TCONS RED BOOK REVIEW INPUTS

PART 1

1.5.2 Definitions
Layer:

A group of related functions that are performed in a given level in a hierarchy of groups of related functions. Between each pair of adjacent layers there is an interface.

Note: In specifying the functions for a given layer, the assumption is made that the specified functions for the layers below are performed, except for the lowest layer.

Interface:

A clear definition of the boundaries between two layers. The interface defines which primitive operations and services the lower layer makes available to the upper one.

End Systems and Intermediate Systems:

Two types of systems are defined within a communications network. These are:

· End Systems. These are equipment (onboard computers or processors), which users (processes executing on a computer) may use to access the information at a remote site or equipment, which provides "services" at a remote site which may be accessed via the network.

· Intermediate Systems. These are computers or network equipment which do not directly support users, but forward received data onward towards the intended recipient. Intermediate systems do not need to understand the information being sent between the users, but do understand and may modify the information added by the network to provide the communication.

End Systems may be directly connected, but more normally rely on the service provided by one or more Intermediate Systems. Examples of intermediate systems are bridges or LAN switches (which operate at the data link layer) and router or network switches (which operate at the network layer).

The communications process between end systems and intermediate systems is usually defined in terms of the seven-layer OSI reference model. In this reference model, intermediate systems handle only protocol information at and below the network layer, whereas end systems use protocols at all the layers of the reference model.

Service:

A capability of a layer (service provider) together with the layers beneath it, which is provided to the layer above (service user). A service is formally specified by a set of primitives (operations) available to a user process to access the service. The set of primitives available depends on the nature of the service being provided.

Service Data Unit (SDU):

A set of data that is sent by a user of the services provided by a given layer and is transmitted, semantically unchanged, to a peer service user, it contrasts with header or control information.

In other words, an SDU is a piece of information passed by a layer above (the N+1 Layer in the figure below) to the current layer (the N-Layer) for transmission using the service of that layer. To transport the SDU, the current layer adds a protocol header (Protocol Control Information) and (sometimes) a trailer to the SDU. The combined PCI and SDU are known as a PDU belonging to that layer. This forms the SDU of the layer below. This process is known as encapsulation.

Service Access Point (SAP): Identifies the Source endpoint system, Destination endpoint system and a Channel identifier. A source SAP comprises the source address and source port. A destination SAP similarly comprises the destination address and destination port.
Sub-Network Data Unit (SNDU): A specific subset of SDU transferred over a subnetwork underlying the TCONS layer.

Maximum Transmission Unit (MTU): The largest number of bytes of "payload" data a frame can carry, not counting the data link frame's header and trailer. It also defines the upper size bound for the TCONS Network segment, including its header and trailer. A single MTU applies for each sub-network. The mission system engineer sets the value of the MTU. The minimum MTU value for SOIS is ??? bytes.

Path Maximum Transmission Unit (PMTU): The smallest MTU of any link on the current path between two hosts on the SOIS network. This may change over time since the route between two hosts, may change over time. It is not necessarily symmetric and can even vary for different types of traffic from the same host.

Scheduled Maximum Transmission Unit (SMTU): The MTU specific to the Scheduled Data Delivery Service.

Fragmentation and Segmentation:

Breaking an arbitrary size network packet into smaller pieces at the transmitter. This may be necessary because of restrictions in the communications channel or to reduce latency. The pieces are joined back together in the right order at the receiver ("reassembly").
The term "segmentation" is used to describe the same process performed at the Network layer before the packets are passed to the Data Link layer.

A router may perform Segmentation when routing a packet to a network with a smaller maximum packet size.
Latency:

The time it takes for a packet to cross a network connection, from sender to receiver.
Datagram:

The Service Data Unit in the network layer. A Datagram may be encapsulated in one or more packets passed to the Data Link layer.

Packet:

The basic unit of encapsulation, which is passed across the interface between the Network layer and the Data link layer. A packet is usually mapped to a single frame; the exceptions are when Data link layer fragmentation is being performed, or when multiple packets are incorporated into a single frame.

Frame:

A frame is a single unit of transportation on a specific SOIS sub-network; that is the unit of transmission at the Data link layer. It consists of header data plus data that was passed down from the TCONS network Layer plus, sometimes, trailer data.

It would be useful to add something about co-existence of TCONS and other transport and network protocols:

2.2 ASSUMPTIONS

Co-existence of TCONS and Other Networks

TCONS delivery requirements mandate that subnetwork resources be under the strict control of the TCONS scheduler. It is not acceptable that the coexistence of other networks interferes in any way with TCONS having deterministic access to TCONS resources.

