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Abstract

Avionics and control systems for aircraft use distributed, fault-tolerant computer sys-
tems to provide safety-critical functions such as flight and engine control. These systems
are becomingmodular, meaning that they are based on standardized architectures and com-
ponents, andintegrated, meaning that some of the components are shared by different
functions—of possibly different criticality levels.

The modular architectures that support these functions must provide mechanisms for
coordinating the distributed components that provide a single function (e.g., distributing
sensor readings and actuator commands appropriately, and assisting replicated components
to perform the function in a fault-tolerant manner), while protecting functions from faults
in each other. Such an architecture must tolerate hardware faults in its own components and
must provide very strong guarantees on the correctness and reliability of its own mecha-
nisms and services.

One of the essential services provided by this kind of modular architecture is communi-
cation of information from one distributed component to another, so a (physical or logical)
communication bus is one of its principal components, and the protocols used for control
and communication on the bus are among its principal mechanisms. Consequently, these
architectures are often referred to asbuses(or databuses), although this term understates
their complexity, sophistication, and criticality.

The capabilities once found in aircraft buses are becoming available in buses aimed at
the automobile market, where the economies of scale ensure low prices. The low price of
the automobile buses then renders them attractive to certain aircraft applications—provided
they can achieve the safety required.

In this report, I describe and compare the architectures of two avionics and two auto-
mobile buses in the interest of deducing principles common to all of them, the main differ-
ences in their design choices, and the tradeoffs made. The avionics buses considered are
the Honeywell SAFEbus (the backplane data bus used in the Boeing 777 Airplane Informa-
tion Management System) and the NASA SPIDER (an architecture being developed as a
demonstrator for certification under the new DO-254 guidelines); the automobile buses con-
sidered are the TTTech Time-Triggered Architecture (TTA), recently adopted by Audi for
automobile applications, and by Honeywell for avionics and aircraft control functions, and
FlexRay, which is being developed by a consortium of BMW, DaimlerChrysler, Motorola,
and Philips.

I consider these buses from the perspective of their fault hypotheses, mechanisms, ser-
vices, and assurance.
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Chapter 1

Introduction

Embedded systems generally operate as closed-loop control systems: they repeatedly sam-
ple sensors, calculate appropriate control responses, and send those responses to actuators.
In safety-critical applications, such as fly- and drive-by-wire (where there are no direct con-
nections between the pilot and the aircraft control surfaces, nor between the driver and the
car steering and brakes), requirements for ultra-high reliability demand fault tolerance and
extensive redundancy. The embedded system then becomes a distributed one, and the basic
control loop is complicated by mechanisms for synchronization, voting, and redundancy
management.

Systems used in safety-critical applications have traditionally beenfederated, meaning
that each “function” (e.g., autopilot or autothrottle in an aircraft, and brakes or suspension
in a car) has its own fault-tolerant embedded control system with only minor interconnec-
tions to the systems of other functions. This provides a strong barrier to fault propagation:
because the systems supporting different functions do not share resources, the failure of
one function has little effect on the continued operation of others. The federated approach
is expensive, however (because each function has its own replicated system), so recent ap-
plications are moving toward more integrated solutions in which some resources are shared
across different functions. The new danger here is that faults may propagate from one func-
tion to another;partitioning is the problem of restoring to integrated systems the strong de-
fenses against fault propagation that are naturally present in federated systems. A dual issue
is that ofstrong composability: here we would like to take separately developed functions
and have them run without interference on an integrated system platform with negligible
integration effort.

The problems of fault tolerance, partitioning, and strong composability are challenging
ones. If handled in an ad-hoc manner, their mechanisms can become the primary sources of
faults and ofunreliability in the resulting architecture [Mac88]. Fortunately, most aspects
of these problems are independent of the particular functions concerned, and they can be
handled in a principled and correct manner by generic mechanisms implemented as an
architecture for distributed embedded systems.
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One of the essential services provided by this kind of architecture is communication
of information from one distributed component to another, so a (physical or logical) com-
munication bus is one of its principal components, and the protocols used for control and
communication on the bus are among its principal mechanisms. Consequently, these archi-
tectures are often referred to asbuses(or databuses), although this term understates their
complexity, sophistication, and criticality. In truth, these architectures are the safety-critical
core of the applications built above them, and the choice of services to provide to those ap-
plications, and the mechanisms of their implementation, are issues of major importance in
the construction and certification of safety-critical embedded systems.

Capabilities and considerations once encountered only in buses for civil aircraft are now
found in buses aimed at the automobile market, where the economies of scale ensure low
prices. The low price of the automobile buses then renders them attractive to certain aircraft
applications—provided they can achieve the safety required.

In this report, I describe and compare the architectures of two avionics and two au-
tomobile buses in the interest of deducing principles common to all of them, the main
differences in their design choices, and the tradeoffs made. The avionics buses considered
are the Honeywell SAFEbus [ARI93, HD92] (the backplane data bus used in the Boeing
777 Airplane Information Management System) and the NASA SPIDER [MMTP02] (an
architecture being developed as a demonstrator for certification under the new DO-254
guidelines); the automobile buses considered are the TTTech Time-Triggered Architecture
(TTA) [TTT02,KG94], recently adopted by Audi for automobile applications, and by Hon-
eywell for avionics and aircraft controls functions, and FlexRay [B+01], which is being
developed by a consortium of BMW, DaimlerChrysler, Motorola, and Philips.

All four of the buses considered here are primarilytime triggered; this is a fundamen-
tal design choice that influences many aspects of their architectures and mechanisms, and
sets them apart from fundamentallyevent-triggeredbuses such as Controller Area Network
(CAN), Byteflight, and LonWorks.

“Time triggered” means that all activities involving the bus, and often those involving
components attached to the bus, are driven by the passage of time (“if it’s 20 ms since the
start of the frame, then read the sensor and broadcast its value”); this is distinguished from
“event triggered,” which means that activities are driven by the occurrence of events (“if
the sensor reading changes, then broadcast its new value”). A time-triggered system inter-
acts with the world according to an internal schedule, whereas an event-triggered system
responds to stimuli that are outside its control.

The time-triggered and event-triggered approaches to systems design find favor in dif-
ferent application areas, and each has strong advocates. For integrated, safety-critical sys-
tems, however, the time-triggered approach is generally preferred. The reason is that an
integrated system brings different applications (“functions” in avionics terms) together—
whereas in a safety-critical system we usually prefer them to be kept apart! This is so
that a failure in one application cannot propagate and cause failures in other applications;
such protection against fault propagation is calledpartitioning, and it is most rigorously
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achieved (for reasons to be explained shortly) in time-triggered systems. Partitioning is a
necessity in integrated safety-critical systems, but once achieved it also creates new oppor-
tunities. First, it simplifies the construction of fault-tolerant applications: such applications
must be replicated across separate components with independent failure characteristics and
no propagation of failures between them. Traditional “federated” architectures are typi-
cally hand-crafted to achieve these properties, but partitioning provides them automatically
(indeed, they are the same as partitioning, reinterpreted to apply to the redundant compo-
nents of a single application, rather than across different applications). Second, partitioning
allows single applications to be “deconstructed” into smaller components that can be de-
veloped to different assurance levels: this can reduce costs and can also allow provision of
new, safety-related capabilities. For example, an autopilot has to be developed to DO-178B
assurance Level A [RTC92]; this is onerous and expensive, and a disincentive to introduc-
tion of desirable additional capabilities, such as extensive built-in self test (BIST). If the
BIST could run in a separate partition, however, its assurance might be reduced to Level
C, with corresponding reduction in its cost of development. Third, although the purpose of
partitioning is to exclude fault propagation, it has the concomitant benefit that it promotes
composability. Acomposabledesign is one in which individual applications are unaffected
by the choice of the other applications with which they are integrated: an autothrottle, for
example, could be developed, tested, and (in principle) certified, in isolation—in full confi-
dence that it will perform identically when integrated into the same system as an autolander
and a coffee maker.

Partitioning and composability concern thepredictabilityof the resources and services
perceived by the clients (i.e., applications and their subfunctions) of an architecture; pre-
dictability has two dimensions:value (i.e., logically correct behavior) andtime (i.e., ser-
vices are delivered at a predictable rate, and with predictable latency and jitter). It is tem-
poral (time) predictability—especially in the presence of faults—that is difficult to achieve
in event-triggered architectures, and thereby leaves time triggering as the only choice for
safety-critical systems. The problem in event-driven buses is that events arriving at differ-
ent nodes may cause them to contend for access to the bus, so some form of media access
control (i.e., a distributed mutual exclusion algorithm) is needed to ensure that each node
eventually is able to transmit without interruption. The important issue is how predictable
is the access achieved by each node, and how strong is the assurance that the predictions
remain true in the presence of faults.

Buses such as Ethernet resolve contention probabilistically and therefore can provide
only probabilistic guarantees of timely access, and no assurance at all in the presence of
faults. Buses for embedded systems such as CAN [ISO93], LonWorks [Ech99], or Profibus
(Process Field Bus) [Deu95] use various priority, preassigned slot, or token schemes to re-
solve contention deterministically. In CAN, for example, the message with the lowest num-
ber always wins the arbitration and may therefore have to wait only for the current message
to finish (though that message may be retransmitted in the case of transmission failure),
while other messages also have to wait for any lower-numbered messages. Thus, although
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contention is resolved deterministically, latency increases with load and can be bounded
with only probabilistic guarantees—and these can be quite weak in the presence of faults
that cause some nodes to make excessive demands, thereby reducing the service available
to others. Event-triggered buses for safety-critical applications add various mechanisms to
limit such demands. ARINC 629 [ARI56] (an avionics data bus used in the Boeing 777), for
example, uses a technique sometimes referred to as “minislotting” that requires each node
to wait a certain period after sending a message before it can contend to send another. Even
here, however, latency is a function of load, so the Byteflight protocol [Byt] developed by
BMW extends this mechanism with guaranteed, preallocated slots for critical messages. At
this point, however, we are close to a time-triggered bus, and if we were to add mechanisms
to provide fault tolerance and to contain the effects of node failures, then we would arrive
at a design similar to one of the time-triggered buses that is the focus of this comparison.

In a time-triggered bus, there is a static preallocation of communication bandwidth in
the form of a global schedule: each node knows the schedule and knows the time, and there-
fore knows when it is allowed to send messages, and when it should expect to receive them.
Thus, contention is resolved at design time (as the schedule is constructed), when all its
consequences can be examined, rather than at runtime. Because all communication is time
triggered by the global schedule, there is no need to attach source or destination addresses
to messages sent over the bus: each node knows the sender and intended recipients of each
message by virtue of the time at which it was sent. Elimination of the address fields not only
reduces the size of each message, thereby greatly increasing the message bandwidth of the
bus (messages are typically short in embedded control applications), but it also eliminates
a potential source of serious faults: the possibility that a faulty node may send messages to
the wrong recipients or, worse, may masquerade as a sender other than itself.

Time-triggered operation provides efficiency, determinism, and partitioning, but at the
price of flexibility. To reduce this limitation, most time-triggered buses are able to switch
among several schedules. The different schedules may be optimized for different missions,
or phases of a mission (e.g., startup vs. cruise), for operating in a degraded mode (e.g.,
when some major function has failed), or for optional equipment (e.g., for cars with and
without traction control). In addition, some make provision for event-triggered services,
either “piggybacked” on time-triggered mechanisms, or “timesharing” between time- and
event-triggered operation. Flexibility of operation is considered in more detail in Section
2.7.

Figure 1.1 portrays a generic bus architecture: application programs run in thehost
computers, while theinterconnectmedium provides broadcast communications;interface
devices connect the hosts to the interconnect. All components inside the dashed box are
considered part of the bus. Realizations of the interconnect may be a physical bus, as
shown in Figure 1.2, or a centralized hub, as shown in Figure 1.3. The interfaces may be
physically proximate to the hosts, or they may form part of a more complex central hub, as
shown in Figure 1.4.
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Figure 1.1: Generic Bus Configuration

Safety-critical aerospace functions (those at Level A of DO-178B) are generally re-
quired to have failure rates less than10−9 per hour, and an architecture that is intended to
support several such functions should provide assurance of failure rates better than10−10

per hour.1 Consumer-grade electronics devices have failure rates many orders of magnitude
worse than this, so redundancy and fault tolerance are essential elements of a bus architec-
ture. Redundancy may include replication of the entire bus, of the interconnect and/or the
interfaces, or decomposition of those elements into smaller subcomponents that are then
replicated. These topics are considered in more detail in Section 2.1.

