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1. Introduction

Communication between satellites and mission control centers is currently protected via
the Space Data Link Security Protocol (SDLS). At its core this protocol uses symmetric
algorithms (most importantly symmetric encryption) to secure communication.

Key-updates are possible in SDLS, but they too are only using symmetric primitives.
This has the advantage that they are not immediately vulnerable to quantum-
computers, but the major downsides that a key-update cannot recover security after
a key-compromise if the adversary receives a network-transcript of the key-update,
that the approach does not scale well to decentralized networks, and that it limits
operational efficiency, especially in federated operations.

The goal of this study is therefore to design a key-update/establishment protocol that
relies on asymmetric algorithms for authenticity and confidentiality. A slightly unusual
aspect of this goal is that the necessary protocol for this is not just a handshake-phase of
a more complex protocol that is only ever run in conjunction with a data-transmission
protocol, but actually independent.

Because of the looming threat that quantum-computers may in the not so far future
be able to break all asymmetric primitives that are currently in widespread use, the
protocol should include other, so called “post-quantum” algorithms that are designed
to withstand that threat. The primary source for post-quantum algorithms is the post-
quantum competition run by NIST, that recently selected four winners, that are bound
to be standardized. Beyond these winners there also a handful of more specialized
algorithms that were standardized by the IETF as well as algorithms that have not
(yet) been chosen by NIST, but were declared to be acceptable by various European
government bodies or are in widespread use. (See Sections 5.1 and 5.2 for more details.)

2. Background

In the following we provide some background knowledge and use the opportunity to
establish notation. While we assume familiarity with general cryptographic concepts like
public key encryption and signature schemes, cryptographic hash functions and message
authentication codes (MAC), we give some background on authenticated key exchange
(AKE), Diffie-Hellman Key Exchange (DHKX), and Key Encapsulation Mechanisms
(KEMs). Afterwards we give a brief tour of the Noise protocol framework which provides
a compact notation to describe AKE protocols.

2.1. Authenticated Key-Exchange

An Authenticated Key-Exchange (AKE) is a protocol in which two parties negotiate a
shared secret that is only known to them in a way that one (one-sided) or both (mutual)
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parties have to prove their identity. This is commonly done by means of demonstrating
knowledge of a secret private key for which the associated public key is known to the
other party. The established shared secret can then be used to secure communication
using symmetric cryptography. Well known examples are the hand-shake phases of TLS,
IKE, WireGuard, or Signal.

Early AKE-schemes, such as the ones used in SSL assumed that no private keys would
ever be compromised. These schemes lost confidentiality of all past (and present) mes-
sages whenever a private key was compromised, e.g., when a server was taken over by
a malicious party. Because of this, modern versions added the requirement of forward-
secrecy: past communication should remain confidential even if the long-term private
key is later compromised. Signal, WireGuard, and modern versions of TLS all have this
property.

A common way to achieve forward-secrecy is the use of an ephemeral key-exchange. A
key-exchange in the context of this paragraph is any protocol that creates a shared-
secret between two honest parties, that a passive network-attacker cannot learn. In
this study we call a key-exchange “ephemeral” if no component, except for the resulting
exchanged key is used outside the specific interaction1. Ephemeral asymmetric key-
pairs in particular have to be generated at the start of the interaction and must be
fully discarded at the end of it. This is in contrast to the traditional use of asymmetric
encryption where public keys remain valid for a long time and can be used by many
parties to encrypt messages.

Terminology-wise we note that forward-secrecy is sometimes also called “perfect forward-
secrecy”, to distinguish it from “weak forward-secrecy”. We don’t use these terms because
weak forward-secrecy is too weak to be of much interest and because there is nothing
perfect about (regular) forward-secrecy: Conventionally “perfect” is used to state that
a property holds unconditionally without exception, even with unbounded adversaries
such as the confidentiality of a correctly used one-time-pad or the completeness of many
traditional cryptographic schemes. Pretty much all protocols that claim forward-secrecy
today, can however be broken by attacks that run in exponential-time, contradicting the
idea that the property holds perfectly.

More recently the complementary property has also come into the focus of AKE-
designers: Post-Compromise Secrecy. It means that if one party in an interaction
gets only temporarily compromised for some period of time, i.e., the honest user
regains exclusive control of all their secrets (for example through a device-update that
removes malware), confidentiality of the communication is reestablished for all future
messages. AKEs that use ephemeral key-exchanges to achieve forward-secrecy usually
get post-compromise secrecy for free, though it is possible to create counter-examples
to that rule.

Further properties of AKEs that are nowadays discussed include deniability, anonymity

1Less restrictive definitions of “ephemeral” use the term to refer to short-lived keys but permit usage
in different interactions
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and group key agreement (the establishment of secrets that are shared between more
than two parties), none of which are considered relevant for the given use-case.

2.2. Diffie-Hellman Key Exchange (DHKX) and Key Encapsulation
Mechanisms (KEM)

Modern AKE protocols are built from more basic primitives. The most commonly seen
primitive is Diffie-Hellman Key Exchange (DHKX), a two party, non-interactive key
exchange protocol. In DHKX, both parties are in possession of a key pair consisting of
a private key 𝑎 (resp. 𝑏) and a public key 𝐴 (resp.𝐵). When party A receives the public
key 𝐵 they can derive a shared secret 𝑘 = DH.derive(𝑎, 𝐵) applying the derive function
to their private key 𝑎 and the public key 𝐵. The same shared secret 𝑘 = DH.derive(𝑏, 𝐴)
can be computed by B using their private key and A’s public key. Note that this protocol
does not require any interaction between the two parties if the public keys are known
(e.g., were retrieved from a public server). So far, there is no post-quantum secure Non-
Interactive Key Exchange (NIKE) that is commonly considered secure. (First proposals
exists though [16, 21, 41, 18]). The NIST post-quantum cryptography standardization
process did not consider DHKX-like schemes.

In place of NIKEs, NIST selected Key Encapsulation Mechanisms (KEMs) which are
closely related to (and usually built from) public key encryption (PKE) schemes. A
PKE takes as input the receiver’s public key and a message and produces the ciphertext
encrypting the message as output. The receiver decrypts the ciphertext with their private
key to obtain the message. In practice, a PKE is most often used to actually encrypt
a random message which is afterwards hashed to obtain a shared key to be used with
symmetric cryptography. A KEM is in some sense a limitation of a PKE to this very
use-case. Hence, a KEM is merely used for key transport. A KEM takes as input only
the receiver’s public key and produces two outputs: the ciphertext and a shared key.
Only the ciphertext is sent to the receiver who then uses their private key to decapsulate
the ciphertext and obtain the same shared key.

Ideally this always works, but for many KEMs in the NIST PQC competition there is a
small probability 𝛿 that the decapsulation will not return the same shared secret that the
encapsulating party received. Most KEMs in the competition that suffer from decryp-
tion failures use the Fujisaki-Okamoto (FO) transform to achieve IND-CCA-2 security
(sometimes referred to as active security). More precisely, they use FO with implicit re-
jection, i.e., they output a pseudo-random value if a decryption failure happened. These
failures are identified by some internal check failing or decapsulation outputing a failure.
If this was caused by an honest failure rather than by an attack, the sender and receiver
end up with mismatching secrets. This property is generally known as 𝛿-correctness in
contrast to the traditional perfect correctness where 𝛿 = 0.
RSA key transport used in earlier versions of TLS implemented a KEM and one can also
view DHKX as a KEM: the sender’s public key forms the ciphertext and the shared key
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𝑘 above is the shared key in the KEM 2.

One can also generically turn a PKE scheme into a KEM. Key generation creates a
public-private key pair as for PKE. Encapsulation samples a random message 𝑚 from
the message space and uses the encryption algorithm to produce the ciphertext 𝑐. The
shared key is then 𝑘 = ℎ(𝑚) for some key-derivation function ℎ. The receiver decrypts
𝑐 to 𝑚 and obtains the same 𝑘 = ℎ(𝑚).

2.3. Noise and Noise-patterns

Noise is a generic framework for key-exchange protocols (authenticated and unauthen-
ticated). It is built around DHKX which is used to establish both confidentiality and
authenticity. Given that DHKX does not withstand attacks using quantum computers,
Post-Quantum Noise was developed. In brief, Post-Quantum Noise makes use of KEMs
in place of DHKX. If the used KEMs withstand quantum attacks then so does the bigger
protocol.

Noise introduced a very compact way to describe the core idea of key-exchanges between
two parties called the initiator and the responder. The initiator initiates the communi-
cation and is placed on the left. Consider the following example:

<- s
...
-> psk, skem, e, s, sig
<- ekem, s'[opt1]

Each line consists of a packet being sent from one party to the other. The ASCII-arrows
indicate the direction in which that packet is sent, -> indicates that the sender is the
initiator of an exchange, <- that the sender is the responder. The ... separates any
information-exchange that occurred before the protocol is run from the actual protocol.
In this example the initiator received the receiver’s long-term public key s beforehand
out-of-band (one may think of this as a setup).

