Clarification for CCSDS CRC-16 Computation Algorithm

Jackson Pang, Kenneth Andrews and J Leigh Torgerson
Section 332M — Communications Networks
{jpang, kenneth.s.andrews, ltorgerson} @jpl.nasa.gov

May 4, 2006

Abstract — The description of CCSDS CRC-16 computation algorithm as explained in the
Telemetry: Summary of Concept and Rationale [1] may cause misinterpretation of the algorithm. The
computation procedure is clarified and example source code is provided. A recommended change to
the CCSDS Green Book is also described so that it conveys the CRC computation procedure clearly.

Background

The CCSDS CRC-16 calculation, based on the International Communication
Union’s (formerly known as CCITT) ITU-T v.41 [2], uses the generator polynomial
G(X) = X' + X* + X’ + 1. The CRC-16 calculation procedure can be described using a
Linear Feedback Shift Registers (LFSR) as follows

20 5 712 P16

7

LE*D*D»D»D***D*D*D*D*D*D*D*-»D»D»D*E*,

LSB MSB

U

Figure 1: CCSDS implementation of CRC-16 [3]

Recently, some discrepancies were found in several software implementations of the
algorithm. Specifically the ordering of the LF'SR was reversed, effectively changing the
generator polynomial to G (X) = X' + X"+ X’ + 1. In addition, the CRC was appended
to the message stream in a reversed order at the byte level. Consequently, the resulting CRC
is not compliant with the CCSDS Blue Book recommendation, and will not be interoperable
with commercial ground station equipment or spacecraft that implement the algorithm
correctly.

Recommended CCSDS Document Modification
The figures described on page D-4 of [1] should be modified so that the shift

registers are numbered as shown in Figure 1. This convention is consistent with the CCSDS
bit numbering scheme where the most significant bit is the first bit transferred (See Fig. 2).

BITO BIT N1

N-BIT DATA FIELD

FIRST BIT TRANSFERRED = MSE
Figure 2: CCSDS Bit Numbering Convention [5]

The following are the improved Figures D-1 and D-2 in [1].

A
\—DDD»D—D—LD—D—D—D—DD*
LSB

®
Data In : First Transferred Bit (MSB) first

Data Out

Figure 3: Improved CCSDS CRC-16 Encoder Diagram

16

LSB MSB

® GATE B
Data In : First Transferred Bit (MSB) first -

Data Out

A

Figure 4: Improved CCSDS CRC-16 Decoder Diagram

To be consistency across all the CCSDS documentation of CRC calculation
diagrams, the following two diagrams are the improved version of Figures A-1 and A-2 of
[6]. They use the CCSDS CRC-32 generator polynomial
G(X) :X32 + X23 +X21 + Xll +X2+ 1.

x0

x2 x1 x21 x23 x32
2 . I * GATE A
)
MSB|
LSB [GATE C
GATE B
Data In : First Transferred Bit (MSB) first Data Out

Figure 5: Improved CCSDS CRC-32 Encoder Diagram

32

x0 x2 x11 x21 x23 X
\—D'D—LD’D—D—D—MD—D{FL&D%&D{F&&DLD—&LD‘&D—D—MD—H*
LsB MsB

Data In : First Transferred Bit (MSB) first

{GATE B}
Data Out

Figure 6: Improved CCSDS CRC-32 Decoder Diagram

Recommended Implementation

The CCSDS CRC-16 calculation produces the 16-bit CRC syndrome value that
needs to be appended at the end of the message being encoded for transmission. The
appending shall be done so that the bit ordering does not change. For example, the
following message stream produces the CRC syndrome registers to hold 0x75FB (most

significant bit to least significant bit).

0x06 0x00 0x0c 0xf0 0x00 0x04 0x00 0x55 0x88 0x73 0xc9 0x00 0x00 0x05 0x21

The CRC value shall be appended to the message stream as follows to produce the correct
CRC value of 0x0000 at the receiving entity when it calculates the CRC over the whole
message stream.

