[image: image37.emf]Device Virtualisation

Service

Device Virtualisation

Service

Device Access

Service

Device Access

Service

Subnetwork

Packet or Memory

Access Service

Subnetwork

Packet or Memory

Access Service

Subnetwork

Protocol

Implementations

Subnetwork

Protocol

Implementations

SOIS

Hardware

Device

Hardware

Device

Subnetwork

Implementation

Hardware

Applications

Application

Application

Physical Device

Interface to subnetwork service

Provides acquisition of device vales

Permits device commanding

Manages underlying device modes

Handles device protocol

Standardises device values

Standardises device semantics

Provides all necessary operations

Standard interface

Subnetwork service implementation

Report Concerning Space Data System Standards

	Spacecraft Onboard Interface Services

Draft Informational Report
CCSDS 850.0-G-1.1
Draft Green Book
March 2011
AUTHORITY

	

	
	Issue:
	Draft Green Book, Issue 1.1
	

	
	Date:
	March 2011
	

	
	Location:
	Not Applicable
	

	

(WHEN THIS INFORMATIONAL REPORT IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF AUTHORITY:)

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of technical working group experts from CCSDS Member Agencies. The procedure for review and authorization of CCSDS Reports is detailed in the Procedures Manual for the Consultative Committee for Space Data Systems.
This document is published and maintained by:

CCSDS Secretariat

Space Communications and Navigation Office, 7L70

Space Operations Mission Directorate

NASA Headquarters

Washington, DC 20546-0001, USA

FOREWORD

This document is a CCSDS Informational Report to assist readers in understanding the Spacecraft Onboard Interface Services (SOIS) documentation. It has been prepared by the Consultative Committee for Space Data Systems (CCSDS). The concepts described herein are the baseline concepts for the CCSDS standardisation activities in respect of communication services and generic support services to be used in the flight segment of spacecraft systems.

This Report describes the challenges posed by spacecraft onboard interfaces, details the service architecture of the SOIS services, and elaborates on the goals and expected benefits of the of key SOIS services. It is intended to serve as a reference for both service users and service implementers in order to maximise the potential of standardised onboard interfaces with respect to re-use, interoperability, and inter-agency cross support.

Through the process of normal evolution, it is expected that expansion, deletion or modification to this document may occur. This Report is therefore subject to CCSDS document management and change control procedures that are defined in reference [1]. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.
At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· British National Space Centre (BNSC)/United Kingdom.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Federal Space Agency (FSA)/Russian Federation.

· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency (JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Belgian Federal Science Policy Office (BFSPO)/Belgium.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· Centro Tecnico Aeroespacial (CTA)/Brazil.

· Chinese Academy of Sciences (CAS)/China.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· Danish National Space Center (DNSC)/Denmark.

· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· Korea Aerospace Research Institute (KARI)/Korea.

· MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

· Ministry of Communications (MOC)/Israel.

· National Institute of Information and Communications Technology (NICT)/Japan.

· National Oceanic and Atmospheric Administration (NOAA)/USA.

· National Space Organization (NSPO)/Taiwan.

· Naval Center for Space Technology (NCST)/USA.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· United States Geological Survey (USGS)/USA.

DOCUMENT CONTROL

	Document
	Title
	Date
	Status

	CCSDS 850.0-G-1
	Spacecraft Onboard Interface Services, Informational Report,
Issue 1
	June 2007
	Original issue

	CCSDS 850.0-G-1.1
	Spacecraft Onboard Interface Services, Draft Informational Report,
Issue 1.1
	March 2011
	Current draft update Substantially revised for new Subnetwork and Application Support Services work.

CONTENTS

Section
Page

1-11
Introduction

1.1
Purpose
1-1
1.2
Scope
1-1
1.3
Applicability
1-1
1.4
Rationale
1-2
1.5
Approach
1-4
1.6
Terms and Definitions
1-5
1.7
REFERENCES
1-6
2
SOIS Concepts and ArchItEcture
2-1
2.1
Concepts
2-1
2.2
ARCHITECTURAL Considerations
2-2
2.3
SOIS SERVICE AND PROTOCOL ARCHITECTURE
2-3
2.4
SOIS Naming and Addressing
2-5
2.5
Management Concepts
2-8
2.6
SOIS COMPLIANCE
2-8
2.7
Examples
2-10
2.8
Plug-and-Play of Spacecraft Devices
2-12
3
SOIS APPLICATION Support LAYER SERVICES
3-1
3.1
Introduction
3-1
3.2
Command and Data Acquisition Services
3-2
3.3
Time Access Service
3-7
3.4
Message Transfer Service
3-9
3.5
File and Packet Store Services
3-10
3.6
Device Enumeration Service
3-16
4
SOIS subnetwork services
4-1
4.1
Introduction
4-1
4.2
SOIS Subnetwork Service Descriptions
4-2
4.3
Subnetwork functions
4-5
5
Security
5-1
5.1
Security Background
5-1
5.2
Security concerns
5-1
5.3
Potential threats and attack scenarios
5-1
5.4
Consequences of not applying security
5-1
6
Use of SOIS
A-1
6.1
Access to TM/TC Equipment
A-1
6.2
Bridging the Onboard Network and the Space Link
A-2
6.3
Implementing Space Internetworking Protocols
A-2

 TOC \o "8-8" * MERGEFORMAT

ANNEX A ACRONYMS and Abbreviations
A-1

CONTENTS (continued)

Figure
Page

2-22-1
SOIS Architecture

2-2
Symmetrical Communication
2-10
2-3
Asymmetrical Communication
2-10
2-4
Simple Asymmetric Communication
2-11
3-1
SOIS Application Support Layer Services
3-1
3-2
Relationship between the Different SOIS Command and Data Acquisition Services
3-2
3-3
Time Access Services
3-8
3-4
File Services Overview
3-11
4-1
SOIS Subnetwork Decomposition
4-1
4-2
SOIS Data Link Functions
4-6

1 Introduction

1.1 Purpose

The purpose of this document is to describe the concept and supporting rationale for the Spacecraft Onboard Interface Services (SOIS) developed by the Consultative Committee for Space Data Systems (CCSDS). This document:

· provides an introduction and overview of the SOIS services concept upon which the detailed CCSDS SOIS recommendations are based;

· summarises the specific individual service recommendations and supplies the supporting rationale.

This document is a CCSDS Informational Report and is therefore not to be taken as a CCSDS Recommended Standard.

1.2 Scope

This document:

· describes the rationale and approach of CCSDS SOIS standardisation;

· establishes the SOIS concepts and architecture (including the addressing strategy);

· provides an overview of the SOIS services;

· provides examples of the deployment of SOIS services and protocols.

The basic context of SOIS services is that of a single spacecraft within a single mission. Communications between elements outside of a single spacecraft, and communicating between multiple spacecraft falls outside the scope of SOIS. However, other CCSDS services exist that fulfil these external interfacing requirements, and the SOIS services are designed to be compatible with these.

A grey area exists in the case of application of wireless local area networking in swarms of spacecraft or proximal landed elements. An emerging activity within CCSDS will examine this area, and the outcome may or may not fall within the SOIS purview.

1.3 Applicability

The SOIS standardised services are intended to be applicable to all classes of civil missions, including scientific and commercial spacecraft, and manned and un-manned systems. These standardized services may apply to military missions, although military security requirements have not been considered in their specification.

1.4 Rationale

CCSDS has enjoyed a great deal of success in standardisation of interfaces between spacecraft and ground systems and has managed to extend this success to areas such as lander-to-orbiter interfaces. Although CCSDS’s authority derives from the requirement for interoperability between national space agencies, the primary benefit has been in cost and risk reduction internal to the agencies and to the individual missions. This manifests itself in:

· reuse of mission infrastructure;

· sharing of resources between missions and agencies;

· reuse of mission hardware and software;

· ready availability of space-qualified components and subsystems;

· accumulated knowledge base within the agencies;

· reuse of standard electrical ground support equipment;

· extensive validation of the operation and completeness of the standards.

In general, spacecraft interface development is based on unique designs which are specified and implemented on a project-by-project basis. Any reuse of these interfaces is usually a by-product of reuse of the whole spacecraft bus, with data handling interfaces having no self-sustaining level of reuse. While individual developers may have limited proprietary standards, these are generally closed and require significant adaptation across missions, particularly those involving inter-organisational cross support.

Similarly, there exists little interface standardisation which can be used by individual equipment and instrument providers. While it is true that there are a limited number of physical interfaces applicable for use in the space environment, the services and access to these interfaces vary considerably between implementations.

At the international level there have so far been very few significant attempts at standardizing spacecraft onboard interfaces, and consequently incompatible interfacing solutions have evolved. Typically, the interfacing solutions that have been developed for spacecraft are tied to the peculiarities of spacecraft busses, real-time operating systems, and existing flight software approaches and bear very little resemblance to the ‘plug-and-play’ interfaces used to integrate computing devices in modern terrestrial systems.

The result is that a multitude of solutions are in place, with each mission either inheriting past solutions or developing new ones. However, an increase in the number and complexity of international missions and the cost of developing state-of-the-art high-speed data interfaces has led to significant impetus for pushing missions in the direction of using standards within and across programs.

CCSDS is perfectly placed to develop standards for agency adoption because:

· it can call on a multi-agency expertise base;

· it can offer global cost and risk reduction by nurturing suppliers on an international basis;

· it has the influence at mission and agency level to promote standards adoption.

Within CCSDS, the SOIS area has been charged with addressing the issue. Its solution lies in the development of a suite of open recommendations involving the complete spacecraft. The goal of the CCSDS SOIS standardisation activity is therefore to develop standards that will improve both the process of spacecraft development and integration as well as the quality of the finished product, and at the same time facilitates the adoption of promising new hardware and software technologies supporting international onboard interface interoperability.

The SOIS approach is to standardise the interfaces between items of spacecraft equipment by specifying well-defined standard service interfaces and protocols which allow standardised access to sensors, actuators, and generic spacecraft functions, allowing spacecraft applications to be developed independently of the mechanisms that provide these services. Applications are thus insulated from the specifics of a particular spacecraft implementation and may be reused across different spacecraft platforms with little regard of implementation details.

Service interface standardisation allows hardware interfaces to be accessed by flight software such that core spacecraft software may be reused on different underlying communications infrastructures with little or no change. The standard services could be implemented using a standard Application Programming Interface (API) that would enable portability and re-use of application software, and of service implementations.

The definition of the services makes no assumption about the implementation of the services in hardware or software or a mixture of both. In addition, SOIS aims to promote interoperability between software and hardware devices operating on various spacecraft communication buses. There are several benefits of this approach:

· as long as the subnetwork services remain stable, software and hardware may evolve independently;

· developers of core spacecraft software can rely on a standard set of services on which to base their design;

· requirements definition activities are reduced as direct reference may be made to the CCSDS Recommended Standards;

· a standard test suite may be used during qualification;

· costs are reduced by adhering to a single solution;

· risk is reduced through amortisation of development and testing across mission cost and time bases;

· subsystem and payload portability across missions is enabled;

· the possibility for reuse of both interfaces and core spacecraft software and the scope for further standardisation activities is significantly increased.

The SOIS services,

· in conjunction with protocol specifications, allow portability of equipment across spacecraft that use the same Data Links;

· in conjunction with standard APIs, allow portability of application software across spacecraft that use different Data Links;

· in conjunction with subnetwork protocol conversion, allow portability of equipment across spacecraft that use different Data Links;

· in conjunction with Network and Transport layer standardisation, support interoperability between equipment onboard spacecraft via a number of Data Links.

1.5 Approach

The process for SOIS standardisation is progressively:

· to identify and articulate a standard set of services which application software or higher-layer services can use to communicate between onboard components over a single Data Link;

· to provide standard mappings between service provision and various underlying Data Link communications media, recognizing that implementation of services is link-dependent;

· to provide a framework to allow various qualities of service to be supported over any underlying Data Link;

· to develop protocols in support of the various SOIS services;

· to promote the development of standard APIs implementing the services, thus promoting further software reuse.

The current SOIS activity is limited to service definition. The existence of standard services is not, in and of itself, sufficient to enable interoperability between data systems or to allow complete portability of application software. It is, however, a necessary condition for the definition of protocols to enable interoperability; it allows application software reuse at a semantic level; and, again, it is a necessary condition for the definition of APIs that will promote complete application software portability.

The definition of protocols and APIs cannot begin without the establishment of SOIS standard services. It is envisaged that, with the publication of these services, API and protocol development will take place in CCSDS Member Agencies, in industrial partners, and within CCSDS itself.

1.6 Terms and Definitions

With respect to service and protocol definition, SOIS, in general, uses terms and definitions defined within the ISO Open Systems Interconnect model defined in reference [2]. The following definitions are provided:

Best Effort—No guarantee of packet delivery.
Data System—An addressable entity situated in a subnet which hosts an instance of the subnetwork protocols, subnetwork services and subnetwork users. The subnetwork users are uniquely identifiable in a subnetwork by a combination of data system address and a protocol ID. A data system is typically a computer or a device.

Data System Address—An identifier which uniquely identifies a data system in a subnetwork. The Data System Address may be referred to as a Destination Address or a Source Address depending on the context of its invocation at the subnetwork service interface. A data system may have more than one Data System Address.
Heterogeneous network—A network that uses more than one underlying communications protocol, e.g., part SpaceWire and part Mil-Std 1553.

Packet—Delimited octet-aligned data unit.

Priority—Identification of the transmit precedence of an SDU relative to other SDUs.

Protocol Data Unit (PDU)—A unit of data specified in a protocol and consisting of protocol control information and possibly user data.