TCONS and Other networks can coexist onboard a spacecraft and indeed in a single Data System (processor/memory resources notwithstanding) in the following circumstances:

· TCONS and other networks operate over independent subnetworks. This involves no interaction between the two protocol stacks.

· A subnetwork can only provide satisfactory services to TCONS by allowing exclusive TCONS access. Only Tunnelling via TCONS services can accommodate other networks.

· A subnetwork can provide guaranteed deterministic resources to TCONS even when accessed simultaneously by other networks. The subnetwork prevents interaction between the two networks.

COMMENTS

1. A diagram describing a layered architecture of SOIS would help the reader.

2. The network PDU definition is missing a “Data Length” field preceding the “Data” field.

3. Is there a maximum Network payload length? The Network PDU format does not show a LENGTH field.

4. Add the following references:

[6] A.S Tanenbaum, Computer Networks – fourth edition. NJ: PH PTR, 2003.

5. There is a bit of confusion on the definition of MTU. If we want to use the wide standard meaning of the MTU as it is known in the networking world, then we must associate it to the Data Link Layer of SOIS; that is each Data Link sub-network has its on MTU. It is also important to maintain a FIXED terminology throughout the book. To me, a DATAGRAM is a transport layer Service Data Unit plus the header and trailer used by the protocol of that layer. A PACKET is the Network layer datagram equivalent, while a FRAME is the data unit of the Data Link layer. Accordingly, the MTU is the maximum length of “data payload” of a specific Data Link layer protocol. Therefore, in order to avoid fragmentation using the Best-Effort service, the application needs to worry about the size of the resulting TCONS Network packet by monitoring the size of the data block submitted for sending. If the total size of the TCONS Network packet (header and trailer included) exceeds the underlying sub-network's MTU, then the TCONS Network packet will be fragmented (by the SNDCL) to fit into such a MTU. This applies to each sub-network that the packet traverses from the source to the destination, not just the first sub-network connected to the sending host (path MTU).
For example, in UDP messages bigger than 1472 bytes are usually rejected by the send() primitive because:

· In theory the UDP data payload length limitation is = 2^16-1 = 65535 bytes, but in practice the max size of a UDP datagram (travelling on Ethernet) without header is 1472 bytes because:

· IP header 20 bytes

· UDP header 8 bytes

· Maximum payload length on Ethernet is 1500 bytes (sub-network MTU)

· 1500-20-8 = 1472 bytes

By keeping this in mind, in paragraph 3.1 is mentioned:

· ‘A Prioritized, Best-Effort, Data Delivery Service (Best-Effort Service), which makes a single attempt to deliver data to a destination. Arrival of data at the destination is not signalled to the source i.e. the safe arrival of a packet of data is not acknowledged. Individual packets of data being sent cannot be larger than the MTU. A priority level can be assigned to each packet of data being sent. Packets with higher priority are sent before those with lower priority. If the destination is not ready to receive the data it will be discarded.’

This shall be changed into:

· ‘A Prioritized, Best-Effort, Data Delivery Service (Best-Effort Service), which makes a single attempt to deliver data to a destination. Arrival of data at the destination is not signalled to the source i.e. the safe arrival of a datagram is not acknowledged. In order to avoid segmentation at the sub-network dependent convergence layer, the total size of individual transport layer datagrams being sent cannot be larger than the MTU less the header and traliler length of the network layer protocol. A priority level can be assigned to each datagram being sent. Datagrams with higher priority are sent before those with lower priority. If the destination is not ready to receive the data it will be discarded.’
6. Always in paragraph 3.1 is mentioned:

· ‘A Prioritized, Guaranteed, Data Delivery Service (Guaranteed Service), which makes repeated attempts to deliver the data to its destination. The arrival of data at the destination is signalled (acknowledged) to the source. If a packet does not arrive at the intended destination it will not be acknowledged, a timer in the source will detect that no acknowledgement has been sent and the source will then resend the packet. This is repeated until either the packet eventually gets through successfully to the destination, or until, after several attempts, it is decided that it is not possible to reach the destination in which case an error is reported. Packets of data being sent can be larger than the MTU. In this case TCONS will segment the large packet into smaller segments of data which are each equal in length or smaller than the MTU. The segments are then sent by the Network level service. The Transport layer keeps track of each of the segments sent, received and acknowledged, and will resend any that are not received correctly. A priority level can be assigned to each packet being sent. Segments of packets with higher priority are sent before those with lower priority…’
This shall be changed into:

· ‘A Prioritized, Guaranteed, Data Delivery Service (Guaranteed Service), which makes repeated attempts to deliver the data to its destination. The arrival of data at the destination is signalled (acknowledged) to the source. If a datagram does not arrive at the intended destination it will not be acknowledged, a timer in the source will detect that no acknowledgement has been sent and the source will then resend the packet. This is repeated until either the datagram eventually gets through successfully to the destination, or until, after several attempts, it is decided that it is not possible to reach the destination in which case an error is reported. Datagrams being sent can be larger than the MTU (less the header and traliler length of the network layer protocol). In this case the TCONS Network layer will segment the large datagram into smaller segments which, including the header and trailer length of the Network layer protocol, are each equal in length or smaller than the MTU. The segments are then sent by the Network level service and reassembled by the destination endpoint Network layer before being handed to the Transport layer. The Transport layer keeps track of each of the datagrams sent, received and acknowledged, and will resend any that are not received correctly. A priority level can be assigned to each datagram being sent within a network packet. Segments of datagrams with higher priority are sent before those with lower priority…’
What just said implies segmentation at the Network layer (like IP); do we want to have it at this level??

7. In paragraph 3.2.1 Best Effort Service Overview (second section) it is mentioned:
· “The maximum amount of data that can be sent in one packet is limited to the MTU. This is the maximum amount of data that can be passed in one go to the Best-Effort service
. The MTU is the maximum transmission unit which is a network wide parameter that sets the maximum size of a datagram (network PDU). The scheduled service may have a different MTU, the scheduled MTU (SMTU), than the Best-Effort and Guaranteed services.”

This shall be changed into:

· “The maximum amount of data, including the header and traliler length of the SOIS network layer protocol, that can be sent in one data link frame is limited to the MTU. The PATH MTU the network wide maximum transmission unit that sets the maximum size of a packet (network PDU). The scheduled service may have a different MTU, the scheduled MTU (SMTU), than the Best-Effort and Guaranteed services.”

8. In my opinion it is important to define a SOIS network management service for allowing a user application or service to discover the Path MTU (something like the Path MTU discovery of ICMP) to use for a data delivery to a given destination. A Path MTU will be the “smallest” Maximum Transmission Unit for the end-to-end path between two End Systems. This will prove to be particularly helpful for improving efficiency of the Scheduled Data Delivery Service by avoiding fragmentation within subnetworks for which the used MTU is too big.

Fragmentation is undesirable for numerous reasons, including:

· If any one fragment from a packet is dropped, the entire packet needs to be retransmitted. This is a very significant problem, especially for time slotted data delivery.

· It imposes extra processing load on the routers (sub-network dependent layer) that have to split the network packets in smaller frames and re-assemble the frames at the exit of the sub-network.

The PATH MTU between two End Systems can be different depending on the link direction.

9. In section 3.2.1 it is stated that: ”The TCONS Best-Effort service is similar to UDP except that TCONS supports packet priority.”

I think that it would be better to avoid any generic comparison to other protocols in an official standard document. It is risky and can be misleading for the reader.

10. In section 3.2.1 it is stated that:

“To receive data from the Best-Effort service an application must first register with the service, providing one or more buffers in which to put data. When an application registers a receive buffer it can register to receive any Best-Effort datagrams that arrive on the port or to receive Best-Effort datagrams that arrive on the port from a specific source service access point (SAP). A service access point is the interface between an End System (application) and the TCONS service. A source SAP comprises the source address and source port. A destination SAP similarly comprises the destination address and destination port.

The Best-Effort service listens for incoming Best-Effort datagrams. When a datagram comes in it is checked against the list of registered buffers on the port and put in the first buffer for which it destined, i.e. which has the corresponding source SAP ID. Multiple buffers
can be registered for a source SAP in which case the first one registered is used first. So, the list is actually a list of buffer queues, one queue per source SAP for which a Receive has been registered.”

· I think we shall allow multiple applications to register for receiving Best-Effort datagrams from the same port (multicast). If this is the case, then we can have a situation where Application 1 registered one or more buffers for receiving best-effort datagrams at port A (any source SAP); while Application 2 registered one or more buffers for receiving best-effort datagrams also at port A but from a specific source AP. Then, the Best-Effort service shall distribute (COPY) the incoming datagram to both applications.