A noise pattern only defines which cryptographic objects are exchanged between the
two parties. A modern key exchange protocol usually consists of several actual key
exchanges. In Noise as well as Post-Quantum Noise, parties start deriving session keys
(and encrypting all traffic with these using AEAD) as soon as possible from the currently
established session key (if existing) and any newly derived shared secret. I.e., as soon
as the first DHKX public key is received, the shared secret 𝑘 is derived and used to
derive or update the session key. Similarly, as soon as a KEM ciphertext is received,
decapsulation is used to derive the shared secret 𝑘 and derive or update the session key.

The various tokens then have the following meanings (and implications):
2While this is functionally a KEM, one has to compute the shared key of the KEM as the hash of the

shared key generated by DH and the sender’s public key to achieve an actively secure KEM.
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• psk refers to a pre-shared secret that is used to establish an initial shared secret
to encrypt the further communication.

• s refers to a long-term public-key. If a shared secret has already been established,
this key will be (symmetrically) encrypted in transit.

• e refers to an ephemeral public key. In Noise and PQC Noise it is not encrypted
in transit, however we follow the maxime that everything is encrypted that can be
encrypted and thus deviate from this convention.

• skem refers to a ciphertext for the peer’s long-term KEM public-key. This will cre-
ate/update the shared-secret in a way, such that it remains secure, if the receiver’s
long-term key and the sender’s randomness are not compromised. If there is a
pre-shared secret this ciphertext will be encrypted in transit.

• ekem refers to a ciphertext for the peer’s ephemeral public-key. This will create/up-
date the shared-secret in a way, such that it remains secure, if the sender’s random-
ness and receiver’s ephemeral secrets are both not compromised. This ciphertext
is never encrypted in Noise and PQNoise but we encrypt it where possible.

• sig refers to a signature under the sender’s long-term key whose message is a hash
of the full transcript of the handshake up to that point.

• s' is an extension that we propose in this work. It refers to an updated long-term
public-key that is supposed to replace the old long-term key of the sending party
after the successful completion of the handshake.

• X[optN], where X is one of the tokens above and N is an integer, is a second
extension that we propose in this work. We use it to indicate that the protocol
can run as if the token X was part of the pattern or as if it was not there, the
decision occurring at runtime. The integer N is simply used to separate multiple
independent optional components.

• confirm is an extension that indicates a key confirmation message which sends an
AEAD ciphertext for an empty message to prove knowledge of the current session
key. (In Noise this is given by an arrow without tokens, we only make this explicit.)

• (There are further tokens for various combinations of Diffie-Hellman secrets which
are out-of-scope for this work.)

The above example therefore reads as follows:

• The initiator knows the responder’s long-term public-key and they furthermore
have a pre-shared secret.

• Both parties derive a key 𝑘0 from the pre-shared secret.
• The initiator uses the responder’s long-term public-key to encapsulate a secret for

him and derives the shared key 𝑘1 from it and 𝑘0.
• The initiator uses 𝑘1 to encrypt a freshly generated ephemeral public-key and her

long-term public-key.
• The initiator uses her long-term private signing key to sign the full transcript up

to that point and sends it to the responder.
• The responder decrypts/decapsulates everything he received, verifies the signature,

and generates a ciphertext and shared secret for the initiator’s ephemeral KEM
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key and derives 𝑘2 from the shared secret and 𝑘1.
• The responder may optionally encrypt a new long-term public key with 𝑘2 and

sends his packet to the initiator.

We note that all secrets 𝑘𝑖 are derived from all shared-secrets that have been computed
up to that point. We refer to the last 𝑘𝑖 that both parties compute as the pre key; the
following discusses how the final key is derived from this pre key and the transcript.

3. Requirements & Constraints

In this section we discuss the requirements and constraints agreed upon with ESA follow-
ing a series of meetings with ESA experts. We begin with the requirements. Afterwards
we list the constraints. For each of them we do a brief pre-assessment.

3.1. Requirements

The following requirements detail the main objective of this study.

3.1.1. Authenticity

Authenticity refers to the property that parties can be certain that they are interacting
with the party that they think they are interacting with.

In some missions, where security is of high priority, authenticity has to be bidirectional.

In some other missions authenticating the satellite to mission control might not be
necessary, because the control center knows where the satellite is supposed to be and
would use communication channels that are physically very narrow. In any case this is
a per-mission property and thus does not have to be negotiated at runtime.

3.1.2. Confidentiality

Confidentiality refers to the property that the content of an interaction remains secret
except to the authorized parties. In the context of a key-exchange this content refers to
the resulting key being only known to the parties involved in the exchange, not anyone
else, including active or passive network-attackers.

Confidentiality of the payload-data is usually a security-goal but sometimes less impor-
tant than authenticity and availability.

For the purposes of a key-update where a key derived from the shared secret is then
used in SDLS this however means that since the knowledge of the shared secret is also
used to authenticate a party, full confidentiality of that secret is required regardless.
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3.1.3. Availability

In the given setting, availability refers to the ability to communicate with the satellite.
Availability is generally very important. Very short-term loss might however be tolerable.
With regards to DoS-protection it is not necessary to consider simultaneous connection-
attempts, continuous attempts to authenticate/connect are however in scope.

3.1.4. Hybrid Security

Hybrid systems combine multiple algorithms. Traditionally this expression was used to
describe a combination of public-key and symmetric-key cryptography. In the context
of post-quantum cryptography the term is now more narrowly used to describe combi-
nations of pre- and post-quantum schemes. Hybrid Security is then the property that
a protocol uses multiple algorithms to instantiate a primitive in a way such that the
protocol remains secure even if a subset of the algorithms turn out to be insecure.
For the key-update protocol ESA requests that post-quantum primitives are used in a
hybrid manner with well-established (pre-quantum) primitives.
The easiest way to achieve this is through the use of hybrid primitives, for example
KEMs that are a combination of a lattice-based KEM and a KEM based on an elliptic-
curve Diffie-Hellman key-exchange. This approach has several advantages over using
the same primitive with different instantiations multiple times: It simplifies the protocol
and its analysis, because the added complexity is contained in a sub-component that is
not further decomposed in any case. It allows for greater flexibility when choosing or
replacing concrete primitives, because the analysis depends less on the concrete instan-
tiations. The main disadvantage of this approach is that it requires the definition of the
hybrid primitive, though for the primitives that we consider relevant here (KEMs and
Signatures), this is not a real problem, as there are established combiners that we will
discuss in Section 5.4.

3.1.5. Adversaries

The attacker-model includes the full range of possibilities, from nation-states to individ-
uals. With regards to security parameters, NIST proposed levels I, III, and V, which
correspond to the security of AES with 128, 192, and 256 bit keys against brute-force key
search, respectively, are to be considered. While denial-of-service attacks via connection
attempts of multiple actors do not have to be considered, multiple connection attempts
of a single actor are to be considered.
All considered cryptographic algorithms provide parameters for these security levels.
Therefore, this is not problematic. When it comes to availability the best that can be
achieved on the protocol level is to avoid the introduction of vulnerabilities that allow
an adversary to exhaust system resources with little adversarial effort, e.g., by filling up
memory with initial connection attempts.
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3.1.6. Ciphersuite negotiation vs. fixed choices

We say that a protocol is cryptographically opinionated if it prescribes certain algorithms
without any option to negotiate others at runtime. The opposite of this is where some
portfolio of permitted algorithms is defined and the ciphersuite is negotiated as part of
the protocol. The latter has the downside that attackers might try to interfere with the
negotiation process in a so-called downgrade attack; the former has the downside that
weak defaults affect all users.
For the key-update mechanism there is no desire for a ciphersuite-negotiation at runtime,
so cryptographically opinionated protocols are fine. A change to a new ciphersuite can
be done via a protocol upgrade to a new version that is not expected to interoperate
and that may do different things.

3.1.7. Updateable Long-term keys

One requirement that was not explicitly listed in the initial statement of work, but
found to be potentially desirable in follow-up discussions is the ability to upgrade the
long-term-keys of the parties.
There are three ways to perform a long-term key-update:

• As part of a separate protocol,
• as a part of the key-update mechanism that is always run, and
• as a part of the key-update mechanism that is not always run.

The first option has the disadvantage that it would require the implementation and
analysis of another protocol, which might increase the attack-surface.
The second option is the most obvious one, but it essentially turns the long-term keys
into short-term keys as well. This has several advantages, such as a significantly reduced
attack-surface for replay-attacks, but may come at the cost of larger packets, due to the
need to always include the next public-keys.
The third option is essentially a trade-off between typical packet-size and the advantages
of single-use identity-keys.

3.2. Constraints

The following constraints clarify the setting in which the protocol will be used. Especially,
they point out limitations and constraints imposed on the solution.

3.2.1. Mission Classes

The primarily targeted missions use small to mid-sized commercial or institutional satel-
lites in possibly larger constellations (more than 100 satellites), usually in low earth
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orbit.

The secondary targets are larger institutional or commercial satellites that use unclassi-
fied, standardized security functions.

CubeSat (cubes with 10cm side-length and no more than 2 kg weight) are out of scope
for now, but may be interesting later.

Governmental satellites that are used for classified data are out of scope.

With regards to the number of endpoints, the number of mission control systems on the
ground is generally very limited (1, or 1 + redundancy), whereas the number of satellites
may be comparatively high (in the hundreds or thousands).

