
Partitioning in the Time-Triggered Architecture

John Rushby
Computer Science Laboratory

SRI International
Menlo Park CA 94025 USA

March 2001

Deliverable 3 for SRI Project 11003; Subcontract to Honeywell Tuc-
son under Cooperative Agreement NCC-1-377 with NASA Langley en-
titled Design, Implementation, and Verification of Fault-Tolerant Modular
Aerospace Controls.

Abstract

We examine partitioning in the Time-Triggered Architecture. We undertake a failure
modes and effects analysis for an ideal TTA architecture and then consider the additional
issues raised in practical implementations.

i

ii

Contents

1 Partitioning 1

2 Partitioning in TTA 3
2.1 Ideal TTA Implementation . 3

2.1.1 TTP/C Controllers . 3
2.1.1.1 Gross Temporal Faults 4
2.1.1.2 Small Temporal Faults 4
2.1.1.3 Value Faults . 5
2.1.1.4 Tiny Temporal and Value Faults 6

2.1.2 Bus Guardians . 6
2.1.3 Communication Channels . 7
2.1.4 Partitioning at Startup . 7

2.2 Bus-Based Implementation . 8
2.3 Star-Coupler Implementation . 8

3 Discussion and Future Work 9

Bibliography 10

iii

iv

Chapter 1

Partitioning

Partitioning is about fault containment: the requirement is that a fault in one component of
a distributed system must not be able to propagate and interfere with the operation of non-
faulty components. Partitioning depends on an appropriate notion of “component”—we
cannot expect to achieve partitioning if the entire system is regarded as a single component.
For partitioning, the appropriate notion of component is referred to as a fault containment
unit (FCU) and the assumption (which must be justified) is that separate FCUs fail indepen-
dently. The requirement then is to show that failure of one FCU cannot affect the operation
of others. As stated, this requirement is too strong: if one FCU supplies data to another,
then failure of the former necessarily affects the latter. Finding an exact characterization of
partitioning that allows this type of “inevitable” propagation of the effects of failure, while
excluding others (such as where failure of one FCU renders another completely inoperable),
is a delicate challenge, with no completely satisfactory solution at present [Rus99a]. In this
report, we examine partitioning in the Time-Triggered Architecture (TTA) with respect to
specific functions and capabilities.

No system can be expected to maintain partitioning if too many faults (or too many
bad faults) afflict it in too short a period, so it is necessary to specify a fault hypothesis
that describes the kinds, numbers, and frequencies of faults that the system should be able
to cope with: these elements of the fault hypothesis are referred to as the fault model, the
maximum faults, and the fault arrival rate, respectively.

In an “ideal” implementation of TTA (which is different than any actual implementa-
tion) there would be four types of FCU.

� The host computers that run the applications concerned

� The TTP/C controllers that are the interfaces between hosts and TTA

� The broadcast communication channels that carry data between hosts and their asso-
ciated controllers

1

� The bus guardians that are interposed between controllers and the communication
channels

Actual TTA implementations compromise the failure independence of these ideal FCUs in
various ways (for example, in automotive applications, the controller is on the same chip as
the host and shares its clock and power supply) but it is useful to study partitioning for the
ideal implementation first, and then examine the consequences of various departures from
the ideal.1

We can also postulate an “ideal” fault model. This distinguishes two kinds of fault as
follows.

� An arbitrary active fault is entirely unconstrained.

� An arbitrary passive fault is unconstrained, except that it cannot manufacture mes-
sages out of nothing (i.e., the component can only change or lose messages that it is
relaying).

In the ideal TTA, hosts and controllers can exhibit active faults, while the bus guardians and
communication channels can exhibit only passive faults. Actual TTA implementations may
have more restrictive fault models.

One additional fault “mode” that should be considered, but that has a different character
from the others, is the spatial proximity fault: here it is assumed that all matter in some
specified volume is destroyed. Analysis of this kind of fault must consider the physical
layout of the TTA implementation.