Fault tolerance takes two forms in these architectures: first is that which ensures that
the bus itself does not fail, second is that which eases the construction of fault-tolerant ap-

1An explanation for this figure can be derived by considering a fleet of 100 aircraft, each flying 3,000 hours
per year over a lifetime of 33 years (thereby accumulating about107 flight-hours). The requirement is that
no fault should lead to loss of an aircraft in the lifetime of the fleet [FAA88]. If hazard analysis reveals ten
potentially catastrophic failure conditions in each of ten systems, then the “budget” for each is about10−9

[LT82, page 37]. Similar calculations can be performed for cars—higher rates of loss are accepted, but there
are vastly more of them. See the MISRA guidelines [MIS94]. Also note that failure includes malfunction as
well as loss of function.
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Figure 1.2: Bus Interconnect

plications. Each of these mechanisms must be constructed and validated against an explicit
fault hypothesis, and must deliver specifiedservices(that may be specified to degrade in
acceptable ways in the presence of faults). The fault hypothesis must describe thekinds(or
modes) of faults that are to be tolerated, and their maximumnumberandarrival rate. These
topics are considered in more detail in Section 2.2.

Although the busas wholemust not fail, it may be acceptable for service to some spec-
ified number of hosts to fail in some specified manner (typically “fail silent,” meaning no
messages are transmitted to or from the host); also, some host computers may themselves
fail. In these circumstances (when a host has failed, or when the bus is unable to pro-
vide service to a host), applications software in other hosts must tolerate the failure and
continue to provide the function concerned. For example, three hosts might provide an au-
topilot function in a triple modularly redundant (TMR) fashion, or two might operate in a
master/shadow manner. To coordinate their fault-tolerant operation, redundant hosts may
need to maintain identical copies of relevant state data, or may need to be notified when
one of their members becomes unavailable. The bus can assist this coordination by provid-
ing application-independent services such as interactively consistent message reception and
group membership. These topics are considered in more detail in Section 2.6.

The global schedule of a time-triggered system determines when each node (i.e., host
and corresponding interface) can access the interconnect medium. A global schedule re-
quires a global clock and, for the reasons noted above, this clock must have a reliability of
about10−10. It might seem feasible to locate a single hardware clock somewhere in the
bus, then distribute it to the interfaces, and to achieve the required reliability by replicat-
ing the whole bus. The difficulty with this approach is that the clocks will inevitably drift
apart over time, to the point where the two buses will be working on different parts of the
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Figure 1.3: Star Interconnect

schedule. This would present an unacceptable interface to the hosts, so it is clear that the
clocks need to be synchronized. Two clocks do not suffice for fault-tolerant clock synchro-
nization (we cannot tell which is wrong): at least four are required for the most demanding
fault models [LMS85] (although three may be enough in certain circumstances [Rus94]).
Rather than synchronize multiple buses, each with a single clock, it is better to replicate
clocks within a single bus. Now, the hosts are full computers—equipped with clocks—so
it might seem that they could undertake the clock synchronization. The difficulty with this
approach is that bus bandwidth is dependent on the quality of clock synchronization (mes-
sage “frames” must be separated by a gap at least as long as the maximum clock skew),
and clock synchronization is, in turn, dependent on the accuracy with which participants
can estimate the differences between their clocks, or (for a different class of algorithms) on
how quickly the participants can respond to events initiated by another clock. Specialized
hardware is needed to achieve either of these with adequate performance, and this rules out
synchronization by the hosts. Instead, the clocks and their synchronization mechanisms are
made part of the bus; some designs locate the clocks within the interconnect, while others
locate them within the interfaces. The topic of clock synchronization is considered in more
detail in Section 2.3.

A fault-tolerant global clock is a key mechanism for coordinating multiple components
according to a global schedule. The next point to be considered is where the global schedule
should be stored, and how the time trigger should operate. In principle, the schedule could
be held in the host computers, which would then determine when to send messages to
their interfaces for transmission: in this case, the interfaces would perform only low-level
(physical layer) protocol services. However, effective bus bandwidth depends on the global
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schedule being tight, with little slack for protocol processing delays or interrupt latency.
As with clock synchronization, this argues for hardware assistance in message timing and
transmission. Hence, most of the buses considered here hold the schedule in the interface
units, which then take on responsibility for most of the protocol services associated with
the bus.

Although buses differ in respect to the fault hypotheses they consider, all those that place
responsibility for scheduling in the interface units must consider the possibility that some of
these may fail in a way that causes them to transmit on the interconnect at the wrong time,
thereby excluding or damaging properly timed transmissions from other interfaces. The
worst manifestation of this failure is the so-called “babbling idiot” failure where a faulty
interface transmits constantly, thereby compromising the operation of the entire bus. To
control this failure, it is necessary to introduce another component, called aguardianthat
restricts the ability of an interface to transmit on the interconnect. A guardian should fail
independently of the interfaces, and have independent access to the schedule and to the
global time. There are many ways to implement the guardian functionality. For example,
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we could duplicate each interface and arrange it so that the second instance acts as a check
on the primary one (essentially, they are wired in series). The problem with this approach is
the cost of providing a second duplicate for each interface. A lower-cost alternative reduces
the functionality of the guardian at the expense of making it somewhat dependent on the
primary interface. A third alternative locates the guardian functionality in the interconnect
(specifically, in the hub of a star configuration) where its cost can be amortized over many
interfaces, albeit at the cost of introducing a single point of failure (which is overcome by
duplicating the entire hub). These topics are considered in more detail in Section 2.4.

It is nontrivial to start up a bus architecture that provides sophisticated services, espe-
cially if this must be performed in the presence of faults. Furthermore, it may be necessary
to restart the system if faults outside its hypothesis cause it to fail: this must be done very
quickly (within about 10 ms) or the overall system may go out of control. And it is neces-
sary to allow individual hosts or interfaces that detect faults in their own operation to drop
off the bus and later rejoin when they are restored to health. The topics of startup, restart,
and rejoin are consider in Section 2.5.

Any bus architecture that is intended to support safety-critical applications, with its
attendant requirement for a failure rate below10−10, must come with strong assurance that
it is fit for the purpose. Assurance will include massive testing and fault injection of the
actual implementation, and extensive reviews and analysis of its design and assumptions.
Some of the analysis may employ formal methods, supported by mechanized tools such
as model checkers and theorem provers [Rus95]. Industry or government guidelines for
certification may apply in certain fields (e.g., [RTC92, RTC00] for airborne software and
hardware, respectively, and [MIS94] for cars). These topics are considered in more detail
in Section 2.8.

The comparison between the four bus architectures is described in the next chapter;
conclusions are presented in Chapter 3.
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Chapter 2

Comparison

We begin with a brief description of the topology and operation of each of the four bus
architectures, and then consider each of them with respect to the issues introduced in the
previous chapter. Within each section, the buses are considered in the order of their date of
first publication: SAFEbus, TTA, SPIDER, FlexRay. Certain paragraphs are labeled in the
margin by keywords that are intended to aid navigation.

2.1 The Four Buses

We describe the general characteristics of each of the bus architectures considered.

2.1.1 SAFEbus

SAFEbusTMwas developed by Honeywell (the principal designers are Kevin Driscoll and
Ken Hoyme [HDHR91, HD92, HD93]) to serve as the core of the Boeing 777 Airplane In-
formation Management System (AIMS) [SD95], which supports several critical functions,
such as cockpit displays and airplane data gateways. The bus has been standardized as
ARINC 659 [ARI93], and variations on Honeywell’s implementation are being used or
considered for other avionics and space applications.

SAFEbus uses a bus interconnect topology similar to that shown in Figure 1.2; the
interfaces (called Bus Interface Units, or BIUs) are duplicated, and the interconnect bus
is quad-redundant; in addition, the whole AIMS is duplicated. Most of the functionality
of SAFEbus is implemented in the BIUs, which perform clock synchronization and mes-
sage scheduling and transmission functions. Each BIU acts as its partner’s bus guardian
by controlling its access to the interconnect. Each BIU of a pair drives a different pair of
interconnect buses but is able to read all four; the interconnect buses themselves each com-
prise two data lines and one clock line. The bus lines and their drivers have the electrical
characteristics of OR gates (i.e., if several different BIUs drive the same line at the same
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time, the resulting signal is the OR of the separate inputs). Some of the protocols exploit
this property.

Of the architectures considered here, SAFEbus is the most mature—it has been keeping
Boeing 777s in the air for nearly a decade—but it is also the most expensive: the BIUs
provide rich functionality and are fully duplicated at each node.

2.1.2 TTA

The Time-Triggered Architecture (TTA) was developed by Hermann Kopetz and colleagues
at the Technical University of Vienna [KG93, KG94, MBSP02]. Commercial development
of the architecture is undertaken by TTTech and it is being deployed for safety-critical
applications in cars by Audi and Volkswagen, and for flight-critical functions in aircraft
and aircraft engines by Honeywell (specifically, the FADECs of Honeywell’s F124 engine
for the Aermacchi M-346 fighter/trainer, and of General Electric’s F110 engine for the F16
fighter) and Hamilton Sunstrand/Nord Micro (specifically, the cabin pressure control of the
Airbus A380).

Current implementations of TTA use a bus interconnect topology similar to that shown
in Figure 1.2; we will refer to this version as TTA-bus. The next generation of TTA imple-
mentations will use a star interconnect topology similar to that shown in Figure 1.3; we will
refer to this version as TTA-star. The interfaces are essentially the same in both designs;
they are calledcontrollersand implement the TTP/C protocol [TTT02] that is at the heart
of TTA, providing clock synchronization, and message sequencing and transmission func-
tions. The interconnect is duplicated and each controller drives both copies. In TTA-bus,
each controller drives the buses through a bus guardian; in TTA-star, the guardian func-
tionality is implemented in the central hub. TTA-star can also be arranged in distributed
configurations in which subsystems are connected by hub-to-hub links.

Of the architectures considered here, TTA is unique in being used for both automobile
applications, where volume manufacture leads to very low prices, and aircraft, where a
mature tradition of design and certification for flight-critical electronics provides strong
scrutiny of arguments for safety.

2.1.3 SPIDER

A Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) is
being developed by Paul Miner and colleagues at the NASA Langley Research Cen-
ter [MMTP02] as a research platform to explore recovery strategies for radiation-induced
high-intensity radiated fields/electromagnetic interference (HIRF/EMI) faults, and to serve
as a case study to exercise the recent design assurance guidelines for airborne electronic
hardware (DO-254) [RTC00].

The SPIDER interconnect is composed of active elements called Redundancy Manage-
ment Units, or RMUs. Its topology can be organized either as shown in Figure 1.4, where
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the RMUs and interfaces (the BIUs) form part of a centralized hub, or as in Figure 1.3,
where the RMUs form the hub, or similar to Figure 1.1, where the RMUs provide a dis-
tributed interconnect. The lines connecting hosts to their interfaces are optical fiber, and the
whole system beyond the hosts (i.e., optical fibers and the RMUs and BIUs) is called the
Reliable Optical Bus (ROBUS).

Clock synchronization and other services of SPIDER are achieved by distributed al-
gorithms executed among the BIUs and RMUs [MMTP02]. The scheduling aspects of
SPIDER are not well documented as yet, but the bus guardian functionality is handled in
the RMUs following an approach due to Palumbo [Pal96].

SPIDER is an interesting design that uses a different topology and a different class of
algorithms from the other buses considered here. However, its design and implementation
are still in progress, and so it is omitted from some comparisons. I hope to increase coverage
of SPIDER as more details become available.