Preliminary assessment: We do not foresee these properties to cause any meaningful
issues. Even the high end of the number of satellites is rather small compared to what
many cryptographic protocols that run over the internet have to deal with.

3.2.2. Execution Environment

The IT-infrastructure on the ground is generic and for the purposes of this project not
meaningfully constrained.

The On-Board Computers (OBCs) that are still in use include some older chips such as
GR740 and NG-Ultra; on new system the use of 8 MIPS (Millions of Instructions Per
Second, not to be confused with the MIPS architecture)) is likely acceptable. On old
systems there is essentially no idle-time, whereas newer systems may have a little bit
of it (2%, which equates the aforementioned 8 MIPS). Beyond that, there are no real
additional constraints on energy-use.

The storage-capacity on the satellite may lie between 256 GB and 1 TB.

Preliminary assessment: Given the performance of most post-quantum primitives we
do not expect any of these environments to be meaningful constraints of the protocol.

3.2.3. Connection

The latency of a connection starts at 40-50 ms for low earth orbit and grows with the
distance from there. For communication with Mars for example it lies in the 5-20 min
range.

Packet sizes are around 1 KB. Packet-Fragmentation should preferably be avoided, but
this is no hard requirement.

The Throughput depends on the concrete link:

• Sband: 1 Kbit/s - 100 Kbit/s
• Xband: up to 100s of Mbit/s, usually D/L only
• KA Band: up to several Gbit/s, mainly D/L
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• Typical: 256kbps up, 2Mbps down. some uplinks 64kbps or 128kbps
The total communication-time over these links should be limited to 1 minute, because
the contact time in low earth orbit lies in the 7-10 minute range.
Preliminary assessment: In general this will not cause any issue for the protocols we
design. Sizes depend on the cryptographic schemes used to instantiate them though. For
most schemes these bandwidths are unlikely to cause significant issues, as the resulting
packet sizes fall into the 3-5 KB range. However, there are exceptions when using the
most conservative cryptographic schemes. In these cases, care has to be taken. Frag-
mentation is unavoidable for sending ephemeral keys for all systems, it can be avoided
for KEM ciphertexts for some systems.

3.2.4. Public Key Infrastructure

A Public Key Infrastructure (PKI) can be used to easily update long-term keys of various
parties.
As of now there are some standardization efforts, but nothing is implemented yet.
Preliminary assessment: Because there is currently no PKI in place, we will assume
that long-term keys of the possible peers are pre-installed.

4. Design Considerations

In a deviation from the more traditional design, where keys are always established as
part of the handshake of a data transmission protocol, the key-update/establishment
protocol for SDLS will be a stand-alone protocol that can be run independently from
the data-transmission protocol. Not only does this reduce difficulty of an analysis, it
also decreases the complexity (and thereby the attack-surface) and allows to update
keys less often which reduces the communication and computational load. Additionally
it minimizes the changes required on the SDLS protocol itself.
We deviate from Noise in the way we derive the final key because we are designing a key
exchange rather than a full secure channel protocol which also transmits data. Firstly
Noise uses its final keys already during the handshake-phase to encrypt messages before
receiving a key-confirmation from the peer. In order to ensure that the resulting keys
of the key-update mechanism are truly fresh and can be used without any worries, we
instead derive the final keys only once everything in the handshake has been completed
by the party in question.
Furthermore we combine the resulting pre-keys with the handshake-hash to improve
the robustness against replay-attacks. Noise does not do this as it also covers the data
communication layer. There, it includes a transcript-hash as associated data in every
ciphertext sent, so replays could not send any new data. In our case we treat SDLS as
a standalone protocol to which we need to deliver a fresh key.
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Lastly we always insist on key-confirmations. This is an aspect of signature-based proto-
cols that could potentially save half a round-trip at the expense of a much more fragile
protocol that has to use “external” replay-protection and may in the most extreme cases
even result in an unrecoverable loss of a shared communication-key with the satellite.
We provide a much more detailed discussion of this property in Section 6.4 after we have
establish more technical context.

Considering that ESA stated that it is often infeasible to impersonate a satellite due
to the physical properties of the data-link between orbit and ground, we also provide a
variant that does not authenticate the responding party (here: the satellite) in exchange
for a slightly more lightweight protocol. While the use of such a protocol requires careful
consideration, a scenario in which a channel can be assumed to be partially authenticated
can be an instance where the bandwidth-savings may be enough to justify the use of the
weaker protocol. We thus provide such a version as an additional variant.

We remark here that such a version assigns trust to whoever provides the out-of-band
authentication, which in the motivating example would be the ground-stations, not
mission-control. Whether this trust is reasonable is not something that we can comment
on, beyond strongly advising to thoroughly evaluate that question before any use of
protocols that are only partially authenticated.

5. Available PQ KEMs and Signatures

In this section we provide an overview of the available post-quantum KEMs and signature
schemes. We focus on NIST finalists as well as alternates and discuss their advantages
and disadvantages. For a more detailed overview covering more background see [12], for
NIST’s motivation see [2].

5.1. KEMs

The following KEMs managed to become finalists or alternate candidates in the third
round of the NIST-competition; the first three are what we consider to be the most
relevant ones for this work.

Kyber: By now the NIST process finished and selected Kyber [43] as the new standard
for key encapsulation. This makes Kyber an obvious choice to consider. Kyber is a
lattice-based scheme that (on a high level) follows the LPR blueprint [32] to design
a lattice-based PKE which is then turned into a KEM using the FO transform [24].
Kyber has very good overall performance and reasonably small key- and ciphertext-
sizes. The security of Kyber is based on the hardness of standard lattice problems
over module-lattices. The wider community considers the security of Kyber well
understood.
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Classic McEliece: The McEliece cryptosystem dates back to the beginnings of public
key cryptography. It is widely considered one of the most conservative KEM
constructions. For that reason, the NIST candidate Classic McEliece [3] has been
officially recommended by the German BSI, the French ANSSI and the Dutch
National Cyber Security Center. The scheme has a very interesting performance
characteristic: While public keys are massive, ciphertext size is far smaller than for
any other PQ-KEM. Moreover, implementations are fast. The small ciphertexts
can make Classic McEliece an interesting choice in settings where public keys can
be transmitted out-of-band or ahead of time.

Frodo: FrodoKEM [35] is a lattice-based KEM that, like Kyber, follows the LPR + FO
blueprint. The big difference to Kyber is that Frodo uses unstructured lattices
instead of module lattices which is generally considered the more conservative
choice. However, this comes at a cost. Frodo has significantly worse sizes com-
pared to Kyber. Still, due to the conservative security, Frodo is approved by
BSI/ANSSI/NL-NCSC.

Saber: The Saber [20] construction is extremely close to that of Kyber with the one
major difference that it uses rounding instead of adding an error. This bases
security on the Learning-With-Rounding (LWR) problem instead of the Learning-
With-Errors (LWE) problem. Consequently, it is in all performance aspects quite
similar to Kyber, while possibly somewhat more efficient on constrained devices.
NIST’s report stated as reason to select Kyber over Saber was that for LWR fewer
cryptanalysis results were available than for LWE.

NTRU: The NTRU [17] cryptosystem is the oldest lattice-based encryption scheme. It
is based on the NTRU problem, a problem over certain structured lattices. While
performance is overall good, it is slightly worse than that of Kyber, especially
key generation is somewhat slower which affects usage for ephemeral keys. The
scheme has seen a long history of cryptanalysis without any major attacks (this is
in contrast to NTRUSign which was broken). Based on this, also the security of
NTRU is widely considered well understood by now. Google announced [28] that
they are using NTRU to secure internal communications.

NTRU Prime: The general idea of NTRU Prime [8] is to move lattice-based schemes
to a different kind of lattice for which the team claims that it provides less ex-
ploitable structure than other lattices. The NTRU Prime family contains two
KEMs: Streamlined NTRU Prime (sntrup) and NTRU LPRime (ntrulpr). The for-
mer is a variant of NTRU over the NTRU Prime lattice, the latter is a variant of the
LPR approach, similar to Kyber & Co over the NTRU Prime lattice. Performance-
wise the two schemes are similar to the originals with the originals being slightly
larger (as NTRU Prime uses rounding), though ciphertexts are marginally larger
because the system uses an extra 32 bytes for a key confirmation hash. NIST stated
that they did not select NTRU Prime because there was insufficient evidence for
the security advantages of the scheme. Streamlined NTRU Prime is used as default
in OpenSSH [36].
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SIKE: The SIKE scheme was a KEM-candidate in Round 4 of the NIST competition
based on the isogeny problem with additional information between supersingular
curves. However, SIKE has been broken [15, 33, 40] in 2022 and the underlying
problem has been shown to be solvable in polynomial time.

BIKE and HQC: NIST moved two more code-based KEMs into Round 4, namely
BIKE [6] and HQC [1]. These use structured codes similar to the cyclotomic
rings in structured lattices. The use of structured codes allows them to achieve
significantly smaller public keys than McEliece at the expense of larger ciphertexts.
The ratio of ciphertext and public key size matches that of systems based on
lattices, both structured and unstructured, and the sizes are between those of
structured lattices and those of FrodoKEM. Also security of these schemes is
less understood compared to lattice-based schemes: Code-based schemes using
structured codes have a somewhat troubled history, e.g., systems using cyclic
codes (rather than quasi-cyclic codes) were broken. The codes used in these
schemes have not been subject to an attack but are also more recent and fewer
cryptanalysis results are known than for the lattice-based schemes.

