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Abstract 

This paper is concerned with the implementation of a small satellite on-board computer (OBC) 
on a single programmable logic chip and with the development of a software communication 
system for it. The communication system is based on the CCSDS protocol, which is a standard 
communication protocol in the space industry. Integration of soft intellectual property cores 
forming a main subsystem of the system-on-a-chip OBC (SoC-OBC) is detailed. The structure 
and functions of the developed CCSDS software package are described. Simulation results 
verifying the operation of the CCSDS communication system on the SoC-OBC are presented. 

 

1. Introduction 

Small satellite development is targeted at achieving affordable and fast access to space. 
Advantages of Field Programmable Gate Arrays (FPGAs) such as flexibility of design, shorter 
time-to-market, lower cost, remote reconfigurability, etc. make them a suitable component for 
use in small satellite on-board systems. High-density FPGAs are becoming the preferred 
implementation platform in a number of terrestrial applications previously dominated by 
application specific integrated circuits (ASICs). So far high-density FPGAs have mostly been 
used in payload systems of small satellites, however introduction of radiation hardened versions 
of such devices by leading manufacturers as Xilinx and Actel paves the way for their use in 
main on-board electronic systems.  

The Surrey Space Centre (SSC) has a long-term research programme, codenamed ChipSat, 
which aims to apply advanced micro- and nano- technologies to small satellite design. As part of 
the ChipSat programme an on-board computer (OBC) of a small satellite is implemented in the 
form of a system-on-a-chip (SoC) device. The SoC is modelled on a simplified version of an on-
board computer designed by Surrey Satellite Technology Limited (SSTL). Soft intellectual 
property (IP) cores written in the hardware description language VHDL are used to build the 
system-on-a-chip on-board computer (SoC-OBC). The main blocks of the SoC are – 
microprocessor, memory error-detection-and-correction (EDAC) unit, bootstrap loader, HDLC 
controller, controller area network (CAN) interface, network interface, true IDE interface, 
mathematical co-processor and peripheral bus interface. A Xilinx Virtex FPGA is used for the 
prototyping of the SoC. 

Specification and feasibility assessment of the SoC-OBC were reported in [1]. This paper 
presents recent research results concerned with the implementation of a main subsystem of the 
SoC-OBC and the development of a software communication system [2]. The communication 
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system uses the Consultative Committee of Space Data Systems (CCSDS) protocol, which it is a 
standard space industry communication protocol employed on numerous missions ranging from 
relatively simple low-earth orbit missions to deep space probes.  

The paper is structured as follows. Section 2 details work on system level integration of IP cores 
forming a main subsystem of the SoC-OBC. Section 3 describes the structure and functions of 
the developed CCSDS software package. Section 4 presents results of a simulation experiment 
carried out to test the operation of the CCSDS communication system on the SoC-OBC. 

 

2. System Level Integration  

The system block-diagram of the SoC-OBC is shown in Figure 1. The microprocessor IP core is 
“LEON” - a SPARC V8 microprocessor IP core developed by the European Space Agency 
(ESA) [3]. The LEON processor core includes support for the Advanced Microcontroller Bus 
Architecture (AMBA) protocol, and therefore the AMBA bus is selected as an on-chip bus of 
the SoC. This section discuses a downsized implementation of the SoC, consisting of the LEON 
processor core and two peripheral cores - CAN and EDAC.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. System Block-Diagram of Single Chip OBC [1] 

The resulting subsystem LEON+CAN+EDAC (indicated in red in Figure 1) was implemented 
on a Xilinx Virtex XCV800 FPGA using an XESS XSV-800 prototyping board. The following 
CAD software tools were used: VHDL simulator ModelSim, synthesis tool Synplify 6.0+, back-
end tools from Xilinx Foundation versions 2.1i and 3.1i.  

 

2.1 Implementation of the Processor IP Core 

The LEON processor IP core models a 32-bit RISC processor based on the SPARC V8 
architecture. The core is implemented as a foundry independent, synthesisable VHDL model 
allowing rapid prototyping and porting. The VHDL model is extensively parametrical: register 
window size, cache size, fault-tolerance functions and clocking scheme can be defined through a 
single configuration file or through a graphic configuration tool.  
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The LEON processor is supported by a full set of software development tools, including the 
LEON Cross Compilation System (LECCS) and the LEON/SPARC simulator (TSIM). The 
LECCS suite of tools supports cross-compilation of single or multi-treaded C and C++ 
applications. The implemented LEON processor executes software programs in S-record format. 
Software applications compiled with LECCS can be converted to an S-record stream with the 
following command: spar c- r t ems- obj copy - O sr ec app app. sr ec . 