2.1.4 FlexRay

FlexRay, which is being developed by a consortium including BMW, DaimlerChrysler,
Motorola, and Philips, is intended for powertrain and chassis control in cars. It differs from
the other buses considered here in that its operation is divided between time-triggered and
event-triggered activities.

FlexRay can use either an “active” star topology similar to that shown in Figure 1.3,
or a “passive” bus topology similar to that shown in Figure 1.2. In both cases, duplica-
tion of the interconnect is optional. Each interface (it is called a communication controller)
drives the lines to its interconnects through separate bus guardians located with the inter-
face. As with TTA-star, FlexRay can also be deployed in distributed configurations in which
subsystems are connected by hub-to-hub links. Published descriptions of the FlexRay pro-
tocols and implementation are sketchy at present [B+01, BMF02] (see also the Web site
www.flexray-group.com ).

FlexRay is interesting because of its mixture of time- and event-triggered operation,
and potentially important because of the industrial clout of its developers. However, full
details of its design are not available to the general public, so comparisons are based on the
informal descriptions that have been published.

2.2 Fault Hypothesis and Fault Containment Units

Any fault-tolerant system must be designed and evaluated against an explicitfault hypothe-
sisthat describes the number, type, and arrival rate of the faults it is intended to tolerate. The
fault hypothesis must also identify the differentfault containment units(FCUs) in the de-
sign: these are the components that canindependentlybe afflicted by faults. The division of
an architecture into separate FCUs needs careful justification: there must be no propagation
of faults from one FCU to another, and no “common mode failures” where a single physical
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event produces faults in multiple FCUs. We consider only physical faults (those caused by
damage to, defects in, or aging of the devices employed, or by external disturbances such as
cosmic rays, and electromagnetic interference): design faults must be excluded, and must
be shown to be excluded by stringent assurance and certification processes.

It is a key assumption of all reliability calculations that failures of separate FCUs are
statistically independent. Knowing the failure rate of each FCU, we can then use Markov or
other stochastic modeling techniques [But92] to calculate the reliability of the overall archi-
tecture. Of course these calculations depend on claimed properties of the architecture (e.g.,
“this architecture can tolerate failures of any two FCUs”), and design assurance methods
(e.g., formal verification) must be employed to justify these claims. The division of labor is
that design assurance must justify a “theorem” of the form

enough nonfaulty componentsimpliescorrect operation

and stochastic analysis must justify the antecedent to this theorem.
The assumption that failures of separate FCUs are independent must be ensured by

careful design and assured by stringent analysis. True independence generally requires that
different FCUs are served by different power supplies, and are physically and electrically
isolated from each other. Providing this level of independence is expensive and it is gen-
erally undertaken only in aircraft applications. In cars, it is common to make some small
compromises on independence: for example, the guardians may be fabricated on the same
chip as the interface (but with their own clock oscillators), or the interface may be fabri-
cated on the same chip as the host processor. It is necessary to examine these compromises
carefully to ensure that the loss in independence applies only to fault modes that are benign,
extremely rare, or tolerated by other mechanisms.

The fault modementioned above is one aspect of a fault hypothesis; the others are
the totalnumberof faults, and theirrate of arrival. A fault mode describes the kind of
behavior that a faulty FCU may exhibit. The same fault may exhibit different modes at
different levels of a protocol hierarchy: for example, at the electrical level, the fault mode
of a faulty line driver may be that it sends an intermediate voltage (one that is neither a
digital 0 nor a digital 1), while at the message level the mode of the same fault may be
“Byzantine,” meaning that different receivers interpret the same message in different ways
(because some see the intermediate voltage as a 0, and others as a 1). Some protocols can
tolerate Byzantine faults, others cannot; for those that cannot, we must show that the fault
mode is controlled at the underlying electrical level.

The basic dimensions that a fault can affect are value, time, and space. Avalue fault
is one that causes an incorrect value to be computed, transmitted, or received (whether as
a physical voltage, a logical message, or some other representation); atiming fault is one
that causes a value to be computed, transmitted, or received at the wrong time (whether too
early, too late, or not at all); aspatial proximityfault is one where all matter in some spec-

Spatial
proximity fault

ified volume is destroyed (potentially afflicting multiple FCUs). Bus-based interconnects
of the kind shown in Figure 1.2 are vulnerable to spatial proximity faults: all redundant
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buses necessarily come into close proximity at each node, and general destruction in that
space could sever or disrupt them all. Interconnect topologies with a central hub are far
more resilient in this regard: a spatial proximity fault that destroys one or more nodes does
not disrupt communication among the others (the hub may need to isolate the lines to the
destroyed nodes in case these are shorted), and destruction of a hub can be tolerated if there
is a duplicate in another location.

There are many ways to classify the effects of faults in any of the basic dimensions.Hybrid fault
model

One classification that has proved particularly effective in analysis of the types of algorithms
that underlie the architectures considered here is thehybrid fault model of Thambidurai and
Park [TP88]. In this classification, the effect of a fault may bemanifest, meaning that
it is reliably detected (e.g., a fault that causes an FCU to cease transmitting messages),
symmetric, meaning that whatever the effect, it is the same for all observers (e.g., an off-by-
1 error), orarbitrary, meaning that it is entirely unconstrained. In particular, an arbitrary
fault may beasymmetricor Byzantine, meaning that its effect is perceived differently by
different observers (as in the intermediate voltage example).

The great advantage to designs that can tolerate arbitrary fault modes is that we do notArbitrary
faults

have to justify assumptions about specific fault modes: a system is shown to tolerate (say)
two arbitrary faults by proving that it works in the presence of two faulty FCUs withno as-
sumptions whatsoeveron the behavior of the faulty components. A system that can tolerate
only specific fault modes may fail if confronted by a different fault mode, so it is necessary
to provide assurance that such modes cannot occur. It is thisabsenceof assumptions that
is so attractive in safety-critical contexts about systems that can tolerate arbitrary faults.
This point is often misunderstood and such systems are often derided as being focused on
asymmetric or Byzantine faults, “which never arise in practice.” Byzantine faults are just
one manifestation of arbitrary behavior, and they certainly cannot be asserted not to occur
(in fact, they have been observed in several systems that have been monitored sufficiently
closely). One situation that is likely to provoke asymmetric manifestations is aslightly out SOS faults
of specification(SOS) fault, such as the intermediate electrical voltage mentioned earlier.
SOS faults in the timing dimension include those that put a signal edge very close to a clock
edge, or that have signals with very slow rise and fall times (i.e., weak edges). Depending
on the timing of their own clock edges, some receivers may recognize and latch such a
signal, others may not, resulting in asymmetric or Byzantine behavior.

FCUs may be active (e.g., a processor) or passive (e.g., a bus); while an arbitrary-Active/Passive
faults

faulty active component can do anything, a passive component may change, lose, or delay
data, but it cannot spontaneously create a new datum. Keyed checksums or cryptographic
signatures can sometimes be used to reduce the fault modes of an active FCU to those of
a passive one. (An arbitrary-faulty active FCU can always create its own messages, but it
cannot create messages purporting to come from another FCU if it does not know the key
of that FCU; signatures need to be managed carefully for this reduction in fault mode to be
credible [GLR95].)

Any fault-tolerant architecture will fail if subjected to too many faults; generally speak-
Maximum
number of

faults
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ing, it requires more redundancy to tolerate an arbitrary fault than a symmetric one, which
in turn requires more redundancy than a manifest fault. The most effective fault-tolerant al-
gorithms make this tradeoff automatically between number and difficulty of faults tolerated.
For example, the clock synchronization algorithm of [Rus94] can toleratea arbitrary faults,
s symmetric, andm manifest ones simultaneously providedn, the number of FCUs, satis-
fiesn > 3a+ 2s+m. It is provably impossible (i.e., it can be proven that no algorithm can
exist) to toleratea arbitrary faults in clock synchronization with fewer than3a+1 FCUs and
2a+1 disjoint communication paths (ora+1 disjoint broadcast channels) [DHS86,FLM86]
(unless digital signatures are employed—which is equivalent to reducing the severity of the
arbitrary fault mode). Synchronization is approximate (i.e., the clocks of different FCUs
need to be close together, not exactly the same); those problems that require exact agree-
ment (e.g., group membership, consensus, diagnosis) cannot be solved in the presence of
a arbitrary faults unless there are at least3a + 1 FCUs,2a + 1 disjoint communication
paths (ora+1 disjoint broadcast channels) between them, anda+1 levels (or “rounds”) of
communication [Lyn96]. The number of FCUs and the number of disjoint paths required,
but not the number of rounds, can be reduced by using digital signatures.

Because it is algorithmically much easier to tolerate simple failure modes, some archi-Self-checking

tectures (e.g., SAFEbus) arrange FCUs (the BIUs in the case of SAFEbus) in self-checking
pairs: if the members of a pair disagree, they go offline, ensuring that the effect of their
failure is seen as a manifest fault (i.e., one that is easily tolerated). The controllers and bus
guardians in TTA-bus operate in a similar way. Most architectures also employ substantial
self-checking in each FCU; any FCU that detects a fault will shut down, thereby ensur-
ing that its failure will be manifest. (This kind of operation is often calledfail silence).Fail silence
Even with extensive self-checking and pairwise-checking, it may be possible for some fault
modes to “escape,” so it is generally necessary to show either that the mechanisms used
have complete coverage (i.e., there will be no violation of fail silence), or to design the
architecture so that it can tolerate the “escape” of at least one arbitrary fault.

Many architectures can tolerate only a single fault at a time, but can reconfigure toReconfig-
uration

exclude faulty FCUs and are then able to tolerate additional faults. Prior to reconfiguration,
it is necessary to identify the faulty component(s); algorithms to do this are based on dis-
tributed diagnosis and group membership. It is provably impossible to correctly identify an
arbitrary-faulty FCU in some circumstances [WLS97], so there is tension between leaving
a faulty FCU in the system and the risk of excluding a nonfaulty one (and still leaving the
faulty one in operation). Most faults aretransient, meaning they correct themselves given a
little time, so there is also tension between the desire to exclude faulty FCUs quickly, and
the hope that they may correct themselves if left in operation [Rus96]. A transient fault may
contaminate state data in a way that leaves a permanent residue after the original fault has
cleared, so mechanisms are needed to purge such effects [Rus93a].

Given decisions about the diagnosis and reconfiguration strategy, it is possible to calcu-Reconfig rate

late the time taken to perform these operations for given fault modes and, hence, to calculate
the maximum rate at which diagnosis and reconfiguration can occur. The architectures con-
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sidered here operate according to static schedules, which consist of “rounds” or “frames”
that are executed repeatedly in a cyclic fashion. Thereconfiguration rateis often then ex-
pressed in terms of faults per round (or the inverse). It is usually important that every node
is scheduled to make at least one broadcast in every round, since this is how fault status is
indicated (and hence how reconfiguration is triggered).

The reconfiguration rate determines how rapidly the architectures can recover from theFault arrival
rate

effects of prior faults and so be ready to tolerate another. Thefault arrival rate is the hy-
pothesized rate at which faults (of different kinds) actually occur. Reliability modeling must
analyse the fault arrival rate and mission time against the fault tolerance and reconfiguration
rate of the architecture to determine if it can satisfy the mission goals.

An excluded FCU may perform a restart and self check. If successful, it may then applyRejoin

to rejoin the system. This is a delicate operation for most architectures, because one FCU
may be going faulty at the same time as another (nonfaulty) one is rejoining: this presents
two simultaneous changes in the behavior of the system and may cause algorithms tolerant
of only a single fault to fail.

Historical experience and analysis must be used to show that the hypothesized modes,Never give up

numbers, and arrival rate are realistic, and that the architecture can indeed operate correctly
under those hypotheses for its intended mission time. But sometimes things go wrong:
the system may experience many simultaneous faults (e.g., from unanticipated HIRF), or
other violations of its fault hypothesis. We cannot guarantee correct operation in such cases
(otherwise our fault hypothesis was too conservative), but safety-critical systems generally
are constructed to a “never give up” philosophy and will attempt to continue operation in
a degraded mode. Although it is difficult to provide assurance of correct operation during
these events (otherwise we could revise the fault hypothesis), it may be possible to provide
assurance that the system returns to normal operation once the faults cease (assuming they
were transients) using the ideas of self-stabilization [Sch93].