Protocol ID—An identifier which uniquely identifies a SOIS subnetwork user within a data system.

Quality of Service (QoS)—The ability of a communication system to provide predictable and differentiated services. Quality of Service for a communication service may be characterised in terms of important features relevant to that communications service, for example: Reliability, Transmission rate, Effective Bandwidth and latency, Error rate.

Reliability—A QoS parameter indicating whether or not a Data Link function will attempt to acknowledge the successful receipt of a packet and possibly retry sending a PDU if no acknowledgment is received by the sender.

Service class—A category of service on a subnetwork distinguished by its QoS.
Service Data Unit (SDU)—A unit of data passed into or out of a service interface.

Time Critical—Necessity to deliver a packet within a certain period of time or treat preferentially with respect to other packets.

1.7 REFERENCES

The following documents are referenced in the text of this Report. At the time of publication, the editions indicated were valid. All documents are subject to revision, and users of this Report are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS Recommendations.

[1]
Procedures Manual for the Consultative Committee for Space Data Systems. CCSDS A00.0-Y-9. Yellow Book. Issue 9. Washington, D.C.: CCSDS, November 2003.

[2]
Information Technology—Open Systems Interconnection—Basic Reference Model: The Basic Model. International Standard, ISO/IEC 7498-1:1994. 2nd ed. Geneva: ISO, 1994.

[3]
Space Packet Protocol. Recommendation for Space Data System Standards, CCSDS 133.0-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS, September 2003.

[4]
Encapsulation Service. Recommendation for Space Data System Standards, CCSDS 133.1-B-2. Blue Book. Issue 2. Washington, D.C.: CCSDS, October 2009.

[5]
J. Postel. Internet Protocol. STD 5, September 1981. [RFC 791, RFC 950, RFC 919, RFC 922, RFC 792, RFC 1112]

[6]
J. Postel. Transmission Control Protocol. STD 7, September 1981. [RFC 793]

[7]
CCSDS File Delivery Protocol (CFDP). Recommendation for Space Data System Standards, CCSDS 727.0-B-4. Blue Book. Issue 4. Washington, D.C.: CCSDS, January 2007.

[8]
Asynchronous Message Service. Draft Recommendation for Space Data System Standards, CCSDS 735.1-R-2. Red Book. Issue 2. Washington, D.C.: CCSDS, July 2008.

[9]
Delay Tolerant Networking. [RFC 4838]

[10]
Bundle Protocol. [RFC 5050]

[11]
Licklider Transmission Protocol. [RFC 5325, RFC 5326, RFC 5327]
[12]
The Application of CCSDS Protocols to Secure Systems. Report Concerning Space Data System Standards, CCSDS 350.0-G-2. Green Book. Issue 2. Washington, D.C.: CCSDS, January 2006.
2 SOIS Concepts and ArchItEcture

2.1 Concepts

On any given spacecraft, several types of data subnetworks may be used between specific data systems. The actual type of subnetwork used is determined by the required characteristics of the interaction between those entities. These may typically be categorised as:

· Multidrop Buses providing connection to a central bus master and a number of slaves. Communication is generally asymmetrical and often involves low-level read and write access to slaves. The central control of bus traffic results in a highly stochastic traffic profile well suited to applications requiring bounded communications timing.

· Point-to-point serial interfaces used for instrument connection, possibly for bulk data transfer but also combined with instrument control. Again, these interfaces usually operate in a master/slave mode.

· LANs used on larger infrastructures where hosts have generally equal computing power and have a diversity of communication requirements. Communication is on a peer-to-peer basis with a level of variability in delay due to resource queuing.

· Point-to-point sensor and actuator interfaces used for gathering sensor readings or controlling spacecraft equipment.

Onboard applications should not be concerned with the nature of these subnetworks, and so the SOIS concept aims to provide a solution by recommending that applications interact only with a well-defined set of standard onboard data services. In addition, given the disparity of functionality supported by different SOIS Data Link layers, the SOIS subnetwork services provide a common interface and a convergence of common services to the upper-layer applications for communicating over any single SOIS link. Together, the application and subnetwork services provide a standard means to communicate between virtually all spacecraft components.

Figure 2‑1 shows a layered view of the recommended services and their associated access points. User Applications are the mission-dependent applications that make use of the SOIS-defined services. The Transfer Layer provides Transport- and Network-layer services based on existing protocols either defined or adopted by CCSDS (e.g., IP, SCPS, and Space Packet Protocol). In many cases the Transfer Layer will not be required. It is required, however, where multiple data links may be accessed by a spacecraft node or where routing across multiple datalinks is needed. There are also benefits in adopting some transfer layer functionality to provide datalink-independent addressing. The Subnetwork Layer provides access to the Data Link medium and provides a set of SOIS-defined services over the subnetwork defined by that medium.

Network management services and plug-and-play services, while part of the architecture, are for future development and will be discussed only briefly in this document. Network management aspects are implemented for all services and functions and will be accessed by a variety of methods. SOIS makes no recommendations concerning these access methods. However, it is incumbent on SOIS to detail the Management Information Bases (MIBs) for all of its recommendations.
Details of the services, the architecture, and associated protocols are given in subsequent subsections.

[image: image2.emf]

Communication Management

Cmd & Data

Acquisition

Services

Time

Access

Service

File &

Packet Store

Services

Message

Transfer

Service

Device

Enumeration

Service

Packet

Service

Memory

Access

Service

Synchronisation

Service

Device

Discovery

Service

Test

Service

Datalink Convergence Protocols

Application

Layer

Application

Support Layer

Transfer

Layer

Subnetwork

Layer

Network Protocol

Transport Protocol

Milbus SpaceWire CAN Wireless

Mission

Specific

Applications

Figure 2‑12 TC \f G "-1
SOIS Architecture"
: SOIS Architecture

Note that all service access points, whether they be at Subnetwork, Transfer, or Application Support Layer, are accessible by user applications.

2.2 ARCHITECTURAL Considerations

In arriving at the overall SOIS architecture a number of fundamental issues must be tackled:

· Spacecraft do not uniformly use a single underlying data communications medium; instead, a single spacecraft will most likely implement one or more busses and point-to-point links.

· The choice of underlying data communications media, although limited, will vary across spacecraft and depend on mission needs.

· Communicating devices are often asymmetrical in regard to their capabilities. Typically, a spacecraft design will use a limited number of processors having sufficient resources to implement a full protocol stack, but the communications will also require access to sensors and actuators that have little or no computing capabilities.

2.3 SOIS SERVICE AND PROTOCOL ARCHITECTURE

2.3.1 General

SOIS services, as shown earlier, exist at three service interfaces:

· an Application Support Layer service interface;

· a Transfer Layer service interface;

· a Subnetwork Layer service interface.

2.3.2 APPLICATION SUPPORT LAYER SERVICES

The Application Support Layer services provide a number of capabilities commonly required onboard a spacecraft, which need not be limited to communications. The Application Support Layer services make use of the Subnetwork Layer services either locally or remotely over a network. The services are defined in terms of protocols, procedures, protocol data units, and a Management Information Base (MIB). The Application Support Layer services identified are:

· Command and Data Acquisition—typically used to access spacecraft hardware devices such as sensors and actuators;

· Time Access—providing access to a local time source;

· Message Transfer—providing application-to-application message exchange;

· File and Packet Store Services—providing access to the spacecraft storage system;

· Device Enumeration—providing support for dynamic spacecraft configuration.

SOIS Application Support Layer services may be provided across a spacecraft network consisting of a number of heterogeneous or homogeneous SOIS subnetworks in conjunction with a Network layer such as the Space Packet or IP protocol. In cases where time criticality does not allow this approach, the SOIS Application Support Layer services may directly use SOIS Subnetwork Layer services over a single subnetwork.

Application Support Layer services are more fully addressed in section 3 of this document.

2.3.3 Transfer Layer Services

At present, the Transfer Layer is assumed to be composed of extant CCSDS-recognised protocols and services. Examples of these are:

· TCP/UDP/IP;

· SCPS NP/TP;

· Space Packet Protocol.

Transfer layer functionality may be present to provide access to multiple subnetworks. This may be provided as part of the above transfer layer protocols or via a mission dependent solution.
2.3.4 SUBNETWORK SERVICES

The SOIS Subnetwork provides a set of SOIS-defined services which support upper-layer Application Support and Transfer Layer entities. The subnetwork services which are provided are independent of the underlying Data Link in that the service primitives and associated parameters are the same regardless of the underlying Data Link. Multiple Data Links may be available to a user entity and, in this case, multiple instances of the subnetwork service, one for each Data Link, would be available to the user entity. Data Link selection is achieved by selection of a service instance by the entity making use of subnetwork services.

The services provided by the underlying Data Link need to be matched to those required by the subnetwork service, and this may require the provision of convergence functions. Convergence functions add the necessary functionality to that inherently provided by the Data Link. The work needed to map a particular set of services to a Data Link depends on the services provided by the underlying Data Link. In some cases the inherent Data Link service will be equivalent to that required by the subnetwork, in which case no convergence function will be required. In others, the inherent Data Link service will not match that required by the subnetwork, in which case convergence functions will be required.

The services identified at the Subnetwork Layer are:

· Memory Access (memory location read/write, includes read/modify/write)—providing direct access to device memory;

· Synchronisation—providing spacecraft time and event synchronisation;

· Packet—providing packet delivery over a single subnetwork;

· Device Discovery—providing dynamic device recognition;

· Test Service—providing establishment of subnetwork functionality and availability.

SOIS will define a standard subnetwork service interface for each of the services outlined above.

For each SOIS-compliant Data Link there will need to be a mapping of subnetwork services to actual Data Link implementation, including the provision of convergence functions where required. This mapping is left to dedicated groups and possibly SOIS (where no dedicated group is available). SOIS/CCSDS may adopt as recommendations the mappings performed by dedicated groups. An example of such a dedicated group is the ECSS SpaceWire Working Group.
The SOIS subnetwork provides access to the subnetwork medium (e.g. cable) and, as such, does not rely on any underlying services.

2.4 SOIS Naming and Addressing

SOIS requires a consistent and integrated approach to a number of addressing regimes:

· the addressing of devices and, for each service, an abstract, device independent representation of Data Link service parameters (e.g., memory addresses, parameter names);

· translation of addresses by the SOIS application functions and device-dependent drivers;

· the addressing of Data Link service users by data system, service, and user entity;

· the addressing of application service users by data system, service, and user entity;

·
The particular challenge of the SOIS asymmetrical communications model is in ensuring that connection-oriented transactions remain possible given the disjoint addressing capabilities of the two ends of a transaction. This is typified by a low-level device having no cognisance of the addressing to an Application Support Layer entity, requiring that address translation occur through the system and that it be reversible, such that return data is sent to the correct data requestor.

The scope of addressing in the SOIS layers is:

· Application Support Layer— abstract global application entity, storage and device identification, translation between abstract device identification and global network addressing;

· Transfer Layer—global addressing of data systems, routing to multiple subnetworks, selection of subnetwork, conversion between global network address and datalink-dependent address;

· Subnetwork Layer— datalink-dependent subnetwork addressing.
Figure 2‑2 REF _Ref158126616 \h
 shows the application support layer addressing architecture. Here, the application identifies objects to be interacted with via the application support services by an abstract address (e.g. reaction wheel 1). A function common to all application support services is then to convert that abstract address to the concrete network address required by the underlying transfer layer.
[image: image3.png]Application Application)(
e Address Translation Function
Abstract Addresses File/Packet Store/Node/Device id
SOIS App Support API
Application Abstract Address
Support File Services Packet Store Message Transfer 'ﬂA';;'w"fk
Layer Services Services o

Network Addresses

Figure 2‑2: Application Support Layer Addressing

In the SOIS addressing model, the transfer layer uses a spacecraft network address, which is global within a spacecraft, to select the datalink to be used and to derive a datalink-dependent subnetwork address which is used to traverse the subnetwork. This function is shown in Figure 2‑3 provided as part of the subnetwork access functions supporting the SOIS subnetwork API.

[image: image4.png]Spacecraft Network Address

5015 Subnetwork API

Transfer S Spacecraft Network Address to Datalink Selection]
Layer Access ‘Spacecraft Network Address to Spacecraft Network Address to 1553
Functions Spacewire Address Translation Address Translation
Spacewire Address 1553 Address

0I5 Subnetwork Services

Subnetwork SOIS Spacewire 5015 1553
I Datalink Datalink

Figure 2‑3: Subnetwork Addressing

Note that the subnetwork address is only required for the SOIS Subnetwork Packet Service (where it forms part of the Packet Destination Service Access Point (PDSAP) along with user entity identification), the Memory Access Service (where it is the Destination Address) and the Test Service (where it is the Test Address for non-self test operation). The Synchronisation and Device Discovery Services do not require Subnetwork Address lookup (though a reverse lookup may possibly be performed to convert Device Discovery addresses to Spacecraft Network Addresses, Global Network Addresses and Abstract Addresses).

