. The data types contain only information that is useful for the protocol and no extra fields (such as Length, Type). The binary encoding could be defined later and put as an annex to the protocol specification. Use of standard encodings such as PER is also a solution to be assessed.

· ODA is the Onboard Destination Address, which is the address of the node for which the PDU is intended,

· TTL is a Time To Live counter, which is decremented at each TCONS router device -if the count reaches zero the entire PDU is dropped,

· QoS is the Quality of Service for the PDU, which for the Best-Effort PDU
is the priority of the PDU,

· TYPE is the type of service being carried – Best-Effort, Guaranteed or Scheduled,

· OSA is the Onboard Source Address, which is the address of the node from which the PDU originated,

· HDR CHK is the Network layer PDU header checksum,

· DP is the Destination Port at the destination node, which is the port on the destination node that the receiving application has to be registered with in order to get the data from the PDU,

· SP is the Source Port at the source node, which is the port on the source which is attached to the application that originated the data in the PDU,

· SEQ is the sequence number of the packet,

· LEN is the length of the user data field in the packet. This is included to support transfer of the data into the user buffer (e.g. using DMA).

· TYPE/FLAGS contains the type of the Guaranteed PDU (Open, Accept, Established, Data , ACK, NACK, and Close) andother flags.

· G_HDR CHK is the Guaranteed service PDU header checksum,

· Data is the user data, or higher-layer protocol data unit, that is being sent in the PDU, and

· CRC is a cyclic redundancy check code used to confirm that the PDU has no errors – this CRC covers the entire network PDU including the network header.

ODA and DP together make up the Destination Service Access Point (SAP).

OSA and SP together form the Source Service Access Point (SAP).

The order of the elements in the Guaranteed Delivery PDU is arranged to ease the appropriate forwarding and processing of the PDU. The Network and Guaranteed PDU headers are both a multiple of four bytes easing implementation with 32-bit processing systems.

Open

The Open PDU is illustrated in Figure Error! No text of specified style in document.‑15. The Sequence and Length fields of the generic Guaranteed Service PDU are currently not used in the Open PDU. These fields are both reserved and should be set to zero. The Data field is not used and is absent. The flags in the TYPE/FLAGS field are also reserved.

[image: image15.emf]DP SP

2 2

RSV

(0)

OPEN/

FLAGS

4 1

G_HDR

CHK

1

OPEN PDU

RSV

(0)

2

TYPE:

OPEN = 000

3-bits

FLAGS

(RSV = 00000)

5-bits

Figure Error! No text of specified style in document.‑15 Open PDU Format

7. In section 3.3.4.6 (Data PDU):

“Data

Figure 3‑23 shows the format of the Data PDU for the Guaranteed service. The User Data field is of variable length depending on the amount of data being sent.

[image: image16.emf]DP USER DATA SP LEN

2 2 2 N

SEQ

DATA/

FLAGS

4 1

G_HDR

CHK

1

Data PDU

TYPE:

DATA = 100

3-bits

SOM

3-bits

EOM

FLAGS

(RSV =000)

1-bit 1-bit

Figure 3‑23 Data PDU Format

· SEQ is the sequence number of the Data PDU. When SEQ reaches its maximum value it rolls over to zero.

· LEN is the length in octets of the User Data field of the Data PDU. All Data PDUs of a message are the length of the MTU with the exception of the last one.

· TYPE is set to 100 to indicate that this is a Data PDU

· SOM is the Start Of Message flag which is set when the Data PDU is the first Data PDU of a message.

· EOM is the End Of Message flag which is set when the Data PDU is the last Data PDU of a message. Both SOM and EOM may be set if the message has a total length which is less than the MTU.

· FLAGS are reserved flag bits and should all be set to zero.

”

8. In section 3.3.6 (Guaranteed Service Management Parameters):

“In this section the management parameters for the Prioritized, Guaranteed Data Delivery service are introduced.

Parameters:

· Maximum Transmission Unit (MTU): network wide maximum size of network PDU which applies to the Best-Effort and Guaranteed services.

· Default send timeout interval

· Default receive timeout interval

· Default priority level

· Default number of retries

Status and Statistics:

· Number of messages that failed to reach their intended destination.

· Number of times retry mechanism invoked i.e. number of time segments of messages did not get through on first attempt.