The usual method of operation in “never give up” mode is that each node reverts to
local control of its own actuators using the best information available (e.g., each brake node
applies braking force proportional to pedal pressure if it is still receiving that input, and
removes all braking force if not), while at the same time attempting to regain coordination
with its peers.

2.2.1 SAFEbus

The FCUs of SAFEbus are the BIUs (two per node), the hosts, and the buses (there are
two, each of which is a self-checking pair). In addition, two copies of the entire system are
located in separate cabinets in different parts of the aircraft. ARINC 659 shows a single
host attached to each pair of BIUs [ARI93, Attachment 2–1], but in the Honeywell imple-
mentation these are also paired: each host (called a Core Processing Module, or CPM) is
attached to a single BIU, and forms a separate FCU.

The fault hypothesis of SAFEbus is the following.
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Fault modes:

• Arbitrary active faults in BIUs and CPMs

• Arbitrary passive faults in the buses

• Spatial proximity faults that may take out an entire cabinet

Maximum faults: SAFEbus adopts a single-fault hypothesis: at most one component of
any pair may fail. In more detail, the fault hypothesis of SAFEbus allows the follow-
ing numbers of faults.

• At most one of the BIUs in any node (the entire node is then considered faulty)

• At most one of the CPMs in a node (the entire node is then considered faulty)

• At most one fault in either of the two buses

• Any number of nodes may fail, but for an application to be functional, at least
one node that supports it must be nonfaulty

Fault arrival rate:

• Able to tolerate any rate

2.2.2 TTA

The FCUs of TTA depend on how the system is fabricated. It is anticipated that in high-
volume applications, TTP controllers will be integrated on the same chip as the host, so
these should be considered to belong to a single FCU. Current implementations of TTP-
bus have the controller separate from the host, but the bus guardians are on the same chip
as the controller. Guardians do, however, have their own clock oscillator, so they can be
considered a separate FCU for time-partitioning purposes. TTA-star moves the guardians to
the central hub, where they definitely form a separate FCU from the controllers. TTA-bus
has two bus lines, which are separate FCUs; in TTA-star, the interconnect functionality is
provided by the central hubs (so the bus guardian and interconnect are in the same FCU),
which are duplicated.

The fault hypothesis of TTA is the following.

Fault modes:

• Arbitrary active faults in controllers and the hub of TTA-star

• Arbitrary passive faults in the guardians and buses of TTA-bus

• Spatial proximity faults that may take out nodes and a hub in TTA-star; spatial-
proximity faults are not part of the fault hypothesis for TTA-bus

Maximum faults: TTA adopts a single-fault hypothesis. In more detail, the fault hypoth-
esis of TTA assumes the following numbers of faults.
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• For TTA-bus: in each node either the controller or the bus guardian may fail
(but not both). One of the buses may fail. To retain single fault tolerance, at
least four controllers and their bus guardians must be nonfaulty, and both buses
must be nonfaulty. Provided at least one bus is nonfaulty, the system may be
able to continue operation with fewer nonfaulty components.

• For TTA-star: to retain single fault tolerance, at least four controllers and both
hubs must be nonfaulty. Provided at least one hub is nonfaulty, the system may
be able to continue operation with fewer nonfaulty components.

Fault arrival rate:

• At most one fault every two rounds

2.2.3 SPIDER

The FCUs of SPIDER are the hosts, the BIUs, and the RMUs; a host and its BIU may
form a single FCU in some implementations. The BIUs and RMUs may be distributed, or
contained in the hub of the ROBUS.

The fault hypothesis of SPIDER is the following.

Fault modes:

• Arbitrary active faults in any FCU

• Spatial proximity faults that may take out nodes and RMUs (depending on the
physical topology employed)

Maximum faults: If there aren ≥ 3 BIUs andm ≥ 3 RMUs, then SPIDER can tolerate
an arbitrary fault in any one of these FCUs. SPIDER’s maximum faults hypothesis
is actually specified with respect to the hybrid fault model, and its constraints are
n > 2ba+ 2bs+ bm,m > 2ra+ 2rs+ rm, and eitherba = 0 or ra = 0, whereba,
bs, andbmare the numbers of arbitrary-, symmetric- and manifest-faulty BIUs, and
ra, rs, andrm are the corresponding numbers for the RMUs.

Fault arrival rate: Within the constraints presented above, SPIDER is able to toler-
ate multiple simultaneous faults. SPIDER’s reconfiguration mechanism is graceful
degradation: FCUs diagnosed as faulty may be ignored by nonfaulty FCUs. Its fault
diagnosis algorithms, derived from those of [WLS97], satisfy strong properties: any
FCU diagnosed as faulty is indeed faulty, and all maifest- and symmetric-faulty FCUs
(and many abritrary-faulty ones) will be diagnosed [GM02,GM03]. The fault arrival
rate hypothesis is a function of the amount of redundancy in the ROBUS, and can
be adjusted within certain parameters by employing different numbers of BIUs and
RMUs. Reliability modeling and analysis using the SURE program [But92] are de-
scribed in [MMTP02].
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2.2.4 FlexRay

Published diagrams of FlexRay indicate that a node consisting of a microcontroller host,
a communication controller, and two bus guardians will be fabricated on a single chip. It
appears that all four components will use separate clock oscillators, so that the controller
and guardians can be considered as separate FCUs for time-partitioning purposes. The
interconnects, whether passive buses or active stars, are separate FCUs.

The fault hypothesis of FlexRay is not stated explicitly; the following are inferences
based on available documents.

Fault modes:

• Asymmetric (and presumably, therefore, also arbitrary) faults in controllersfor
the purposes of clock synchronization

• Fault modes for other services and components are not described

• Spatial proximity faults may take out nodes and an entire hub

Maximum faults:

• It appears that a single-fault hypothesis is intended: in each node, at most one
bus guardian, or the controller, may be faulty. At most one of the interconnects
may be faulty.

• For clock synchronization, fewer than a third of the nodes may be faulty.

Fault arrival rate: The fault arrival rate hypothesis is not described.

2.3 Clock Synchronization

Fault-tolerant clock synchronization is a fundamental requirement for a time-triggered bus
architecture. Tightness of the bus schedule, and hence the throughput of the bus, is strongly
related to the quality of global clock synchronization that can be achieved—and this is
related to the quality of the clock oscillators local to each node, and to the algorithm used to
synchronize them. There are two basic classes of algorithm for clock synchronization: those
based on averaging and those based on events. Averaging works by each node measuring
the skew between its clock and that of every other node, and then setting its clock to some
“average” value. A simple average (e.g., the mean or median) over all clocks may be
affected by wild readings from faulty clocks (which, under an arbitrary fault model, may
provide different readings to different observers), so we need a “fault-tolerant average”
that is largely insensitive to a certain number of readings from faulty clocks. Event-based
algorithms rely on nodes being able to sense events directly on the interconnect: each node
broadcasts a “ready” event when it is time to synchronize and sets its clock when it has
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seen a certain number of events from other nodes. Depending on the fault model, additional
waves of “echo” or “accept” events may be needed to make this fault tolerant.

Schneider [Sch87] gives a general description that applies to all averaging clock syn-
chronization algorithms; these algorithms differ only in their choice of “fault-tolerant av-
erage.” The Welch-Lynch algorithm [WL88] is a popular choice that is characterized by
use of the “fault-tolerant midpoint” as its averaging function. We assumen clocks and the
maximum number of simultaneous faults to be tolerated ist (3t < n); the fault-tolerant
midpoint is the average of thet+ 1’st andn− t’th clock reading, when these are arranged
in order from smallest to largest. If there are at mostt faulty clocks, then some reading
from a nonfaulty clock must be at least as small as thet+1’st reading, and the reading from
another nonfaulty clock must be at least as great as then− t’th; hence, the average of these
two readings should be close to the middle of the spread of readings from good clocks.

The most important event-based algorithm is that of Srikanth and Toueg [ST87]; it is
attractive because it achieves optimal accuracy. Both averaging and event-based algorithms
require at least3a+ 1 nodes to toleratea arbitrary faults.

2.3.1 SAFEbus

The SAFEbus bus is quad-redundant (a pair of self-checking pairs) and each of its four
components comprises two data lines and a separate clock line. SAFEbus uses the clock
lines for an event-triggered clock synchronization algorithm. The schedule loaded in each
interface (BIU in SAFEbus terminology) indicates when a synchronization event should be
performed, and these must be sufficiently frequent to maintain the paired BIUs of each node
within two bit-times of each other.

In a clock synchronization event, each BIU asserts the clock lines of the two buses that
it can write for four bit-times. The electrical characteristics of the SAFEbus cause it to act
as an OR gate with the BIUs as its inputs. Thus, the near-simultaneous assertion of each
clock line by multiple BIUs generates a pulse on each line that is the OR of its individual
pulses. Each BIU synchronizes to the trailing edge of this composite pulse.

A faulty BIU could attempt to assert its clock lines for far longer than the specified four
bit-times, thereby delaying the trailing edge that is the global synchronization event. The
guardian function of its partner BIU will cut it off once the transmit window closes, and all
receiving BIUs will count it out after some number of bit-times greater than four, but the
synchronization event will still be delayed. However, this fault affects only the two buses
driven by the faulty BIU. Each BIU reads all four buses (although it can write only two
of them), detects the trailing edge of the composite synchronization pulse on each of them,
and then combines these in a fault-tolerant manner [ARI93, Attachment 4–10] to yield the
event to which it actually synchronizes.

SAFEbus also applies several other error detection and masking techniques to minimize
the impact of faulty clocks, BIUs, and buses: for example, “pulses” are ignored from buses
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that have not changed state since the previous synchronization (to overcome stuck-at faults
or failed power supplies).

There are several variants to the clock synchronization performed by SAFEbus: a “Short
Resync” operates essentially as described above; a “Long Resync” is similar but provides
additional information on the data lines to allow an unsynchronized BIU to rejoin the sys-
tem; an “Initial Sync” is used at startup or following a disruption that requires a restart.

2.3.2 TTA

The TTA algorithm is basically the Welch-Lynch algorithm specialized fort = 1 (i.e., it
tolerates a single fault): that is, clocks are set to the average of the2nd andn − 1’st clock
readings (i.e., the second-smallest and second-largest). This algorithm works and tolerates
a single arbitrary fault whenevern ≥ 4. TTA does not use dedicated wires or signaling to
communicate clock readings among the nodes attached to the network; instead, it exploits
the fact that communication is time triggered by a global schedule. When a nodex receives
a message from a nodey, it notes the reading of its local clock and subtracts a fixed
correction term to account for the network delay; the difference between this adjusted clock
reading and the time fory’s transmission that is indicated in the global schedule yieldsx’s
perception of the difference between clocksx andy.

Not all TTP nodes have accurate clock oscillators (because these are expensive); those
that do have theSYFfield set in the Message Descriptor List (MEDL—the global schedule
known to all nodes) and the clocks used for synchronization are selected from those that
have theSYFflag set.

For scalability, implementation of the Welch-Lynch algorithm should use data struc-
tures that are independent of the value ofn—that is, it should not be necessary for each
node to store the clock difference readings for alln clocks. Clearly, thet’th smallest clock
difference reading can be determined with justt registers, and thet’th largest can be deter-
mined similarly, for a total of2t registers per node. In TTA, witht = 1, this requires four
registers. TTA does indeed use four registers, but not in quite this way. Each node maintains
a queue of four clock-difference readings; whenever a message is received from a node that
is in the current membership and that has theSYFfield set, the clock difference reading is
pushed on to the receiving node’s queue (ejecting the oldest reading in the queue). When
the current slot has the synchronization field (CS) set in the MEDL, each node runs the
synchronization algorithm using the four clock readings stored in its queue.