Figure 2‑4 shows the, envisaged most common case where full network protocol functionality (including routing and relaying) is not deemed necessary for intra-spacecraft communications. In this case the application layer support services use the spacecraft network directly. The figure also shows an application directly using subnetwork services. In this case the application support layer may still provide abstract to subnetwork address translation to the application.
[image: image5.png]Application Application ‘ | Application 4
Layer H
| Address
Abstract Addresses File/Packet Store/Node/Device id | Translation
SIS App Support API Function
_ Abstract Address
Application Command.and 1o Spacecraft
Network
EEECILY Packet Store Message Transfer Data e
Layer Services Services Acquisition Translation
ervices
Spacecraft Network Address.
Transfer b | Spacecraft Network Address to Datalink Selection]
Layer Access Spacecraft Network Address to Spacecraft Network Address to 1553
Functions Spacewire Address Translation Address Translation
Spacewire Address. 1553 Address.
SOIS Subnetwork Ser
Subnetwork. SOIS Spacewire SOIS 1553
T Datalink Datalink

Figure 2‑4: Direct use of Spacecraft Network Addressing by the Application Support Layer
Figure 2‑4
Figure 2‑4 is somewhat simplified in that the abstract address to spacecraft network address translation, the spacecraft network address to data link selection and spacecraft network address to datalink address translation functions may also be informed by QoS parameters which may be generated in the application or application support layers. The QoS parameters may include reliability, timeliness or service specific (e.g. time synchronization accuracy) values.
Figure 2‑5 shows the use of UDP/IP in the transfer layer operating over the SOIS packet service.
[image: image6.png]Application Application ‘ | Application =5
Layer i
| Address
Abstract Addresses File/Packet Store/Node/Device id i Translation
! _Function
SOIS App Support API
Application el Abstract Address
1P Address
Support . Packet Store Message Transfer Data. Translation
Layer Services Services Acquisition
Services
IP Address
UDP/IP
Spacecraft Network Address.

Transter ok >
Layer 0]

Subnetwork Spacecraft Network Address to Datalink Selection

ey Spacecraft Network Address to Spacecraft Network Address to 1553

Functions Spacewire Address Translation Address Translation

Spacewire Address 1553 Address
SOIS Subnetwork Ser
Subnetwork SOIS Spacewire S0IS 1553
Layer Datalink Datalink

Figure 2‑5 - Incorporation of IP for Global Addressing, Routing and Relaying
2.5 Management Concepts

SOIS conforms to the established consensus within CCSDS regarding management concepts.

A Protocol Conformance Statement Proforma and accompanying Management Information Base (MIB) description will be mandatory for inclusion in any protocol specification claiming to implement SOIS Services and will include parameters, databases and actions necessary to inform operation of the protocols. The method of access to the MIB by the management system is undefined and may be a combination of preconfigured code, local configuration or remote management via management protocol and local agent.

Management functions within the SOIS architecture configure the SOIS services with respect to Quality of Service, e.g., reserving resources and allocating a channel identifier for those resources and also informing user applications about attributes of the configured service, e.g., informing the user applications about the existence of a channel and the resources which are reserved for it.

2.6 SOIS COMPLIANCE

The SOIS initiative defines standard services at the Subnetwork Layer upon which upper-layer applications may rely. The subnetwork services are independent of the underlying hardware and thus insulate upper layers from the mechanisms of the subnetwork protocols. Further standardisation is provided by defining a common set of Application Support Layer services upon which spacecraft-dependent applications may be built.

Ideally, any SOIS-compliant protocol specification should implement the full set of either Subnetwork or Application Support Layer services, but, in reality, protocol specifiers must have the freedom to select only those services which are required and to omit others in accordance with protocol capabilities. In addition, implementers of these protocols have the freedom to select those services pertinent to their requirements. A SOIS-compliant implementation is therefore compliant to a protocol specification which is itself compliant to SOIS services.

To aid this selection process while still allowing implementers to claim SOIS compliance, the SOIS-compliant protocols shall incorporate Protocol Implementation Conformance Statement (PICS) proformae indicating mandatory and optional elements in support of the SOIS services. These proformae are required to be completed by any developer claiming compliance to SOIS services. The resulting completed form is the Protocol Implementation Conformance Statement for that implementation.

SOIS will endeavour to restrict options to a bare minimum in the interests of promoting interoperability at both protocol and service levels. However, because of the varying capabilities of interfaces and the varying requirements of applications, some profiling will be defined, and appropriate conformance-statement proformae shall be included in any SOIS-compliant protocol definition.

2.7 Examples

The following examples illustrate the SOIS approach.

[image: image7.emf]Application Application Physical Layer Data Link Layer Physical Connection SOIS Subnetwork Layer Services SOIS Application Support Layer Services Physical Layer Data Link Layer SOIS Subnetwork Layer Services SOIS Application Support Layer Services Node x Node y

Figure 2‑62 TC \f G "-2
Symmetrical Communication"
: Symmetrical Communication

In figure 2‑6 it is assumed that all communications are supported by intelligent data systems able to implement a full SOIS protocol stack. This scenario is typically used for communication between application software supported by a processor and associated resources, for example for message exchange using the SOIS message transfer service.

[image: image8.emf]Application Controlled Device Physical Layer Data Link Layer Physical Connection SOIS Subnetwork Layer Services SOIS Application Support Layer Services Physical Layer Data Link Layer SOIS Subnetwork Support Layer Services Node x Node y

Figure 2‑72 TC \f G "-3
Asymmetrical Communication"
: Application Layer Asymmetrical Communication

In figure 2‑7 it is assumed that the controlled device is directly connected to a standard spacecraft Physical and Data Link layer and has sufficient capability to implement SOIS-defined Subnetwork Layer services. Currently, the only SOIS subnetwork service which provides symmetrical communication is the Packet service.
[image: image9.emf]Application Controlled Device Physical Layer Data Link Layer Physical Connection SOIS Subnetwork Layer Services SOIS Application Support Layer Services Physical Layer Data Link Layer Node x Node y

Figure 2‑82 TC \f G "-4
Simple Asymmetric Communication"
: Subnetwork Asymmetric Communication

In figure 2‑8 it is assumed that the controlled device is connected directly to a Data Link and has no capability to implement the SOIS protocol stack. This is typical of sensors and actuators where the interface provides only for reading and writing register values. This example requires an unbalanced method of communication whereby the SOIS capabilities resident in the controlling data system must take full responsibility for the controlled device. Unlike a conventional peer-to-peer data communications scenario, the service is provided at only one service interface although service provision involves more than one data system. The SOIS subnetwork services which operate in this mode are the Synchronisation Service, the Memory Access Service, the Test Service and the Device Discovery Service.
2.8

·
·
·
·
·
·
·

2.9 Plug-and-Play of Spacecraft Devices

SOIS takes a broad definition of plug-and-play, encompassing design-time activities as well as “run-time” or “operation-time” activities. The goals of plug-and-play are:

· Interoperability. Permitting application portability and hardware interoperability promotes reuse and lowers both development and operating costs. Plug-and-play should isolate software application and hardware device, permitting flexibility and innovation in both.

· Adaptivity. Plug-and-play should introduce the ability for systems to adapt to change, such as changes in devices or software. This adaptivity is not necessarily an attribute of the implemented space system, but may instead be associated with the development process. Adaptivity promotes reuse and permits system change late in the development process or during operation.

· Rapidity. The characteristics of plug-and-play should promote shorter development times, assisting design, implementation, integration and testing.

Four scenarios serve to illustrate the use of plug-and-play:

· Rapid spacecraft development. Plug-and-play techniques are used to assist the development of a spacecraft. The resulting space system is expected to be static during operations with no requirement to dynamically detect or configure devices. In this case the plug-and-play adaptivity is in the development tool chain.

· Automated integration and test. Assisted by ground support equipment (GSE), device detection techniques are used to assist integration, checking for integration problems, and to assist and automate testing. In this case the dynamic aspects of plug-and-play are being used, but the adaptivity can be in the GSE rather than the spacecraft.

· Dynamic fault recovery. The device detection capabilities of plug-and-play can be used to assist FDIR, verifying the presence of devices in a standard way. Should a fault occur, recovery can also be assisted by plug-and-play techniques, detecting a powered-on redundant device and automating the reconfiguration of the subnetwork in response. This provides a very limited form of adaptivity in the onboard software.

· Dynamic Device Migration. Some systems may be dynamic during operation, such as those that utilise wireless data links, and may appear, disappear or move; or those that are physically modified with human or robotic interaction, again causing the subnetwork topology to change. In these cases, plug-and-play device discovery and network configuration are utilised to provide a level of onboard adaptivity that can accommodate the expected changes to the subnetwork.

The interoperability and adaptivity characteristics of plug-and-play are created though the use of the Device Virtualisation and Device Access services.

2.10 Device Virtualisation Service Interface

The Device Virtualisation Service (DVS) provides, as its name suggests, a virtual version of a physical device. That virtual version hides the operation of the real device and exposes an idealised interface with a structured syntax and a simplified semantics; the semantics of a virtual device are based on command and acquire operations.

· A command operation modifies a single specified parameter in a device possibly specifying additional parameters. The operation is expected to be self-contained with no unexpected side-effects.

· An acquire operation returns the current value of a specified parameter from a device. Again the operation is expected to be self-contained with no side-effects.

Each virtual device is therefore defined by:

· The list of command operations which are valid for the device. Each command operation is defined by the device parameter being commanded, an identifier and any additional parameters associated with the command operation. Each parameter, in turn, has an identifier and an abstract type.

· The list of acquire operations which are valid for the device. Each acquire operation is defined by the device parameter being acquired and an identifier. The parameter has its own identifier and an abstract type.

This is the main point of interoperability for applications and defines the provided interface for a device. As the main point of interoperability, this interface should be described by an Electronic Data Sheet (EDS) to permit automatic code generation or tooling support (design time adaptivity) or online application configuration (run-time adaptivity). The EDS must describe the available operations using their identifiers and types.

Types are essential for defining the meaning of operations and must be uniquely related to human-readable descriptions and physical quantities. This task is accomplished by the existence of a single Dictionary of Terms (DoT), or ontology, specifying all valid types together with a description of that type and the physical quantity it represents. Physical quantities can be described as a polynomial on standard SI units. The management procedure for the DoT is not yet defined, but it must be:

· universally accessible;

· easy to update with new terms as necessary;

· under the strict control of a management or editing authority to ensure terms are unambiguous and unique.

Types can then be used by virtual devices, to describe their provided interface, and applications, to describe their required interface.

Furthermore, each virtual device and virtual device type must be uniquely identifiable. The approach to this is not yet defined; however, two possibilities exist:

· Use centrally-assigned organisation (vendor) identifiers together with organisation-assigned product identifiers to create a unique identifier. This is the approach used for PCI and USB and would require a single authority for ID assignment such as CCSDS SANA.

· Use algorithmically-generated unique (or practically unique) identifiers such as the standard UUID. This removes the need for a naming authority but requires a larger numeric ID space to provide reasonable assurance of uniqueness (UUIDs are 128-bit).

The portability of applications between virtual devices depends on a match between the device’s provided interface and the application’s required interface. To permit online adaptivity (i.e. a non-static system), a list of available virtual devices is maintained by the Device Enumeration Service. It is possible for an application to enumerate through the complete list (as the name suggests) or, optionally, to be able to query the list for a device offering a provided interface with particular characteristics. These characteristics are described in the terms specified by the DoT. This allows an application to select a device which meets its requirements for a provided interface.

To ensure application portability without requiring online required/provided interface matching, a set of template EDSs are provided, listing the basic provided interface for a given device type. The device types standardised are based on those identified in the [ETSI] study. For a virtual device to be standard it must implement the complete provided interface for one or more device types; it may supplement those operations with additional, device-specific operations, if required. This permits true design-time adaptivity with static applications. Template EDSs are not yet defined.

2.11 Device Virtualisation Service Implementation

For a given device, the DVS must provide the functions specified by its interface using the services provided by the Device Access Service (DAS). DAS offers a simple, device-specific interface which is described in more detail below. The DVS implementation must adapt the parameters and semantics of this interface to match the generic interface provided by the virtual device. This would typically involve: the conversion of values, from device-specific units to standard engineering units (SI); the adaptation of device semantics, to present the simplified semantics associated with a virtual device; and the provision or emulation of necessary device functions which are not provided by the underlying physical device. Depending on the semantics of the physical device, when simplifying operations the DVS may need to manage aspects of device state or modes, such as device acquisitions steps (begin ADC conversion, wait for ADC conversion, acquire result).

2.12 Device Access Service

The Device Access Service (DAS) provides direct access to a device using command and acquire operations. The interpretation of the data associated with these operations, and the side-effects of each operation, are device-specific. The command and acquire operations must access the device using the subnetwork Packet and Memory Access Services (PS and MAS) using a Device-Specific Access Protocol (DSAP), or a local device driver. To do this, DAS must manage states or modes associated both with the DSAP, and with the device itself. The roles taken by DAS and DVS are shown in Figure 2‑9.
[image: image14.emf]

Device Virtualisation

Service

Device Virtualisation

Service

Device Access

Service

Device Access

Service

Subnetwork

Packet or Memory

Access Service

Subnetwork

Packet or Memory

Access Service

Subnetwork

Protocol

Implementations

Subnetwork

Protocol

Implementations

SOIS

Hardware

Device

Hardware

Device

Subnetwork

Implementation

Hardware

Applications

Application

Application

Physical Device

Interface to subnetwork service

Provides acquisition of device vales

Permits device commanding

Manages underlying device modes

Handles device protocol

Standardises device values

Standardises device semantics

Provides all necessary operations

Standard interface

Subnetwork service implementation

Figure 2‑9: Roles of Device Access and Device Virtualisation Services
2.13 Device Discovery and Subnetwork Configuration

Where online adaptivity is necessary, the subnetwork Device Discovery Service (DDS) is used to identify connected devices and receive notifications of device additions/removals to/from the subnetwork. DDS:

· discovers the initial subnetwork topology, including current devices on subnetwork;

· detects any changes to subnetwork topology, including addition or removal of devices through failure or controlled disconnection (inc. power down);

· informs subnetwork management with device discovery information;

· provides notification of device changes (addition/removal).