The fault arrival rate assumption for TTA is that at most one FCU may fail in any two
consecutive TDMA rounds. Faults that afflict more FCUs, or that arrive more frequently
than this, are considered “multiple fault scenarios”; TTA can tolerate many such scenarios,
but is not guaranteed to do so. The maximum fault assumption depends on the FCUs con-
cerned, and on the particular implementation of TTA. To tolerate � communication channel
faults, there must be at least ����� communication channels; standard implementations of
TTA fix ����� . There must be at least one bus guardian per communication channel; in
the bus-based implementation of TTA, each TTP/C controller has a bus guardian for each
channel, whereas the star-coupled implementation has a single bus guardian for each chan-
nel. The algorithms executed by the TTP/C controller for clock synchronization and group
membership require at least four controllers to tolerate a single fault; membership is used to
exclude faulty nodes, so that an � -node system can tolerate a maximum of �
	�� faulty con-
trollers. Faulty hosts should have no effect on the partitioning properties of TTA, but there
may be some application-specific constraints on the number of nonfaulty hosts required to
provide acceptable, or safe, service.

In the next chapter we examine partitioning in TTA by means of a failure modes and
effects analysis of its FCUs.

1This approach and much of the analysis is derived from [KB00]; an abbreviated account has been published
[KBP01].

2

Chapter 2

Partitioning in TTA

A TTA system is operating correctly if it provides nonfaulty nodes with the services speci-
fied at its interface. These services comprise

� Clock synchronization

� Group membership

� Data communication

Partitioning in TTA must ensure that these services are provided to nonfaulty nodes
without interruption, despite the occurrence of faults—provided these are within the fault
hypothesis. A natural way to examine partitioning in TTA is through a failure modes and ef-
fects analysis (FMEA): we postulate all the faults that could afflict a TTA system (within the
fault hypothesis) and deduce their consequences. In the following sections we first perform
an FMEA for the ideal implementation, and then consider how the actual implementations
differ from this.

2.1 Ideal TTA Implementation

We first consider faults in steady-state operation, and then those that could arise in startup
or restart. Within each of theses phases, we perform FMEA for each type of FCU in turn.
The reader is assumed to be familiar with the operation and algorithms of TTA.

2.1.1 TTP/C Controllers

A faulty controller can fail in the temporal and/or value domains: that is, it can send data at
the wrong time, and/or send the wrong data.

3

2.1.1.1 Gross Temporal Faults

This failure mode, which includes babbling, is where a controller attempts to send data
outside its TDMA slot (e.g., because it has lost synchronization). Partitioning is ensured
because the bus guardians allow data to reach the communication channels only during the
correct window. The single-fault assumption ensures that a controller and a bus guardian
cannot both be faulty. (In a multiple fault scenario where both a controller and a guardian
are faulty, partitioning should still be ensured by the guardian of the other channel). It
is desirable that a controller exhibiting this failure mode should shut down; this is likely
if the cause of the fault is algorithmic (e.g., loss of synchronization) because the faulty
controller will fail to receive acknowledgments for its own transmissions, or fail to receive
the transmissions of other nodes, and the TTA group membership algorithm will cause it
to enter the freeze state. If the cause is low level (e.g., a faulty UART) or electrical (e.g., a
faulty transistor) it is also likely that the membership algorithm will detect communications
failure and enter the freeze state. Only if the controller has ceased to execute the correct
algorithms is it likely that it will remain active and repeatedly stress the fault isolation
provided by the bus guardians.

2.1.1.2 Small Temporal Faults

This failure mode arises where a controller transmits a message very close to the beginning
or end of its assigned TDMA slot. Since clocks cannot be perfectly synchronized, it is
possible that some receivers will consider the message to arrive within the correct window
and will accept it, while others will not, and will reject it. This potentially could cause a
split in the membership and the existence of several cliques of nodes that do not recognize
each other’s existence. The clique-avoidance component of the TTA membership algorithm
is designed to exclude such a split [BP00]. This element of the algorithm has been validated
by testing and simulation, but not yet by formal means. We do now have a Mur

�
model

that will allow exploration by model checking, and work is under way to extend the PVS
verification [Pfe00] to include such asymmetric faults.