This algorithm is able to tolerate a single arbitrary fault among the four clocks used in
synchronization, but TTA is able to tolerate more than a single fault by reconfiguring to ex-
clude nodes with faulty clocks. This is accomplished by the group membership service: any
node with a clock that skews significantly from the global time will mistime its broadcast so
that it occurs partially outside its assigned slot. This will cause its message to be truncated
by its guardian, which will cause it to fail checksum and to be rejected by all nonfaulty
nodes. The membership algorithm will then exclude this node. Only the clocks of current
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group members are eligible for use in synchronization, so the clock of the excluded node
will not be placed in the clock-difference queue, and that of some other node having the
SYFflag will be used instead.

2.3.3 SPIDER

SPIDER uses an event-based algorithm similar to that of Srikanth and Toueg, and also
influenced by Davies and Wakerly [DW78] (this remarkably prescient paper anticipated
many of the issues and solutions in Byzantine fault tolerance by several years) and Palumbo
[Pal96].

The basic design of SPIDER is similar to that of the Draper FTP [Lal86] in that its active
components are divided into two classes (BIUs and RMUs) that play slightly different rôles
in each of its algorithms. In SPIDER, the RMUs play the part of the “interstages” in FTP.
Its clock synchronization algorithm operates in three phases as follows.

1. Each RMU broadcasts a “ready” event to all BIUs when its own clock reaches a
specified value.

2. Each BIU broadcasts an “accept” event to all RMUs as soon as it has received events
from t+ 1 RMUs (wheret is the number of faults to be tolerated).

3. Each RMU resets its clock as soon as it has received events fromt+ 1 BIUs.

This synchronizes the RMUs; the BIUs can be synchronized by one more wave of events
from the RMUs.

2.3.4 FlexRay

FlexRay uses the standard Welch-Lynch algorithm, with clock differences presumably de-
termined in a manner similar to TTA. However, published descriptions of FlexRay indicate
that it has no membership service and no mechanisms for detecting faulty nodes, nor for
reconfiguring to exclude them. To tolerate two arbitrary faults (as claimed in published
descriptions), FlexRay must therefore employ at least seven nodes with five disjoint com-
munication paths or three broadcast channels (3t + 1, 2t + 1, andt + 1, respectively, for
t = 2), whereas TTA can do this with five nodes (providing the faults arrive sequentially)—
and with seven nodes it can tolerate four sequential faults.

2.4 Bus Guardians

Some kind of bus guardian functionality is necessary to prevent faulty nodes usurping the
scheduled time slots of other nodes or even—in the case of the “babbling idiot” fault
mode—destroying all legitimate communication. Bus guardianship depends on message
transmission by an interface to an interconnect being mediated by a separate FCU that has
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an independent copy of the schedule, and independent knowledge of the global time. Such
a fully independent guardian is likely to be expensive, however, and equivalent almost to
a second interface (as it is in SAFEbus). Most architectures, therefore, seek to reduce the
cost of bus guardianship; they do so in different ways, and incur different penalties.

2.4.1 SAFEbus

SAFEbus makes no compromises: its BIUs are paired and each member of a pair acts as a
guardian for the other. Each BIU performs its own clock synchronization and has its own
copy of the schedule. As a result, SAFEbus is expensive: its nodes cost a few hundred
dollars each.

2.4.2 TTA

In TTA-bus, the guardians have their own clock oscillators and independent copy of the
schedule, but they are not able to synchronize independently, and they share the same power
supply and physical environment as their controllers. Most of the functionality of a bus
guardian is shared across both bus lines.

TTA-bus guardians are synchronized by a start-of-round signal received from their con-
troller. If this signal is given at the wrong time, then the guardian will open its window at
the wrong time and will allow its (presumably faulty) controller to transmit at that wrong
time. However, its transmission will either collide with a legitimate transmission, resulting
in garbage, or will hit the slot of an already excluded node, or some other unused part of the
frame. In neither case will it be acknowledged, so the errant controller will shut down if it
is “not too faulty” to follow the TTP/C protocol; in any case, the other nodes of the system
will exclude both the errant node (since it will have failed to broadcast in its own slot) and
the node (if any) whose slot it usurped, and will thereafter proceed unhindered. The errant
node will not be able to repeat its trick because a guardian places tight limits on how far the
start-of-round signal can move (which is enough to reduce this scenario to extremely low
probability in the first place).

In TTA-star, guardian functionality is moved to the central hub. Since there is now only
one guardian per interconnect, rather than one per node, more resources can be expended
in its construction. The guardian in a hub is able to perform independent clock synchro-
nization and is therefore a fully independent FCU, and provides full coverage against clock
synchronization faults and babbling fault modes in all controllers. The penalty is that a cen-
tral hub is a single point of failure, and as an active entity, it is probably less reliable than a
passive bus. This penalty is overcome by duplication, which has the concomitant benefit of
providing tolerance for spatial proximity faults.
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2.4.3 SPIDER

The scheduling aspects of SPIDER are not well documented as yet, but the bus guardian
functionality is handled in the RMUs following an approach due to Palumbo [Pal96].

2.4.4 FlexRay

Operation of the bus guardians of FlexRay is not described in any detail in the available
documents. Published diagrams show two guardians per node sharing the same chip and
power supply as the controller. These guardians presumably operate in a manner similar to
those of TTA-bus, with similar vulnerabilities, though at greater cost (since two guardians
per node presumably require two oscillators).

2.5 Startup and Restart

It obviously is necessary to be able to start up the bus and its associated components
from cold—preferably with no outside assistance. Modern aircraft systems generally have
enough redundancy to operate for several days with some components failed or faulty
[Hop88]. This allows repairs to be deferred until the aircraft’s schedule brings it to a major
maintenance site. Car owners are notorious for deferring maintenance and for operating
their vehicles with faults present. These characteristics make it necessary that startup can
be performed correctly in the presence of faults.

Restart during operation may be necessary if HIRF or other environmental influences
lead to violation of the fault hypothesis and thereby cause complete failure of the bus. No-
tice that this failure must be detected by the bus, and the restart must be automatic and very
fast: most control systems can tolerate loss of control inputs (e.g., by reverting to some
form of local control and either releasing the actuators, or freezing them in the previously
commanded position) for only a few cycles: longer outages will lead to loss of control.
For example, Heiner and Thurner of DaimlerChrysler estimate that the maximum transient
outage time for a steer-by-wire automobile application is 50 ms [HT98]. Given that other
(e.g., host-level) activities may need to be performed on restart, this suggests 10 ms as a
reasonable goal for bus restart. The presence of faulty components could complicate, or
even prevent restart (e.g., if multiple faults are present, but some of the algorithms can tol-
erate only single faults), so it is desirable that previous reconfigurations (e.g., that excluded
those faulty components) should be recorded in a way that makes this information available
during restart.

Restart is usually initiated when an interface detects no activity on any bus line for some
interval; that interface will then transmit some “wake up” message on all lines. Of course,
it is possible that the interface in question is faulty (and there was bus activity all along
but that interface did not detect it), or that two interfaces decide simultaneously to send
the “wake up” call. The first possibility must be avoided by careful checking, preferably by
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independent units (e.g., both interfaces of a pair, or an interface and its guardian); the second
requires some form of collision detection and resolution: this should be deterministic to
guarantee an upper bound on the time to reach resolution (that will allow a single interface
to send an uninterrupted “wake up” message) and, ideally, should not depend on reliable
collision detection (because there is no such thing).

Components that detect faults in their own operation, or that are notified of their faulty
operation by others (e.g., through failed comparison with a paired component, or by exclu-
sion from the group in a system that employs group membership) may drop off the bus and
undergo local restart and self-test. If the test is successful (i.e., the fault was transient), then
the component will attempt to reintegrate itself into the ongoing operations of the bus. This
is a delicate operation because the sudden arrival of a new participant in the bus traffic can
present symptoms rather like a fault—and can be particularly challenging to handle if a real
fault is manifested simultaneously, or if another component rejoins at the same time.

Restart of the whole bus, and reintegration of individual components, can be interpreted
as self-stabilizing services: self-stabilizing algorithms are those that converge to a stable
state from any initial state [Dij74,Sch93]. Such algorithms generally assume that no faults
are present (or that transient faults have ceased) once stabilization begins; in the circum-
stances considered here, however, it is possible that some residual faults remain during sta-
bilization. Thus, the algorithms employed for restart and reintegration in bus architectures
do not make explicit reference to self-stabilization, although this may provide an attractive
framework for their formal analysis. Frameworks that integrate self-stabilization with fault
tolerance have been proposed [AG93, GP93] that may provide a useful foundation for this
endeavor.

2.5.1 SAFEbus

A SAFEbus node in the “out-of-sync” state listens on the bus for a Long Resync; if it finds
one, it uses the information in that message to integrate itself into the ongoing activity of
the bus. If a Long Resync is not detected for a certain length of time, the node transmits
an Initial Sync message on all buses (note that both BIUs in the node must agree on this
action). Due to the OR gate character of the SAFEbus lines, and the coding used for the
Initial Sync message, it does no harm if several nodes attempt to send this message nearly
simultaneously. After sending or receiving an Initial Sync message, a node waits a specified
amount of time and then sends a Long Resync message; all nodes should be reintegrated
and the bus restarted at this point.

SAFEbus uses the same mechanisms for cold start and restart; these are very fast, as
nodes will send Initial Sync messages after a timeout that is little longer than a single
round of the cyclic schedule, and the bus will be synchronized and operational in the round
after that. Reintegration is even faster, as the reintegrating node need wait only for a Long
Resync to be sent, and each node initiates at least one of these per round. The SAFEbus
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mechanisms are fully decentralized and very robust (e.g., they do not depend on collision
detection).

2.5.2 TTA

TTA’s mechanisms for cold start, restart, and reintegration are conceptually similar to those
of SAFEbus, but cannot use the electrical properties of the bus (because TTA operates
above this level, and can be used with any transmission technology) and are therefore rather
more complex. In addition, TTA uses distributed group membership information, and it is
necessary to initialize or update this consistently.

A TTA controller that has been excluded from the membership, or that has recently
restarted, listens to activity on the bus until it recognizes an “I-Frame” message. These
are broadcast periodically, and contain sufficient information to initialize the clock and
membership vector of the controller. The controller then observes the bus activity for a
further round to check that its “C-State” (i.e., the controller state information that is encoded
in the CRCs attached to each message) is consistent with the other controllers on the bus,
and thereafter resumes normal operation.

If no I-Frame is detected, the controller will transmit one itself after a certain interval,
but on only one of the two buses (presumably this limitation to a single bus is intended to
limit the harm caused by a faulty controller that attempts to cold start an already-functioning
bus). The membership indicated in this I-Frame will contain only the controller that sends
it. Other controllers that receive this I-Frame will synchronize to it and start executing
the schedule indicated in their MEDLs. During the subsequent round of messages, each
controller will add others to its membership when it observes their broadcasts. All nodes
should be fully integrated by the end of the first round following the cold start I-Frame.
Some ambiguities in the description of the state-machine that specifies these transitions
[TTT02, Section 9.3] were identified in simulation by Bradbury [Bra00].

It is possible that two controllers could send a cold start I-Frame at the same time, re-
sulting in a collision on the bus. This should cause no recognizable message to be received;
the two initiating controllers will have different timeouts, so their subsequent attempts will
not collide, and one of them will succeed in starting the bus (modulo the possibility of col-
lisions with other controllers, which are resolved in the same way). The danger is that the
colliding messages may not be received the same everywhere (they will be traveling down
the bus from different sources, at finite speed), and that some nodes will receive one or
other of the messages, while others receive an invalid message. One proposed solution to
this danger is for nodes sending cold start I-Frames always to act as if a collision had oc-
curred. A related problem can arise because the cold start I-Frame is sent on only a single
bus, where SOS or other faults may cause asymmetric reception. Here, as in the case of
asymmetric collision detection, it is possible for some controllers to synchronize to a cold
start I-Frame, while others do not—the latter may subsequently synchronize to a different
initial I-Frame, resulting in two coexisting cliques. A proposed solution for this case is to
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send cold start I-Frames on both buses, and to deal with faulty transmission of cold start
frames in the bus guardian of the hub.

Another problem can arise because there are no checks on the content of the cold start
I-Frame. A faulty controller could provide bad data (e.g., an undefined mode number or
MEDL position) and thereby cause good receivers to detect errors and shut down. Proposed
solutions to this problem include more checking by the bus guardian of a central hub, or a
more truly distributed start/restart algorithm.