· This concept shall be clarified better in the paragraphs above. For example:

“To receive data from the Best-Effort service an application must first register with the service, providing one or more buffers in which to put data. When an application registers a receive buffer it can register to receive any Best-Effort datagrams that arrive on the port or to receive Best-Effort datagrams that arrive on the port from a specific source service access point (SAP). A service access point is the interface between an End System (application) and the TCONS service. A source SAP comprises the source address and source port. A destination SAP similarly comprises the destination address and destination port.

The Best-Effort service listens for incoming Best-Effort datagrams. When a datagram comes in it is checked against the list of registered buffers for its destination port and put in the buffer for which it destined, i.e. which has the corresponding source SAP ID. Multiple buffers from different applications can be registered for the same source SAP in which casethe Best-Effort service will put the incoming datagram in all the registered buffers

. Hence, the Best-Effort service will maintain references to a list of buffer queues for a specific destination port, one queue per source SAP for which a Receive has been registered.”

11. Always in section 3.2.1 it is also stated that:

“The following sequence of events happens when a Best-Effort datagram arrives at a destination:

1. Best-Effort datagram arrives at destination address

2. The Best-Effort datagram is directed to the destination port defined in the Best-Effort datagram header

3. If there are no buffers registered for the destination port then the Best-Effort datagram is dropped

4. If there is one buffer queue for all source SAPs sending to the port then the Best-Effort datagram is put in the first buffer of the queue and this buffer is returned to the application by calling the corresponding call-back routine.

5. If there are separate buffer queues for each source SAP and if there is a buffer queue that corresponds to the source SAP of the Best-Effort datagram then the datagram is put in the first buffer of the queue and that buffer is returned to the application by calling the appropriate call-back routine.

If there is no buffer queue for the source SAP then the Best-Effort datagram is dropped.”

· This shall also change accordingly into:

“4. If there is one buffer queue for all source SAPs sending to the port then the Best-Effort datagram is put in the first buffer of the queue and this buffer is returned to the application by calling the corresponding call-back routine.

5. If there are separate buffer queues for each source SAP and if there is a buffer queue that corresponds to the source SAP of the Best-Effort datagram then the datagram is put in the first buffer of the queue and that buffer is returned to the application by calling the appropriate call-back routine.

6. If there are separate buffer queues for each source SAP and if there are multiple buffer queues that corresponds to the source SAP of the Best-Effort datagram then the datagram is put in the first buffer of each corresponding queue and these buffers are returned to their applications by calling the appropriate call-back routines.

For all the cases described at points 4,5 and 6; if there is also one or more buffer queues registered for all source SAPs sending to the port then the Best-Effort datagram is also put in the first buffer of each queue and this buffer is returned to the application/s by calling the corresponding call-back routine/s.

“
12. In section 3.2.2. BEST-EFFORT SERVICE PRIMITIVES it is stated:

” There are six primitives used by this service:

· Send Request which requests to send a packet of data,

· Send Confirmation which indicates that the packet has been accepted by TCONS for sending,

· Send Fail Indication, which indicates that TCONS has failed to send the accepted packet,

· Receive Request which registers an application for receiving packets,

· Receive Indication which indicates to a registered application that a packet has been received, and

· Receive Fail Indication, which indicates to a registered application that there was a problem receiving a packet.”

13. In section 3.2.2.1 (Send Request) it shall be stated that the Send Request is a blocking request.

14. In section 3.2.2.4 (Receive Request) it is stated:

“Dest SAP List is the list of Destination Service Access Points that data is to be accepted from. The Destination Address must be the destination address of the current node otherwise the receive request will be rejected.”

Why don’t we make the application pass ONLY the destination ports list then?

15. In section 3.2.2.5 (Receive Indication) it is stated:

“Name: T_BE_ReceiveData.indication
Parameters: <Dest SAP> <Src SAP> <Data
>

· Dest SAP is the Destination Service Access Point where the data has been received.

· Src SAP is the source Service Access Point that sent the data.

· Data is the data received at the Destination Service Access Point that was sent from the Source Service Access Point.

The ReceiveData.indication primitive indicates that data from the specified source SAP has arrived at the destination port and has been placed in a registered buffer.”

It shall be:

“Name: T_BE_ReceiveData.indication
Parameters: <Dest SAP> <Src SAP> <Buffer>

· Dest SAP is the Destination Service Access Point where the data has been received.

· Src SAP is the source Service Access Point that sent the data.