0x06 0x00 0x0c 0xf0 0x00 0x04 0x00 0x55 0x88 0x73 0xc9 0x00 0x00 0x05 0x21 0x75 0xFB

A correct example CRC-16 calculation in C programming language using both table
driven and serial calculation approaches are described below [4].

static Ul6 crc_table[256] =

0x0000,
0x8108,
0x1231,
0x9339,
0x2462,
Oxa56a,
0x3653,
0xb75b,
0x48c4,
Oxc9cc,
Ox5af5,
Oxdbfd,
Ox6cab,
Oxedae,
0x7e97,
0xffof,
0x9188,
0x1080,
0x83b9,
0x02b1l,
Oxbb5ea,
0x34e2,
Oxa7db,
0x26d3,

0x1021,
0x9129,
0x0210,
0x8318,
0x3443,
0xb54b,
0x2672,
Oxa77a,
0x58e5,
0xd9%ed,
Ox4ad4,
Oxcbdc,
0x7c87,
0xfd8f,
Ox6ebb,
Oxefbe,
0x81a9,
0x00al,
0x9398,
0x1290,
Oxabcb,
0x24c3,
Oxb7fa,
0x36£2,

0x2042,
Oxalda,
0x3273,
0xb37b,
0x0420,
0x8528,
0x1611,
0x9719,
0x6886,
0xe98e,
0x7ab7,
0xfbbf,
Ox4ce4,
Oxcdec,
0x5ed5,
0xdfdd,
Oxblca,
0x30c2,
Oxa3fb,
0x22f£3,
0x95a8,
0x14a0,
0x8799,
0x0691,

{

0x3063,
0xbl6b,
0x2252,
Oxa3b5a,
0x1401,
0x9509,
0x0630,
0x8738,
0x78a7,
O0xf9af,
0x6a96,
Oxeb9e,
0Ox5cch,
Oxddcd,
Ox4efd,
Oxcffc,
Oxaleb,
0x20e3,
Oxb3da,
0x32d2,
0x8589,
0x0481,
0x97b8,
0x16b0,

0x4084,
Oxcl8c,
0x52b5,
0xd3bd,
Ox64eo6,
Oxebee,
0x76d7,
0x£7df,
0x0840,
0x8948,
Oxla71,
0x9b79,
0x2c22,
Oxad2a,
0x3el3,
0xbflb,
0xdl1l0c,
0x5004,
0xc33d,
0x4235,
0xf56e,
0x7466,
Oxe75f,
0x6657,

0x50a5,
Oxdlad,
0x4294,
0Oxc39c,
0x74c7,
Oxf5cf,
0x66£f6,
Oxe7fe,
0x1861,
0x9969,
0x0a50,
0x8b58,
0x3c03,
0xbd0b,
0x2e32,
Oxaf3a,
Oxcl2ad,
0x4025,
0xd31lc,
0x5214,
Oxeb54f,
0x6447,
0xf77e,
0x7676,

0x60co6,
Oxelce,
0x72£7,
0xf3ff,
0x44a4,
Oxcbac,
0x5695,
0xd79d,
0x2802,
0xa90a,
0x3a33,
0xbb3b,
0x0c60,
0x8d68,
Oxleb51,
0x9f59,
Oxflde,
0x7046,
0xe37f,
0x6277,
0xd52c,
0x5424,
Oxc71d,
0x4615,

0x70e7,
Oxflef,
0x62d6,
Oxe3de,
0x5485,
0xd58d,
0x46b4,
Oxc7bc,
0x3823,
0xb92b,
0x2alz,
Oxabla,
Oxlc4l,
0x9d49,
0x0e70,
0x8f78,
Oxelo6f,
0x6067,
0xf35e,
0x7256,
Oxc50d,
0x4405,
0xd73c,
0x5634,