Recent analysis has exposed the problems in TTA startup and restart described above.
These can arise only in highly unusual circumstances, and are being addressed in the design
of the new TTA-star configuration.

2.5.3 SPIDER

These aspects of SPIDER are not documented as yet.

2.5.4 FlexRay

As described below in Section 2.7.4, FlexRay differs from SAFEbus and TTA in that the
full schedule for the system is not installed in each node during construction. Instead, each
node is initialized only with its own schedule, and learns the full configuration of the system
by observing message traffic during startup. This seems vulnerable to masquerading faults.

The method for initial synchronization of clocks in FlexRay is not described. It is
difficult to initialize the Welch-Lynch algorithm if faults are present at startup: [Min93]
describes scenarios that lead to independent cliques. It seems that TTA’s clique-avoidance
protocol will rescue it from these scenarios, but in the absence of such a mechanism, it is not
clear how FlexRay can do so. There are clock synchronization algorithms that self-stabilize
in the presence of faults (e.g., [DW95]), but these are complex, or rely on randomization.
Randomization is generally considered unacceptable in a safety-critical system because cor-
rect operation is only probabilistically guaranteed, but it may be acceptable during startup
(though recall the failure of the first attempt to launch the Space Shuttle [SG84]) or as part
of a “never give up” strategy.

2.6 Services

The essential basic purpose of these architectures is to make itpossibleto build reliable
distributed applications; a desirable purpose is to make itstraightforwardto build such ap-
plications. The basic services provided by the bus architectures considered here comprise
clock synchronization, time-triggered activation, and reliable message delivery. Some of
the architectures provide additional services; their purpose is to assist straightforward con-
struction of reliable distributed applications by providing these services in an application-
independent manner, thereby relieving the applications of the need to implement these ca-
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pabilities themselves. Not only does this simplify the construction of application software,
it is sometimes possible to providebetterservices when these are implemented at the archi-
tecture level, and it is also possible to provide strong assurance that they are implemented
correctly.

Applications that perform safety-critical functions must generally be replicated for fault
tolerance. There are many ways to organize fault-tolerant replicated computations, but a ba-
sic distinction is between those that useexactagreement, and those that useapproximate
agreement. Systems that use approximate agreement generally run several copies of the ap-
plication in different nodes, each using its own sensors, with little coordination across the
different nodes. The motivation for this is a “folk belief” that it promotes fault tolerance:
coordination is believed to introduce the potential for common mode failures. Because dif-
ferent sensors cannot be expected to deliver exactly the same readings, the outputs (i.e.,
actuator commands) computed in the different nodes will also differ. Thus, the only way to
detect faulty outputs is by looking for values that differ by “a lot” from the others. Hence,
these systems use some form of selection or threshold voting to select a good value to send
to the actuators, and similar techniques to identify faulty nodes that should be excluded.
Brilliant, Knight and Leveson describe some of the difficulties with this approach in the
context ofN -version programming [BKL89]. The most troublesome of these for applica-
tions of the kind considered here is that hosts accumulate state that diverges from that of
others over time (e.g., velocity and position as a result of integrating acceleration), and they
execute mode switches that are discrete decisions based on local sensor values (e.g., change
the gain schedule in the control laws if the altitude, or temperature, is above a specific
value). Thus, small differences in sensor readings can lead to major differences in outputs
and this can mislead the approximate selection or voting mechanisms into choosing a faulty
value, or excluding a nonfaulty node. The fix to these problems is to attempt to coordinate
discrete mode switches and periodically to bring state data into convergence. But these
fixes are highly application specific, and they are contrary to the original philosophy that
motivated the choice of approximate agreement—hence, there is a good chance of doing
them wrong. There are numerous examples that justify this concern; several that were dis-
covered in flight tests are documented by Mackall and colleagues [IRM84,Mac85,Mac88]
and summarized in [Rus93b, Section 3.3]. The essential points of Mackall’s data is that
all the failures observed in flight test were due to bugs in the design of the fault tolerance
mechanisms themselves, and all these bugs could be traced to difficulties in organizing and
coordinating systems based on approximate agreement.

Systems based on exact agreement face up to the fact that coordination among replicated
computations is necessary, and they take the necessary steps to do it right. If we are to use
exact agreement, then every replica must perform the same computation on the same data:
any disagreement on the outputs then indicates a fault; comparison can be used to detect
those faults, and majority voting to mask them. A vital element in this approach to fault
tolerance is that replicated components must work on the same data: thus, if one node
reads a sensor, it must distribute that reading to all the redundant copies of the application

29



running in other nodes. Now a fault in that distribution mechanism could result in one node
getting one value and another a different one (or no value at all). This would abrogate the
requirement that all replicas obtain identical inputs, so we need to employ mechanisms to
overcome this behavior.

The problem of distributing data consistently in the presence of faults is vari-
Interactive
consistency

ously calledinteractive consistency, consensus, atomic broadcast, or Byzantine agree-
ment[PSL80, LSP82]. When a node transmits a message to several receivers, interactive
consistency requires the following two properties to hold.

Agreement: All nonfaulty receivers obtain the same message (even if the transmitting node
is faulty).

Validity: If the transmitter is nonfaulty, then nonfaulty receivers obtain the message actu-
ally sent.

Algorithms for achieving these requirements in the presence of arbitrary faults necessarily
involve more than a single data exchange (basically, each receiver must compare the value
it received against those received by others). It is provably impossible to achieve interactive
consistency in the presence ofa arbitrary faults unless there are at least3a + 1 FCUs,
2a+ 1 disjoint communication paths (ora+ 1 disjoint broadcast channels) between them,
anda + 1 levels (or “rounds”) of communication. Some of the parameters, but not the
number of rounds required, can be reduced by using digital signatures.

The problem might seem moot in architectures that employ a physical bus, since a bus
surely cannot deliver values inconsistently (so the agreement property is achieved trivially).
Unfortunately, it can—though it is likely to be a very rare event. The scenarios involving
SOS faults presented earlier exemplify some possibilities.

Dealing properly with very rare events is one of the attributes that distinguishes a design
that is fit for safety-critical systems from one that is not. It follows that either the application
software must perform interactive consistency for itself (incurring the cost ofn2 messages
to establish consistency acrossn nodes in the presence of a single arbitrary fault), or the
bus architecture must do it, or the bus architecture must eliminate the fault modes that
necessitate multiple rounds of information exchange (so that consistency is achieved by a
simple broadcast).

The first choice is so unattractive that it vitiates the whole purpose of a fault-tolerant bus
architecture, and the second is described below in separate subsections for those architec-
tures that provide it. The third choice hinges on elimination of asymmetric transmissions

Signal
reshaping

(i.e., those that appear as one value to some receivers, and as different values, or the absence
of values, to others). As noted, SOS faults are among the most plausible sources of asym-
metric transmissions. SOS faults that cause asymmetric transmissions can arise in either the
value or time domains (e.g., intermediate voltages, or weak edges, respectively). In those
architectures that employ a bus guardian “in series” with an interface, the bus guardian is
a possible point of intervention for the control of SOS faults: a suitable guardian can re-
shape, in both value and time domains, the signal sent to it by the controller. Of course, the
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guardian could be faulty and may make matters worse—so this approach makes sense only
when there are independent guardians on each of two (or more) replicated interconnects.
Observe that for credible signal reshaping, the guardian must have a power supply that is
independent of that of the controller (faults in power supply are the most likely cause of
intermediate voltages and weak edges).

Interactively consistent message broadcast provides the foundation for fault toleranceVoting
based on exact agreement. There are several ways to use this foundation. One arrange-
ment, confusingly called thestate machineapproach [Sch90], is based on majority voting:
application replicas run on a number of different nodes, exchange their output values, and
deliver a majority vote to the actuators.1 This approach was first developed by the SIFT
project at SRI [WLG+78]. Usually, selected intermediate state values are voted as well
as outputs (this promotes recovery from transients [Rus93a]), and the architecture can as-
sist these activities by providing services that make the distribution and selection of voted
values transparent to the application programs.

Another arrangement is based on self-checking (either by individuals or pairs) so thatMaster/shadow
faults result in fail-silence. This will be detected by other nodes, and some backup appli-
cation running in those other nodes can take over. The architecture can assist this mas-
ter/shadow arrangement by providing services that support the rollover from one node to
another. One such service automatically substitutes a backup node for a failed master (both
the master and the backup occupy the same slot in the schedule, but the backup is inhibited
from transmitting unless the master has failed). A variant has both master and backup oper-
ating in different slots, but the backup inhibits itself unless it is informed that the master has
failed. A further variation, calledcompensation, applies when different nodes have accessCompensation
to different actuators: none is a direct backup to any other, but each changes its operation
when informed that others have failed (an example is car braking: separate nodes control-
ling the braking force at each wheel will redistribute the force when informed that one of
their number has failed).

The variations on master/shadow described above all depend on a “failure notification,”
Group

membership
or equivalently a “membership” service. The crucial requirement on such a service is that
it must produceconsistentknowledge: that is, if one nonfaulty node thinks that a particular
node has failed, then all other nonfaulty nodes must hold the same opinion—otherwise,
the system will lose coordination, with potentially catastrophic results (e.g., if the nodes
controlling braking at different wheels make different adjustments to their braking force
based on different assessments of which others have failed). Notice that this must also
apply to a node’s knowledge of itsownstatus: a näıve view might assume that a node that
is receiving messages and seeing no problems in its own operation should assume it is in
the membership. But if this node is unable to transmit, all other nodes will have removed
it from their memberships and will be making suitable compensation on the assumption

1There is often another round of voting performed directly by the actuators, through some form of physical
“force-summing.” For example, outputs of different nodes may energize separate coils of a single solenoid, or
multiple hydraulic pistons may be linked to a single shaft.
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that this node has entered its “blackout” mode (and is, for example, applying no force to its
brake). It could be catastrophic if this node does not adopt the consensus view and continues
operation (e.g., applying force to its brake) based on its local assessment of its own health.

A membership service operates as follows. Each node maintains a privatemembership
list, which is intended to comprise all and only the nonfaulty nodes. Since it can take a while
to diagnose a faulty node, we have to allow the common membership to contain at most one
faulty node. Thus, a membership service must satisfy the following two requirements.

Agreement: The membership lists of all nonfaulty nodes are the same.

Validity: The membership lists of all nonfaulty nodes contain all nonfaulty nodes and at
most one faulty node.

These requirements can be achieved only under benign fault hypotheses (it is provably
impossible to diagnose an arbitrary-faulty node with certainty). When unable to main-
tain accurate membership, the best recourse is to maintain agreement, but sacrifice validity
(nonfaulty nodes that are not in the membership can then attempt to rejoin). This weakened
requirement is called “clique avoidance.” Note that it is quite simple to achieve consistent
membership on top of an interactively consistent message service: each node broadcasts
its own membership list to every other node, and each node runs a deterministic resolution
algorithm on the (identical, by interactive consistency) lists received. It is much more diffi-
cult to achieve consistent membership in the absence of an interactively consistent message
service (and will require multiple rounds of message exchange).

2.6.1 SAFEbus

SAFEbus provides two important services: interactively consistent message transmission,
and automatic master/shadow rollover.

Messages from one host to another traverse two BIUs on their way to the four sepa-
rate buses, and two more BIUs on their way to a receiving host. Although not required
by the ARINC 659 standard, Honeywell’s implementation of SAFEbus has an additional
path for cross-comparison of messages between the receiving BIUs. This additional cross-
comparison is crucial to SAFEbus’s ability to provide interactive consistency.