In our theoretical analysis we focus on Kyber, McEliece, and Frodo. The reason is that
the performance of Saber, NTRU, and NTRU Prime is close enough to that of Kyber to
not make a huge difference in a theoretical analysis (note that when evaluating practical
performance, the slower key generation of NTRU and sntrup may make a difference) [2].
Similarly, BIKE and HQC are similar in performance to structured lattice-based schemes
(although noticeably larger) [2]. Therefore results would be similar to those for Kyber
and will not open up different trade-offs. Frodo demonstrates what it costs to go to
unstructured lattices. SIKE is broken [15] and there is no similarly-small scheme in the
NIST process.

An ever reoccurring topic when it comes to lattice-based KEMs is the topic of patents.
We are no patent lawyers and cannot comment on this issue. NIST announced that it has
come to agreements with holders of patents that potentially concern Kyber. According
to NIST, the agreement allows the royalty free use of Kyber as standardized by NIST.
We leave it to patent lawyers to discuss any further issues related to patents.

We depict the sizes of private keys (sk), public keys (pk) and ciphertexts (ct) for the three
systems in the reference implementation in Table 1 and Figure 1, for comparison the
former also includes the pre-quantum elliptic-curve scheme X25519. Note that private
keys often can be compressed down to a seed at the expense of somewhat slower decapsu-
lation times, e.g., the key format of Classic McEliece supports compressed private keys
of size 32 bytes.
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Table 1: Key- and Ciphertext-sizes, Estimated NIST security-level (“Sec”) and proba-
bility of decapsulation-failure (𝛿) of various KEMs. X25519 is an elliptic curve
based pre-quantum key-exchange whose characteristics are representative of
those of elliptic-curve based KEMs, which are our recommendation for the
fallback-scheme in hybrid KEMs. Were it not for quantum-attacks X25519
would likely be classified as a level-1 scheme.

Scheme SK PK CT Sec. 𝛿
X25519 32 32 32 - 0
Kyber-512 1632 800 768 1 2−139

Kyber-768 2400 1184 1088 3 2−164

Kyber-1024 3168 1568 1568 5 2−174

mceliece348864 6492 261120 96 1 0
mceliece460896 13608 524160 156 3 0
mceliece6688128 13932 1044992 208 5 0
mceliece6960119 13948 1047319 194 5 0
mceliece8192128 14120 1357824 208 5 0
FrodoKEM-640 19888 9616 9720 1 2−138.7

FrodoKEM-976 31296 15632 15744 3 2−199.6

FrodoKEM-1344 43088 21520 21632 5 2−252.5

5.2. Signatures

NIST PQC chose three signature-schemes and additionally standardized a stateful
signature-scheme before that:

Dilithium: Dilithium [31] is NIST’s primary choice for signatures. Is is based on struc-
tured lattices, using module lattices as Kyber. Public keys and signatures have
about the same size and are both somewhat larger than their KEM counterparts.
It provides decent performance and size-characteristics, without major downsides.

Falcon: NIST also recommends FALCON [39], another lattice-based signature scheme
using structured lattices, for settings in which small signatures are important.
While having the same overall characteristics as Dilithium, signatures in Falcon
are significantly smaller, so much smaller that they are smaller than Kyber ci-
phertexts. The downside of the scheme is that its definition uses floating-point
arithmetic which is not available on smaller platforms and which is notoriously
difficult to implement securely.

SPHINCS+: SPHINCS+ [25] is the third recommendation of NIST. The system is
based on hash functions. While it is extremely conservative in its assumptions,
even more so than established pre-quantum schemes, and its public keys are small,
its signatures are most likely too large to be of any use in environments with
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Figure 1: Size- and Performance-characteristics of Frodo, Kyber and McEliece at NIST
Level 1, Level 3 and Level 5 on ARM Cortex-A7, ARM Cortex-A53 and Intel
Skylake CPUs using benchmarking data from eBACS.

17

https://bench.cr.yp.to/results-kem.html


limited bandwidth, such as communication with satellites. Despite this limitation,
SPHINCS+ is built from components that may be useful for this project.

Beyond these signature-schemes that NIST choose during the post-quantum competition
and which follow the regular definition of signature schemes, there are also stateful hash-
based signature-schemes that the IETF and NIST have standardized and that are in the
process of being standardized by ISO. They provide possibly interesting trade-offs and
are already under consideration with ESA for the purpose of signing software:

XMSS: RFC 8391 [26] standardizes XMSS: Like SPHINCS+ it is a hash-based signature-
scheme with extremely conservative assumptions (SPHINCS+ can in fact be seen
as an extended version of XMSS), but unlike SPHINCS+ it has to maintain a
state when signing: Each signing-operation updates that state and reusing an old
state destroys the security of the entire scheme. Furthermore the system fixes the
number of signatures that can be made with one key, i.e., the state-update can only
be performed a limited number of times (a typical limit would be 220). Signatures
in XMSS are much smaller than in SPHINCS+, the exact length depends on the
number of signatures the key can sign, and the performance is good.

LMS: RFC 8554 [34] standardizes Leighton-Micali Hash-Based Signatures (LMS), an-
other stateful hash-based signature scheme. The scheme is very similar to XMSS,
with slightly larger signatures, a reliance on random oracles in its security-proof
and about four times better overall performance.

WOTS: At their core SPHINCS+, XMSS and LMS are all schemes that are designed
around the idea of using Winternitz One-Time-Signatures (WOTS) in a way that
allows to sign more than one message. WOTS are hash-based signatures that can
only be used to sign one message and become insecure if they are used twice. They
have very small public keys and depending on the exact parameterization also
quite small signatures and fast verification. As such we consider them a viable
signature-scheme too, as long as their main-downside of only being able to sign
once does not cause issues.

Beyond these options, the following algorithms also made it into the third round of the
NIST-competition:

Rainbow: Rainbow [22] is a multivariate scheme that became a NIST-finalist. It shares
the typical performance characteristic of multivariate schemes in that it offers very
short signatures and very large public keys. However, Beullens [11] showed that
the design does not offer any advantages over the plain unbalanced oil-and-vinegar
construction and broke the level-1 parameters.

GeMSS: GeMSS [14] is a multivariate scheme based on HFEv-. It has large public keys
(between 0.3 and 3 megabytes) and small signatures. It was an alternate candidate
in the NIST-competition and its security was degraded by [45].

Picnic: Picnic [46] is a scheme that like SPHINCS+ only relies on symmetric primitives.
The schemes have similar properties and in the end Picnic simply failed to demon-
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strate a clear advantage over its slightly more conservative competitor, causing it
to loose the NIST-competition in which it was an alternate candidate.

NIST has started a new competition for post-quantum signatures and submissions were
due in June 2023. We do not consider these submissions in scope as they have not
received sufficient security analysis beyond some that are already completely broken.

In summary Dilithium and Falcon are the two primary options for a signature-scheme if
bandwidth is a concern. The choice between them is largely a trade-off between higher
bandwidth-use and higher implementation-difficulty. In case state-based schemes are
acceptable, XMSS and LMS are possible options too that pay for their larger signatures
with massively smaller public keys and radically fewer assumptions. The most extreme
option is then to use WOTS directly which only allows to sign a single message.

Beyond these options, SPHINCS+ and Picnic have to be considered non-viable due to
their large signatures, and Rainbow and GeMSS do not reach the claimed security levels.
For these reasons we do not consider these options further for the key-update mechanism.

We depict the sizes of the NIST-winners and the elsewhere standardized stateful signa-
ture schemes in Table 2.

Table 2: Estimated security-level, Key- and signature-sizes of various signature schemes.
The security-level (”Sec“) is given as NIST-level, where levels 1/3/5 are roughly
equivalent to the security of AES 128/192/256 against brute-force key search
under quantum and classical attacks. Levels 2 and 4 are matched with collision-
resistance of a hash function with 256 and 512 bits, respectively. The sizes of
the WOTS+-keys are given assuming the use of key-compression. ECDSA is
a pre-quantum scheme for cases where hybrid signatures are desirable; were it
not for quantum-attacks it would likely be classified as a level-1 scheme.
(*) The stateful signature-schemes XMSS and LMS do not explicitly standard-
ize the format of their secret-keys. The given sizes are assuming the use of
pseudorandom key generation. Any efficient implementation will require an
additional state with a size depending on the implementation and used parame-
ters, typically in the order of kilobytes. Depending on the implementation, the
whole state or most of it is non-secret information.

