CCSDS-SOIS

Report n°1

CCSDS-SOIS/GLL

Report n°1

G. Le Lann

29 April 2004
Contents

1. General guidelines

2. Services to be supported
3. Conclusions
1. General Guidelines

1.1. Designs and validation versus implementations and verification
1.1.1. Proof obligations

A SOIF service is obtained through the invocation/activation of a communication protocol, of a communication management protocol (application, transport, network, link, layers), instantiated as S/C elements, HW or SW implemented. Reusability and portability of S/C elements are important objectives. However, observe that S/C elements are implementations of designs. Meeting the objectives of reusability and portability of S/C elements is greatly facilitated if reusability is also sought for S/C element designs and proofs/validation (that some specified service-centric properties hold true with a design).
If a design DS is proved to correctly deliver service S, then total correctness depends only on the correctness of the implementation of DS. Observe that validation/proofs are predictive, i.e. they should and can be established before embarking on an implementation. Changing an implementation (for a porting over a new platform) does not invalidate the design & validation/proof work which has led to DS. Hence, cost savings and avoidance of project overruns are additional merits that result from making a clear distinction between design & validation on the one hand, implementation & verification on the other hand.
Validation/proofs encompass logical properties (safety, liveness) and physical properties (timeliness, dependability). Consequently, there are rigorous ways (analytical work) of tailoring or dimensioning a system/network as well as its protocols for meeting specified timeliness and dependability properties, whose quantification is chosen a priori – and may vary over time – for different system/network releases.
My inputs will be strongly influenced by proof obligation concerns. IOW, recommendations for such and such protocols will not only be derived from analyses of requirements (related to current and future space missions), but also be pointing at protocols which have companion correctness proofs (for well identified properties).
The last S in SOIS stands for “services”. But does it stand for “required services Req_S” (top-down view, what is it I want?) or for “deliverable services Del_S” (bottom-up view, what is it I can expect from some technological solution)? Top-down and bottom-up approaches are necessary in many cases in practice, since existing “building blocks” (e.g., COTS products) are (re)used in many real developments. In any case, it must be shown that Del_S matches Req_S.
It is therefore strongly recommended to keep distinguishing between:

· Service statement/specification (problems, requirements),

· Design description/specification (solutions),

· Implementation (of a design).

1.1.2. Genericity and efficiency

Whenever one is provided with a priori knowledge that a development will rest on some technological solution Tech, one may be tempted to take advantage of this knowledge (specificities of Tech) to simplify the design & proof work. However, this puts a restriction on the portability/reusability of the design & proof work.

The above can be illustrated with the work on agreement protocols conducted in the framework of the A3M project (design & proof work conducted by INRIA, implementation & verification work conducted by EADS Astrium and Axlog Ingenierie, project funded by ESA/ESTEC, 2001-2003).
Uniform ConsensuS is one of the services that were “captured” (among other A3M services). Informally, with Uniform ConsensuS, one achieves unanimous agreement (a unique final decision value) among processors/network nodes, despite initial values being arbitrarily different and despite failures. A design DS was established and proved correct – this was possible since Uniform ConsensuS is a formally defined problem. This design DS specifies a pair {UCS algorithm + Failure Detectors}. Various Failure Detector (FD) semantics have been formally defined by Chandra & Toueg (1992).

Part of design DS is design DFD, which specifies the chosen FDs. We deliberately ignored the fact that SpaceWire had been retained as the networking technology (Tech) for the demonstration platform. Hence, design DFD is generic (invariant), and EADS Astrium may reuse it at will in the future, for every possible Tech they may want to consider.
The overhead with FDs is mainly due to the fact that processors have to do periodical broadcasts of “I am alive” messages. The overhead is (f+1)2 messages every period, for a system meant to tolerate up to f crash failures – regardless of how many processors (n) are comprised in a system (of course, n > f).
EADS Astrium and Axlog Ingenierie have developed a generic implementation of (generic) DFD. Observe, however, that in the particular case of SpaceWire, it is possible to implement design DFD in such a way that the overhead due to using FDs is close to 0, for the reason that the periodic broadcasting of “I am alive” messages is useless, being superseded by the continuous sending/checking of empty bytes in case no real messages are being sent over a link – a specificity of SpaceWire. Likely, in the case of a real system, this would be the implementation of choice.
1.2. What’s special with SOIF services & protocols?

(a) Energy is “scarce”:

· An incentive for retaining optimal protocols/algorithms. Optimality means lowest complexity (time-, message-, computational-, complexity), hence lowest runtime energy consumption.