In response to device discovery, the subnetwork is responsible for configuring the subnetwork-related features of devices, as well as other network resources such as routers. This must be guided by some policy to control, for example, address assignment. Such a policy will typically be mission specific.

2.14 Complete Plug-and-Play Architecture

The complete SOIS plug-and-play architecture is shown below. This includes the ability to use EDSs hosted either on the device or in some EDS repository to permit online adaptivity. Where design-time adaptivity is used, the EDS becomes part of the design flow, aiding or automating the generation of DVS and DAS.

This architecture highlights the ability for SOIS virtual devices to appear as first-class components on a software bus. In Figure 2‑10 below, an adapter is shown, presenting the DVS interface for a virtual device in a form suitable for the software bus. Typically a software bus would utilise the SOIS Message Transfer Service (MTS) for communication between components.

[image: image15.emf]Device Enumeration

Service

Device Enumeration

Service

Application

Application

Application

Application

Software Bus

Software Bus

Device Virtualisation

Service

Device Virtualisation

Service

Device Access

Service

Device Access

Service

Subnetwork

Packet or Memory

Access Service

Subnetwork

Packet or Memory

Access Service

Subnetwork

Protocol

Implementations

Subnetwork

Protocol

Implementations

Subnetwork

Device Discovery

Service

Subnetwork

Device Discovery

Service

Subnetwork

Plug-and-Play

Protocol

Subnetwork

Plug-and-Play

Protocol

Subnetwork

Management and

Configuration

Subnetwork

Management and

Configuration

Policy

Policy

EDS

EDS

EDS

EDS

SOIS

Hardware

Device

Hardware

Device

Subnetwork

Implementation

Hardware

Applications

Application

Application

Adapter

Adapter

Optional

Optional

Figure 2‑10: Complete Plug-and-Play Architecture
2.15 Electronic Datasheet Use

A SOIS EDS is expressed in the Extensible Markup Language (XML) and is tightly defined by an XML schema. A full EDS completely describes the operation of the DAS and DVS services, such that it replaces a paper datasheet entirely. Such an EDS permits all, or portions of, DAS and DVS to be automatically generated for a given device. The EDS encompasses the DVS interface description, described above, which can be used to ensure application portability.

To promote interoperability, the SOIS EDS standard is aligned with two existing, or currently evolving, EDS standards:

· The portion of the EDS describing the DVS interface aligns well with the evolving Space Plug-and-Play Avionics (SPA) standards developed by the US AFRL and proposed for AIAA standardisation. It is intended to fully align the SOIS EDS with this work such that the SOIS EDS is a strict superset of the SPA xTEDS EDS format. This alignment is aided by the choice of XML as the representation for the SOIS EDS.

· The portion of the EDS describing the function of DAS and DVS is functionally aligned with the IEEE 1451.0 TEDS standard. The SOIS EDS is, again, a strict functional superset of the IEEE 1451.0 TEDS such that a TEDS could be machine translated to a SOIS EDS.

In order to be able to express protocols, to allow description of the DSAP, the EDS permits description of machine representations of types, and mappings to constructs such as packets (for PS use), and memory spaces (for MAS use). Machine types can be captured in the DoT to allow reuse between EDS instances. As a DSAP is unlikely to be stateless, the EDS must be able to express protocol states, and state progression rules, including features such as timeouts. The same expressions are used to describe device states or modes for both DVS and DAS implementations.

The logical positions of the EDS technology alignment with xTEDS and IEEE 1451.0 TEDS is shown in Figure 2‑11.

[image: image16.emf]Application

xTEDS

Algorithmic Elements

Translation of

1451.0

TEDS

Algorithmic Elements

Subnetwork

Application

DVS

DAS

DSAP

Subnetwork

SOIS

EDS

Figure 2‑11: Alignment of EDS Technology with xTEDS and IEEE 1451.0 TEDS
The process of EDS generation, and use, is shown in Figure 2‑12.

[image: image17.emf]Device Electronic

Datasheet

(SOIS)

Device Electronic

Datasheet

(IEEE 1451)

Translation

DVS and DAS

Implementations

Auto-Coding

Virtual Device

Interface

Definitions

(xTEDS)

Extract and Publish

If Device has IEEE 1451

Datasheet

If Device Datasheet is

Complete and Device is

Standard Type

Or Auto-Configuration

Figure 2‑12: EDS Generation and Use Process
2.16 Deployment Schemes

Two major methods of deploying the SOIS plug-and-play architecture are recognised:

· Unmodified, standards-compliant, devices where the DAS and DVS services are hosted by an onboard computer (OBC). The DVS interface may then be shared with other computing platforms in a distributed manner using, for example, MTS.

· Modified or “intelligent” devices which host DAS and DVS services on the device itself. Interaction with OBCs is carried out using, for example, MTS.

The first case is shown in Figure 2‑13.

[image: image18.emf]Device OBC

Subnetwork Memory

Access or Packet

Service

Device Access

Service

Device Virtualisation

Service

Application

Subnetwork Memory

Access or Packet

Service

Device-Specific

Access Protocol

Handling

Device Physical

Processes

Device Functionality

Physical Subnetwork

Messaging

Application

Subnetwork Packet

Service

OBC

Application

Messaging

Application

Subnetwork Packet

Service

Physical Subnetwork

Figure 2‑13: Unmodified, Standards-Compliant Device Deployment for SOIS Plug-and-Play Architecture
Here the device is shown on the right, whilst the OBC in the centre hosts the DAS and DVS services. Some devices may be able to support multiple users, in which case each OBC using the device would contain its own independent DAS and DVS instances (identical to the OBC in the centre). Where a device does not support multiple users, the virtual device from one OBC can be distributed to other OBCs using MTS in a transparent manner.

It is a short step from this latter architecture to one in which DVS and DAS are hosted by the device itself. This is shown in Figure 2‑13.

[image: image19.emf]Device OBC

Subnetwork Packet

Service

Application

Device-Specific

Subnetwork

Device-Specific

Access Protocol

Handling

Device Physical

Processes

Device Functionality

Physical Subnetwork

Messaging

Application

Device-Specific

Subnetwork

Device Access

Service

Device Virtualisation

Service

Messaging

Subnetwork Packet

Service

Figure 2‑14: Modified, Intelligent Device Deployment for SOIS Plug-and-Play Architecture
2.16.1 In this case the DVS and DAS services have moved to a processor on the device, but the mechanism for exposing the virtual device interface remains identical to that in the first case. This model, with intelligent devices, is that used in the SPA scheme, and it is this flexibility in the SOIS plug-and-play architecture that will permit interoperability with SPA devices.

·
·
·
·

·
·
·

·
·
·
·
·
·

·

·
·

·
·
·

2.16.2 Impacts on Verification & Validation

The introduction of plug-and-play concepts in spacecraft architectures has impacts on the verification and validation process at different levels of the development, in particular it affects:

· Software validation and reuse;

· Subsystem validation;

· System integration and validation.

2.16.2.1 Plug-and-play, generally speaking, introduces complexity in the onboard software in order to be managed, thus a V&V traditional approach would not exploit the beneficial outcome of this solution.

2.16.2.2 DDS and DES Software Core

The software components dealing with device discovery and enumeration potentially hide a high number of variations and configuration combinations, however not all the foreseen configurations are used by a given subsystem of a specific spacecraft.

This has the following implications:

1. Device discovery and enumeration mechanism need to be validated independently from the possible network/devices configurations (at software component level).

2. Additional validation is needed in the context of the spacecraft where the software components are deployed covering the configurations actually supported.

3. Parts not used in flight (of a particular instantiation of the system or subsystem) need to be deactivated/removed or an analysis needs to be performed showing that unexpected activation of those do not harm the system and the condition is properly managed (e.g. exception, detection and recovery).

4. The system need to be capable to detect failures occurring during the device discovery or enumeration process (e.g. corrupted device type/subtype or EDS, if used online). This capability needs to be exercised as well during the validation of the system.

Plug-and-play related software components need to be developed and validated aiming for reuse, in order to share the effort introduced by the added complexity between a large number of projects.

2.16.2.3 Subsystem Validation

Subsystems (equipments) offering plug-and-play capabilities need to be validated against specific plug-and-play requirements.

Since these features go hand to hand with interoperability, it is essential the availability of a standard test suite to be used to verify if an equipment is compliant to SOIS plug-and-play for the interface it is providing. EDS may support auto-generation or -configuration of such a test suite.
2.16.2.4 System Integration and Validation

Hardware/software and system integration can be simplified thanks to device plug-and-play capabilities, since it is not required anymore to plan a very detailed step by step integration of the equipments.

The validation activity can focus on the functionality of the integrated system, since the basic interface requirement have been previously verified in order to fulfil the plug-and-play requirements.
3 SOIS APPLICATION Support LAYER SERVICES

3.1 Introduction

This section describes the suite of SOIS Application Support Layer services which are designed to provide common services required by applications on any processing data system of the spacecraft. They isolate the applications from the underlying topology and communications architecture of the spacecraft. These services then rely upon services provided by the underlying SOIS layers to carry the services’ protocols over the spacecraft communications architecture.

[image: image22.emf]Application

Support

Layer

Sub-Network Layer

Message

Transfer

Service

File and

Packet Store

Services

Device

Enumeration

Service

Time

Access

Service

Command & Data

Acquisition

Services

User Applications

Transfer Layer

Figure 3‑13 TC \f G "-1
SOIS Application Support Layer Services"
: SOIS Application Support Layer Services

The suite of SOIS Application Support Layer services is as follows:

· Command and Data Acquisition Services (CDAS)—commanding and data acquisition by applications for devices (e.g. transducers and simple instruments) independent of their locations;

· Time Access Service (TAS)—access for applications to the onboard time with bounded accuracy independent of their locations;

· Message Transfer Service (MTS)—communication between applications hosted onboard a spacecraft using asynchronous, ad-hoc, discrete messaging with a bounded latency, including multicast and broadcast, independent of their locations;

· File and Packet Store Services (FPSS)—access by applications to, management of, and transfer of files and packets within a (nominal) global onboard store;

· Device Enumeration Service (DES)—support for dynamic spacecraft configuration.

This section provides an overview of each of the Application Support Layer services (a complete description of each of these services can be found in the relevant CCSDS documents).

3.2 Command and Data Acquisition Services

3.2.1 General

The Command and Data Acquisition Services (CDAS) are used to provide a low-overhead access method for spacecraft hardware devices such as sensors and actuators, regardless of location.

The CDAS are split into a number of capability sets, each served by a distinct service:

· Device Access Service (DAS)—Device Dependant Driver providing basic reading from and writing to devices regardless of location;

· Device Virtualisation Service (DVS)—Standard Device Driver providing reference to a device using a virtual, i.e., generic, image of a physical device;

· Device Data Pooling Services (DDPS)—maintaining an image of the states of a number of devices’ values.

The relationship between the services is shown in figure 3‑2.

[image: image23.emf]Command & Data Acquisition

Services

Device

Access

Service

Device

Data Pooling

Service

Device

Virtualisation

Service

Underlying Services

Applications

Figure 3‑23 TC \f G "-2
Relationship between the Different SOIS Command and Data Acquisition Services"
: Relationship between the Different SOIS Command and Data Acquisition Services

Each device is identified by the user’s using an abstract device identifier. The DDPS and DVS pass this to the DAS, which is responsible for accessing the device. The DAS maps this device identifier onto an access method and appropriate addressing scheme, e.g., a subnetwork service, a device-specific access protocol and subnetwork service access point such as an address.

At this point it is worthwhile introducing the concept of device classes. A device class is an abstraction of specific device implementations into a generic view of groups of devices with a common function. The Device Access Service provides access to a specific device, including the particulars of the function of that device. It may be thought of as a Device Dependent Driver. The Device Virtualisation Service provides access to device classes, with the implementation of the service mapping the common function of the device class onto the specific devices, i.e., by using the Device Access Service. It may be thought of as a Device Independent Driver.

3.2.2 Device Access Service

3.2.2.1 Overview

The Device Access Service (DAS) provides a very basic device data acquisition and commanding capability that can be used directly by software applications, or can be used as the basis for more capable services, such as those performing engineering unit conversions on raw data, or monitoring services. The service user is isolated from the physical location or the detailed knowledge of the device’s electrical interface and access method (be it accessed via direct IO; analogue, digital, pulsed, etc. or a protocol running across a subnetwork or a full network). It may be thought of as a Device Dependent Driver.

The benefit of the service is that the service user is no longer concerned with the details of the location of the sensor, its physical interface or how it is accessed. As a result, configuration changes involving a change in the physical location of a device or changes to its electrical interface do not require changes to the application software using that device.

Although isolated from the details of device location and interface type, the service user must still know the format of the value, corresponding to each command, written to and the format of the value, corresponding to each data item, read from the device, and the user remains responsible for correctly composing and interpreting those formats.