SAFEbus allows as many as four different nodes to occupy a single slot managed as a
master and as many as three shadows. If the master fails to send an expected message, then
its first shadow will take over the slot within a few bit times, and so on down to the third
shadow. A faulty BIU in a shadow cannot usurp its master’s slot inappropriately because it
will be inhibited by the guardian function of its partner BIU. The interactively consistent
message transmission provided by SAFEbus ensures that the master and shadows will all
have seen an identical history of messages and can therefore provide seamless transfer of
function (masters and shadows may not have the same state, since some shadows may be
specified to provide degraded functionality). SAFEbus provides a special class of messages
that allow masters to communicate specifically with their shadows.
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In Honeywell’s implementation, each node has a pair of hosts (CPMs) that cross-
compare and fail silent on disagreement; the BIUs do the same (in any implementation),
so the whole node is fail-silent. In this context, master/shadow rollover is an effective and
straightforward way to provide high availability and is preferred to other fault-masking
methods such as majority voting.

SAFEbus does not employ membership, but nodes read their own transmissions on the
bus just as other receivers do and are therefore quickly able to detect if they have suffered
a transmission fault, and can make suitable compensation, if necessary. Most SAFEbus
applications rely on self-checking, fail-silence, and master/shadow rollover to provide fault
tolerance, and do not require a membership service. It is, however, quite straightforward to
implement such a service, if required, at the application level—given the underlying support
for interactively consistent message transmission.

2.6.2 TTA

Interactive consistency requires that any transmission results in identical reception at all
receivers. Unlike SAFEbus, TTA does not have enough independent signal paths and rounds
of voting to achieve this property directly, but it achieves it indirectly in a very clever way.

TTA uses high-grade checksums that can be considered equivalent to digital signatures.
This eliminates the possibility that different recipients obtaindifferentvalues from a single
broadcast, leaving only a residual asymmetry between those that do receive a value and
those that do not. This “weak consistency” is preferable to asymmetric reception, but is in-
adequate for the construction of consistent replicas and backups. Simple acknowledgments
are insufficient to fix the difficulty, because they may be lost or received asymmetrically
also. TTA, however, provides a property called “clique avoidance” as part of its member-
ship service, and this is equivalent to a consistent acknowledgment: only those nodes that
receive a message, or those that did not (whichever is in the majority) will remain in the
membership [BP00, KBP01]. In common cases (where just one newly faulty node fails to
receive, or a newly faulty sender fails to transmit), clique avoidance is achieved by the stan-
dard membership function and excludes exactly the faulty node. In rare cases, where there
are multiple faults, or an asymmetric fault, the behavior of the clique-avoidance protocol is
sound (the survivors have consistent state), but may be Draconian, in that nonfaulty proces-
sors may be removed from the membership (though they may rejoin at the next round).

The combination of checksummed transmissions and clique avoidance provides a form
of interactive consistency related to “Crusader Agreement” [Dol82] and to “Weak Byzan-
tine Agreement” [Lam83]. Crusader agreement is similar to Byzantine agreement (i.e.,
interactive consistency) except that when the transmitter is faulty, it is acceptable for some
receivers not to agree with others on the value transmitted, provided they “explicitly know”
that the transmitter is faulty. In the “Draconian” agreement achieved by TTA, this “explicit
knowledge” is achieved through the clique-avoidance protocol and is associated with ex-
clusion from the group. In weak Byzantine agreement, receivers may agree onany value
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whenever there is a fault (not just a fault in the transmitter). In the agreement achieved by
TTA, the surviving clique may agree in (incorrectly) ascribing “no value received” to a non-
faulty transmitter (and hence excluding it from the membership) when there are multiple
faults within two rounds.

The clique-avoidance component of TTA’s group membership protocol (and hence the
Draconian form of agreement) engages only when there are multiple faults within two
rounds, or an asymmetric transmission; in all other circumstances, TTA’s combination of
checksummed transmissions and group membership provides interactive consistency of the
classical form. The Draconian behavior is acceptable (and is the price paid for using fewer
communication paths and messages than required for full interactive consistency) but un-
desirable, and its occurrences should be minimized. We cannot do much about multiple
fault arrivals in a short interval, but asymmetric transmissions are most plausibly the conse-
quences of SOS faults, and so it is these that we should seek to minimize. As noted earlier, it
is difficult to control these faults with bus guardians that are integrated with the controllers,
so this is a reason for preferring the TTA-star architecture to TTA-bus.

The TTA membership and clique-avoidance service not only supports a form of inter-
active consistency, but the membership information can be used to organize various mas-
ter/shadow or compensation strategies for fault tolerance at the application level. TTA
provides explicit support for shadow nodes, which occupy the same slots in the schedule
as their master and can read all bus traffic, but cannot transmit until the master has failed.
The membership service is also exploited internally by TTA, to allow it to operate in the
presence of multiple faulty clocks (synchronization is performed only over nodes that are
in the membership).

A proposed extension to TTA is a service that supports state machine replication in a
transparent way [KB00]. The idea is to identify some of the state variables of an application
as ones that should be voted. Exchange and voting of those variables is then managed by
the TTA controllers in a way that is transparent to the application. This is accomplished by
locating the voted variables in that area of memory that the host shares with its controller
(hosts and controllers interface through dual-ported RAM). The application reads and writes
those variables in the usual way; behind the scenes, multiple instances of the application
will be running on different hosts; their controllers broadcast the values of voted variables to
each other (exploiting the interactively consistent broadcasts provided by TTA), and replace
their local copies by majority-voted versions. The attraction of this service is that it is truly
transparent to the application: neither its function nor its timing is changed by the decision
to make it fault tolerant using state machine replication.

2.6.3 SPIDER

As described in Section 2.3.3, the arrangement of BIUs and RMUs in the hub of SPIDER’s
ROBUS is similar to that of hosts and interstages in the Draper FTP. The motivation for
the architecture of FTP (and possibly of SPIDER) was the desire to achieve interactive con-
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sistency with only three full processors—since this is all that is required to tolerate (using
TMR) the failure of a host processor running the actual application. The problem, of course,
is that interactive consistency requires at least four participants to tolerate a single arbitrary
fault. The architecture adopted in FTP overcomes this limitation by adding three impov-
erished processors (these are the “interstages”) that act rather like mirrors. The processors
and interstages comprise six FCUs, so interactive consistency is feasible in theory—and
it is achieved in practice by a very clever algorithm whose correctness has been formally
verified [LR94]. The interactive consistency algorithm of SPIDER is similar to that of FTP
(with RMUs taking the part of the interstages). The algorithm operates as follows.

• A host sends its value to its BIU.

• The BIU broadcasts this value to all RMUs.

• RMUs broadcast the value received to all BIUs.

• Each BIU performs a hybrid-majority vote on the values received and forwards the
winner to its host. (A hybrid-majority vote is one from which manifestly bad values
are excluded.)

This differs from the FTP algorithm in that the broadcast to all RMUs in the second step
replaces (what would be in SPIDER terminology) a BIU-to-BIU broadcast and a BIU-to-
own-RMU transfer.

2.6.4 FlexRay

In contrast to the other architectures considered, FlexRay provides no services beyond clock
synchronization and reliable (best efforts) message delivery. In particular, FlexRay does
not provide interactively consistent message transmission (nor even weakly consistent),
provides no membership or failure notification service, and contains no mechanisms to
control SOS faults.

2.7 Flexibility

The static schedule of a time-triggered bus is rather inflexible, so some bus architectures
make provision for switching between different schedules at startup or during operation.
The different schedules may be optimized for different missions, or phases of a mission
(e.g., startup vs. cruise), for operating in a degraded mode (e.g., when some major function
has failed), or to accommodate optional equipment (e.g., for cars with and without traction
control). It is necessary to protect against inappropriate schedule switches (or switches
initiated by faulty nodes), so some kind of voting is usually employed.

The physical wires or optical cables routed around an aircraft or car represent significant
costs (e.g., in material, installation, maintenance, and weight) and there is strong interest
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in minimizing the number that are used. Some of the purposes typically performed by an
event-driven bus such as CAN can be taken over by a time-triggered bus in a straightforward
way; for other purposes, however, the flexible resource allocation of an event-driven bus is
considered a necessity, so some way must be found to provide this capability within a time-
triggered bus if this is to completely subsume existing event-triggered buses. The different
buses approach the issue of flexibility in very different ways.

2.7.1 SAFEbus

A SAFEbus schedule (called atable) may be comprised of severalframes; each frame is a
self-contained description of the allocation of messages to time slots. Only one frame may
be active at any one time. Slots allocated to “Long Resync” messages may be marked as
allowing a frame change. In this case, the BIU that sends the Long Resync message in that
slot indicates the new frame that is to be used. The old and new frames begin with different
patterns of Short and Long Resync messages so that any receivers that enter the wrong
frame (e.g., due to an asymmetric transmission fault) will fail to synchronize and drop off
the bus (this is rather like the clique-avoidance protocol of TTA). Frames can exist in several
versions: the version of the new frame is also indicated in the Long Resync message, and
any node whose table memory contains a different version will drop off the bus.

Multiple frames provide some flexibility to choose among different modes of behavior,
but it seems that the capability is used only at a very coarse level: for example, a table may
have frames for hardware initialization, software initialization, self-test, and flight. The
flight frame will contain no frame change commands: once entered, it cannot be left.

SAFEbus provides no mechanisms for event-triggered behavior, but its BIUs are con-
nected to an IEEE 1149.5 bus for test and maintenance purposes.

2.7.2 TTA

TTA schedules are precomputed and loaded into a data structure called the Message De-
scriptor List (MEDL) present in each controller. A limited form of the same data is present
in each bus guardian. There is considerable flexibility in selection of the number and length
of messages each node may transmit in each cycle, but the selection is fixed once it is loaded
into the MEDL. TTA checks that all nodes have the same MEDL version during startup.

The MEDL may allow certain nodes to request mode changes at certain points. A re-
quested mode change may be either immediate or deferred; if the latter, nodes that transmit
later in the cycle have the opportunity to override the mode change request, which occurs at
the end of the cycle. All modes are based on the same schedule (so the bus guardians are not
affected by mode changes): all that changes are the recipients and intended interpretation
of the messages that are sent.

Space for diagnostic and other event data may be set aside in each message and used in
some application-specific manner. This allows each node a fixed bandwidth for event data.

36



A variation is for each node to interpret this data as a simulation of the traffic on a shared
event-triggered bus. It is proposed to use this approach to provide a simulation of CAN;
later versions of TTA are so fast that it is calculated that the simulation can go faster than a
real CAN bus while absorbing only a small fraction of the TTA bandwidth.

Observe that this approach brings all the safety attributes of TTA to the simulated event-
triggered bus: if one node manifests faulty behavior on the simulated bus, the other nodes
can remove it from their membership—this ability to detach a faulty node from the simu-
lated bus is beyond the capability of any real event-triggered bus.

Although it appears that TTA can perform the rôle of a CAN bus in addition to its own,
a full car or aircraft system is likely to need additional buses for secondary control functions
(to say nothing of those for entertainment). For example, a car door contains motors and
primitive controllers for the window, lock, and mirror; even a CAN bus provides excessive
functionality and costs too much to connect each of these devices separately. Consequently,
ultra-low-cost buses are emerging that can connect smart sensors and actuators to a gate-
way on a more muscular bus. These low-cost buses must operate with extremely primitive
controllers that lack even a clock oscillator. TTA incorporates this kind of service through
the TTP/A protocol [KHE00].

2.7.3 SPIDER

These elements of SPIDER are not yet developed.

2.7.4 FlexRay

FlexRay aims to be more flexible than the other buses considered here, and this seems to be
reflected in the choice of its name.

FlexRay partitions each time cycle into a “static” time-triggered portion, and a “dy-
namic” event-triggered portion. The division between the two portions is set at design time
and loaded into the controllers and bus guardians. Nodes communicate using the Byteflight
protocol during the event-driven portion of the cycle. A similar consortium to FlexRay has
developed the Local Interconnect Network (LIN) protocol [LIN00] and this is presumably
used to provide a low-cost sensor bus in association with FlexRay (similar to TTP/A for
TTA).