· Number and types of errors: Statistics on any errors that are detected and where possible the cause of those errors are recorded by TCONS. The statistics are useful for understanding and managing any errors that occur on the network.

”

9. In section 4.1 (TCONS Network Layer Overview):

“The SOIS Network layer transfers packets of information across an underlying onboard network comprising one or more sub-networks, offering both a connectionless and a connection-oriented network layer service.

It provides support to the Transport layer with an asynchronous datagram delivery service with no guarantee about delivery or the order of delivery and an isochronous datagram delivery service which ensures deterministic delivery (i.e. delivery within a certain amount of time).

The Network layer is responsible for:

· Routing Network PDUs (datagrams) towards their intended destination

· Multiplexing various network
 protocols across the underlying network

· Address translation from network logical address to physical address.

· QoS at the network level which include

· Deterministic delivery of datagrams when required

· Priority based forwarding of datagrams when required

· Fault management

”
10. In section 4.2.2 (Network Datagram Service Primitives):

“In this section the service primitives for the Network Datagram Delivery service are presented.

There are six primitives used by this service:

· Send Request which requests to send a datagram,

· Send Confirmation which indicates that the datagram has been sent,

· Receive Register Request which registers to receive datagrams,

· Receive Header Indication which indicates that a datagram has been received,

· Receive Request which provides a buffer in which the contents of the datagram is to be placed, and

· Receive Indication which transfers the datagram into the buffer.”

Same for section 3.2.2 where the word “packet” shall be replaced by the word “data block”

11. In section 4.2.4 (Network Datagram Service Protocol Data Units):

The Network Datagram Service PDU does not have a LEN field. This violates the OSI model principles, where each layer is independent from another; that is where the Network layer does not have to be aware of the semantics of a Transport layer datagram. Moreover, if the format of a transport layer PDU changes overtime, all the TCONS implementations will need to modify the Transport layer as well as the Network layer.
12. In section 4.2.5.1 (Send):

“Abstract definition:

N_Send.request <Dest Address> <Data> <Priority>

N_SendConf.indication <Flag>

API Prototype:

Int N_SendData(Addr_Type dest_Addr, Addr_Type src_Addr,

void * data,

size_t length,

uint8_t priority,

struct timeval*,

)

· Addr_Type dest_Addr is the destination address that the transport layer PDU is to be sent to.

· Addr _Type src_ Addr is the address of the source of the transport layer PDUs that are to be sent.

· void *data is a pointer to a buffer containing the transport layer PDU, which contains the data to be sent.

· size_t length is the amount of data to be sent. The amount of data to be sent must be less than or equal to the MTU
.

· uint8_t priority is the priority level with which the transport layer PDU must be sent.

· struct timeval* is a timeout interval for which TCONS will wait for the transport layer PDU to be sent. If the data has not been sent and TCONS has not finished with the data buffer by the time the timeout interval has passed, then TCONS will abandon the attempt to send the data and will return the data buffer back to the Transport layer.

”

13. In section 4.2.5.2 (Receive):

“void N_ReceiveResponse(void * data)

· *data is a pointer to a buffer passed by the calling process, into which data arriving at the port is to be placed. The buffer must be large enough to hold the data field of a packet as large as the MTU
.

”

establish_connection

open_request

opening

open_failure

established

Sequence operator

Choice operator

Leaf scenario

�PAGE \# "'Page: '#'�'" �� Such a use of the ACK will result in a very inefficient transmission. If the timeout period is large and the data rate is high; the source will be forced to take care of a huge amount of timers in any given moment. Moreover, if a packet is lost and succeeding packets arrive the receiving end needs to hold (buffer) these packets at TCONS level; waiting for the ACK of the missing packet for delivering “in order” data to the Application. It seems to me that we decided not have buffering internal to TCONS, right? So we might have a problem here.

I think that something like a “sliding window” protocol would operate much better, though I am in favour of getting rid of the ACK altogether and using ONLY the NACK mechanism with a timeout and retry for NACKs at the receiving side. It would be helpful to refer to the “filling the pipe” RFC 1106 for TCP to get some ideas.

�PAGE \# "'Page: '#'�'" �� Which MTU ? The PATH MTU ?