Scheme SK PK Sig Sec
Dilithium2 2544 1312 2420 1
Dilithium3 4016 1952 3293 3
Dilithium5 4880 2592 4595 5
Falcon-512 1281 897 666 1
Falcon-1024 2305 1793 1280 5
SPHINCS+-128s 64 32 7856 1
SPHINCS+-128f 64 32 17088 1
SPHINCS+-192s 96 48 16224 3
SPHINCS+-192f 96 48 35664 3
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Scheme SK PK Sig Sec
SPHINCS+-256s 128 64 29792 5
SPHINCS+-256f 128 64 49856 5
XMSS-SHA2_10_256 *64 64 2500 5
XMSS-SHA2_16_256 *64 64 2692 5
XMSS-SHA2_20_256 *64 64 2820 5
LMS_SHA256_M32_H15
with LMOTS_SHA256_N32_W4 *52 56 2664 5

LMOTS_SHA256_N32_W1 *52 56 8516 5
LMOTS_SHA256_N32_W2 *52 56 4292 5
LMOTS_SHA256_N32_W4 *52 56 2180 5
LMOTS_SHA256_N32_W8 *52 56 1124 5
WOTS+(32,16) 32 32 2144 5
WOTS+(32,4) 32 32 4256 5
ECDSA-P256 32 32 64 -

5.3. Combining PQC with ECC

Requirement 3.1.4 asks to deploy the post-quantum algorithms in combination with
“pre-quantum” public-key cryptography as also required by several European security
agencies, including BSI and ANSSI. For the pre-quantum algorithms, elliptic curve cryp-
tography (ECC) is preferable over RSA-based solutions due to their size. The common
way to combine PQC and ECC algorithms is by the means of so called combiners. In the
following we discuss combiners for KEM and signature. Another detailed discussion of
the topic can be found in ENISA’s integration study on post-quantum cryptography [10].

5.4. KEM-Combiners

The goal of a KEM-combiner as considered in this work is to construct a KEM 𝒮 from
two KEMs 𝒫1, 𝒫2 such that 𝒮 is secure as long as at least one out of 𝒫1, 𝒫2 is se-
cure. For security we require security against active attacks, which is called ciphertext-
INDistinguishability under Chosen Ciphertext Attacks (IND-CCA). Consequently, we
describe our protocol with respect to a single KEM that can then be instantiated with
any secure KEM, including a KEM that is obtained via any secure KEM combiner.

It turns out that the design of a robust KEM combiner is not as straightforward as
one may think. There are several pitfalls possible as observed by Giacon, Heuer, and
Poettering [23]. However, there also exist several efficient and secure solutions. The
combiners commonly run the two schemes 𝒫1, 𝒫2 independently and only combine their
data objects afterwards for derivation of the shared secret. The most simple and still
secure construction takes the shared secrets 𝑘1, 𝑘2 and the ciphertexts 𝑐1, 𝑐2 of 𝒫1, and
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𝒫2, respectively, and computes the final shared key as

𝑘 = ℋ((𝑘1‖𝑘2), (𝑐1‖𝑐2)),

where ℋ is a key-derivation function.

This construction can be proven secure modeling ℋ as a random oracle, a common
heuristic used when proving practical cryptographic schemes secure. Several of the
CCSDS-recommended cryptographic algorithms are proven secure in the random-oracle
model. Hence, this does not add any new assumption to the full protocol. In practice,
ℋ can be implemented preferably with HMAC-SHA2, or KMAC-SHA3.

A variant of this combiner is currently discussed in IETF’s CFRG for standardization [37]
and is also used in a proposed Internet-Draft for Post-Quantum OpenPGP [29]. More-
over, variants of this design are discussed in CFRG that fix the combined KEMs (c.f.,
X-Wing [7]). This has the advantage that the combiner can be optimized for the choices
made, but of course comes at the cost of generality.

To highlight this once more: The exact choice of combiner does not matter for the
protocol proposed here, as long as the resulting KEM achieves IND-CCA security given
that at least one the combined KEMs does the same.

For the purposes of this report we will assume the use of the generic combiner [37]
with hashed Diffie-Hellman based on X25519 as pre-quantum KEM as it works with all
considered schemes. Other curves could of course be used instead, which may or may
not change size and/or performance slightly, depending on the replacement.

5.5. Signature-Combiners

While designing a secure KEM-combiner is somewhat non-trivial, the opposite is the
case for signatures. As long as the standard security notion of Existential Unforgeability
under Chosen Message Attacks (EUF-CMA) is the goal, the trivial combiner – double
signature – works. For that the message is simply signed with both signature schemes
that are used and then the resulting signatures are concatenated for the combined sig-
nature. Verification works by splitting the signatures again into two and verifying both
of them. If any verification fails the combined signature must be rejected, otherwise the
signature is valid.

We remark that this way of combining signatures does not achieve Strong Existential
Unforgeability (SEUF-CMA), which states that an adversary should also be unable
to create a different signature for a message for which they already received a valid
signature. This is because if one of the signature schemes is broken an attacker may be
able to provide a different signature on the message under that scheme while keeping the
signature part under the secure scheme, thus providing a new combined signature on the
same message. That said, unlike EUF-CMA, SEUF-CMA is not a commonly required
property and in particular not needed for any of our proposed protocols.
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There do exist more involved security notions for signature combiners (c.f., [13]). These
are motivated by the use in systems that have to provide legacy options, to achieve
backwards compatibility (e.g., can one signature be verified without verifying the other).
In the given setting, there is no system for which we have to provide such options and
therefore, these notions are not of relevance here.

In places where a pre-quantum signature is necessary we will assume the use of
ECDSA [5], in particular with the NIST P-256 curve. ECDSA is listed as acceptable in
the CCSDS-document on Cryptographic Algorithms and outperforms the alternatively
listed RSA-signatures on almost every metric. As with the KEM-fallback this is largely
a representative choice and could be replaced with any other signature-scheme (for
example EdDSA [9]).

6. Proposals

In this section we provide outlines for possible protocols with different trade-offs. In
general, our proposals can be seen as the main blueprints that can be used (and have
been used) to build authenticated key-exchange using KEMs. Thereby they are summa-
rizing the core of all previous proposals for post-quantum secure communication using
KEMs and signatures. The difference between the existing previous proposals is mostly
motivated by considerations regarding backwards-compatibility or non-cryptographic,
protocol-specific considerations.

As a baseline, we consider the traditional approach of using signature key pairs as long-
term keys and KEM (traditionally public key encryption) key pairs as ephemeral keys.
This approach was for example used in TLS up to version 1.2. Most early proposals for
post-quantum secure communication focused on TLS and followed this general approach
(see for example [42, 19, 38]). Next, we discuss different variations of a more recent
approach proposed for PQC which only uses KEM key pairs, motivated by the difference
in artifact sizes between PQ-KEM and -signatures. This approach was used by the PQ
protocols PQWireGuard [27], KEM-TLS [44] and PQNoise [4]. Finally, we discuss some
more involved variations of the KEM+Signature approach.

6.1. KEM+Signature Exchanges

The traditional approach revolves around using an ephemeral KEM key pair to encap-
sulate the session key and sign the ephemeral public key with a long-term signing key.

This is for example the approach used by TLS 1.3 when Diffie-Hellman key exchange
is used. This was already used for RSA key transport methods in previous versions of
TLS. Given that RSA encryption in this case is used like a KEM, a post-quantum KEM
can be used as drop-in replacement.

This kind of exchange can be described by the following noise-pattern:
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Initiator Responder
psk ctr [pk_mc_new] sig_mc

c_e [pk_sat_new] sig_sat

sk_e
sk_mc pk_sat

psk ctr
pk_mc sk_sat

ctrpk_e

key_mc, key_sat

Initiator Responder
ctr [pk_mc_new] sig_mc

c_e [pk_sat_new] sig_sat

sk_e
sk_mc pk_sat

ctr
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ctrpk_e

key_mc, key_sat

Figure 2: Overview of a KEM+Signature exchange. Solid boxes indicate that confiden-
tiality and in case of the blue boxes authenticity of their content are protected
by the same-color secret. Dashed boxes indicate that only the authenticity,
but not the confidentiality is protected. Values in square-brackets are option-
ally updated longterm keys and may be skipped. The left diagram depicts the
situation in which there is an uncompromised pre-shared key (psk) and the
right one the situation where there is not.

-> s
<- s
...
-> psk, e, s'[opt1], sig
<- ekem, s'[opt2], sig
-> confirm

We provide detailed code of a variant of this proposal in Appendix A. Detailed code for
this proposal would differ from the code shown there in that the AEAD decryption calls
require error handling to deal with invalid messages. KEMs are expected to use implicit
rejection and thus always output a key, correctness is then established by using the key
in AEAD encryption or decryption.
We note that there may not always be a psk that can be used to derive security from it.
In those cases that key should be set to an all-zero bitstring of appropriate length. It
will no longer add any security in those cases, but since its inclusion in the hand-shake
is a pure defense-in-depth-measure, this does not significantly endanger the security of
the overall protocol. We include the psk because it is computationally cheap to do so
and it provides a fairly robust security-fallback, not because our analysis relies on it. See
Figure 2 for a diagram that depicts the difference in protection of the transmitted data
depending on whether the used psk is secure.
This proposal is the baseline. It follows a well vetted design for which numerous imple-
mentations already exist (without the public key update). Any other proposal would
have to beat this one to be considered.
The modification for a partially authenticated version, which derives the authenticity of
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the responder from outside facts, would differ from this version in that the responder’s
packet would only include the ciphertext for the ephemeral KEM (ekem) and drop the
signature and the updated long-term-key.