· An incentive for seeking an optimal dimensioning of system/network resources, i.e. necessary & sufficient feasibility conditions. With such feasibility conditions, there is no (undesired) over-dimensioning of system/network resources.
· Energy can be saved by reducing the frequencies of processor CPUs at particular times, whenever possible. Higher frequencies are “reserved” for “valuable” services/protocols, as well as for specific conditions, in particular whenever it is necessary to speed up some service delivery. This leads to the concept of “overdrive option” – a switch to a higher frequency – activated whenever needed. This concept has been described in a paper that appeared in 2002, and applied to FDs (the nominal message broadcasting period is “large”, except when Uniform ConsensuS is invoked, in which case the period is set to a “small” value). An overdrive option can be defined for selected services/protocols, and for specific operational conditions.
(b) The environment is “aggressive”:
(Special care with specifying failure semantics. For example: Probability of Byzantine behavior
? Is masquerading possible? Message omissions, network partitioning, “unstable” connectivity with wireless/radio networks? The FDIR concept may not apply to all cases. Two examples of failures that may go undetected:
· Failures more general than crash/stop (e.g., timing failures, Byzantine behavior),

· Intermittent failures (intermittent Byzantine behavior (see recent CNES AGS study, occasional omissions, etc.).

· Special care with specifying desired dependability properties and services. For example: Is authentication needed? Which kind of safety is needed? …
(c) Future operational conditions? Uncertainty is the only certainty!
· Special care with specifying “loads” (event arrival models)

· Special care with specifying desired timeliness properties

· Make provision for “sufficient” on-board autonomy (this is not unrelated with the proof issue – necessary & sufficient feasibility conditions in particular)
There is a need for specifying services (and related protocols) which take these SOIF peculiarities into account.
Other than that, existing Services & Protocols (some standardized, others being turned into products or de facto standards) should be considered.

2. Services to be supported
2.1. Communication services (stricto sensu)

2.1.1. Modes

Essentially, unicast-type communication (pair-wise S/C element interaction) is the only mode being considered. Other modes needed:

· Multicast (FIFO, causal): 1 to many (known)

· Broadcast (FIFO, causal): 1 to many (possibly anonymous)

· Concentrate (FIFO, causal): from many (known) to 1
Layers: Transport, Network
2.1.2. Real-Time

Timeliness services expressed as timeliness attributes, such as e.g., latest (earliest?) deadlines, bounded jitters, for:

· Sending, M/Bcasting a message, a file (data structure)

· Delivering an isolated message, a file

· Completing the M/Bcasting of a message, of a file

· Setting up a connection
In addition, one may wish to discriminate between classes of service, regarding:
· Utility, i.e. what’s the value of completing a service/activity at a given time (time-value functions),

· Criticality, which serves to determine in which order are services/activities “abandoned” in case of excessive load/failure densities (e.g., critical, semi-critical, ordinary classes), ordinary services/activities being those “abandoned” before the others.
Layers: All (except physical layer).

Note that usage of fixed priorities is not suggested. Reliance upon fixed priorities solely can only lead to timeliness properties (much) poorer than achievable. Furthermore, fixed priorities may lead to starvation phenomena, i.e. they may “help” in missing deadlines. Such attributes go beyond the 2 queue model – expedited and non expedited – currently referenced in SOIS documents.

Note: See further what is implied with guaranteed end-to-end timely message delivery.
2.1.3. Dependability
· Connectionless and guaranteed message delivery: Needed. Keep it (good!).
· For unicast-type communications, error detection-and-recovery is the only service being considered. Will there never be a need for an error masking service – achievable via time/space redundancy?
· For M/Bcast-type communications, services needed are:

-- Reliable M/Bcast (a formal definition exists). Informally: If a message msg sent by an S/C element (which may crash while M/Bcasting msg) is delivered at a correct S/C element, then msg is delivered at every correct S/C element

-- Atomic M/Bcast a (formal definition exists). Serves to enforce a unique total ordering of concurrent events, system-wide. Informally: msg and msg’ being sent by 2 different C/S elements (which may crash while M/Bcasting), if msg is delivered before msg’ at some correct C/S element, then msg is delivered before msg’ at every correct C/S element

Layers: Transport, Network.

· Conditions for changing an observed error/failure class and reporting

Intermittent errors/failures may be “destructive” if they occur “too often”. Beyond some occurrence density threshold, an intermittent error/failure must be seen as a permanent failure. The service needed is specified with two parameters:
-- Occurrence density threshold

-- Where to report (that the threshold has been reached)

Layers: Transport, Network, Link
2.2. Communication/Computing services
“Communication” is often used to mean more than message passing. “Computing” is often used to mean more than isolated state changes (the collective behavior of many S/C elements may matter) – especially the case with network management.

2.2.1. Dependability services (distributed or redundant centralized systems)
· Failure detectors (Chandra/Toueg). Layer: Link (any layer above is OK, but performance is best if this service is provided at link layer)

· Leader election (network master/backups). Layers: Application, Transport, Network
· Group membership (who is active/correct?). Layers: Application, Transport, Network
· Reconfiguration (mode changes). Layer: Application
· Stuttering/flooding detection & correction. Layers: Application, Transport, Network
· Consistent reads/writes of single multi-copied data items. Layer: Application
· Consensus (a unique value out of many), Coordination (a unique calculus out of many calculi – e.g., majority voting, distributed scheduling). Layers: Application, Transport
· Atomic commit (transactions). In case of failure(s), a transaction either performs all its writes (which are visible to any other transaction) or performs none of them. Layers: Application, Transport, Network
· Security (encryption? authentication?, …). May be especially appropriate with inter-S/C communications/interactions (spying, intrusions …). Layers: All
2.2.2. Concurrency Control services
· Consistent reads/writes of multiple data items that may be shared by processors/network nodes (e.g., Data Pool). Layers: Application, Transport, Network
· Atomic transactions (no undesired side-effect in case of concurrent executions). Needed for regular activities, as well as for P&P activities (which may disrupt on-going regular activities – e.g. in case of an erroneous P&P operation). Layers: Application, Transport, Network
· Synchronized multiple reads (from many sensors), to get a consistent view of the “environment”, of a global state. Layer: Application