Notice that the basic scenario (transmitting close to the edge of a TDMA slot) could
be caused by a fault (e.g., loss of synchronization) and it is then perfectly appropriate to
tolerate it by means of the clique-avoidance element of the membership algorithm; however,
legitimate clock skew also could cause nodes to transmit close to the edges of the receive
windows of other nodes: this is not a fault, and should not trigger asymmetric receptions.
Rather, the parameters of the TTA algorithms should be such that clock skew, message
transmission delay, and so on, are correctly accounted for in setting the size and timing of
the send and receive windows on TDMA slots. The calculation of parameters for a general
model of time-triggered communication in the presence of imperfectly synchronized clocks
is described and formally verified as part of the model described by Rushby [Rus99b]. An
informal description has recently been provided [KBP01], explaining how slot timing in
controllers and guardians should be handled so that transmissions by nonfaulty nodes are

4

never rejected by other nonfaulty nodes: controller windows should be at least
���

time
units longer than the maximum message duration, bus guardian windows should start

�

later and end
�

earlier than controller windows, and controllers should start transmission
� �

after the start of their windows, where
�

is the maximum clock skew. It would be
valuable and seems quite straightforward to modify the treatment of [Rus99b] to verify this
calculation. Bus guardians that terminate a transmission should do so in a way that ensures
that no nonfaulty receiver will accept it (e.g., by ensuring that the CRC will fail).

2.1.1.3 Value Faults

Controllers add a high-quality CRC to every message that they send and this is assumed
to preclude modification of the contents by other (passive) components during transmis-
sion (a node may fail to receive a message, but cannot receive it incorrectly). The worst
that can happen is that some nodes may fail to receive a message that others do receive.
The duplicated communication channels minimize the likelihood of this happening, and
the clique-avoidance element of the TTA group membership algorithm ensures that such
asymmetric reception cannot split the membership.

A faulty controller can modify messages received from or transmitted to its host, and
could calculate CRCs incorrectly. These faults affect only the host attached to the con-
troller concerned, and do not threaten partitioning. However, information of importance
to the operation of TTA itself is encoded into the CRCs that are appended to each mes-
sage: these implicitly acknowledge receipt of messages from other nodes, and also indicate
other elements of the controller’s state. Faulty encoding of these elements into the CRC
could potentially disrupt the membership algorithm: for example a controller that incor-
rectly acknowledges a previous broadcaster whose message was not received could cause
that broadcaster to fail to diagnose its fault. However, this scenario presupposes a double
fault and has the same manifestation as a broadcast that is received only at some nodes;
similarly, the scenario that fails to acknowledge a message that was received has the same
manifestation as a receive fault and is handled correctly by the group membership algo-
rithm. Sending different, but correctly formatted messages over the two communication
channels seems unlikely: we presume that the design of the controller ensures that only a
single message is prepared and is sent identically to both channels. Even if it were possible,
the message on each communication channel would be the same at each receiver, so any re-
ceiver that received both messages would perform the same actions (provided all receivers
agree on the identity of the two channels); receivers that obtain a message only on a single
channel might perform different actions, so this highly implausible scenario may be worth
further study.

The messages considered so far are called “N-frames” in TTA; the other kind of mes-
sage is called an “I-frame.” A faulty controller that sends an I-frame when an N-frame is
expected does no harm because its message will be rejected by all nonfaulty nodes; a node
that sends an N-frame when an I-frame is expected similarly causes no harm. I-frames dif-

5

fer from N-frames in that the controllers inspect the fields of the message and may perform
actions based on the contents of those fields. A faulty controller may send faulty I-frames
and therefore has some potential to affect other nodes through the contents of its I-frame.
It seems that this potential is limited to initiating mode changes, but further examination is
needed to deduce the full potential consequences.

Reconfiguration is supported in TTA and this allows one controller to take over the role
of another; a reconfiguring controller informs its bus guardians of it new role; this seems
potentially to violate the assumed independence of controllers and guardians and warrants
further investigation.

Value faults that can afflict other architectures, such as those that falsely indicate the
originator of a message, or its type, or intended recipients, are impossible in TTA because
these values are not sent in messages, but are implicit in the time at which they are sent
and received: all nonfaulty controllers have synchronized clocks and identical MEDLs and
therefore interpret all messages consistently.