6.2. Dual/Triple-KEM Exchanges

Initiator Responder
psk [pk_mc_new]

c_e [pk_sat_new]c_mc

sk_e

key_mc, key_sat

sk_mc pk_sat
psk
pk_mc sk_sat

pk_ec_sat

confirm

Initiator Responder

[pk_mc_new]

c_e [pk_sat_new]c_mc

sk_e

key_mc, key_sat

sk_mc pk_sat pk_mc sk_sat
pk_ec_sat

confirm

Figure 3: Overview of the Triple-KEM exchange. Solid boxes indicate that the confiden-
tiality of their content is protected by the same-color secret. Solid blue boxes
and boxes in the color of the senders’s longterm secret furthermore guarantee
authenticity at the time at which they are received. Dashed boxes indicate
that only the authenticity (when received), but not the confidentiality is pro-
tected. By the time the protocol completes (that is when it outputs key_mc
and key_sat) the entire transcript is authenticated. Values in square-brackets
are optionally updated longterm keys and may be skipped. The left diagram
depicts the situation if there is an uncompromised pre-shared key (psk) and
the right one the situation where there is not.

The more recent approach to authentication in a post-quantum setting is the use of a
long-term KEM-key to effectively run a challenge-response protocol. If Alice wants to
authenticate herself to Bob, she has Bob encapsulate a shared secret for her long-term
key and send her the ciphertext. If she is then able to create an AEAD-ciphertext using
the shared secret as key, Bob can conclude upon successful decryption that he is talking
to Alice. The encapsulated shared secret was only accessible to himself and the owner
of the private key (Alice). Since it is (by assumption) not practically possible to create
an AEAD-ciphertext for a given key without knowing said key, only Alice or Bob could
have created that ciphertext.
Existing examples for PQ protocols that follow this approach are PQWireGuard [27],
KEM-TLS [44] and PQNoise [4]. The following proposal is close to the pqKK-pattern
of PQNoise up to the optional inclusion of new long-term public keys.

-> s
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<- s
...
-> psk, skem, e, s' [opt1]
<- ekem, skem, s'[opt2]
-> confirm

This approach has one main advantage over the more traditional signature-based au-
thentication: Post-quantum KEMs tend to be more efficient than signature-schemes,
especially in terms of artifact size. Hence, trading signatures for KEMs leads to proto-
cols with lower communication cost. It comes as a nice addition that this approach is
secure against replay-attacks by construction.
Just as with the Sign+KEM-approach there may not always be a previous shared key
(psk) that can be used to derive security from it. Our response to that problem is the
same as with Sign+KEM as well: The psk should in those cases be initialized with an
all-zero bitstring, as it is merely used as a defense-in-depth-measure. See Figure 3 for a
diagram that depicts the difference in protection of the transmitted data depending on
whether the used psk is secure.
If only the authenticity of the initiator has to be ensured because the authenticity of
the responder can be guaranteed out-of-band, Triple-KEM can be simplified into Dual-
KEM: Dual-KEM differs from Triple-KEM only in that the initiator would not send a
ciphertext for the responder’s long-term-key and that the responder’s answer would drop
the updated long-term-key. The benefit of this approach would lie in a more compact
first packet and less computation because a third of the asymmetric operations could be
skipped. The disadvantage is that Dual-KEM does not itself guarantee any authenticity
of the responder. Sections 9 and 10 provide detailed descriptions of Triple-KEM and
Dual-KEM.

6.3. Variants

Below we discuss two variations of the Sign+KEM-approach using stateful (hash-based)
signatures. First, we discuss what happens if one simply replaces the signature scheme
with a stateful one. Then we discuss how this approach can be optimized using one-time
signature chains.

6.3.1. Stateful Signatures

The above two proposals work for any standard KEM and signature scheme. We remark
that if the number of uses of a long-term key is limited by policy, stateful signatures like
XMSS or LMS could potentially be used. The big downside of stateful signatures is that
their secret key changes over time. If an old key state is reused they become insecure.
This can happen for example as a result of using the secret key of an outdated backup.
While this forms an unacceptable hazard for systems that face end-users, keeping a
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state may be a manageable task in an expert-controlled environment like a mission-
control center or a satellite similar to how stateful hash-based signatures are used in
code signing.

Furthermore using LMS or XMSS as (stateful) signature-schemes has also advantages:

• Both have great performance- and size-characteristics.
• Unlike the NIST-winners they are already standardized.
• The schemes do not introduce any new security assumptions but rely on the security

of hash functions – a necessity for any signature scheme that can handle arbitrary
length messages.

• For that reason, ANSSI states that there is no need for a hybrid solution when
using hash-based signatures.

The resulting protocol is identical to the KEM+Signature-proposal, except that the
secret keys for the signature-scheme change after each signature and that occasional
updates of the long-term keys are no longer optional.

6.3.2. Signature Chains

If a satellite only communicates with one mission-control center (or multiple, but in such
a way that the interactions are completely independent of each other), it is possible to
go even further and move to signature-chains. This idea was proposed in the context
of sensor networks where computational resources are sparse. In the vanilla version of
this idea, each key pair is used to authenticate one message, together with the public
key of the next key pair. In this case, a so called one-time signature scheme like WOTS
can be used, which forms the main ingredient of stateful hash-based signature schemes,
including XMSS and LMS.

As a noise-pattern this would look as follows:

-> s
<- s
...
-> psk, e, s', sig
<- ekem, s', sig

This solution can be an attractive solution due to the reduced computational cost and the
comparatively small signature size. On the down-side, this involves more complicated
key management as the “long-term” key pair of a party has to be updated with every
key exchange.

Care has to be taken to handle exceptional cases like if a message got lost, or if either
side got interrupted during the exchange. On both sides the countermeasure is the
same. All randomness required by a party to run the protocol is sampled as first step
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of the protocol and stored in non-volatile memory. Only then do the parties run the
protocol, using the stored randomness. This way the protocol becomes deterministic and
an aborted protocol run can be reproduced with exactly the same messages. As long as
parties only update the locally stored key pair in storage when the protocol successfully
terminated, de-synchronization can be avoided.

6.4. Generic Comparison

As outlined in Section 7.1, the Triple-KEM approach has the potential advantage, that
it allows to mix and match different KEMs to protect different properties using different
trade-offs. If long-term-keys are for example never updated, it would be possible to
instantiate them with Classic McEliece to benefit from the small ciphertexts, but use
Kyber for ephemeral keys where the public key has to be transmitted on every exchange.
This would improve the performance, the bandwidth-requirements and potentially even
the security.
An advantage of the signature-based approach on the other hand is that it technically
allows to design a protocol that saves half a round-trip because it does not strictly require
a key-confirmation message. Assuming that a sufficiently secure replay-protection is in
place, the first message in the protocol can be assumed to be authentic by the satellite,
because it is by assumption not possible for an attacker to forge the included signature
and the replay-protection prevents replays. Similarly the response could be assumed to
be authentic by the receiver for the same reasons.
The problem with this approach is that it is very fragile and minor issues that would be
fine with a key-confirmation message may cause persistent denial-of-service attacks:
Any weakness in the replay-protection-system would not just allow for the initiation of
a handshake via replaying the previous message, but would in fact complete the pro-
tocol, possibly replacing a critical communication-key on the satellite with one that is
unknowable to mission-control if mission-control already discarded its ephemeral keys.
Replay-protection systems are however not trivial to get right, typical approaches in-
clude counters which requires maintaining state or time-based approaches which require
synchronized clocks and a very tight control of the acceptance-window of a message: If
the window is open for even slightly too long, replays become possible for attackers who
have very low-latency access to previously sent messages. A window that is slightly too
short will prevent that attack, but may also prevent the honest user from sending a
message within that window. In the context of satellites that may change their distance
from at least the ground-stations very quickly and may in the extreme orbit bodies other
than earth, an exact calculation of that window, while certainly possible, is sufficiently
non-trivial to make its inclusion in a cryptographic module questionable.
Even if there are no problems with the replay-protection-system, a further potential
issue could occur if the satellite’s response is lost for whatever reason. In this case the
satellite would perform the requested key-update, but the ciphertext needed by mission-
control to compute the shared secret would never arrive, causing functionally the same
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problem described in the previous case. We remark that while transport-layer protocols
could mitigate this issue to an extend, they would functionally turn the approach into a
more-than-one round-trip protocol.

For these reasons we can already state here, that we do not recommend versions of the
signature-based approaches that skip key-confirmation.

7. Alternative approaches not explored

Here we discuss concepts we briefly considered and decided against. The first one is
a different approach towards combining PQC and ECC. The second proposal is an
alternative way to achieve forward-secrecy.

7.1. Hybrid scheme

The common way to combine PQC and ECC is via the use of primitive combiners, This
approach has the advantage that it massively simplifies the analysis of the greater proto-
col, because the protocol-analysis will generally not take the concrete instantiation of a
primitive into consideration, but merely that the primitive is secure. The disadvantage
is that sizes and computation of the combined schemes add up and that some extra calls
to a key-derivation function are needed.