Unlike SAFEbus and TTA, FlexRay does not install the full schedule for the time-
triggered portion in each controller. Instead, this portion of the cycle is divided into a
number of slots of fixed size, and each controller and its bus guardians are informed of
which slots are allocated to their transmissions. Nodes requiring greater bandwidth are
assigned more slots than those that require less. Each controller learns the full schedule
only when the bus starts up. Each node includes its identity in the messages that it sends;
during startup, nodes use these identifiers to label their input buffers as the schedule reveals
itself (e.g., if the messages that arrive in slots 1 and 7 carry identifier 3, then all nodes will
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thereafter deliver the contents of buffers 1 and 7 to the task that deals with input from node
3). There is an obvious vulnerability here: a faulty node could masquerade as another (i.e.,
send a message with the wrong identifier) during startup and thereby violate partitioning
for the remainder of the mission. It is not clear how this fault mode is countered. Neither
is it clear how configuration errors, in which two nodes are allocated to the same slot, are
detected during startup. (Presumably the message received in that slot will be garbled by
the collision and will fail checksum, but then what?)

2.8 Assurance

Safety-critical systems must be furnished with strong assurance that they are fit for their pur-
pose. Regulation and certification establish requirements for assurance in some application
areas (e.g., [RTC92,RTC00] for airborne software and hardware, respectively, and [MIS94]
for cars). Assurance is generally achieved by a combination of testing the actual artifact,
analysis and review of its design, and scrutiny of its design process. Since safety-critical
systems, such as the bus architectures considered here, must be fault tolerant, some of the
testing will involve fault injection. However, testing and fault injection can provide di-
rect assurance only to failure rates of about10−4 or 10−5 per hour, which are far short of
those required for safety-critical applications. The remaining assurance must be derived by
analysis of the system’s design. Formal methods can assist in this process.

In formal methods, a mathematical model is constructed of key elements of the system’s
operation (e.g., its clock synchronization algorithm), and mechanized calculation is used to
demonstrate that it meets its requirements, under its specified assumptions. The appropriate
branch of applied mathematics for modeling discrete algorithms (whether they are destined
for software or hardware implementation) is formal logic, and calculation is performed by
the methods of automated deduction, such as theorem proving or model checking. One
attribute that renders formal methods particularly attractive in this domain is that it allows
all behaviors of fault-tolerant algorithms to be examined through logical case analysis;
this is especially powerful when considering arbitrary fault modes, because unlike explicit
testing or simulation, we do not have to particularize the notion of “arbitrary” but can leave
it totally unconstrained.

2.8.1 SAFEbus

SAFEbus was approved by the FAA as part of the certification for the Boeing 777 (the
FAA certifies only complete aircraft, not components), and is a flight-critical part of every
777, whose commercial deliveries began in May 1995. Details of the assurance processes
used have not been published, but must have been extensive, and are now supported by
substantial field experience, with no failures recorded.
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2.8.2 TTA

TTA implementations have been subjected to extensive fault-injection experiments in the
context of the FIT project of the European Union, and evaluated in full-scale experimental
applications developed by DaimlerChrysler and several other automobile companies and
their suppliers. Aircraft engine controllers and cockpit automation systems under devel-
opment by Honeywell and cabin pressurization systems under development by Hamilton
Sundstrand/Nord Micro will be certified under FAA and JAA requirements.2

The basic Welch-Lynch clock synchronization protocol employed in TTA has been for-
mally verified by Miner [Min93] and by Schwier and von Henke [SvH98]. The actual
TTA protocol has been formally verified by Pfeifer, Schwier, and von Henke [PSvH99]. A
new verification is planned (by me) that will extend the analysis beyond the standard fault
hypothesis of TTA using a hybrid fault model developed by Schmid [Sch00]. The member-
ship and clique-avoidance protocol of TTA has been formally verified by Pfeifer [Pfe00],
but only under the standard fault hypothesis of TTA. Formal verification of its properties in
the presence of asymmetric transmissions, and fault numbers and arrival rates beyond those
of the fault hypothesis, is in progress. Some of these properties have already been veri-
fied by traditional (i.e., not mechanically checked) mathematical proofs [BP00,Mer01] and
recent work by Bouajjani and Merceron formally verifies aspects of the clique-avoidance
algorithm [BM02]. Among the simpler properties of TTA, the timing rules for controllers
and bus guardians have been formally verified [Rus01], and mutual exclusion on the bus
has been examined by model checking [MMP99]. The main remaining challenges are for-
mally to verify the properties of startup, restart, and reintegration, and to compose the many
separate analyses into a single verification of the integrated TTP/C protocol. A survey of
many of these formal verifications for aspects of TTA is available [Rus02].

2.8.3 SPIDER

The interactive consistency algorithm of SPIDER has been formally verified [MMTP02]
(it is similar to that previously performed for the Draper FTP architecture [LR94]). Its di-
agnosis algorithm also has been formally verified [GM02]; it is similar to the algorithms
developed for MAFT [KWFT88] whose verification is described by Walter, Lincoln, and
Suri [WLS97]. Formal verification of the SPIDER diagnosis algorithm led to insights that
have produced an improved algorithm, which has also been formally verified [GM03]. For-
mal verification of the SPIDER clock synchronization algorithm is in progress.

One of the main goals of the SPIDER project is to serve as a demonstration study for
certification under the DO-254 guidelines for airborne hardware [RTC00].

2Although the current applications for Honeywell’s TTA-based engine controllers are military, their assur-
ance processes closely follow those required by the FAA.
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2.8.4 FlexRay

FlexRay is still under development. The only assurance technique so far described is a
simulation model being developed by Motorola. As noted above, the basic Welch-Lynch
clock synchronization algorithm has been formally verified. However, FlexRay documents
speak of the system being operational as soon as two clocks synchronize. This is outside the
parameters of the formal analyses, which would need to be revisited and extended to cover
the casesn = 2 andn = 3. Furthermore, there are known pathologies in initialization of the
Welch-Lynch algorithm in the presence of faults that can lead to clique formation [Min93].
It is not described how FlexRay avoids these, and verification of its startup mechanisms
could be very challenging. The other protocols of FlexRay are not described in sufficient
detail to assess the feasibility of their formal verification.
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Chapter 3

Conclusion

The four buses considered here provide different solutions to very similar sets of require-
ments. All provide fault-tolerant, distributed clock synchronization, and support the time-
triggered model of computation. They differ in their fault hypotheses, mechanisms, ser-
vices, assurance, performance, and cost.

SAFEbus is the most mature of the four, and makes the fewest compromises. It em-
ploys paired bus interface units, with each member of a pair acting as a bus guardian for
the other, and paired, self-checking buses. Its fault hypothesis includes arbitrary faults,
faults in several nodes (but only one per node), and a high rate of fault arrivals—and it
never gives up. It tolerates spatial proximity faults by duplicating the entire system. It pro-
vides interactively consistent message broadcasts (in the Honeywell implementation), and
supports application-level fault tolerance (based on self-checking pairs) by providing au-
tomatic rapid rollover from masters to shadows. It is certified for use in passenger aircraft
and has extensive field experience as the backbone for the integrated avionics on the Boeing
777. The Honeywell implementation is supported by an in-house tool chain. The raw bus
operates at 30 MHz, is two bits wide, and achieves high utilization. Because each of its
major components is paired (and its bus requires separate lines for clock and data), it is the
most expensive of those available for commercial use (typically, a few hundred dollars per
node).

TTA is the next-most mature. In its TTA-bus configuration, it is vulnerable to spatial
proximity faults, and its bus guardians are not fully independent of its interface controllers,
so the TTA-star configuration is generally to be preferred. Its fault hypothesis includes ar-
bitrary faults, and faults in several nodes (but only one per node), provided these arrive at
least two rounds apart. It never gives up and has a well-defined recovery strategy from fault
arrivals that exceed this hypothesis. It provides a form of interactively consistent message
broadcasts and a consistent membership service. Proposed extensions provide state ma-
chine replication in a manner that is transparent to applications. Other proposed extensions
provide a fully protected event-based service within the time-triggered framework. Its pro-
totype implementations have been subjected to extensive testing and fault injections, and
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deployed in experimental vehicles. Several of its algorithms have been formally verified,
and aircraft applications under development are planned to lead to FAA certification. It is
supported by an extensive tool suite that interfaces to standard CAD environments (Mat-
lab/Simulink). Current implementations provide 25 Mbit/s data rates; research projects are
designing implementations for gigabit rates. TTA controllers and the star coupler (which is
basically a modified controller) are quite simple and cheap to produce in volume.

SPIDER is a research project and it is unfair to compare it directly with the commercial
products. Its fault hypothesis uses a hybrid fault model, which includes arbitrary faults, and
allows some combinations of multiple faults. It provides interactively consistent message
broadcasts. Its algorithms are novel and highly efficient and are being formally verified. It
is planned to be used as a demonstration study for certification under the DO-254 guidelines
for airborne hardware. SPIDER is interesting because it uses very strong algorithms and
can use different topologies from the other buses.

FlexRay is still under development. It has no stated fault hypothesis, and appears to
have no mechanisms to counter certain fault modes (e.g., SOS faults or other sources of
asymmetric broadcasts, and masquerading on startup). Its bus guardians are not fully in-
dependent of their controllers. Its clock synchronization can tolerate faults in no more
than a third of its nodes, and its initialization in the presence of faults is not described. A
never-give-up strategy is not described. It provides no services to its applications beyond
best-efforts message delivery. Event-based services share the same bus; bus guardians pro-
tect only the time-triggered section of the bus cycle. No systematic or formal approaches
to assurance or certification are described. It is the slowest of the commercial buses, with
a claimed data rate of no more than 10 Mbit/s. It is asserted to be cheap to produce in
volume, but this is questionable as each node requires three clock oscillators (one for the
controller and one for each of the bus guardians). Some of the deficiencies of FlexRay may
be overcome as its development proceeds, and more recent descriptions of its design may
correct or contradict some of the assertions above (which were written prior to September
2001).1 However, the decision to provide no services to support fault-tolerant applications
seems a deliberate and irreversible design choice. This means that all mechanisms for
fault-tolerant applications must be provided by the application programs themselves. Thus,
application programmers, who may have little experience in the subtleties of fault-tolerant
systems, become responsible for the design, implementation, and assurance of very deli-
cate mechanisms with no support from the underlying bus architecture. Not only does this
increase the cost and difficulty of making sure that things are done right, it also increases
their computational cost and latency. For example, in the absence of an interactively con-
sistent message service provided by the architecture, application programs must explicitly
transmit the multiple rounds of cross-comparisons that are needed to implement this ser-
vice at a higher level, thereby substantially increasing the message load. Such a cost will
invite inexperienced developers to seek less expensive ways to achieve fault tolerance—in

1For another comparison, written at about the same time, see [Kop01].
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probable ignorance of the impossibility results in the theoretical literature, and the history
of intractable “Heisenbugs” (rare, unrepeatable, failures) encountered by practitioners who
pushed for10−9 with inadequate foundations.

A safety-critical bus architecture provides certain properties and services that assist in
construction of safety-critical systems. As with any system framework or middleware pack-
age, these buses offer a tradeoff to system developers: they provide a coherent collection of
services, with strong properties and highly assured implementations, but developers must
sacrifice some design freedom to gain the full benefit of these services. For example, all
these buses use a time-triggered model of computation, and system developers must build
their applications within that framework. In return, the buses are able to guarantee strong
partitioning: faults in individual components or applications (“functions” in avionics terms)
cannot propagate to others, nor can they bring down the entire bus (within the constraints of
the fault hypothesis). Partitioning is the minimum requirement, however. It ensures that one
failed function will not drag down others, but in most safety-critical systems the failure of
even a single function can be catastrophic, so the individual functions must themselves be
made fault tolerant. Accordingly, most of the buses provide mechanisms to assist the devel-
opment of fault-tolerant applications. The key requirement here is interactively consistent
message transfer: this ensures that all masters and shadows (or masters and monitors), or
all members of a voting pool, maintain consistent state. Three of the buses considered
here provide this basic service; some of them do so in association with other services, such
as master/shadow rollover or group membership, that can be provided with much reduced
latency when implemented at a low level. FlexRay, alone, provides none of these services.

It is unlikely that any single bus architecture will satisfy all needs and markets, and it
is to be expected that new or modified designs will emerge to satisfy new requirements. I
hope that the comparison provided here will help potential users to select the existing bus
best suited to their needs, and that it will help designers of new buses to learn from and
build on the design choices made by their predecessors.
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