The LEON configuration bitstream is downloaded from a personal computer (PC) into the 
FPGA on the prototyping board through a parallel interface. Communication with the 
implemented (in the FPGA) LEON processor is carried out via a serial interface between the PC 
and the board via the standard I/O device of the LEON processor UART A. A terminal program, 
Tera-Term [4], is used to download software programs to memory in S-record format and to 
display program results on the PC screen. The interface between the PC and the LEON 
processor is managed by a CPLD (Xilinx XC95108) on the prototyping board (Figure 2). A 
Remote Target Monitor (RDBMon) can be downloaded in the FPGA and used for remote target 
debugging with the GNU Debugger (GDB). The RDBMon communicates with GDB through 
UART B of the LEON processor, as shown in Figure 2. 

The bootloader of the LEON processor is a monitor that is integrated with the processor core in 
an on-chip boot PROM &  On reset, the monitor scans all RAM-banks and configures the Memory 
Control Register 2 accordingly. The monitor writes a boot message (describing the detected 
memory configuration) to the transmitter port of UART A and then waits for S-records to be 
downloaded on the receiver port of UART A. It recognizes two types of S-records: memory 
contents and start address. A memory contents S-record is saved to the specified address in 
memory, while a start address record will cause the monitor to jump to the indicated address.  

 

 

Figure 2. Implementation and Test of the LEON processor with the CAN and EDAC IP Cores 

 

2.2 Integration of the CAN IP Core 

The CAN IP core used in this project is the HurriCANe VHDL core developed by ESA. Since 
the CAN bus is a low-speed peripheral, the HurriCANe core is integrated with the LEON 
processor core via the Advanced Peripheral Bus (APB) of the AMBA protocol [5], as illustrated 
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in Figure 2. Therefore, the CAN core registers are mapped as on-chip registers to memory 
address range 0x800000C0 – 0x800000E8 and the CAN core is set as one of the APB slaves in 
the LEON processor VHDL model: 

( “ 0011000000" ,  " 0011101000" ,  10,  t r ue)  - -  CAN Conf i gur at i on  

The CAN core and the LEON processor are connected as shown in Figure 3. 

 

Figure 3. Connection of the CAN core to the LEON Processor IP Core  

In addition to the prototyping board an external CAN transceiver and a CAN controller card are 
employed to test the CAN core, as shown in Figure 2. The transceiver is SN65HVD232 from 
Texas Instruments, designed for use with 3.3-V output CAN controllers. The CAN IP core and 
the external CAN card act as two equivalent devices or nodes on the CAN bus. The CAN card 
communicates with the PC through a serial port and is controlled by the software package CAN-
PCS developed by SSTL. A test program for the CAN core is compiled and downloaded to the 
board. The test program is compatible with the SSTL protocol for on-board CAN 
communication. The test scenario is as follows. The CAN card sends a telemetry request 
message. After the CAN core receives this request correctly, it sends a CAN frame with a 
telemetry respond message back to the CAN card. The CAN-PCS software is used to monitor 
the transmission of the CAN messages from the PC screen.  

In the CAN core test, it is necessary that the CAN core and the CAN card have matching baud 
rates. Achieving an exact match required adjustments of the equipment and therefore was not 
pursued. Instead, it was decided to use an approximating approach, which yielded the following 
best data rate values: 

 
                                  and                                      
 
Despite the slight difference between the two baud rates (around 1.7%), the communication 
process was not affected and the two CAN nodes exchanged messages correctly throughout the 
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2.3 Integration of the EDAC IP Core  

A memory error-detection-and-correction (EDAC) unit is integrated with the LEON processor 
via the system bus. The EDAC IP core used in this experiment is based on a double-bit 
correcting Quasi-Cyclic (16,8) shortened EDAC code [6] rather than the traditional single-bit 
correcting Hamming code [7]. The core was developed in-house by SSTL. The interface 
between the EDAC core, the LEON core and the RAM memory on the prototyping board is 
shown in Figure 4. The left memory bank on the board is used as ‘parity memory’  while the 
right memory bank is used as ‘data memory’ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Integration of the EDAC Core with the LEON Processor 

During a write cycle, the EDAC core generates parity bits which are stored at the same address 
as the data. During a read cycle, parity is generated again and compared with the stored parity. If 
the resultant syndrome is not equal to zero, a Look-Up Table (LUT) is used. The data is then 
corrected and passed on to the CPU. 