Alternatively it is also possible to use different instantiations of the same primitive in
the actual protocol. For example, we can instantiate the long-term KEM key pair in
the triple-KEM proposal with Classic McEliece, and the ephemeral key pair with Kyber.
This approach was introduced by PQWireGuard as a means to optimize package size
(though there a variant of Saber is used for the ephemeral key instead of Kyber and the
scheme recommends to use an ECC-fallback regardless). This exploits that McEliece has
extremely small ciphertexts and if the public key never has to be sent in the protocol,
its size does not matter too much.

This approach achieves full hybrid security in the absence of key compromise. However,
as soon as a key (long-term or short-term) is compromised, security is fully based on
the security of the scheme with the non-compromised key. Moreover, authentication
becomes non-hybrid in this case. Because of these issues we did not further consider this
option as a full replacement of the regular hybrid approach. We do note however that it
can still act as a defense-in-depth-measure and may be useful for different reasons (such
as performance- or bandwidth-advantages).
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Table 3: Sizes for a Triple-KEM Kyber-McEliece Hybrid in bytes, without and with
long-term key update. Here McEliece is used for long-term keys, Kyber for
ephemeral keys
Scheme Packet 1 Packet 2 Packet 3
TK(Kyber512,McEliece348864) 928 896 16
TKU(Kyber512,McEliece348864) 262048 262032 16

7.2. Forward Secrecy through Symmetric Ratchet

Forward Secrecy states that communication has to remain confidential even if an involved
party becomes compromised at a later point in time. The traditional way to achieve
this is through the use of ephemeral key-exchanges as part of a handshake – a later
compromise of the long-term secrets does not allow to break confidentiality of previous
communication once the ephemeral secrets of that communication are deleted.

We note that this is not the only way to achieve this property though: It is also pos-
sible to use a traditional “symmetric ratchet”. The core-idea of that approach is that
instead of updating the shared secret via a new key-exchange, new keys can essentially
be derived from old keys via a one-way function. This way all involved parties can per-
form key-updates on their own without having to interact with their peers, as long as
everyone agrees on the update-policy. This approach is remarkably efficient and is often
worth doing, but while it protects against future compromise it cannot recover from past
compromise.

The approach made it into our final version in so far that we mix the previous key
into the hash-object as a defense-in-depth-measure, but the inability to create new and
independent key-material meant that we did not rely on it as a primary defense.

8. Evaluation

The packet-sizes for the various possible protocols are depicted in Table 4.

Table 4: Sizes of different instantiations in bytes. SK = Sign + KEM, SKU = Sign+KEM
with update of longterm-key, SC = Signature-Chain, TK = Triple-KEM, TKU
= Triple-KEM with update of longterm-key.

Scheme Packet 1 Packet 2 Packet 3 Sec
SK(Kyber512+X25519+Dilithium+ECDSA) 3348 3300 16 1
SKU(Kyber512+X25519+Dilithium+ECDSA) 4692 4644 16 1
SK(Kyber512+X25519+Falcon+ECDSA) 1594 1546 16 1
SKU(Kyber512+X25519+Falcon+ECDSA) 2523 2475 16 1
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Scheme Packet 1 Packet 2 Packet 3 Sec
SK(Kyber512+X25519+XMSS-SHA2_10_256) 3364 3316 16 1
SKU(Kyber512+X25519+XMSS-SHA2_10_256) 3428 3380 16 1
SC(Kyber512+X25519,WOTS+(32,16)) 3024 2992 16 1
SC(Kyber768+X25519,WOTS+(32,16)) 2408 3312 16 3
SC(Kyber1024+X25519,WOTS+(32,16)) 3792 3792 16 5
SC(Kyber1024+X25519,WOTS+(64,16)) 10032 10032 16 5
TK(Kyber512+X25519) 1664 1632 16 1
TKU(Kyber512+X25519) 2496 2480 16 1
TK(Kyber768+X25519) 2368 2272 16 3
TKU(Kyber768+X25519) 3584 3504 16 3
TK(Kyber1024+X25519) 3232 3232 16 5
TKU(Kyber1024+X25519) 4832 4848 16 5
TK(Kyber512,McEliece348864, both + X25519) 992 960 16 1
TKU(Kyber512,McEliece348864, both +X25519) 262144 262128 16 1

The hybrid-versions assume that a KEM-combiner is used with a KEM-version of X25519,
but without turning WOTS+ into a hybrid. These numbers would change slightly de-
pending on whether only EKEM should be hybrid or whether the signatures should also
be made hybrid. That said, the comparison clearly demonstrates that the use of a hybrid
elliptic curve scheme comes at little cost with regards to packet-size compared to using
only the post-quantum scheme. We do not consider instantiating ephemeral KEMs with
Classic McEliece due to the large size of the public key.
All of these sizes assume the use of an AEAD-scheme that adds a constant 16 bytes
to the length of the plaintext; this assumption holds for many widely used schemes,
in particular AES-GCM with a full-sized authentication-tag. The sizes are however
independent of the choices made for the involved hash-functions (except for the case of
hash-based signatures), as the protocol does not transmit any hashes.
We note that all of these proposals offer forward-secrecy, post-compromise security, up-
dateable long-term keys and some form of hybrid security. This also holds if the network
fragments packets, but in the event that fragmentation causes data to arrive out-of order
or not at all, the protocol as presented would not be able to reorder or re-request them,
and instead assume an attack and drop the connection. The layer handling fragmenta-
tion would be required to ensure the correct ordering and re-requesting of lost packets
if dropped connections are an issue.

8.1. Conclusion

Our primary recommendation is Triple-KEM(Kyber+X25519):

• Instead of two PQC and ECC schemes in case of Sign+KEM, only one scheme each
has to be implemented, reducing the chance of mistakes and the attack surface.
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• Packets are generally smaller than for Sign+KEM, except for Kyber+Falcon with-
out key update. However, Falcon amplifies the above issue as it is known to be
notoriously hard to implement securely due to the use of floating point arithmetic.

• In terms of speed, we expect Triple-KEM(Kyber+X25519) to clearly outperform
Sign+KEM(Kyber512+X25519+Falcon+ECDSA).

This comes with the variant Dual-KEM(Kyber+X25519):

• Besides giving up responder-authenticity on the protocol-level, the variants are
very similar.

• The bandwidth-savings equate to the size one Kyber-ciphertext in all interactions;
additionally not updating the long-term-key saves the size of Kyber-public-key.

• Dual-KEM can clearly be expected to have better performance than Triple-KEM,
both for computation time and (more important) bandwidth.

Our second choice is still Sign+KEM(Kyber512+X25519+Falcon+ECDSA).
• The sizes are best in class as long as no key update is done and even then they are

at a close second place.
• The scheme still outperforms the hash-based proposals even though it adds ECC.
• It avoids the necessity to maintain a state.
• However great care needs to be taken to implement Falcon securely.

The proposals using XMSS / LMS, or one-time signature chains may be of interest in
case that a mission already has an implementation of the primitive available on the
device. In this case, savings in code-size could be achieved and state-handling is likely
already supported.

9. Triple-KEM in Detail

The following listing provides a detailed description of Triple-KEM. It uses the following
primitives as building-block:

• NoiseHashObject, a construction that Noise-style protocols use and that was first
formalized as its own primitive in PQNoise [4]. For a complete description see
Section 11.2; intuitively this primitive consists of a state (here: prho_state) that
can be used with the two functions input and finalize: Input takes a state and a
bitstring as arguments and returns an updated state and a freely choosable number
of outputs. If the bitstring that has to be provided as argument is pseudo-random,
than all subsequent outputs are pseudo-random as well. finalize works in the
same way, except that it does not output an updated state.
For simplicity we use class-style notation with the hash-object, that is we write
out = state.input(in) instead of state, out = input(state, in).

• H, a collision-resistant hash-function, for example SHA3. Functionally we use this
to implement a hash-object that uniquely hashes the network-transcript up to a
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certain point. Multiple values are always added seperately (H(H(state, x), y)
instead of H(state, x, y)) to ensure domain-separation.

• The value PROTOCOL_TOKEN is a token unique to the protocol; it can prevent proto-
col confusion and provides a degree of domain-separation. This parameter is public
and its concrete value freely choosable. Possible values would for example be the
ASCII-encoding of “SDLSP-KeyReplacment-3KEM-3Kyber-Version1”, UUIDs or
values unique to the network that the satellite is supposed to participate in.

• IKEM, RKEM The long-term KEMs used by the initiating party (usually: mission-
control) and the responding party (usually: the satellite). In our recommendation
both of these are set to Kyber+X25519.

• EKEM The ephemeral KEM, in our recommendation Kyber+X25519

• AEAD An Authenticated (symmetric) Encryption-scheme with support for Asso-
ciated Data, for example AES-GCM. The inputs to AEAD.enc are the key, the
plaintext, a nonce, and the associated data; the output is the ciphertext. The
inputs to AEAD.dec are the key, the ciphertext, the nonce, and the associated data;
the output is the plaintext or failure (if authentication fails).

• KDF a Key-Derivation Function, for example HMAC-SHA2

For KEM KEM, KEM.enc produces the ciphertext and the shared key using the receiver’s
public key; KEM.dec produces the shared key from the ciphertext using the receiver’s
secret key.