· Buffer is the memory space, owned by the End System, where data have been placed. Data is the data received at the Destination Service Access Point that was sent from the Source Service Access Point.

The ReceiveData.indication primitive indicates that data from the specified source SAP has arrived at the destination port and has been placed in a registered buffer.”

16. In section 3.2.2.6 (Receive Fail) it is stated:

“Name: T_BE_ReceiveFail.indication
· Parameters:
none

The ReceiveFail.indication primitive indicates that there was an error receiving a packet.”

It shall be:
3.2.2.6 Receive Fail Indication
“Name: T_BE_ReceiveFail.indication
Parameters:
<Dest SAP> <Src SAP>
· Dest SAP is the Destination Service Access Point where the data shaould have been received.

· Src SAP is the source Service Access Point that tried to send the data.

The ReceiveFail.indication primitive indicates that there was an error receiving adatagram.”

17. In section 3.2.3 (BEST-EFFORT SERVICE PROTOCOL) it is stated:

“To receive data using the Best-Effort service the process that wishes to receive data must first register with TCONS the source SAP or set of source SAPs from which it would like to receive data. This is done using the Receive.Req primitive that also provides a buffer for the received data and a call-back for the process that is to handle the received data.”

It shall be changed into:

“To receive data using the Best-Effort service the process that wishes to receive data must first register with TCONS the destination SAP at which it would like to receive data and, optionally, the source SAP or set of source SAPs from which it would like to receive data. This is done using the Receive.Req primitive that also provides a buffer for the received data and a call-back for the process that is to handle the received data.”

18. In section 3.2.3 (BEST-EFFORT SERVICE PROTOCOL) The Receive Fail Indication is missing from the sequence diagrams.

19. In section 3.2.4 (BEST-EFFORT SERVICE PROTOCOL DATA UNITS) a LEN field for the Network packet data field is missing. This violates the OSI model where each layer is independent and really compromises the modularity of the standard; in other words, if the Transport protocol PDU changes, then all the implementation of the transport AND the NETWORK protocols have to be changed as well. Plus, in this way, the QoS/Type Field must be parsed before to retrieve the actual PDU size. This will add extra processing load to routers. I propose to add such a field and to make it 2 bytes long.

Moreover, if the meaning of the QoS field of the Network PDU changes accordingly to the carried Transport protocol PDU (type of service), then the TYPE field shall be before the QoS field to make PDU parsing easier.

20. In section 3.2.5.1 (Send Request / Confirmation API) it is stated:

“Send Request / Send Confirmation

Abstract definition:

T_BE_SendData.request <Dest SAP> <Src SAP> <Data> <Priority>

T_BE_SendConf.indication
T_BE_SendFail.indication”

It shall be changed into:

“Send Request / Send Confirmation

Abstract definition:

T_BE_SendData.request <Dest SAP> <Src SAP> <Data> <Priority>

T_BE_SendConf.indication
T_BE_SendFail.indication<Dest SAP> <Src SAP>”

21. Always In section 3.2.5.1 (Send Request / Confirmation API) it is also stated:

“size_t length is the amount of data to be sent. The amount of data to be sent must be less than or equal to the MTU.”

The MTU enforcement shall be transparent to the user application. The only limit on the size of the data block passed by an End system user application to the Best-Effort transport layer service is the maximum size of the data payload of the Best-Effort PDU (2 Bytes length field = 65535 bytes).

It shall be changed into:

“size_t length is the amount of data to be sent.The amount of data to be sent must be less than or equal to65535 bytes.”

22. In section 3.2.5.2 (Receive Request / Receive Indication API) it is stated:

“Receive Request / Receive Indication

Abstract definition:

T_BE_ReceiveData.request <Dest SAP> <Src SAP> <Data>

T_BE_ReceiveData.indication <Dest SAP> <Src SAP> <Data>

T_BE_ReceiveFail.indication ”

It shall be changed into:

“Receive Request / Receive Indication

Abstract definition:

T_BE_ReceiveData.request <Dest SAP> <Src SAP> <Data>

T_BE_ReceiveData.indication <Dest SAP> <Src SAP> <Data>

T_BE_ReceiveFail.indication <Dest SAP> <Src SAP>”

23. In section 3.2.5.2 (definition of T_BE_ReceiveData_ev) it is stated:

“void T_BE_ReceiveData_ev(SAP_Type dest_SAP,

void * data,

size_t length,

void *(*CB_Routine) (void *, size_t, SAP_Type *src_SAP))

“

The last argument of the callback routine (*src_SAP) shall not be a pointer, but simply a SAP_Type argument.

