Time-Critical Onboard Applications (TCOA)

Time Distribution Service Specification

1 Introduction

The time distribution service provides three separate services to applications:
· A ‘wallclock’ service. Applications use this service to get the current time.
· Alarm service. Applications can use this service to receive an indication at a particular time in the future.
· Periodic chime service. This service provides applications with periodic time indications at application-specified intervals.
None of the Time Distribution Services is intended to be used as fine-grained, multi-purpose timing mechanisms for applications. The time distribution services should NOT be used to set/invoke application-layer timeouts or to drive mission-critical, timed events.
Section 2 contains a discussion of precision, accuracy, and error relevant to the time distribution service. Section 3 contains the service specification for the time distribution service. Section 4 contains a list of the managed parameters.
2 Precision, Accuracy, and Error
2.1 Lift something from NTP or do our own.
3 Service Specification

This section contains the abstract service specification for the time distribution service. The request primitives available are:

· Time.request
· Time.request_alarm
· Time.request_periodic_alarm
The indications provided by the time distribution service are:

· Time.indication
The remainder of this section provides details of the various service primitives.

3.1 Definitions:

Time Indications: Times returned by the time distribution service are in seconds and fractional seconds. The exact format of time indications is not specified here.
NOTE: This service specification assumes that the range of reportable times is large enough that wrapping is not an issue.
Error Specification: An indication of the notional error range of a particular time value. The units of the error specification are seconds and fractional seconds. The error specification expresses the notional error associated with the returned time, so that larger values for the error specification indicate less accuracy in the returned time.
Status: The time distribution service indication may include a status parameter. The status parameter indicates one of the following states:

· OK –
The time distribution service is functioning, and the values in the time.indication should be considered valid.
· Timeout –
The specified request could not be serviced within the managed timeout period
· Error –
The time distribution service is not functioning correctly. The time returned by time.indications containing an error status is invalid and should not be used.

3.2 Requests

2.3.1 TIME.REQUEST

The Time.request primitive shall be used by a user of the time distribution service to request the current time.

3.2.1.1 Semantics
Time.request shall provide parameters as follows:

Time.request ()

3.2.1.2 When Generated
Time.request is generated by users of the time distribution service when they want to request the current time.

3.2.1.3 Effect on receipt
Receipt of a Time.request primitive shall cause the Time Distribution Service to determine the current time and return it to the application. If an answer cannot be provided by a system-specified timeout, the Time Distribution Service may return an answer with an error indication.
2.3.2 TIME.REQUEST_ALARM

The Time.request_alarm primitive shall be issued by a user to request an alarm at a specific time in the future.

3.2.2.1 Semantics

Time.request_alarm shall provide parameters as follows:

Time.request_alarm (alarm_at_time)

alarm_at_time – the time at which the user wishes to receive a time.indication.

Note: Mechanisms to associate particular time.indications with their corresponding time.request_alarm requests are implementation-specific. Similar mechanisms need to be provided by implementations to allow the time.cancel_alarm request to identify a particular time.request_alarm or time.request_periodic_alarm.

3.2.2.2 When Generated

Time.request is generated by users of the time distribution service when they want to request the current time.

3.2.2.3 Effect on receipt

Receipt of a Time.request_alarm shall cause the TD service to determine the current time, and return it to the application. If an answer cannot be provided by a system-specified timeout, the TD service may return an answer with a an extremely large error range.

3.2.2.4 Additional comments

None.
2.3.3 TIME.REQUEST_PERIODIC_ALARM

The Time.request_periodic_alarm primitive shall be issued by a user to request an alarm at a specific time in the future and at specified intervals thereafter.