�PAGE \# "'Page: '#'�'" �� Can it happen that the TCONS Network layer sends two or more Transport layer datagrams into a single Network packet ? That is, similarly to TCP, when an application or a service submits a small data block for sending, it is put on hold at the Transport layer for being sent at a later stage together with another datagram, in order to more efficiently use the communication link.

�PAGE \# "'Page: '#'�'" �� This block of data can be sent within one ore more network packets.

�PAGE \# "'Page: '#'�'" �� Same as MC3

�PAGE \# "'Page: '#'�'" �� With no parameters passed the Application that receives the indication will have no means to identify which connection request failed (if more than one has been submitted)

�PAGE \# "'Page: '#'�'" ��Shall this indication be issued at both sides ?

�PAGE \# "'Page: '#'�'" �� I don’t understand the need for this primitive. It has no influence on the protocol (if the destination of the Open PDU is not listening, then no Accept PDU will be sent and that’s it). Listening is the default state of a running node. How to run a node is implementation-specific.

�PAGE \# "'Page: '#'�'" ��Because the service is guaranteed, all Send request are supposed to be successful. If not, then it means that the problem comes from the connection. This should result in a Close indication instead of Send Confirmation/Send fail.

�PAGE \# "'Page: '#'�'" ��Useless. Having accepted the connection means also accepting data from it.

�PAGE \# "'Page: '#'�'" ��Useless (see Receive Req)

�PAGE \# "'Page: '#'�'" ��Useless.

�PAGE \# "'Page: '#'�'" ��In this section the sequence diagrams present a set of scenarios to illustrate the expected behaviour of the protocol from a user point of view. However these scenarios obviously do not cover all the possible cases and can hardly be used to validate an implementation. To make them more complete, it would be preferable to separate the description of the expected behaviour at the sending side and at the receiving side, and to use composition operators to represent the whole set of scenarios. Typical composition operators are: sequence (one scenario is followed by another one), choice (depending on a condition, go in one branch or another), parallel execution (two scenarios running at the same time), exception (one scenario stopped by another, for example a Close Request would stop a Send Request). Using this approach helps validating an implementation because its behaviour can be automatically compared to the one expected by the scenarios. See example below

�PAGE \# "'Page: '#'�'" ��This is implementation-specific! Using state machines is one particular way to design/implement the protocol.

�PAGE \# "'Page: '#'�'" ��The way multiple connection are internally managed depends on the implementation. This scenario is useless. Is there a TCONS requirement on the number of simultaneous connections?

�PAGE \# "'Page: '#'�'" ��“Blocking” is implementation-specific.

�PAGE \# "'Page: '#'�'" ��The sentence is clear enough. It is not necessary to fully describe a scenario for that.

�PAGE \# "'Page: '#'�'" ��Remark: the case when the EST PDU is lost is missing.

�PAGE \# "'Page: '#'�'" ��What if no Receive Request has been sent? No scenario show this case.

�PAGE \# "'Page: '#'�'" ��Can there be several SEND REQ calls before the SEND.CONF or do we need to make another connection in parallel to start a data transfer possibly with higher priority ?

�PAGE \# "'Page: '#'�'" ��Not clear if “Data” means one or several PDUs. If there can be several PDUs of Data following each other, is there an ACK PDU associated to each Data PDU (therefore a timer set for each Data PDU waiting for the ACK PDU)? Is there a limit? Or only one after the last packet (and NACK in case of failure)?

�PAGE \# "'Page: '#'�'" ��If the only cause of Send/Receive Failure is the absence of connection, then a Close Indication should be sent instead of Failure Indication. Are there any other causes of Send Failure (eg. Problem in the request parameters)?

�PAGE \# "'Page: '#'�'" ��For the Sender point of view, this scenario is identical to the previous one (Figure 3-11)

�PAGE \# "'Page: '#'�'" ��What if the NACK gets lost ? Timeout and retry also for NACKS ? What if two or more adjacent data segments are lost ? Can we have a cumulative NACK ?

�What use is Close Conf? There doesn’t seem to be any reliability in a Close action. Need to keep sending Close PDU until an close ack pdu is received and only then issue a conf.

�PAGE \# "'Page: '#'�'" ��Can the End System at the destination address also request to close the connection?

�PAGE \# "'Page: '#'�'" ��It is likely that the PDU format will change during the evolution of the protocol definition. Using a higher level notation such as ASN.1 (commonly used to describe PDUs in telecommunication applications) would be preferable at the standard/specification level to avoid wasting time on binary description of the PDUs before the finalization of the protocol.