· Distributed event ordering (very useful for regular on-line activities, as well as for tracing causal dependencies, which may be necessary in many cases – a posteriori analyses, testing, debugging of distributed systems, P&P, etc.). Layers: Application, Transport
2.2.3. Real-Time services
A note on guaranteed end-to-end timely services
(As seen previously (section 2.1.2), local and end-to-end timeliness attributes (deadlines, etc.) should be specifiable (for messages, files, connection management, etc.) at every layer (k) of the service/protocol architecture, for any given class (c) of timeliness/utility/criticality (upper bound D(k, c) on delays.
All layers are of concern, for it is impossible to claim – even less to prove – “real-time” behavior if some layer is not using appropriate protocols and scheduling algorithms (see below) in order to guarantee end-to-end timely services.

In order to prove that such (desired) bounds are met, one must conduct a worst-case schedulability analysis, which serves to establish the analytical expressions of bounds B(k, c) which can be achieved with a given design. As a consequence, feasibility conditions simply are the following set of constraints: (k, (c, B(k, c) ≤ D(k, c)

Bounds B(k, c) depend on two sets of system design choices:

· The COM set = {the layer k end-to-end communication protocol, as well as the communication protocols used at layers underneath layer k},
· The SCHED set = {the scheduling algorithms used at layers j, j ranging from k to 1}, which determines the following:
 -- How is the process that implements layer j communication protocol scheduled against other layer j processes?
 -- At layer j, how is class c serviced compared to other classes?
Bounds B(k, c) depend also on the “adversary”, i.e. (i) message/service request arrival laws (“loads”) at every layer j ≤ k, for class c as well as for classes serviced prior to class c, (ii) failure semantics as well as densities of failure occurrence.
This short note should help understand why the mere use of a “real-time communication protocol” – regardless of its design – is not sufficient to establish/ensure “real-time” properties, since such properties are predominantly determined by which (task) schedulers are used (
· Timeliness is an attribute one may have to associate with any of those services identified in this note. One may consider latest (earliest?) deadlines, bounded jitters, as well as criticality classes and utility functions. (See section 2.1.2). Again, observe that such attributes go beyond the 2 queue model – expedited and non expedited – currently referenced in SOIS documents. Reliance upon fixed priorities solely can only lead to timeliness properties (much) poorer than achievable.
Layers: All (except physical layer).

· Distributed time
Layers: All (except physical layer).

· Admission control. This service permits to “shield” a system against arbitrary behaviors of the system’s adversary (excessive load and/or failure scenarios). For example, if one has specified that the arrival model of some message type is sporadic, sporadicity interval sp, then any arrival (of that message) occurring at a time earlier than (most recent arrival time + sp) is ignored/rejected.

Layers: All (except physical layer)
· Preemption may be desirable, accepted, forbidden (in some cases, preemption is impossible). This is an attribute one may want to specify with some services.
Note: Reservation techniques have drawbacks. Fixed/static/pre-computed schedules (in tables) are appropriate only for specific cases, where the “adversary” is fully under control – strictly cyclic kinds of activities.
Note: Periodic sampling does not imply that the “adversary” is “periodic”. Smart sensors, strictly equivalent to processors from a computational viewpoint, should be favored whenever possible (they reduce the CPU overhead due to useless periodic samples).
2.2.4. Other services
· Booting/Rebooting

· P&P (plug-and-play)
Prima facie, such services do not raise issues that have not been identified in the previous sections.
3. Conclusions
An important benefit resulting from an “early” identification of “high-level” services and requirements – attempted in this report – is that one avoids specifying protocols on an ad hoc basis, almost in isolation from each other. This results into “overlapping” designs and implementations, whereas some significant factorization of designs and implementations is possible.

Some of these services call for protocols and/or algorithms which have not been identified yet in SOIS documents. Fortunately, many of those desired protocols and/or algorithms are “available” in the scientific literature, along with proofs of properties, for many different computational models.
When it will be necessary to propose and specify non existing protocols that match some or all of the services presented in section 2, one shall pay attention to the choice of a computational model, for this choice strongly determines the overall coverage of a system/network/protocol. It is well established now that, for identical achieved performance/efficiency figures, the coverage of synchronous solutions is the lowest, and that a system/network/protocol coverage increases as one gets closer to purely asynchronous solutions.
Note: A synchronous solution is based upon the explicit usage of time or/and timers, whereas an asynchronous solution is based only upon the observation of events, i.e. it is time-free.
� According to NASA/JPL, over 10 years of Galileo flight, the need to do software reload (due to an SEU) has occurred twice only.

PAGE
8
G. Le Lann