3.2.3.1 Semantics

Time.request_periodic_alarm shall provide parameters as follows:

Time.request_periodic_alarm (first_alarm_time, inter_alarm_interval)

First_alarm_time – the time at which the user wishes to receive the first of a series of periodic time.indications (alarms).
Inter_alarm_interval – the inter-alarm interval, in seconds and fractions of seconds, between successive time.indications (alarms).
3.2.3.2 When Generated

Time.request_periodic_alarm is generated by users of the time distribution service when they want to request an indication at a particular time.
3.2.3.3 Effect on receipt

Receipt of a Time.request_alarm shall cause the TD service to deliver a time.indication() primitive (asynchronously to the application) at the specified time.
2.3.4 TIME.CANCEL_ ALARM

The Time.cancel_alarm primitive shall be issued by a user to request that a previously scheduled alarm (either one-shot or periodic) be canceled.
3.2.4.1 Semantics

Time.cancel_alarm shall provide parameters as follows:

Time.cancel_alarm ()

Parameters:
· An implementation may require a parameter to associate the time.cancel_alarm request with a particular time.alarm or time.periodic_alarm request.

Note: See note in section 4.2.1.

3.2.4.2 When Generated

Time.cancel_alarm is generated by users of the time distribution service when they want to request cancellation of a previously scheduled alarm.

3.2.4.3 Effect on receipt

Receipt of a Time.cancel_alarm shall cause the TD service to cancel the scheduled alarm and to remove all state associated with it.

3.2.4.4 Additional comments

If the user requests an alarm in the past, the Time Distribution Service will return a time.indication primitive with the time requested as the time (in the past) at which the user requested the alarm to occur, and the current time in the current time parameter of the indication.
3.3 Indications

3.3.1 TIME.INDICATION

The Time.indication primitive shall be used to deliver the current time with status and error indications.
3.3.1.1 Semantics
Time.indication shall provide parameters as follows:

Time.indication(
time requested,

current time,
status,

error specification)
Parameters:

· Time requested: This is the time at which the user requested to receive a time indication, and may differ significantly from the time at which the request was delivered to the time distribution service.
If the time.requested parameter differs significantly from the current time, it may be an indication that the time distribution service is failing and will be unable to deliver a requested alarm at the correct time.
· Current time: The current time at this node, as determined by the time distribution service.

· Status: The status of the time distribution service.
· Error Specification: An indication of the error of the current time value returned in the time indication.
3.3.1.2 When Generated
Time.indication shall be generated in response to a Time.request or a Time.request_alarm primitive.
3.3.1.3 Effect on receipt
The effect on receipt of a Time.indication by a TD user is undefined.

3.3.1.4 Additional comments

None.
4 Managed Parameters
Tick size – The rate, in Hz, at which the time distribution service is updated.
Timeout value – How long the time distribution service may block on a time.request before returning. Note that if the time distribution service cannot return an answer within this time then it may return an error.

The Open Group Base Specifications Issue 6

IEEE Std 1003.1, 2004 Edition

Copyright © 2001-2004 The IEEE and The Open Group, All Rights reserved.

NAME

time.h - time types

SYNOPSIS

#include <time.h>

DESCRIPTION

Some of the functionality described on this reference page extends the ISO C standard. Applications shall define the appropriate feature test macro (see the System Interfaces volume of IEEE Std 1003.1-2001, Section 2.2, The Compilation Environment) to enable the visibility of these symbols in this header.

The <time.h> header shall declare the structure tm, which shall include at least the following members:

int tm_sec Seconds [0,60].

int tm_min Minutes [0,59].

int tm_hour Hour [0,23].

int tm_mday Day of month [1,31].

int tm_mon Month of year [0,11].

int tm_year Years since 1900.

int tm_wday Day of week [0,6] (Sunday =0).

int tm_yday Day of year [0,365].

int tm_isdst Daylight Savings flag.

The value of tm_isdst shall be positive if Daylight Savings Time is in effect, 0 if Daylight Savings Time is not in effect, and negative if the information is not available.

 The <time.h> header shall define the following symbolic names:

 NULL

 Null pointer constant.

 CLOCKS_PER_SEC

 A number used to convert the value returned by the clock() function into seconds.