To test the EDAC IP a number of application programs were downloaded in S-record format 
(e.g. hello.srec and float.srec) to the right memory bank of the XESS board and subsequently 
executed on the LEON processor. In all cases the programs ran as expected, showing that the 
EDAC core engaged correctly in memory read and write operations. In addition, the contents of 
the left and right memory banks were read-back during execution of test programs and verified 
by manual inspection. The read-back operation was performed with the GXSLoad tool supplied 
by XESS Corporation [8], the manufacturer of the prototyping board. 
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2.4 Performance and Chip Area 

This section gives details about the performance and size of the SoC-OBC design. Table 1 
presents a summary of results showing estimated frequency and area requirements of the 
microprocessor core and the total flattened main subsystem module of the SoC.  

 

 Table 1. Implementation Results  

Virtex XCV800-4  

SoC Modules CLB Slices BlockRAMs IOBs  
MHz 

(P&R1) 

MHz 

(Sim2) 

LEON 1-2.2.2 
2572 out of 
9408 (27%) 

14/28(50%) 
61 out of 166 

(36%) 
 23.226 26.67 

LEON 1-2.4.0 
3640 out of 
9408 (38%) 

14/28(50%) 
58 out of 166    

(34%) 
 24.79 26.67 

LEON 2-1.0.2a 
3754 out of 
9408 (39%) 

14/28(50%) 
60 out of 166  

(36%) 
 24.03 26.67 

LEON 1-2.4.0 + 
CAN+EDAC 

4694 out of 
9408 (49%) 

14/28(50%) 
100 out of 166 

(60%) 
 25.22  

LEON 2-1.0.2a 
+ CAN+EDAC 

4749 out of 
9408 (50%) 

14/28(50%) 
99 out of 166    

(59%) 
 25.186  

Notes to Table 1:  
1 – Frequency predicted by the P&R tool 
2 – Frequency obtained by simulation of the back-annotated design. 

Three versions of the LEON processor IP core (1-2.2.2, 1-2.4.0 and 2-1.02a) have been 
implemented and verified at 25 MHz on the XESS prototyping board. Synthesis results of the 
LEON processor IP core are affected by the configuration type. We have used the pre-defined 
configuration (const ant  conf  :  conf i g_t ype : = f pga_2k2k_v8_sof t pr om ) [9].  

Table 1 shows that the implemented subsystem of the SoC-OBC (LEON+CAN+EDAC) 
requires about 50% of the capacity of the target FPGA Virtex XCV800. The bitstream file of the 
implemented subsystem measures 576 Kbytes. Estimates of the area of the entire SoC-OBC 
(without the co-processor) indicate that it fits in about three quarters of the chip [1]. The 32-bit 
floating-point mathematical co-processor is based on the CORDIC algorithm and is able to 
evaluate 17 floating-point operations, such as addition, multiplication, division, square root, 
trigonometric and hyperbolic functions as well as log and exp. The co-processor, which is still in 
a process of testing, takes approximately half of an XCV800 chip. Hence the complete OBC 
system will not fit in a Virtex XCV800 chip, however, a larger Virtex chip, for example, Virtex 
XCV2000E, will be able to house the implementation of the whole system.  

 

3. The CCSDS Software Package 

This section presents a software communication system for transmission of telemetry (TLM) 
and telecommand (TC) data that satisfies the needs of a single chip on-board computer. The 
complete CCSDS TLM and TC implementation is very complex for low-cost small satellites 
and hardware implementations are expensive. Therefore, the CCSDS software package 
developed at SSC focuses on a subset of functions such that it represents a simplified yet 
reliable standalone alternative software implementation of the CCSDS TLM and TC Command 
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Operation Protocol (COP-1) [10]. The structure of the CCSDS software package is shown in 
Figure 5.  

 

 

 

 

 

 

 

 

 

 

Figure 5. Structure and Interfaces of the CCSDS Software Package 

The specification of the CCSDS software package follows strictly the CCSDS TLM and TC 
recommendation documents [11,12,13,14,15]. The COP-1 service specification is based on a 
simplified version of the CCSDS Frame Acceptance and Report Mechanism (FARM) and 
Frame Operation Protocol (FOP). Both the FARM and FOP systems satisfy the essential 
requirements for a reliable CCSDS communication system. The software imposes minimal 
memory footprint and performance requirements on the On-Board Computer. The CCSDS 
communication system implements the Packetisation Layer, the Transfer Layer and the Coding 
Layer of both the TC and TLM Systems. A CCSDS Reed-Solomon (R-S) encoder and decoder 
are used for the TLM channel coding, while the Bose, Chaudhuri and Hocquenghem (BCH) 
cyclic redundancy check (CRC) error detecting code is used for the TC coding. 