3.2.2.2 Functions Performed

The functions performed by the DAS are:

· Acquire value from device: to acquire a value (i.e. data) from a device, a service user provides a device logical identifier and a value identifier. The service resolves the logical identifier in order to determine the device location and the device-specific access protocol (DSAP) through which it is accessed. The service uses the DSAP to acquire the identified value from the device.
·
· Certain devices asynchronously emit values that are stored by the device’s DSAP. To acquire such a value, a service user provides a device logical identifier and a value identifier, which the DSAP resolves in order to determine the stored value. The DSAP and thence the service then returns the most recently stored value. Optionally, the DSAP and thence the service may also emit an indication to a service user when an asynchronously emitted value from a device is acquired by the service.
· Command a device: to command a device, a service user provides a device logical identifier and a value identifier, together with the command value to be written. The service resolves the logical identifier in order to determine the DSAP by which it is commanded. The service uses the DSAP to command the device and return a response if generated by the device (as some devices do not generate a response to a command).
· The DSAP maps information associated with the request onto functionality of the protocol, which in turn uses an underlying transport (UT) service’s service access point, e.g. destination address and QoS parameters. There are three categories of DSAP, based on the underlying transport service used:

· Packet-based DSAP. A protocol engine on the user’s data system exchanges packets using an underlying Packet Service with a protocol engine on the device, which in turn interacts with the device’s actual functionality.

· Memory Access-based DSAP. A protocol engine on the user’s data system determines memory locations to access (read or write) on the device using an underlying Memory Access Service. On the device, the memory accesses drive a protocol engine that interacts with the device’s actual functionality, e.g. through simply status and command registers or with functionality directly triggered by “reads” or “writes”.
· Direct-access DSAP. A protocol engine on the user’s data system directly interacts with a device using a software device driver and associated hardware, e.g. using memory-mapped I/O.
The logical relationship between the service, the device-specific access protocols and the UT service access points is illustrated in Figure 3‑3. This also illustrates how the Device Access service accesses devices using an underlying packet service or directly accesses then using a local driver.

·

·
·

[image: image24.emf]Device 1 OBC

User

Applications

Subnetwork Packet

Service

Device 1 Access

Protocol

Device 1 Functionality

Subnetwork Packet

Service

Device Access Service

Device 1 Access

Protocol

Device Virtualisation Service

Device 1

Class & Type

Subnetwork Memory

Access Service

Device 2

Class & Type

Device 2 Value ID to

Address Protocol

Mapping

Device 2

Device 2 Access Protocol

Device 2 Functionality

Device 1 Value ID to

Access Protocol

Mapping

Subnetwork-Specific

Packet Protocol

Subnetwork-Specific

Packet Protocol

Subnetwork-Specific

Memory Access

Protocol

Subnetwork-Specific

Packet Protocol

Device 3

Class & Type

Device 3 Value ID to

Driver Mapping

Device 3 Driver

Device 3 Functionality

Device 3 Access

Protocol

Device 2 Access

Protocol

Figure 3‑3: Relationship between DAS, device-specific access protocols and underlying service access points

3.2.2.3 Requirements for Underlying Services

The access mechanisms themselves are provided by underlying services. They depend upon the different devices, but typically take the form of one of the following:

· packet;

·
· memory/register read/write.

Where the same access mechanism may be used to access different devices, the underlying service must provide a unique device identifier, e.g., address.

Where there is a common resource used for accessing multiple devices, e.g., an ADC multiplexer or a subnetwork, contention for the resource may occur. To support the real-time properties required by onboard applications, the underlying services must provide bounded worst-case access times and prioritised access.

3.2.3 Device Virtualisation Service

3.2.3.1 Overview

The Device Virtualisation Service (DVS) provides for the service user to refer to a device using a virtual, i.e., generic, image of a physical device. The service user interacts with the virtual image of the physical device and the DVS service handles the translation of commands to the virtual image into commands to the physical device, and vice versa for data. A simple example of virtualisation is use of the virtual image like a disk drive for a physical device like flash memory. The user does not need to know the physical access mechanism of a flash memory and accesses it by sending commands to access a disk; such commands get translated into appropriate accesses to a flash memory. It may be thought of as a Standard Device Driver.
The benefit of using this service comes from the service user’s being isolated from the physical characteristics of the device so that a class of devices can be commanded in the same manner, by interacting with the virtual device. The functions incorporated into a DVS implementation for a given device would typically exist in an implementation not employing SOIS, usually in the form of a library of functions for handling the device, converting acquired values etc. The explicit specification of a device virtualisation service permits greater abstraction, standardisation, interoperability and portability.
NOTE
–
The Device Virtualisation Service may be used “statically” to provide a clear layered isolation between service users and the particulars of available device and “dynamically” within a plug-and-play system to provide access to the active devices within the (sub-)network.
3.2.3.2 Functions Performed

The functions performed by the DVS are dependent upon the virtual device. However, they fall into two broad categories:

· Commanding: to command a device, a service user provides a device logical identifier, command identifier, and command parameters. The service initiates the command and returns a status indicating the outcome of the command.

· Data Acquisition: to acquire data from a device, a service user provides a device logical identifier and a data identifier. The service typically initiates the acquisition of the identified data from the device and returns the data.

3.2.3.3 Requirements for Underlying Services

The DVS typically uses the DAS to command and acquire data from a device.

3.2.4 Device Data Pooling Service

3.2.4.1 Overview

The Device Data Pooling Service (DDPS) maintains an image of the states of a number of devices’ values. A service user can access the state of a device’s value in data pool without having to generate an explicit data acquisition request for the real device. The DDPS will periodically acquire data from the devices at a determined sampling rate or cache data from devices that asynchronously generate samples. The DDPS may be implemented on top of a DAS implementation.

The benefit of using this service comes from the avoidance of the repetition of multiple users performing the same data acquisitions from devices, thereby reducing traffic on the underlying (sub-)network.

3.2.4.2 Functions Performed

The functions performed by the DDPS are:

· Acquire data from a device and store in data pool. This can take two forms:

· DDPS periodically acquires data from device;

· device asynchronously emits data to DDPS.
Optionally, an implementation can synchronised acquisitions to the subnetwork, using the Subnetwork Synchronisation Service to trigger the period of acquisitions.
Optionally, notify a service user when an acquisition has taken place so the service user can synchronise reading a value and subsequently processing it with the acquisition itself.
· Read value from data pool; allow service users to read values from the data pool.
· Optionally, add, remove, start and stop acquisition orders if the system required dynamic management of acquisitions.
3.2.4.3 Requirements for Underlying Services

The DDPS uses the DAS to acquire data (including asynchronously) from a device.
Optionally, the DDPS uses the Subnetwork Synchronisation Service to synchronise acquisitions to the subnetwork.
3.3 Time Access Service

3.3.1 General

The Time Access Service (TAS) provides service users with a consistent interface to a local time source that is correlated to some centrally maintained master onboard time source by some mission-defined underlying service. The time values provided by this service might typically be used by the application to schedule some operation, such as the acquisition of an image or to time stamp locally generated telemetry data.

The need to provide a local, correlated time source in onboard data systems is common to all spacecraft that have more than one processing data system connected to a subnetwork or a network. A typical architectural scenario is shown in figure 3‑4. Note that the TAS is concerned only with providing the interface to the local time source. Time distribution is addressed by the SOIS Synchronisation Service described in 4.2.3.

[image: image26.emf]

Subnetwork

Layer

Master Onboard

Time Source

Local

Time Source 1

Local

Time Source n

Time

Access

Service n

Application

Layer

Mission

Specific

Applications

Application

Support Layer

Time

Access

Service 1

Mission

Specific

Applications

Data System n Data System m Data System 1

Figure 3‑43 TC \f G "-3
Time Access Services"
: Time Access Services

In this architecture the local time sources are typically free-running hardware counters accumulating seconds and sub-seconds of elapsed time. Each of these counters is driven by its own oscillator, and the absolute frequency and frequency stability of each oscillator are different in each data system. The master onboard time source, the reference for onboard time for all onboard mission operations, is usually a similar free-running counter driven by an oscillator with precise absolute frequency and high stability. The value provided by this time source is usually called the Mission Elapsed Time (MET).

The TAS defines a standard interface between applications hosted on each data system and the local time source for that data system (the scope of TAS is indicated by the dashed box in figure 3‑4).

The benefit is that all service users have a uniform interface to the local time source, regardless of their location on the spacecraft, and have no need to access local hardware directly. This simplifies the development of applications and allows them to be relocated if necessary and re-used in other missions.

3.3.2 Functions Performed

The basic capability provided by the TAS is:

· ‘wall clock’ capability, which enables the application to read the time on demand.

Two optional extensions that reflect common requirements for onboard software systems are also defined:

· ‘alarm clock’ capability, which enables the application to request notification at a particular time;

· ‘metronome’ capability, which enables the application to request periodic notifications with a specified interval and starting at a particular time.

3.3.3 Requirements for Underlying Services

The TAS requires access to a local time source. Where the spacecraft has more than one data system connected to a subnetwork or a network, correlation between the local time source and a master onboard time source may be required. It is assumed that this will be provided by an implementation-specific solution.

3.4 Message Transfer Service

3.4.1 General

The Message Transfer Service (MTS) enables applications hosted onboard a spacecraft to communicate with each other using asynchronous, ad-hoc, discrete messaging with a bounded latency, including querying, multicast (“publish”) and broadcast (“announce”), independent of their locations. The MTS can be used for direct exchange of information or synchronisation between applications or as the basis of higher-level services, e.g., application frameworks. It is a goal of MTS to be efficient and predictable so as to support modelling of onboard software task and communication scheduling.

Note that each service user must be uniquely identified by an ‘MTS Node Identifier’. The transfer of messages between service users may be determined by QoS parameters that, in conjunction with the location of the service users, will determine the underlying service used and its associated QoS parameters.

3.4.2 Functions Performed

The MTS offers the following functions:

· Send a discrete message to another application at a particular priority;

· Receive the next queued discrete message: this is the next queued message waiting to be received, the next message being determined in priority order, FIFO with a priority level.

· Send a query message to another application at a particular priority and receive a reply message back;

Two optional extensions are also defined:

· Multicast a discrete message to all applications within a defined group, i.e. the publish-subscribe pattern;

· Broadcast a discrete message to all applications, a.k.a. announce;

·
The Asynchronous Message Service (AMS) (reference [8]) provides a general service definition that, when mapped onto a predictable RTOS and communication services, meets the general and QoS requirements for MTS. Therefore, MTS adopts the AMS service interface and recommends the AMS protocol specification providing predictable, prioritised delivery of messages and mapped onto an appropriate underlying communication service for exchange of AMS PDUs.

3.4.3 Requirements for Underlying Services

Where the sending and receiving applications reside on different processors, the underlying services shall provide a service to transfer discrete messages between MTS implementations on the different processors. The underlying service must provide for uniquely identifying the source and destination processors, e.g., addresses. To support the real-time properties required by onboard applications, the underlying services must provide bounded worst-case delivery times and prioritised delivery of the discrete messages.

The MTS must provide a queuing mechanism for the messages awaiting reception by a receiving application. This mechanism must deliver the messages in priority order, FIFO within a priority level. Such a mechanism may be provided by an underlying RTOS.

Where the sending and receiving applications reside on the same processors, the message should be placed into the queuing mechanism for the messages awaiting reception by a receiving application. It is an MTS implementation decision how this is achieved.

3.5 File and Packet Store Services

3.5.1 General

The File and Packet Store Services (FPSS) are for use by service users to access, manage, and transfer files and packets within a spacecraft that could contain any type of data, including telemetry, commands and command sequences, software updates, imagery and other science observations. In addition to the general SOIS goal of more reusable applications and tolerance for changes in the spacecraft hardware configuration, use of the FPSS will make it easier to control access and management of shared hardware resources (e.g., mass memories).

A basic concept of this service is the definition of a file or a packet store. A file is a named data set residing in a file store. The packet store may or may not be aware of, and its actions informed by, the contents of a packet, e.g. fields within the packet header. A file or a packet store comprises:

· A memory element in which files or packets reside. This may be implemented in, e.g., local processor memory, hard disk stores, or a dedicated mass memory subsystem;

· An associated file or packet store system providing functionality for managing the files or packets.

Note that no assumption is made about persistence of files or packets in the file or packet store or any file or packet replication strategies.

As indicated in figure 3‑5, the FPSS comprises the following categories of service:

· File Access Service (FAS)—allows access to files and portions of their contents in a file store;

· File Management Service (FMS)—allows manipulation of existing files in a file store;

· Packet Store Access Service (PSAS)—allows storage, retrieval and deletion of packets in a packet store;

· Packet Store Management Service (PSMS)—allows creation and deletion of packet stores.

In addition, optionally the following protocols are required:

· Network Packet Access Protocol—allows access across a (sub-)network to a packet store;
· Network File Access Protocol—allows access across a (sub-)network to a file store;
· Remote Block Storage Protocol—allows access across a (sub-)network to data storage used by a file or packet store.
The File Store may consist of the following:

· Local File System and Remote Data Storage—the file system functionality is local to the SOIS File Services so that it resides upon the user’s data system. The data for the File System is held remotely in Data Storage, e.g. a simple Mass Memory, with a Remote Block Storage Protocol used by the File System to access the Data Storage across a (sub-)network to using a Packet Service.
· Remote File System and Data Storage—the file system functionality is remote to the SOIS File Services so that a Network File Access Protocol is used to access the File System, e.g. on an advanced Mass Memory, across a (sub-)network to using a Packet Service. The Data Storage used by the File System is local so that accesses are internal to that data system.
· Remote File System and Remote Data Storage—the file system functionality is remote to the SOIS File Services so that a Network File Access Protocol is used to access the File System, e.g. on another OBC, across a (sub-)network to using a Packet Service. The data for the File System is held remotely in Data Storage, e.g. a simple Mass Memory, with a Remote Block Storage Protocol used by the File System to access the Data Storage across a (sub-)network to using a Packet Service. The (sub-)network across which the Network File Access Protocol is used may be different to the (sub-)network across which the Remote Block Storage Protocol is used.