�PAGE \# "'Page: '#'�'" �� The fact that there are no field in the Network PDU related to segmentation (e.g. IP like identification and offset) implies that the Network layer cannot segment transport layer datagrams. This means that ONLY the Data Link layer can perform “fragmentation” on a Network PDU which is to big for the specific subnet. This is in conflict with the definition of MTU given throughout the book. (chapters 3.1 and 3.3.1)

�PAGE \# "'Page: '#'�'" ��And for the Guaranteed PDU? If this field depends on the Servic PDU type shouldn’t it be in the data part of the network PDU?

�PAGE \# "'Page: '#'�'" ��Presented like that, this PDU is a set of values for the Guaranteed PDU fields, and not a new data structure.

�PAGE \# "'Page: '#'�'" ��Why would we need such flags? Do we want the Transport layer to be aware of Application messages boundaries?

�PAGE \# "'Page: '#'�'" ��For what purpose ?

�PAGE \# "'Page: '#'�'" ��Transport ?

�PAGE \# "'Page: '#'�'" ��This statement needs to be reviewed in accordance to what agreed for the MTU definition.

�PAGE \# "'Page: '#'�'" ��As for MC34

[image: image18.emf]open_failure

/*

ACCEPT PDU has not been

received on time

This results in connection

failure indication

*/

open_failure_ind

source_entity

source_entity

open_timeout

[image: image19.emf]established

/*

Connection is accepted from the

other side.

Send Establish PDU.

*/

accept_pdu

open_conf_ind

est_pdu

source_entity

source_entity

open_timeout

established

_1155907609.ppt

ESTABLISHED

SEND.REQ

RECEIVE.IND

RECEIVE.REQ

CALL BACK INVOKED

CALL BACK SET UP

Source

Destination

DATA

CALL BACK SET UP

OR BLOCKING

ESTABLISHED

DATA

TIMEOUT AND RETRY

ACK

SEND.CONF

CALL BACK INVOKED

OR UNBLOCKED

RETRY = 1

= TCONS state

_1155973177.ppt

ESTABLISHED

SEND.REQ

RECEIVE.IND

RECEIVE.REQ

CALL BACK INVOKED

CALL BACK SET UP

Source

Destination

DATA

CALL BACK SET UP

OR BLOCKING

ESTABLISHED

DATA

NACK RECEIVED SO RETRY

ACK

SEND.CONF

CALL BACK INVOKED

OR UNBLOCKED

CORRUPTED DATA RECEIVED

NACK

= TCONS state

_1155986492.ppt

DP

SP

2

2

RSV

(0)

OPEN/

FLAGS

4

1

G_HDR

CHK

1

OPEN PDU

RSV

(0)

2

TYPE:

OPEN = 000

3-bits

FLAGS

(RSV = 00000)

5-bits

_1156425612.ppt

ESTABLISHED

SEND.REQ

RECEIVE.IND

RECEIVE.REQ

CALL BACK INVOKED

CALL BACK SET UP

Source

Destination

CALL BACK SET UP

OR BLOCKING

ESTABLISHED

DATA

ACK

SEND.CONF

CALL BACK INVOKED

OR UNBLOCKED

= TCONS state

_1155981896.ppt

DP

USER DATA

SP

LEN

2

2

2

N

SEQ

TYPE/

FLAGS

4

1

G_HDR

CHK

1

ODA

QoS/

TYPE

OSA

CRC

TTL

HDR

CHK

2

1

1

2

2

2

DATA

N + 12

Guaranteed PDU

Network PDU

DP

SP

2

2

RSV

(0)

OPEN/

FLAGS

4

1

G_HDR

CHK

1

OPEN PDU

DP

SP

2

2

SEQ

ACK/

FLAGS

4

1

G_HDR

CHK

1

ACK PDU

RSV

(0)

2

RSV

(0)

2

_1155986272.ppt

DP

USER DATA

SP

LEN

2

2

2

N

SEQ

DATA/

FLAGS

4

1

G_HDR

CHK

1

Data PDU

TYPE:

DATA = 100

3-bits

SOM

3-bits

EOM

FLAGS

(RSV =000)

1-bit

1-bit

_1155926240.ppt

LISTENING

OPENG

ESTABLISHED

LISTENING

OPEN.REQ

OPEN.CONF

LISTEN.REQ

CALL BACK SET UP

BLOCKING

HALF OPEN

OPEN

ACCEPT

EST

OPEN.REQ

HALF OP

EST.