0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08el, 0x3882, 0x28a3,
Oxcb7d, 0xdbb5c, 0xeb3f, O0xfble, 0x8bf9, 0x9bd8, Oxabbb, 0xbb9a,
0Ox4a75, 0x5a54, 0x6a37, 0x7ale, 0x0afl, 0Oxlad0, 0x2ab3, 0x3a92,
Oxfd2e, 0Oxed0f, Oxddé6c, 0Oxcd4d, Oxbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5co04, 0x4cd5, 0x3ca?2, 0x2c83, 0xlcel0, 0x0Occl,
Oxeflf, 0xff3e, Oxcfb5d, Oxdf7c, Oxaf9b, Oxbfba, 0x8fd9, 0x9ff8,
Ox6el7, 0x7e36, 0x4eb55, 0x5e74, 0x2e93, 0x3eb2, 0x0edl, 0OxlefoO,
}*’k**

*

FUNCTION:
tc__fec_sdlc

INPUTS:
seed - (Ul6) initial value of check bits.
buf — (unsigned char *) pointer to the buffer of
data over which you wish to generate check
bits.
len — (int) number to bytes of data in the buffer.

OUTPUTS:

RETURNS :
— (Ul6) the checkbits.

sdlc_table - (Ul6) [256] the lookup table for the CCITT SDLC
generator polynomial (local to this module) .

EXTERNALLY MODIFIED:

DESCRIPTION:
This function implements CRC generation with the CCITT SDLC error
polynomial (X16 + X12 + X5 + 1). You must provide it with an
initial seed value, a pointer to a data buffer, and the byte length
of the data buffer. It will return the unsigned 16-bit CRC.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* EXTERNALLY READ:
*

*

*

*

*

*

*

*

*

*

*

* You may use this function to generate a CRC over data in scattered
* storage by making multiple calls to it. Just make sure that you
* pass a seed of OxXFFFF on the first call. On subsequent calls, pass
* a seed containing the return value of the previous call.

*
*/
Ule
tc__fec_sdlc_s (Ul6 seed, unsigned char *buf, int len)
{
Ule6 crc, t;
unsigned char *p;
crc = seed;
p = buf;
while (len—-) {
crc = crc_table[((crc >> 8) ~ *p++) & O0xff] " (crc << 8);
}
return (Ul6)crc;
}
#ifdef SLOWER_METHOD
Ule
tc__fec_sdlc_f (Ul6 seed, unsigned char *buf, int len)
{
unsigned short crc, t;
unsigned short ch, xor_flag;
int i, count;
crc = seed;
count = 0;
while (len—--) {
ch = buf[count++];
ch<<=8;
for (i=0; 1i<8; i++)
{
if ((crc »~ ch) & 0x8000)

{

Il
=

xor_flag
}
else
{
xor_flag = 0;
}
crc = crc << 1;
if (xor_flag)
{
crc = crc ©~ 0x1021;
}
ch = ch << 1;
}
}
return (unsigned short)crc;
}
#endif

References

(1] Telemetry: Summary of Concept and Rationale, Consultative Committee for Space Data
Systems (CCSDS), Dec 1987. [Online]. Available:
http://public.ccsds.org/publications/archive/100x0g1.pdf

(2] Code-Independent Error-Control System: Data Communication over the Telephone Network,
International Telecommunication Union, ITU-T Fascicle VIII.1 — Rec. V.41.

[3] Andrews, Kenneth, Fast Methods for Performing CRC Computation, Feb 20006, Internal JPL
Memo.

[4] Ho, Son, AMMOS Command Subsystem Source Code Repository, March 24, 2006.

(5] Telemetry Space Data 1ink Protocol, Consultative Committee for Space Data Systems
(CCSDS), Sept 2003. [Online]. Available:
http://public.ccsds.org/publications/archive/132x0b1.pdf

(6] Proximity-1 Space Link Protocol — Coding and Synchronization Sublayer, Consultative
Committee for Space Data Systems (CCSDS), April 2003. [Online]. Available:
http://public.ccsds.org/publications/archive/221x2b1.pdf