 CLOCK_PROCESS_CPUTIME_ID

 The identifier of the CPU-time clock associated with the process making a clock() or timer*() function call.

 CLOCK_THREAD_CPUTIME_ID

 The identifier of the CPU-time clock associated with the thread making a clock() or timer*() function call.

The <time.h> header shall declare the structure timespec, which has at least the following members:

time_t tv_sec Seconds.

long tv_nsec Nanoseconds.

 The <time.h> header shall also declare the itimerspec structure, which has at least the following members:

struct timespec it_interval Timer period.

struct timespec it_value Timer expiration.

 The following manifest constants shall be defined:

 CLOCK_REALTIME

 The identifier of the system-wide realtime clock.

 TIMER_ABSTIME

Flag indicating time is absolute. For functions taking timer objects, this refers to the clock associated with the timer.

 CLOCK_MONOTONIC

The identifier for the system-wide monotonic clock, which is defined as a clock whose value cannot be set via clock_settime() and which cannot have backward clock jumps. The maximum possible clock jump shall be implementation-defined.

The clock_t, size_t, time_t, clockid_t, and timer_t types shall be defined as described in <sys/types.h> .

Although the value of CLOCKS_PER_SEC is required to be 1 million on all XSI-conformant systems, it may be variable on other systems, and it should not be assumed that CLOCKS_PER_SEC is a compile-time constant.

The <time.h> header shall provide a declaration for getdate_err.

The following shall be declared as functions and may also be defined as macros. Function prototypes shall be provided.

char *asctime(const struct tm *);

char *asctime_r(const struct tm *restrict, char *restrict);

clock_t clock(void);

int clock_getcpuclockid(pid_t, clockid_t *);

int clock_getres(clockid_t, struct timespec *);

int clock_gettime(clockid_t, struct timespec *);

int clock_nanosleep(clockid_t, int, const struct timespec *,

 struct timespec *);

int clock_settime(clockid_t, const struct timespec *);

char *ctime(const time_t *);

char *ctime_r(const time_t *, char *);

double difftime(time_t, time_t);

struct tm *getdate(const char *);

struct tm *gmtime(const time_t *);

struct tm *gmtime_r(const time_t *restrict, struct tm *restrict);

struct tm *localtime(const time_t *);

struct tm *localtime_r(const time_t *restrict, struct tm *restrict);

time_t mktime(struct tm *);

int nanosleep(const struct timespec *, struct timespec *);

size_t strftime(char *restrict, size_t, const char *restrict,

 const struct tm *restrict);

char *strptime(const char *restrict, const char *restrict,

 struct tm *restrict);

time_t time(time_t *);

int timer_create(clockid_t, struct sigevent *restrict,

 timer_t *restrict);

int timer_delete(timer_t);

int timer_gettime(timer_t, struct itimerspec *);

int timer_getoverrun(timer_t);

int timer_settime(timer_t, int, const struct itimerspec *restrict,

 struct itimerspec *restrict);

void tzset(void);

 The following shall be declared as variables:

extern int daylight;

extern long timezone;

extern char *tzname[];

Inclusion of the <time.h> header may make visible all symbols from the <signal.h> header.

�Zero-order question: is there some POSIX thing we can just lift?

�Chris expressed a desire to use ISO-compliant service names. Happy to do it, but I request some help figuring exactly what those would be, at which point I’ll do a global search-and-replace.

� OK, I need some requests (e.g. the time.request_alarm and time.request_periodic_alarm) to return some sort of token that the user can later provide to cancel the requests. I am unsure if such tokens should show up in the abstract service specification or not. I can supply them in the service specs if this note is deemed insufficient.

�This is essentially POSIX time, in case you’re interested. I think it’s a bit heavyweight, even if we only implemented the simplest time() function. It requires this struct tm thing that’s got all sorts of day and month information in it that might not be too relevant to the wallclock service, e.g.