OPENG

OPEN.CONF

EST

ACCEPT

OPEN

BLOCKING

RETURN WITH CONNECTION ESTABLISHED

RETURN WITH CONNECTION ESTABLISHED

LISTEN.REQ

CALL BACK SET UP

= TCONS state

_1155971274.ppt

ESTABLISHED

CLOSE.REQ

CLOSE.CONF

Source

Destination

CALL BACK INVOKED TO INDICATE THAT CONNECTION HAS BEEN CLOSED

CLOSE

ESTABLISHED

CLOSE.IND

= TCONS state

_1155971294.ppt

ESTABLISHED

LISTENING

CLOSE.REQ

CLOSE.CONF

Source

Destination

CONNECTION NOT OPEN SO CLOSE IGNORED

CLOSE

= TCONS state

_1155926410.ppt

ESTABLISHED

SEND.REQ

Source

Destination

DATA

CALL BACK SET UP

OR BLOCKING

CLOSE

CLOSE.IND

CALL BACK INVOKED

OR UNBLOCKED

= TCONS state

_1155926010.ppt

 NOT ESTABLISHED

SEND.REQ

FAILURE.IND

RECEIVE.REQ

ERROR RETURNED

IMMEDIATELY

 NOT ESTABLISHED

FAILURE.IND

ERROR RETURNED IMMEDIATELY

Source

Destination

= TCONS state

_1155900470.ppt

OPENING

ESTABLISHED

ESTABLISHED

LISTENING

OPEN.REQ

OPEN.CONF

LISTEN.REQ

CALL BACK SET UP

BLOCKING

Opener

Listener

EST.IND

HALF OPEN

CALL BACK INVOKED TO INDICATE THAT CONNECTION ESTABLISHED

OPEN

ACCEPT

EST

OPENING

ESTABLISHED

EST.

OPEN.REQ

OPEN.CONF

BLOCKING

EST.IND

HALF OPEN

CALL BACK INVOKED TO INDICATE THAT CONNECTION ESTABLISHED

OPEN

ACCEPT

EST

= TCONS state

_1155901800.ppt

OPENING

LISTENING

OPEN.REQ

OPEN_FAILURE.IND

LISTEN.REQ

CALL BACK SET UP

BLOCKING

Opener

Listener

OPEN_FAILURE.IND

HALF OPEN

OPEN

ACCEPT

TCONS TIMES OUT

TCONS TIMES OUT

CALL BACK INVOKED

OPEN FAILURE

= TCONS state

_1155907183.ppt

ESTABLISHED

SEND.REQ

RECEIVE.IND

RECEIVE.REQ

CALL BACK INVOKED

CALL BACK SET UP

Source

Destination

DATA

ACK

CALL BACK SET UP

OR BLOCKING

ESTABLISHED

DATA

TIMEOUT AND RETRY

DATA WITH SAME SEQUENCE NUMBER SO NOT PASSED TO APPLICATION

ACK

SEND.CONF

CALL BACK INVOKED

OR UNBLOCKED

RETRY = 1

= TCONS state

_1155900081.ppt

OPENING

ESTABLISHED

EST.

LISTENING

OPEN.REQ

OPEN.CONF

LISTEN.REQ

ACCEPTANCE CRITERIA AND CALL BACK SET UP

BLOCKING

Opener

Listener

EST.IND

HALF OPEN

CALL BACK INVOKED TO INDICATE THAT CONNECTION ESTABLISHED

EST. = ESTABLISHED

OPEN

ACCEPT

EST.

= TCONS state

_1155283818.ppt

ESTABLISHED

SEND.REQ

RECEIVE.IND

RECEIVE.REQ

CALL BACK INVOKED

CALL BACK SET UP

DATA

ACK

CALL BACK SET UP

OR BLOCKING

ESTABLISHED

DATA

TIMEOUT AND RETRY

(RETRY = 1)

CALL BACK INVOKED

OR UNBLOCKED

FAILURE.IND

Source

Destination

= TCONS state