2.1.1.4 Tiny Temporal and Value Faults

The electrical signals that appear on the communication channels must satisfy certain tim-
ing and value (voltage) specifications if they are to be recognized reliably: digital pulses
must be of a certain duration, their edges must be suitably sharp, and their voltages must
be of adequate stability and definition. It is possible for slightly out of specification (SOS)
faults in oscillators or electrical driver circuits to generate poor signals that are interpreted
differently by different receivers. The CRCs should ensure that, at each receiver, messages
are received correctly or not at all (i.e., no incorrect message will be received)—but some
receivers may accept messages that others do not, and this can lead to a split in the member-
ship. As before, the clique-avoidance element of the group membership algorithm should
avert this problem, but it is preferable to exclude it at source. (The clique-avoidance mecha-
nism prevents complete breakdown of the system, but it may cause nonfaulty nodes to drop
out and reintegrate, and it may—if there is no majority clique—cause the complete system
to do a restart.) This can be done by causing the bus guardians to reshape and retime the
signals transmitted to the communication channels. If the controller is generating flawed
signals, the retiming and reshaping will ensure that the signals sent on each communication
channel are properly timed and formatted (though the messages they encode will possibly
be garbled—the CRCs will detect this); there is then no danger that nonfaulty receivers will
interpret them differently.

2.1.2 Bus Guardians

Bus guardians prevent mistimed messages from reaching the communication channels; they
also reshape and retime the messages that they do pass through. In the ideal implementation,
bus guardians are separate FCUs, which requires that they have their own power supply
and clocks, and are able to synchronize independently. The equivalent components of the

6

Honeywell SAFEbusTM [HD92, ARI93] (they are called BIUs) do have this independent
character.

An improperly synchronized guardian will prevent those controllers attached to it from
sending messages on the corresponding communication channel. By the single fault hy-
pothesis, the other channel and associated bus guardians must be nonfaulty, and so the
affected controllers will transmit and receive correctly on the other channel and will not
enter the freeze state.

A bus guardian whose reshaping and retiming circuits are faulty could generate asym-
metric receptions on the communication channel to which it is attached. As with improper
synchronization, the other channel and its associated bus guardians must be nonfaulty in
this case, and there will be no loss of partitioning.

Bus guardians do not have access to the CRC computation that is necessary to create
properly formatted messages, so they cannot manufacture messages from nothing (hence
the passive fault assumption). It is possible that a babbling guardian will, by the laws of
probability, generate correctly formatted messages with some frequency, and could cause
faults similar to those hypothesized in Section 2.1.1.3, where different messages are re-
ceived on the different communication channels. This is another reason for examining the
consequences of this fault manifestation, and also suggests that guardians should contain
self-test circuitry that attempts to identify and curtail babbling.

2.1.3 Communication Channels

These are assumed to behave as passive wires; their only fault modes are complete failure
(so that no nodes are able to communicate) and cuts (in which subsets of nodes are able
to communicate). The communication channels are duplicated, so if one is afflicted in this
way, the other must be nonfaulty and service will continue. In a multiple-fault scenario
in which both channels are faulty, the clique-avoidance element of the TTA membership
algorithm ensures that all but at most one (majority) subset of nodes will shut down, and
that subset will be able to communicate correctly (else it, too, will shut down).

2.1.4 Partitioning at Startup

At startup, or on restart, controllers and bus guardians are unsynchronized. Controllers that
detect no bus activity may attempt to start the system by sending a coldstart I-frame on one
channel; controllers that receive this message then execute their startup algorithm. Failure
modes have been identified in which some subset of nodes fails to receive the coldstart
frame and establishes an independent clique. Proposed remedies include changes to the
startup algorithm, and sending coldstart frames on both channels. Another failure mode
has been identified in which a faulty node sends bad data in the coldstart frame. Proposed
solutions include a more “distributed” algorithm in which little or no data is transmitted
in the coldstart frame, and moving more responsibility for coldstart to the bus guardians.
Further investigation of these issues is warranted.

7

2.2 Bus-Based Implementation

The prototype, bus-based implementation of TTA differs from the ideal in several respects.
In this implementation, the communication channels are buses, and each controller has its
own pair of bus guardians. However, the bus guardians are not fully independent of the
controller: they have their own oscillator but depend on the controller for synchronization
(and may also share its power supply), and they do not perform signal reshaping and re-
timing. A consequence of the first design compromise is that loss of synchronization may
cause the transmit window of a faulty controller to impinge on that of another node (or
possibly two other nodes). The controller should detect this error and enter the freeze state
(since its messages will not be acknowledged and it will not receive messages from other
nodes), but a faulty controller cannot be guaranteed to do this. On the other hand, the
nonfaulty nodes into whose transmit windows it intrudes will detect errors and enter their
freeze states. In the next TDMA round, the faulty controller could impinge on the transmit
window of another good node, causing it to freeze, and so on. A consequence of the second
design compromise is that SOS signals can propagate from a faulty controller to both buses
and can lead to asymmetric receptions.