This is illustrated in Figure 3‑5.
·
[image: image28.emf]OBC

File Access

and

Management

Services

User

Applications

Subnetwork Packet

Service

SSMM

providing flat Memory I/F

Subnetwork-Specific

Packet Protocol

File System

Remote Block

Storage Protocol

Data Storage

Remote Block

Storage Protocol

Service Primitives

Subnetwork Packet

Service

Subnetwork-Specific

Packet Protocol

 [image: image29.emf]OBC

File Access

and

Management

Services

SSMM

providing a File System I/F

User

Applications

Subnetwork Packet

Service

Network File

Access Protocol

File System

Subnetwork Packet

Service

Network File

Access Protocol

Subnetwork-Specific

Packet Protocol

Subnetwork-Specific

Packet Protocol

Data Storage Service Primitives

[image: image30.emf]OBC

File Access

and

Management

Services

Remote File System (on OBC?)

User

Applications

Subnetwork Packet

Service

Network File

Access Protocol

File System

Subnetwork Packet

Service

Network File

Access Protocol

Subnetwork-Specific

Packet Protocol

Subnetwork-Specific

Packet Protocol

Service Primitives

SSMM

providing flat Memory I/F

Remote Block

Storage Protocol

Data Storage

Subnetwork Packet

Service

Subnetwork-Specific

Packet Protocol

Remote Block

Storage Protocol

Figure 3‑53 TC \f G "-4
File Services Overview"
: Alternative File and Packet Store Services Architectures
Each of these distinct services and required underlying services is described in more detail in the following subsections.
3.5.2 File Access Service

3.5.2.1 Overview

The File Access Service (FAS) provides for the service user to access files and portions of their contents in a file store regardless of its location; i.e., the accessed files can reside in a file store on the spacecraft.

3.5.2.2 Functions Performed

The FAS provides the following capabilities:

· open file;

· close file;

· read from file;

· write to file
·
·
·
·
·
· .

3.5.2.3 Requirements for Underlying Services

Where the file store is located on a different data system from that of the service user, the FAS requires a Network File Access Protocol, carried for example by a subnetwork packet service, to access a Minimum File Store capability, as defined in 3.5.3.3, resident on the remote data system.
Where the file store is located on the same data system to the service user, the FAS requires the provision of a Minimum File Store capability as defined in section 3.5.3.3.

3.5.2.4 Minimum File Store Capability

To enable interoperability, the FS requires a file store to provide the following minimum set of capabilities to be used to access, manage, and transfer files:

· list contents of directory;
· create file;

· open a file;

· close a file;

· read from file;

· write to file;

· delete file;

·
· move file;

· copy file.

Optionally, the file store may also provide the following capabilities:
· create directory;

· remove directory;

· rename directory;
· get current directory;

· lock and unlock files;

· move current user position within file;

· get file status.
The file system shall maintain the following attributes to a file:

· name;

· creation time;

· last write time;

· lock status;

· file size.

·
In an FS implementation, the service primitives must then be mapped to and from the actual file system available. This approach allows complete independence from the technology used to implement the file store. Of course, the way in which this mapping is performed is implementation specific.

3.5.3 File Management Service

3.5.3.1 Overview

The File Management Service (FMS) allows service users to manipulate existing files in a file store regardless of location; i.e., the accessed files can reside in a file store on the spacecraft.

3.5.3.2 Functions Performed

The FMS provides the following capabilities:

· list directory contents;
· create file;

· delete file;

· copy file;

· move file.

· Optionally, the FMS may provide the following capabilities:
· create directory;

· get current directory;

· change directory;

· delete directory;

· rename directory;

·
·
·
·
·
·
·
·
·
·
· lock file;

· unlock file;

· find file;

· seek within file;

· get file status
· .

3.5.3.3 Requirements for Underlying Services

Where the file store is located on a different data system from that of the service user, the FMS requires a Network File Access Protocol, carried for example by a subnetwork packet service, to access a Minimum File Store capability, as defined in section 3.5.3.3, resident on the remote data system.
Where the file store is located on the same data system as the service user, the FMS requires the provision of a Minimum File Store capability, as defined in 3.5.3.3.

3.5.4

3.5.4.1

·
·
·
·
·
·
·
3.5.4.2

3.5.4.3

·
·
·
·
·
·
·
·
·
·
·

3.5.5 Packet Store Access Service

3.5.5.1 Overview

The Packet Store Access Service (PSAS) provides for the service user to store, retrieve and delete packets in a packet store regardless of its location; i.e., the accessed packets can reside in packet stores local or remote to the service user on the spacecraft.
A stored packet is, at a minimum level of complexity, a delimited data structure. Depending on the packet type, various structural elelements of the packet may be accessible to the PSAS. These include packet identifiers, protocol identifiers or routing information. Examples of such packets are CCSDS packets, IPv4 and IPv6 packets or CCSDS encapsulation packets. Packets can be time-stamped with the time the packet was stored, a user-supplied time or a time embedded within the packet.
A packet store can be organised as a bounded FIFO, an unbounded FIFO or a random access store. Packet selection criteria are based on time-stamps associated with the packet or, where available, other fields within the packet header or user-defined structures within the packet.
3.5.5.2 Functions Performed

The PSAS provides the following capabilities:

· get packet stores information;

· clear a packet store;

· write packets to a packet store;

· read packets from a packet store;

· move position in packet store;

· free packets from a packet store;

· report status of a packet store.

· Optionally, the PSAS may provide the following capabilities:
· dump packets from a packet store to ground using the spacecraft Telemetry system;

· select packets in a packet store;

· read selected packets in a packet store;

· free selected packets in a packet store;

· dump selected packets from a packet store to ground using the spacecraft Telemetry system.

3.5.5.3 Requirements for Underlying Services

Where the packet store is located on a different data system from that of the service user, the PSAS requires a Network File Access Protocol, carried for example by a subnetwork packet service, to access a Minimum Packet Store capability, as defined in 3.5.4.4, resident on the remote data system.
Where the packet store is located on the same data system to the service user, the PSAS requires the provision of a Minimum Packet Store capability, as defined in 3.5.4.4.

3.5.5.4 Minimum Packet Store Capability

To enable interoperability, the PSAS requires a packet store to provide the following minimum set of capabilities to be used to store, retrieve and delete packets:

· reset – delete all packets in a packet store;

· write – write n packets to the packet store;

· read – read the next n packets from the packet store;

· move by – move the user’s next packet pointer backwards or forwards in the packet store;

· free – free the oldest n packets in the packet store;

· status report – report the status of the packet store.

1. Optionally, the packet store may provide the following capabilites:
· dump packets to ground using the spacecraft Telemetry system;

· selective seek – create a new set of packets in the packet store meeting the specified criteria;

· selective read – read the next packets in a set in the packet store selected by the selective seek capability;

· selective free – free the oldest packets in a set in the packet store selected by the selective seek capability;

· selective dump – dump to ground using the spacecraft Telemetry system the next packets in a set in the packet store selected by the selective seek capability.
3.5.6 Packet Store Management Service

3.5.6.1 Overview

3.5.6.2 The Packet Store Management Service (FMS) shall allow the service user to create and delete packet stores, regardless of that packet store store’s location; i.e., it can be local or remote with respect to the service user on the same spacecraft.
3.5.6.3 Functions Performed

The PSMS provides the following capabilities:

· make a packet store;

· remove a packet store.

3.5.6.4 Requirements for Underlying Services

Where the packet store is located on a different data system from that of the service user, the PSAS require a Network File Access Protocol, carried for example by a subnetwork packet service, to access a Minimum Packet Store capability, as defined in 3.5.4.4, resident on the remote data system.

Where the packet store is located on the same data system to the service user, the PSAS requires the provision of a Minimum Packet Store capability, as defined in 3.5.4.4.

3.5.6.5 Minimum Packet Store Capability

To enable interoperability, the PSMS requires a packet store to provide the following minimum set of capabilities to be used to make and remove packet stores:

· make – make a packet store;

· remove – remove a packet store.

2. Device Enumeration Service
3.5.7 General
3.5.8 The Device Enumeration Service provides of all accessible devices in a spacecraft, including management and notification of devices added or removed, a.k.a. “plug-and-play” management.

3.5.9 Management of added devices consists of allocating a system-wide unique device identifier, discovering the functions provided by the devices and configuration of the SOIS Application Support Services to enable user access to the services provided by the device.

3.5.10 Management of removed devices consists of configuration of the SOIS Application Support Services to remove user access to the functions that were provided by the device.
3.5.11 Management of available devices consists of the ability to search for devices which meet particular interface and/or functional criteria.
3.5.12 Functions Performed
The DES provides the following capabilities:

· Management and user notification of added devices, through the following mechanisms:
3. “Bottom-up”. Discovery of added devices is provided by Device Discovery Services within the different subnetworks and this is notified to the Device Enumeration Service. This is mandatory.

4. “Top-down”. Service users (higher level services or applications) notify the Device Enumeration Service of an added device. This is optional.
· Management and user notification of removed devices, through the following mechanisms:
1. “Bottom-up”. Discovery of removed devices is provided by Device Discovery Services within the different subnetworks and this is notified to the Device Enumeration Service. This is mandatory.

2. “Top-down”. Service users (higher level services or applications) notify the Device Enumeration Service of a removed device. This is optional.
· Management of existing devices, through the following mechanisms:
1. Enumeration of all devices. This is mandatory.

2. Enumeration of devices which match certain criteria. This is optional.
3.5.13 Requirements for Underlying Services

A Device Discovery Service is required for each supported subnetwork type.

Control of the MIBs of the Device Virtualisation Service and the Device Access Service is also expected.

NOTE
–
It is expected that in future there may be standardisation of protocols to discover the services provided by a physical device directly from the physical device itself. These protocols will have associated expected services from the underlying layers.
4 SOIS subnetwork services

4.1 Introduction

The SOIS subnetwork is decomposed into a number of layers and sublayers as illustrated in figure 4‑1. The uppermost sublayer exposes a standard set of SOIS services to upper-layer applications. These services are supported by two underlying mechanisms:

· Where the capabilities provided by the underlying Physical and Data Link layers already support the required SOIS service, a direct mapping of the Data Link service to the SOIS subnetwork is performed.

· Where the capabilities of the underlying Physical and Data Link layers do not support the required SOIS service, additional functionally must be provided by the SOIS convergence sublayer in order to achieve the required SOIS subnetwork service. The convergence sublayer may require the provision of a protocol to provide the required functionality. While it is tempting to assume that a single protocol could be developed to operate over all types of Data Link layers, in reality the requirements of the convergence sublayer protocol will be highly dependent on the diverse services provided by individual Data Link protocols.

[image: image32]
Figure 4‑14 TC \f G "-1
SOIS Subnetwork Decomposition"
: SOIS Subnetwork Decomposition

It should be noted that it may not be feasible, or desirable, to provide all SOIS subnetwork services over all Physical and Data Link layer combinations. For example, a simple sensor interface is not likely to require or support packet or time distribution. To support such variation in capability, the SOIS services are defined independently of each other.
To provide a set of services that are feasible and realistic to support, account must be taken of implementation constraints and variability in design choice. For example:

· Priority of transfer may be supported by multiple queues at the Data Link layer, with each queue assigned a certain priority. It could equally be implemented using a single queue at the Data Link layer and assigning priority at a high layer of protocol. Alternatively, priority may be on a first-come-first-served basis.

· Data transfer may be guaranteed by the Data Link layer protocol; alternatively, the Data Link layer may provide a best-effort service which may be optionally improved by Transfer Layer retransmission protocols. Furthermore, for time-critical data transfers it may be undesirable to perform any retransmission, although retransmission may still be utilised with a bounded time after which the data is considered useless and retries are abandoned.

To account for this variability in implementation, the SOIS services will include optional parameters as part of the service primitive. It will be up to the implementer to decide which optional parameters will be used.

Controlling the detailed effect of these parameters on the operation of subnetwork functions is a management function as is the task of informing subnetwork users of the characteristics associated with each parameter. For example, it could be a management function to reserve resources in the subnetwork and assign a channel number to these resources and then to inform the user of the subnetwork service as to the resources reserved and the channel number required to access them.

The following set of services has been selected for SOIS subnetwork standardisation:

· Packet;

· Memory Access;

· Synchronisation;

· Device Discovery;

· Test.

4.2 SOIS Subnetwork Service Descriptions

4.2.1 Packet Service

4.2.1.1
The SOIS packet service supports the transfer of data packets over a single bus/subnetwork while presenting a consistent, uniform interface to the service users. It enables the multiplexing of multiple network protocols with a range of QoS support over underlying Data Links. A variety of qualities of service are available including priority, resource reservation and reliability.
4.2.1.2
An implementation of the packet service must provide functions that are necessary to transfer data across a single bus/subnetwork. Required functionality of the underlying Data Link layer may vary according to the requested QoS. For example, an implementation of this service over MIL-STD-1553B requires the following functions:

· Subnetwork address translation, which translates the data destination address provided by the service user into a MIL-STD-1553B bus terminal address;

· Protocol Identification that ensures that incoming data are directed to the appropriate entity in the Transfer or Application Support layers;

· Segmentation, that breaks large data units into segments of data that can be transferred using a sequence of MIL-STD-1553B messages, each with a maximum size of thirty-two sixteen-bit data words.

By contrast, the implementation of this service to carry, for instance, IP packets reliably over a SpaceWire network requires the following functions:

· protocol multiplexing, if other types of protocols and services, such as SCPS packets or DAS PDUs, share the bus;

· address translation, which translates the data destination address provided by the service user into a data system address that is recognised on the SpaceWire network;

· resource reservation, which assures that the packet has the bandwidth or slot allocation required;

· retry function, such as LLC, which will guarantee delivery or send back status to the service user if delivery could not be completed;

· redundancy function, which will provide an alternate path on the Data Link if the primary path is not available or healthy.