The functions of the ground segment are to format CCSDS TC packets and CCSDS TC frames; 
calculate the BCH check; insert TC packets into the data field of TC frames; insert TC frames 
into codeblocks; format Control Link Transfer Units (CLTU) to ensure synchronisation; 
implement the R-S or Turbo decoding; receive CCSDS TLM frames; subtract CCSDS TLM 
packets from the Data Field of the TLM frames; decode the CRC and if no error is detected, the 
raw TLM data is passed to be analysed and displayed. The functions of the spacecraft segment 
are to format CCSDS TLM packets; format CCSDS TLM frames; insert TLM packets into the 
data field of the TLM frames; calculate the CCSDS recommended CRC code of the frame 
inserted at the end of TLM frames; format the Attached Synchronized Marker (ASM); 
implement R-S or Turbo encoding; receive and decode CCSDS TC frames; detect whether a 
transmission bit error has been identified by the BCH code. If there is no error, the telecommand 
will be passed to the on-board CAN bus and accepted by the corresponding CAN node. The TC 
retransmission system utilises the COP-1 "go-back-n" automatic retransmission protocol, which 
consists of the pair of synchronized procedures, FOP (in the ground segment) and FARM (in the 
spacecraft segment). The FOP transmits TC transfer frames to the FARM. The FARM returns 
Command Link Control Words (CLCW) within the TLM transfer frames. 

The R-S encoder/decoder program used in the TLM coding system is derived from a public 
domain program (r s. c  written by Phil Karn). The R-S code is compliant with the coding 
algorithm in the CCSDS recommendation [12,16] and has the following main features:  

• uses 8 bits per symbol; 
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• uses 255 symbols per codeword and is a (255, 223) code (the first 223 symbols are 
information symbols, and the last 32 symbols are check symbols); 

• corrects and detects 16 symbol errors; 
• the field polynomial is 1)( 278 ++++= xxxxxf ; 
• the interleaving is chosen as 1. 

The size of the CCSDS software is as follows: Ground segment (including the R-S decoder) - 
177 Kbytes; Spacecraft segment (including the R-S encoder) - 176 Kbytes; R-S code: 
21.7Kbytes. 

4. Simulation Experiment 

This section describes a simulation experiment carried out to test the operation of the CCSDS 
package in conjunction with the SoC-OBC. Figure 6 outlines the experimental set-up used for 
the simulation. The operation of the on-board segment was emulated on the SoC-OBC within 
the XESS prototyping board, the operation of the ground station segment - on a personal 
computer. The communication between the two segments was simulated by a serial link. An 
external CAN controller card was used to emulate an on-board payload.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Experimental Set-up  

Figure 7 shows the data flow for the simulation of the CCSDS communication system, where 
the on-board software is run by the subsystem of the SoC-OBC described in Section 2 above. 
The CCSDS spacecraft programs are downloaded to the RAM memory on the prototyping board 
and are executed by the LEON processor. The operating frequency of the implemented LEON 
processor is 25MHz. The “on-board”  CAN bus system consists of two nodes – the HurriCANe 
IP core and a CAN card, where the latter emulates the responsibilities of an on-board payload. 
The CAN system closes the on-board communication loop receiving telecommand data and 
generating telemetry data. The SoC-OBC communicates with the PC via an asynchronous RS-
232 serial port by using the UART A of the LEON processor. 

 

U V W U U X W

U W Y Z [ \ ] ^ \ _

` U a b c
` U a d c

CAN CARD
(CAN Controller)

CCSDS
SPACECRAFT

PART

e f g h i j k l m n

o�p q r s tuo v w w x y z { | y z } x ~ � � ~ |

� �
� � ��� � � � �

� � � � � � � � � � � � �� � � � � � � �� � � � � � � � � �� � � � � � � � � � � � �� � � � � � �  ¡ ¢ £ £ ¤ ¡ ¥ ¦ § ¨

© ª « ¬© ª « ¥

CCSDS
GROUND

PART

®�¯ ° °± ² ³�´ ³�´ µ�±�¶ · ¸¹ ³�º�²�»

LEON
IU

UART A

AHB/APB
BRIDGE

DATA
MEMORY

512K *16 BITS

AHB
CONTROLLER

AMBA CAN
CONTROLLER

CPLD
XC95108

232ACBH

MEMORY
CONTROLLER

SN65HVD
232



 9

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Simulation Data Flow of the CCSDS Communication System 

 

4.1. Simulation Results 

This section presents simulation results covering the entire communication data-flow cycle – 
sending of TC data to the spacecraft, on-board processing of TC data, generation and sending of 
TLM data to ground.  