The bus-based implementation is vulnerable to spatial proximity faults. Both buses
necessarily come into close proximity at each node, and general destruction in that space
could sever or disrupt both buses.

2.3 Star-Coupler Implementation

In the proposed star-coupler implementation, each communication channel takes the form
of separate lines (probably fiber-optic) connecting each controller to a single bus guardian.
There are two (or in some proposals three) separate bus guardians and their associated
collections of lines.

This architecture is less susceptible to spatial proximity faults because the bus guardians
can be placed in different locations. Destruction in the space around one guardian will
eliminate one communication channel; destruction in the space around one controller will
eliminate that controller and its lines to both bus guardians, but the guardians themselves,
and communications with other nodes, should remain unaffected.

The central bus guardians can incorporate the circuitry (essentially, a stripped-down
controller) to perform independent clock synchronization, can be provided with their own
power supply and high-quality oscillator, and can perform signal reshaping and retiming.
The principal difference between this and the ideal implementation is that a single fault
in a guardian can render an entire communication channel faulty. This does not affect
the logical argument for partitioning, but does affect (reduce) the fault arrival rate that is
consistent with any given reliability goal.

8

Chapter 3

Discussion and Future Work

We have outlined, informally, the arguments for partitioning in TTA, and examined it
through failure modes and effects analysis for the ideal architecture and for both practi-
cal architectures.

In would be interesting to see if the informal examination reported here can be under-
taken in a more formal manner that can be checked mechanically.

We have identified some areas where further investigation, both formal and informal,
seems warranted.

� Formal verification of the controller and guardian window timing parameters

� Characterization of the behavior of TTA in the highly improbable scenarios where
different messages are sent on the two communications channels and some receivers
obtain only one of the messages

� Exploration of the consequences of misuse of I-frame data by faulty controllers

� Exploration of the consequences of reconfiguration requests by faulty controllers

� Exploration of the consequences of faulty behavior at startup

Some of the candidate MAC architectures use unconventional configurations of TTA
components and it is desirable to repeat the analysis performed here for those architectures.

9

10

Bibliography

[ARI93] Aeronautical Radio, Inc, Annapolis, MD. ARINC Specification 659: Backplane
Data Bus, December 1993. Prepared by the Airlines Electronic Engineering
Committee.

[BP00] Günther Bauer and Michael Paulitsch. An investigation of membership and
clique avoidance in TTP/C. In 19th Symposium on Reliable Distributed Systems,
Nuremberg, Germany, October 2000.

[HD92] Kenneth Hoyme and Kevin Driscoll. SAFEbusTM. In 11th AIAA/IEEE Digital
Avionics Systems Conference, pages 68–73, Seattle, WA, October 1992.

[KB00] Hermann Kopetz and Günther Bauer. Tolerating arbitrary node failures in the
Time-Triggered Architecture. Unpublished draft, Technische Universität Wien,
Real-Time Systems Group, Vienna, Austria, January 2000.

[KBP01] Hermann Kopetz, Günther Bauer, and Stefan Poledna. Tolerating arbitrary node
failures in the Time-Triggered Architecture. In SAE 2001 World Congress, De-
troit, MI, March 2001. Society of Automotive Engineers. SAE paper number
2001-01-0677.

[Pfe00] Holger Pfeifer. Formal verification of the TTA group membership algorithm. In
Tommaso Bolognesi and Diego Latella, editors, Formal Description Techniques
and Protocol Specification, Testing and Verification FORTE XIII/PSTV XX 2000,
pages 3–18, Pisa, Italy, October 2000. Kluwer Academic Publishers.

[Rus99a] John Rushby. Partitioning for safety and security: Requirements, mechanisms,
and assurance. NASA Contractor Report CR-1999-209347, NASA Langley
Research Center, June 1999. Available at http://techreports.larc.
nasa.gov/ltrs/PDF/1999/cr/NASA-99-cr209347.pdf; also to be
issued by the FAA.

[Rus99b] John Rushby. Systematic formal verification for fault-tolerant time-triggered al-
gorithms. IEEE Transactions on Software Engineering, 25(5):651–660, Septem-
ber/October 1999.

11