A major function of the packet service, and an essential one in time critical installations, is to provide either prioritisation of PDUs or resource reservation.
The send interface to the packet service accepts the SDU to be transmitted along with parameters related to addressing and quality of service. Together, these parameters supply all the information needed for transporting the PDU, across a specific bus/LAN, to its destination with a given QoS.

Service class encompasses retry and resource reservation in a single QoS identifier that specifies to the packet service how an SDU is to be handled. There are four principal service classes supported: Best Effort, Assured, Reserved and Guaranteed.
The Best Effort service class provides for non-reserved, try-once communication. It makes no promises about the time of delivery, the network bandwidth available, or the error rate of the traffic. Several priority levels can be provided for Best Effort traffic. Traffic with a higher priority level is treated preferentially compared to traffic with a lower priority level.

The Assured service class provides for non-reserved communication with retries. It tries to ensure that the traffic arrives at the intended destination. If the data does not arrive safely at the destination then it is resent. To support this, the destination acknowledges the receipt of Assured traffic. For Assured traffic the same priority levels as those for Best Effort traffic amy be provided.

The Reserved service class provides for best-effort communication over a resource-reserved logical link. It is able to ensure the time of delivery and the network bandwidth available through the use of dedicated channelisation but makes no promises about the error rate of the traffic. Traffic may be lost but if it does arrive at the destination it will do so in a timely manner.

The Guaranteed service class provides for resource-reserved communications with retries. It is able to ensure the time of delivery, the network bandwidth available, and tries to ensure that the traffic arrives at the intended destination without error.

Any combination or indeed all of these traffic classes may be used in the same SOIS system.
The protocol multiplexing function supports the multiplexing and de-multiplexing of the different network protocols over the underlying Data Link links. Examples of protocols to be supported are IPv4, IPv6, and SCPS-NP. Abstract protocol identification is translated to subnetwork-specific capabilities in the Data Link layer.

4.2.2 Memory Access Service

4.2.2.1
The SOIS memory access service provides the capability to read or write data from or to a memory or register location in a device. Data can be read/written one word at a time, or as a block of words that are loaded into contiguous memory locations on the target device.

This is an asymmetric service that is provided to the service user by functions in the subnetwork. The service can read data from or write data to devices that are:

· directly connected to the data system, e.g., through a serial digital interface or a SpaceWire link;

· directly connected to a bus that is attached to the data system, e.g., a MIL-STD-1553B data bus.

The service user must know the details of the physical port and/or channel to which the device is connected, and the memory/register mapping of the device where data is to be read written. The service provides an abstract hierarchy of device, memory identifier and memory address.
The memory access service also provides for an atomic read/modify/write capability.
Quality of Service aspects supported by this service relate to reporting the results of memory access operations and for verification of data prior to writing to memory.
4.2.2.2

4.2.3 Synchronisation Service

4.2.3.1
The SOIS synchronisation service provides the capability to inform the subnetwork user of events within the subnetwork. The event may be an asynchronous event, e.g., a notification of a change in subnetwork configuration, or a synchronous event such as a time notification.

The service can be solicited by the user where, for instance, the instantaneous time is requested or can be unsolicited, e.g., where a network reconfiguration event is notified or where a regular time signal is produced. It may be necessary for the subnetwork user to register for reception of some synchronisation events via the SOIS management functions.

4.2.3.2

4.2.4 Device Discovery Service

4.2.4.1
The SOIS device discovery service provides the capability to detect devices becoming active following a change in the hardware configuration of the spacecraft. This may occur when a cold redundant device is powered on, for example. This service discovers devices that are:

· directly connected to the data system, e.g., through an analogue or digital interface;

· directly connected to a bus that is attached to the data system, e.g., a MIL-STD-1553B data bus.
· Device discovery may also be initiated by a user entity requesting that the subnetwork be scanned for devices present.
4.2.4.2

4.2.5 Test Service

The Test Service is intended to be used for checking data system functionality and connectivity of the subnetwork. The service is used to check operation of the subnetwork aspects of the local data system as well as subnetwork connectivity to other data systems. The return parameters may be dependent on the inherent capabilities of the Data Link layer protocol. As a minimum the service should return a go/no-go status, but this may be augmented by error codes, bit rate selection, prime/redundant media active, etc. The service does not indicate the correct operation of other subnetwork services but allows for the reporting of subnetwork-specific status.

4.3 Subnetwork functions

4.3.1 General

Subnetwork functions combine to provide subnetwork services by implementing a common set of functionality, described in the following subsections. Not all buses/subnetworks provide the full set of required Subnetwork functionality. Where necessary, the Convergence layer provides the missing functionality for each of the buses/subnetworks.
The functions which have been identified which can provide the capability to support the full range of SOIS subnetwork services, either inherently by the Data Link or by the addition of convergence functions, are:

· redundancy;

· integrity;
· retry;

· segmentation;

· resource reservation;

· prioritisation;

· sequence preservation;
· protocol multiplexing.
In addition some functions are necessary to support specific services. These are:
· memory access;
· synchronisation;
· device discovery;
· test.

Figure 4‑2 shows the Data Link layer general purpose convergence functions required with reference to examples of Data Link types.

[image: image34.emf]SOIS Subnetwork

Ethernet

Mapping

Protocol

Multiplexing

Sequence

Preservation

Prioritisation

Address

Translation

Resource

Allocation

Segmentation

Integrity

Redundancy

Retry

Ethernet

SpaceWire

Mapping

Protocol

Multiplexing

Sequence

Preservation

Prioritisation

Address

Translation

Resource

Allocation

Segmentation

Integrity

Redundancy

Retry

SpaceWire

IEEE1394

Mapping

Protocol

Multiplexing

Sequence

Preservation

Prioritisation

Address

Translation

Resource

Allocation

Segmentation

Integrity

Redundancy

Retry

IEEE1394

CAN

Mapping

Protocol

Multiplexing

Sequence

Preservation

Prioritisation

Address

Translation

Resource

Allocation

Segmentation

Integrity

Redundancy

Retry

CAN

MIL-STD-1553B

Mapping

Protocol

Multiplexing

Sequence

Preservation

Prioritisation

Address

Translation

Resource

Allocation

Segmentation

Integrity

Redundancy

Retry

MIL-STD-1553B

Means that the function is, to a substantial extent, already included in the specific data-link

SOIS Subnetwork Services

Figure 4‑24 TC \f G "-2
SOIS Data Link Functions"
: SOIS Data Link Convergence Functions

Each Data Link comprises a Quality of Service domain in which the QoS requirements are reconciled amongst all SOIS services and users supported by that Data Link. Functions within the subnetwork may be applied across all services even though these functions are not observable at the service interface. For instance, prioritisation and resource reservation are explicitly evident and may be selected on a per-SDU basis at the Packet Service interface. In order to not to impact on Packet Service provision, other services that are provided in the subnetwork may be assigned priority or resource reservation levels dedicated to that service. In addition, for all services, prioritisation or resource reservation may be allocated on a per service user basis by management.
SOIS subnetworks do not support priority levels within a reserved resource. This would introduce a level of complexity, particularly with regard to sequence preservation, that is regarded as unnecessary in the SOIS environment. For this reason, a single Criticality QoS parameter is used which may be interpreted as either a priority or as a reserved resource depending on the capability of the subnetwork. Note also that prioritisation or resource reservation may selected within the subnetwork by reference to, for instance, the identity of the service user (i.e. the Service Access Point). This relationship would be established via subnetwork management.
Note that segmentation is used in the general sense as is prevalent within CCSDS, to divide large SDUs into smaller units suitable for transmission over the subnetwork, rather than in the specific sense used by TCP to indicate stream segmentation.
4.3.2 Convergence Functions
4.3.2.1 Redundancy Function

The redundancy model adopted by SOIS is that of equivalent Data Links that provide alternative paths from a source end-point to a destination end-point on a single subnetwork. The architecture supports autonomous switching between equivalent Data Links. Non-autonomous switching of paths can be done by an application specifying the bus/link/path to be used (using different destination addresses) or reconfiguring routing tables used to select which link is used for a particular address. Applications may control autonomous redundancy and link-level retry by using a management parameter associated with the transmit service class. It should be noted that system management policy might uniformly dictate a redundancy policy which applications must use.

Link equivalence requires two independent paths to a destination. These redundant paths may be used in one of three ways:

1. sending data over both paths at the same time;

2. sending over the prime link and then if there is a failure using the redundant link (often used for MIL-STD-1553B bus);

3. sending over either link, and then if there is failure of one link all traffic goes over the remaining link.

The link redundancy function is bus/subnetwork specific. Users of the subnetwork service may not select the redundancy function on a data-unit-by-data-unit basis. However, use of the redundancy function may be defined on a user-by-user basis by management.
4.3.2.2 Integrity Function

The integrity function delivers data units without errors. That is to say, it discards data units within which errors are detected. Other functions (e.g. retry) may or may not be informed of instances of data discard depending on implementation.
4.3.2.3 Retry Function

The link-level retry function provides a mechanism for resending PDUs that are not received at the other end of the Data Link, either through data unit loss or data unit discard because of errors. The retry mechanism itself is subnetwork specific. Consideration should be given to any QoS parameters when setting the time-out and retry values, i.e., packets that have bounded latency requirements. If multiple copies of the same PDU arrive at the destination, only one copy of an SDU will be delivered to the user. The retry function is necessary to provide the formal quality of service of “completeness”.
4.3.2.4 Segmentation Function

Segmentation is needed if the underlying datalink cannot support the maximum SDU size in a single packet on the datalink. Segmentation may also be necessary to reduce latency caused by large data units in the Data Link queues. It is the Data Link’s responsibility to segment the PDUs if necessary and to reassemble them at the other end of the Data Link to reform the original PDUs before they are passed to the user of the Subnetwork Layer service. Note that, as all services are provided without error (via the integrity function), loss of a segment will result in loss of the whole packet unless retransmission is implemented at the segment level in the subnetwork. The segmentation function is bus/subnetwork specific.

4.3.2.5 Resource Reservation Function

Resource reservation assigns Data Link resources to subnetwork traffic.

It is able to ensure the time of delivery and the network bandwidth available through the use of dedicated channelisation. Although this function is only explicitly invoked by the Packet Service, PDUs generated in support of other services will need to conform to channelisation if it is present in support of the Packet Service. The channelisation for these services is controlled by management and may be on a per service or per SAP basis. By this management mechanism, all services may make use of the resource reservation function even if it is not invoked by explicit service primitive parameters,

Implementation of the resource reservation function is datalink specific.

4.3.2.6 Prioritisation Function

The Prioritisation function queues incoming SDUs for transmission in priority order, that is to say, highest priority first, with FIFO ordering of SDUs within the same priority level. It is informed by the Criticality parameter in the subnetwork data service request.

4.3.2.7 Sequence Preservation
Sequence Preservation guarantees the formal “in sequence” quality of service. Typically, this means the implementation of a sequence auditing mechanism (typically a counter) and discarding PDUs that are received out of sequence.
Alternatively it is also possible to buffer PDUs and to wait for missing PDUs when a sequence gap is detected. This mechanism is typically implemented in conjunction with the retry function when providing Assured and Guaranteed Packet Service classes. It introduces variable delays into SDU delivery which may be undesirable.
4.3.2.8 Protocol Multiplexing Function

The protocol multiplexing function allows multiple Network or higher-layer entities to access Subnetwork Layer services. This is achieved via a protocol identification capability specific to the subnetwork. This capability is used to direct service indications to the appropriate Network or higher-layer entities.
4.3.3 Service Specific Functions

4.3.3.1 Memory Access Function

An implementation of the memory access service must provide functions to write data to or read data from locally connected devices as well as to provide the QoS aspects. These functions are specific to the actual device interfaces that are used.
4.3.3.2 Synchronisation Function

An implementation of the synchronisation service requires a synchronisation function that will depend on the nature of internal events in the subnetwork that can be conveyed to the subnetwork user. In the case of a time notification and depending on required accuracy, the function may be implemented by any combination of time messages in the subnetwork, dedicated timing infrastructure in the subnetwork, and locally maintained time sources inside the data systems of the subnetwork.
4.3.3.3 Device Discovery Function

An implementation of the device discovery service must provide functions to detect subnetwork/device configurations, e.g., by detecting subnetwork events or by periodically scanning for attached devices. These functions are specific to the subnetwork to which devices may be attached.
4.3.3.4 Test Function

The test function implements the test service. This can range from a simple data system present or not present test to more complex diagnostics.
5 Security
Security Background

The SOIS services are intended for use with protocols that operate solely within the confines of an onboard subnet. It is therefore assumed that SOIS services operate in an isolated environment which is protected from external threats. Any external communication is assumed to be protected by services associated with the relevant space-link protocols. The specification of such security services is out of scope of this document.

Security concerns

At the time of writing there are no identified security concerns. If confidentiality of data is required within a spacecraft it is assumed it is applied at the application layer. For more information regarding the choice of service and where it can be implemented, see [12].