Figure 8 illustrates the transmission of telecommand data from ground to the spacecraft 
segment. The TC_TX module sends a CLTU TC frame (338 bytes, two tails) to the SoC-OBC 
(CCSDS requires MSB to be sent first). The TC_RX module (which runs on the LEON 
processor implemented in the FPGA) receives this CLTU and decodes it by the BCH decoder. 
In the CLTU frame, the first two bytes ‘eb 90’  (hexadecimal) are ‘Start Sequence’ , followed by 
‘0 1 5 17 0 0 1 be 0 1 1 c 0 0 0 d8’ , where ‘be’  and ‘d8’  are the BCH parity bytes. So the TC 
frame contents (without BCH) are ‘0 1 5 17 0 0 1 0 1 1 c 0 0 0’ . The rest of the bits are ‘0’  – 
IDLE TC frame. The tail sequence is: c5 c5 c5 c5 c5 c5 c5 79 (8 bytes) - two tails.  

Figure 9 illustrates the transmission of telecommand data from the OBC to the payload and 
telemetry data from the payload to the OBC. The telecommand to be sent to the CAN card is 
“ idle”  (all 0s), therefore the CAN core sends the message ‘50 0 0 0 0 0 0 0’ . The CAN card 
receives this TC and sends back a TLM message ‘18 0 0 8d dd 78 0’ , which will be included in 
the TLM frame. 

Figure 10 shows the transmission of telemetry data from the spacecraft segment to ground. The 
TLM_Tx module generates a TLM frame, which includes a CLCW, and TLM data obtained 
from the CAN card. The R-S encoder module encodes the TLM frame after which the encoded 
TLM frame is sent to the PC via the serial port.  
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Figure 8. Transmission of a CLTU TC Frame from TC_Tx to TC_Rx 

 

 

 

Figure 9. Transmission of TC & TLM Between the CAN Core and the CAN Card 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Transmission of a TLM Frame from TLM_Tx to TLM_Rx 
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The result of the R-S decoding can be seen in Figure 10. The example illustrates a case when 
three bytes of the TLM frames have errors. The R-S decoder corrects the errors and recovers the 
correct codeword as a result of which the TLM frame is received and decoded correctly. In the 
TLM frame, the first 4 bytes ‘1a cf fc 1d’  are the ASM; after conversion MSB

�
LSB, they 

become ‘58 f3 3f b8’ . In the CCSDS standard, these bytes form the header and are not R-S 
encoded. The header bytes are followed by a frame header of 6 bytes: ‘0 48 80 80 18 c’ ; a 
package (source) header of 6 bytes: ‘0 80 3 40 0 9f’ ; and TLM data from the CAN card:‘18 0 0 
b1 bb 1e 0’  (obtained MSB � LSB from ‘18 0 0 8d dd 78 0’ ). The tail consists of a CLCW of 4 
bytes: ‘80 20 0 80’and the CRC bytes of the TLM frame: ‘6 8f’ . 
 

5. Conclusions 

The work presented in this paper is part of a research project aiming to reduce the size of an on-
board computer to a single chip. A downsized implementation of a single-chip OBC, consisting 
of the LEON processor core and two peripheral cores - CAN and EDAC - has been developed. 
Area and performance estimates indicate that the SoC-OBC without the mathematical co-
processor fits in a single XILINX Virtex XCV800 FPGA chip, the complete system requiring a 
larger Virtex chip, for example Virtex XCV2000E. These findings serve as an illustration of the 
increased capacity of high-density FPGAs, which are nowadays large enough to house complex 
digital SoCs. 

A simplified communication system, specifically designed to meet the needs of a single-chip on-
board computer has been developed. The system represents a streamlined, yet reliable and 
automated, standalone software implementation of the CCSDS protocol. The software package 
features a modular structure, which can facilitate easy expansions of functionality to suit 
specific mission requirements. The software imposes minimal memory footprint and 
performance requirements on the OBC. The functionality of the package has been verified via 
simulation. 

The combination of a single chip OBC and a software CCSDS-based communication system 
supported by a thin-layer hardware interface can provide a cost effective and flexible 
communication solution for small satellites.  
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