24. In section 3.2.5.2 (definition of T_BE_ReceiveData_ev) it is stated:

“*data is a pointer to a buffer passed by the calling process, into which data arriving at the port is to be placed. The buffer must be large enough to hold the data field of a packet as large as the MTU.”

It shall be changed into:

“*data is a pointer to a buffer passed by the calling process, into which data arriving at the port is to be placed. The buffer must be large enough to hold the data field of a packet as large as 65535 bytes.”

25. In section 3.2.5.2 (definition of T_BE_ReceiveData_po) it is stated:

“*data is a pointer to a buffer passed by the calling process, into which data arriving at the port is to be placed. The buffer must be large enough to hold the data field of a packet as large as the MTU.”

It shall be changed into:

“*data is a pointer to a buffer passed by the calling process, into which data arriving at the port is to be placed. The buffer must be large enough to hold the data field of a packet as large as 65535 bytes.”

26. In section 3.2.6 (BEST_EFFORT SERVICE MANAGEMENT PARAMETERS) it is stated:

“Parameters:

· Maximum Transmission Unit (MTU): network wide maximum size of network PDU which applies to the Best-Effort and Guaranteed services.”

I don not think it is an efficient solution to have a “Network-wide” MTU because it will have to take into account the smallest MTU between ALL the sub-network composing the onboard SOIS network; therefore forcing this bottleneck size regardless of the “path” taken by a network packet onboard. In other words, in order to avoid “fragmentation” at Data link level during the entire end-to-end path, the Network layer needs to build packets of size <= the network MTU, even if the “ACTUAL” smallest MTU encountered by the packet during its journey is greater than it.

It would make more sense to introduce the concept of a “PATH MTU” which changes accordingly to the two end points involved each time in a communication. Such a parameter can be statically stored in a table built beforehand by the mission system engineer or the Network Layer can obtain it dynamically by invoking a specific Network management service (e.g. ICMP like).

Other type of MTU parameters can be provided alongside the PATH MTU like:

· The “network-wide” SMALLEST MTU. Which is the smallest MTU between ALL the MTUs of the onboard network

· The “network-wide” BIGGEST MTU. Which is the biggest MTU between ALL the MTUs of the onboard network

· The “network-wide” MOST FREQUENT MTU. Which is the most frequent MTU between ALL the MTUs of the onboard network

· Etc.

A user application or the mission system engineer can then set which kind of MTU to use for the specific onboard SOIS Network.

AN SDL MODEL OF TCONS

The objectives of the activity are:

(1) To formally define a set of Sequence Charts that describes the whole protocol from a specification point of view. We will try to identify, for each service, all the possible scenarios in terms of message exchanges between the TCONS entity and its environment (higher and lower layers).

(2) To define, using formal description technique, the architecture of the protocol; the layers, the relation between them, and (most important) the interfaces.

(3) To define precisely all the data types corresponding to the information contained in the PDUs (this is part of the interface definition).

And in a later stage:

(4) To define using the result of (3) the binary encodings for the PDU and to provide encoders/decoders for all PDUs

(5) To model and simulate the complete TCONS layers. Using model checking, we will verify that the sequence charts defined in (1) are complete and that the models implement correctly the specification.

(6) To automatically generate the code to get a prototype of the protocols
�PAGE \# "'Page: '#'�'" �� Accordingly to the definition of MTU this is a false assertion. The user application or service shall not care about the MTU size when submitting data for delivery through a SOIS service. It is a task of the Network layer to segment the Transport layer’s datagram in order to meet the MTU size; this is transparent to the user of the transport service.

�PAGE \# "'Page: '#'�'" �� Do you mean multiple buffers belonging to the same application or to different applications?

�PAGE \# "'Page: '#'�'" ��What about the other applications? What is the use of registering AFTER another app if you will never receive datagrams since they all will go to the FIRST registered buffer ?

�PAGE \# "'Page: '#'�'" �� Multicasting can be allowed for the Best-Effort service since it does not have to bother about re-transmission of packets (it is ONE WAY only)

�PAGE \# "'Page: '#'�'" �� A datagram is dropped ONLY when there are NO registered buffer queues whatsoever

�PAGE \# "'Page: '#'�'" �� Data are not stored within TCONS; it is returned to the application’s buffer. This shall be changed into <Buffer>.