Potential threats and attack scenarios

Potential threats and attack scenario typically derive from external communication and are therefore not the direct concern of the SOIS services which makes the assumption that the services operate within a safe and secure environment. It is assumed that all applications executing within the spacecraft have been thoroughly tested and cleared for use by the mission implementer. Confidentiality of applications may be provided by application layer mechanisms or by specific implementation methods such as time and space partitioning. Such methods are outside the scope of SOIS

Consequences of not applying security

The security services are out of scope of this document and should be applied at layers above or below those specified in this document. If confidentiality is not implemented, science data or other parameters transmitted within the spacecraft might be visible to other applications resident within the spacecraft resulting in disclosure of sensitive or private information.
6 Use of SOIS
This section presents recommended best practise on the use of SOIS for certain spacecraft system architectural issues.

6.1 Access to TM/TC Equipment
[image: image35.emf]TM/TC Equipment

OBC

Onboard

Applications

TM/TC Equipment

Access Protocol

Space Link

Control

Space Link

Functionality

Device Access Service

TM/TC Equipment

Access Protocol

Device Virtualisation

Service

TM/TC Module

Class & Type

Subnetwork Packet

Service

Subnetwork-Specific

Packet Protocol

Subnetwork Packet

Service

Subnetwork-Specific

Packet Protocol

Device 1 Value ID to

Access Protocol

Mapping

Figure 6‑1. Recommended SOIS Architecture to Access TM/TC Equipment
The recommended SOIS architecture to enable onboard applications to access spacecraft TM/TC equipment over a subnetwork is to treat the TM/TC equipment as a virtualised device, as illustrated in Figure 6‑1. This consists of the following items:

· a packet protocol for communicating over the subnetwork between the TM/TC equipment and the onboard computer (OBC) upon which the onboard application resides;
· a Subnetwork Packet Service implementation that uses the subnetwork-specific packet protocol to exchange packets between the TM/TC equipment and the OBC;

· a TM/TC equipment-specific access protocol, that it used to provide a monitoring and control (M&C) interface to the TM/TC equipment;

· a Device Access Service implementation that maps data acquisitions and commands for the logical device identifier assigned to the TM/TC equipment to the TM/TC equipment-specific access protocol;

· a Device Virtualisation Service implementation that provides a TM/TC equipment device class mapped to the particulars of the M&C interface of the TM/TC equipment used on the spacecraft.
To receive a packet [3] from the Space Link, there are two approaches the M&C interface of the TM/TC equipment may implement:

· Polled – The onboard application periodically polls the M&C interface of the TM/TC equipment to determine if a packet has been received and is buffered in the TM/TC equipment. The result may itself be the packet otherwise the onboard application can then read the packet from the TM/TC equipment.
· Asynchronous Notification – Upon receiving the packet, the TM/TC equipment can asynchronously notify or immediately forward the packet to an onboard application. In the former case the packet must be buffered by the TM/TC equipment and subsequently read by onboard application.
To send a packet [2] across the Space Link, the onboard application should command the TM/TC equipment to send a packet, with the packet itself being part of the command. The command may also contain QoS information such as the virtual channel upon which the packet is to be sent.

Note there are alternative architectures where an advanced packet store may itself send one or more packets directly to the TM/TC equipment, rather than an onboard application first retrieving them from the packet store.
The chosen approach should depend upon the manner in which the subnetwork is managed. Polling, e.g. used on MIL-STD-1553B, allows for predictable communications but can waste bandwidth. Asynchronous notification, e.g. used on vanilla SpaceWire and IP-based networks, is more reactive but can suffer from blocking or congestion.
6.2 Bridging the Onboard Network and the Space Link
The onboard network can be treated as part of a single mission network, incorporating the ground network and the space links. In such a scenario, the TM/TC equipment can act as a Bridge.

Such an approach requires further study and is not recommended at this point in time.
6.3 Implementing Space Internetworking Protocols

This section identifies recommendations on the use of the SOIS architecture to implement certain standard and/or typical Space Internetworking Protocols:
· Packet-based message protocol, e.g. ECSS PUS [TBD reference] – The architecture defined in section 6.1 is recommended to receive telecommand packets (TC) and to send telemetry packets (TM).
· CFDP [6] – The architecture defined in section 6.1 is recommended to send and receive CFDP PDUs to and from TM/TC equipment. Where Extended Procedures or the Store and Forward overlay are deployed, the CFDP implementation is responsible for handling multiple TM/TC equipment for different Space Links. CFDP also requires an onboard file system; it is recommended to use the SOIS File Access and Management Services for this purpose. This has the added advantage that onboard applications can use the same onboard file system as CFDP but directly (and therefore more efficiently) using the SOIS File Access and Management Services.
· DTN [9] – The architecture defined in section 6.1 is recommended to send and receive BP [10] or LTP [11] PDUs to and from TM/TC equipment. The BP implementation is responsible for handling multiple TM/TC equipment for different Space Links.
Where multiple Space Internetworking Protocols are deployed upon a spacecraft, it is expected that the CCSDS Encapsulation Service [4] be used with the associated Protocol Identifier field used to de-multiplex the PDUs of the different Space Internetworking Protocols for the different protocol implementations at the OBC.
ANNEX A

ACRONYMS and Abbreviations

This annex identifies and defines the acronyms and abbreviations used in this Report.

AMS

Asynchronous Message Service

API

Application Programming Interface

BP

Bundle Protocol

CCSDS
Consultative Committee for Space Data Systems

CDAS

Command and Data Acquisition Services

CFDP

CCSDS File Delivery Protocol

DAS

Device Access Service

DDPS

Device Data Pooling Service

DES

Device Enumeration Service

DVS

Device Virtualisation Service

EGSE

Electrical Ground Support Equipment

FAS

File Access Service

FIFO

First In, First Out

FMS

File Management Service

FPGA

Field Programmable Gate Array

FPSS

File and Packet Store Services

ISO

International Standards Organisation
LAN

Local Area Network

LLC

Logical Link Control
LTP

Licklider Transmission Protocol

MIB

Management Information Base

MTS

Message Transfer Service

NP

Networking Protocol
OBC

Onboard Computer
OSI

Open Systems Interconnection

PDU

Protocol Data Unit

QoS

Quality of Service

PSAS

Packet Store Access Service

PSMS

Packet Store Management Service

RMAP

Remote Memory Access Protocol

RTOS

Real Time Operating System

SAP

Service Access Point

SCPS

Space Communications Protocol Specification

SDU

Service Data Unit

SOIS

Spacecraft Onboard Interface Services

TAS

Time Access Service
TC

Telecommand
TCP

Transmission Control Protocol
TM

Telemetry
UDP

User Datagram Protocol

[image: image36.png]

Data Link Layer

SOIS Data Services

Convergence Sublayer

Physical Layer

Management I/F

Management I/F

Management I/F

� Internet Request for Comments (RFC) texts are available on line in various locations (e.g., http://ietf.org/rfc/); Internet standards are made up of one or more RFCs, which are identified in square brackets following the entry.

�CT to closely review, improving the positives while not discounting the implications

�This statement needs to be balanced with a positive statement about the benefits of plug-and-play (Felice)

[image: image1.emf]_1288009484.vsd
Sub-
network
Layer

SOIS Memory Access Service

SpaceWire Data Link

Convergence Functions to SpaceWire

SAP

RMAP

SOIS Packet Service

Others...

Application
Support
Layer

SAP

MTS

Receiver App ID, QoS

SOIS Packet Transfer Service,
Subnetwork, destination subnetwork address, (no QoS parameters)

Underlying Service Selection and Subnet Lookup Function

MTS Protocol Engine

SOIS Packet Service mapping

DAS

Device ID

SOIS Memory Access Service
Subnetwork, destination subnetwork address, QoS=Acknowledged

SAP

File System ID, QoS

Underlying Service Selection and Subnet Lookup Function

DAS Protocol Engine

Device ID
Read Operation
Address,
QoS

Application

Value

SOIS Memory Access Service mapping

SAP

SOIS Packet Transfer Service,
Subnetwork, destination subnetwork address, (no QoS parameters)

Underlying Service Selection and Subnet Lookup Function

Source subnetwork address
Destination subnetwork address
QoS Parameters
PID(=MTS), SDU(=MTS PDU)

Source subnetwork address
Destination subnetwork address
Memory ID, Memory location(s)
QoS Parameters,
PID(=DAS), SDU(=DAS PDU)
Memory Access Operation

Value

Source subnetwork address
Destination subnetwork address
QoS Parameters
PID(=FS), SDU(=FS PDU)

FS

FS Protocol Engine

SOIS Packet Service mapping

SAP

Sender App ID
Receiver App ID
MTS QoS = [At least once | at most once | exactly once], Priority
Message

Sender Application

App ID
File System ID, File ID
FS QoS = [At least once | at most once | exactly once], Priority
Operation, Data

Application

SAP

_1358831321.ppt

Application

xTEDS

Algorithmic Elements

Translation of

1451.0

TEDS

Algorithmic Elements

Subnetwork

Application

DVS

DAS

DSAP

Subnetwork

SOIS

EDS

_1358831828.vsd
Device

OBC

Subnetwork Packet Service

Messaging

Subnetwork Packet Service

Application

Device-Specific Subnetwork

Device-Specific Access Protocol Handling

Device Physical Processes

Device Functionality

Physical Subnetwork

Messaging

Application

Device-Specific Subnetwork

Device Access Service

Device Virtualisation Service

_1361621686.vsd
Device Electronic Datasheet
(SOIS)

Device Electronic Datasheet
(IEEE 1451)

Translation

DVS and DAS Implementations

Virtual Device
Interface Definitions
(xTEDS)

Auto-Coding

Extract and Publish

If Device has IEEE 1451 Datasheet

If Device Datasheet is Complete and Device is Standard Type

Or Auto-Configuration

_1358831687.vsd
Device

OBC

Subnetwork Memory Access or Packet Service

Device Access Service

Device Virtualisation Service

Application

Subnetwork Memory Access or Packet Service

Device-Specific Access Protocol Handling

Device Physical Processes

Device Functionality

Physical Subnetwork

Messaging

Application

Subnetwork Packet Service

OBC

Physical Subnetwork

Application

Messaging

Application

Subnetwork Packet Service

_1358830993.ppt

Device Enumeration

Service

Application

Application

Software Bus

Device Virtualisation

Service

Device Access

Service

Subnetwork

Packet or Memory

Access Service

Subnetwork

Protocol

Implementations

Subnetwork

Device Discovery

Service

Subnetwork

Plug-and-Play

Protocol

Subnetwork

Management and

Configuration

Policy

EDS

EDS

SOIS

Hardware

Device

Subnetwork

Implementation

Hardware

Applications

Application

Adapter

Optional

Optional

_1288009399.vsd
MTS

Receiver App ID, QoS

SOIS Packet Transfer Service,
Subnetwork, destination subnetwork address, (no QoS parameters)

Underlying Service Selection and Subnet Lookup Function

MTS Protocol Engine

Service class selected based on MTS QoS Parameter

Source subnetwork address
Destination subnetwork address
QoS Parameters
PID(=MTS), SDU(=MTS PDU)

Sender App ID
Receiver App ID
MTS QoS = [At least once | at most once | exactly once], Priority
Message

SOIS Packet Service mapping

Receiver App ID, QoS

SOIS Packet Service

SpaceWire Data Link

Convergence Functions to SpaceWire

Sub-
network
Layer

SOIS Packet Service

Sender Application

Application
Support
Layer

SpaceWire Data Link

Convergence Functions to SpaceWire

SAP

MTS

Source subnetwork address
Destination subnetwork address
QoS Parameters
PID(=MTS), SDU(=MTS PDU)

Receiver App ID,
Sender App ID
Priority
Message

SOIS Packet Transfer Service,
Subnetwork, destination subnetwork address, (no QoS parameters)

Underlying Service Selection and Subnet Lookup Function

MTS Protocol Engine

SOIS Packet Service mapping

Receiver Application

MTS selects
service, subnetwork and subnetwork-specific address to carry its PDUs based on Receiver App ID and QoS parameters

Sub-
network
Layer

SAP for selected subnetwork
invoked

SAP

SAP

Sub-
network
Layer

SAP

Application
Support
Layer

SAP

_1288009450.vsd
Sub-
network
Layer

DAS

Device ID

SOIS Memory Access Service
Subnetwork, destination subnetwork address, QoS=Acknowledged

Underlying Service Selection and Subnet Lookup Function

DAS Protocol Engine

SOIS Memory Access Service

Device ID
Read Operation
Address,
QoS

SpaceWire Data Link

Convergence Functions to SpaceWire

SAP

Sub-
network
Layer

SpaceWire Data Link

Convergence Functions to SpaceWire

Application

RMAP

Value

SAP

Device

Value

RMAP

DAS
selects service, subnetwork and subnetwork-specific address to carry its PDUs based on Device ID

Source subnetwork address
Destination subnetwork address
Memory Id, Memory location(s)
QoS Parameters
PID(=DAS), SDU(=DAS PDU)
Memory access operation,

SOIS Memory Access Service mapping

SAP

Application
Support
Layer

Service class selected based on DAS QoS Parameter

SAP for selected subnetwork
invoked

_1287995912.vsd
Generic
Application Support
Service

Destination ID, QoS (optional)

Service Identifier, mapping selection, Service-specific destination address
Service-specific QoS parameters

Underlying Service Selection Table

Service Protocol Engine

Application Support Service PID
Underlying Service-specific source address
Underlying Service-specific destination address
Underlying Service-specific QoS parameters
(inc. class of service and priority)
Application Support Service PDU (optional)

Application Support Service-specific Source ID
Application Support Service-specific Destination ID
Application Support Service-specific QoS parameters
(inc class of service and priority)
Application data (optional)

Underlying Service-specific mapping

SAP

Makes
QoS mapping or
uses default QoS

Service
selects underlying service to carry its PDUs based Destination ID and QoS parameters