The following protocol does not include statements for error handling. If the AEAD
returns failure this error must be caught and handled appropriately. Benign reasons may
be decryption failures in the KEMs leading to mismatching secret keys or communication
failures introducing errors. The latter should be caught by error-correcting codes.

The final output of the protocol consists of the two keys key_mc and key_sat that can
then be used to encrypt data symmetrically (primarily via SDLSP). We output two keys
in order to enable assigning one key as exclusive sending-key to each involved party as a
robustness measure (in particular there is less danger of nonce-reuse if every party has
its own sending-key), but note that both keys are equally secure and that only using one
of them is possible.

Additionally h_6 forms a computationally unique (based on the collision-resistance of
H) handshake-hash that can safely be used as a session-identifier to uniquely identify
a session. The final algorithms on both sides send_3 and receive_3 can be altered
to additionally output the value of h_6 without any security impact if such a session
identifier is required on a higher protocol level.

(The following notation largely aligns with Python; “+” when used with respect to byte-
sequences means concatenation.)

1 def send_1(update_longterm: bool):
2 prho_state_mc = NoiseHashObject.create()

32



3 psk = (key_mc + key_sat) if key_mc is not None else b'\0\0...'
4 h_0 = H(PROTOCOL_TOKEN)
5 k_0 = prho_state_mc.input(psk)
6 c_sat , k_sat = RKEM.enc(pk_sat)
7 c_0 = AEAD.enc(k_0, c_sat , 0, h_0)
8 h_1 = H(h_0, c_0)
9 k_1 = prho_state_mc.input(k_sat)

10 pk_e, sk_e = EKEM.gen()
11 payload = pk_e
12 if update_longterm:
13 pk_mc_new , sk_mc_new = IKEM.gen()
14 payload += pk_mc_new
15 c_1 = AEAD.enc(k_1, payload , 0, h_1)
16 h_2 = H(h_1, c_1)
17 send(c_0, c_1)
18

19 def receive_1((c_0, c_1)):
20 prho_state_sat = NoiseHashObject.create()
21 psk = (key_mc + key_sat) if key_mc is not None else b'\0\0...'
22 h_0 = H(PROTOCOL_TOKEN)
23 k_0 = prho_state_sat.input(psk)
24 c_sat = AEAD.dec(k_0, c_0, 0, h_0)
25 k_sat = RKEM.dec(sk_sat , c_sat)
26 h_1 = H(h_0, c_0)
27 k_1 = prho_state_sat.input(k_sat)
28 pk_e, pk_mc_new = AEAD.dec(k_1, c_1, 0, h_1)
29 h_2 = H(h_1, c_1)
30

31 def send_2(update_longterm: bool):
32 c_e, k_e = EKEM.enc(pk_e)
33 c_2 = AEAD.enc(k_1, c_e, 1, h_2)
34 h_3 = H(h_2, c_2)
35 k_2 = prho_state_sat.input(k_e)
36 c_mc, k_mc = IKEM.enc(pk_mc)
37 c_3 = AEAD.enc(k_2, c_mc, 0, h_3)
38 h_4 = H(h_3, c_3)
39 k_3 = prho_state_sat.input(k_mc)
40 if update_longterm:
41 # This does not enforce knowledge of the new key,
42 # but that should not be a problem:
43 pk_sat_new , sk_sat_new = RKEM.gen()
44 c_4 = AEAD.enc(k_3, pk_sat_new , 0, h_4)
45 h_5 = H(h_4, c_4)
46 send(c_2, c_3, c_4)
47 else:
48 h_5 = h_4
49 send(c_2, c_3)
50

51 def receive_2((c_2, c_3, c_4)):
52 c_e = AEAD.dec(k_1, c_2, 1, h_2)
53 k_e = EKEM.dec(sk_e,c_e)
54 h_3 = H(h_2, c_2)
55 k_2 = prho_state_mc.input(k_e)
56 c_mc = AEAD.dec(k_2, c_3, 0, h_3)
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57 k_mc = IKEM.dec(sk_mc , c_mc)
58 h_4 = H(h_3, c_3)
59 k_3 = prho_state_mc.input(k_mc)
60 if c_4 != "":
61 pk_sat_new = AEAD.dec(k_3, c_4, 0, h_4)
62 h_5 = H(h_4, c_4)
63 else:
64 h_5 = h_4
65

66 def send_3():
67 c_5 = AEAD.enc(k_3, "", 1, h_5)
68 send(c_5)
69 if pk_sat_new:
70 pk_sat = pk_sat_new
71 pk_sat_new = None
72 if sk_mc_new:
73 sk_mc = sk_mc_new
74 sk_mc_new = None
75 h_6 = H(h_5, c_5)
76 pre_key_mc ,pre_key_sat = prho_state_mc.finalize()
77 key_mc = KDF(pre_key_mc , h_6)
78 key_sat = KDF(pre_key_sat , h_6)
79 return key_mc , key_sat
80

81 def receive_3(c_5):
82 m = AEAD.dec(k_3, c_5, 1, h_5)
83 if m != "":
84 error()
85 if sk_sat_new:
86 sk_sat = sk_sat_new
87 sk_sat_new = None
88 if pk_mc_new:
89 pk_mc = pk_mc_new
90 pk_mc_new = None
91 h_6 = H(h_5, c_5)
92 pre_key_mc ,pre_key_sat = prho_state_sat.finalize()
93 key_mc = KDF(pre_key_mc , h_6)
94 key_sat = KDF(pre_key_sat , h_6)
95 return key_mc , key_sat

10. Dual-KEM in Detail

The easiest way to turn the above triple-KEM-protocol into a dual-KEM-protocol would
be to instantiate the satellite-KEM with a Null-KEM, that uses the empty string as
secret-key, public-key, ciphertext and shared secret and just returns those values from
gen, enc and dec. As an added bonus this even preserves the validity of all proofs
that do not rely on any properties of the satellite-KEM, such as the below proofs for
initiator-authenticity and confidentiality.

The downside of this approach is however that it results in a protocol that does slightly
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more work and sends slightly more data than necessary. For this reason we provide a
dedicated Dual-KEM, that has everything related to the satellite-KEM fully stripped
out.

The following listing provides a detailed description of Dual-KEM. It uses the same
building-blocks as before and closely follows the design of Triple-KEM. It skips the use
of some indices in the variables (there is for example no h_1) to stay consistent with
the naming in Triple-KEM.

1 def send_1(update_longterm: bool):
2 prho_state_mc = NoiseHashObject.create()
3 psk = (key_mc + key_sat) if key_mc is not None else b'\0\0...'
4 h_0 = H(PROTOCOL_TOKEN)
5 k_0 = prho_state_mc.input(psk)
6 pk_e, sk_e = EKEM.gen()
7 payload = pk_e
8 if update_longterm:
9 pk_mc_new , sk_mc_new = IKEM.gen()

10 payload += pk_mc_new
11 c_1 = AEAD.enc(k_0, payload , 0, h_0)
12 h_2 = H(h_0, c_1)
13 send(c_1)
14

15 def receive_1(c_1):
16 prho_state_sat = NoiseHashObject.create()
17 psk = (key_mc + key_sat) if key_mc is not None else b'\0\0...'
18 h_0 = H(PROTOCOL_TOKEN)
19 k_0 = prho_state_sat.input(psk)
20 pk_e, pk_mc_new = AEAD.dec(k_0, c_1, 0, h_0)
21 h_2 = H(h_0, c_1)
22

23 def send_2():
24 c_e, k_e = EKEM.enc(pk_e)
25 c_2 = AEAD.enc(k_0, c_e, 1, h_2)
26 h_3 = H(h_2, c_2)
27 k_2 = prho_state_sat.input(k_e)
28 c_mc, k_mc = IKEM.enc(pk_mc)
29 c_3 = AEAD.enc(k_2, c_mc, 0, h_3)
30 h_5 = H(h_3, c_3)
31 k_3 = prho_state_sat.input(k_mc)
32 send(c_2, c_3)
33

34 def receive_2((c_2, c_3)):
35 c_e = AEAD.dec(k_0, c_2, 1, h_2)
36 k_e = EKEM.dec(sk_e,c_e)
37 h_3 = H(h_2, c_2)
38 k_2 = prho_state_mc.input(k_e)
39 c_mc = AEAD.dec(k_2, c_3, 0, h_3)
40 k_mc = IKEM.dec(sk_mc , c_mc)
41 h_5 = H(h_3, c_3)
42 k_3 = prho_state_mc.input(k_mc)
43

44 def send_3():
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45 c_5 = AEAD.enc(k_3, "", 1, h_5)
46 send(c_5)
47 if sk_mc_new:
48 sk_mc = sk_mc_new
49 sk_mc_new = None
50 h_6 = H(h_5, c_5)
51 pre_key_mc ,pre_key_sat = prho_state_mc.finalize()
52 key_mc = KDF(pre_key_mc , h_6)
53 key_sat = KDF(pre_key_sat , h_6)
54 return key_mc , key_sat
55

56 def receive_3(c_5):
57 m = AEAD.dec(k_3, c_5, 1, h_5)
58 if m != "":
59 error()
60 if pk_mc_new:
61 pk_mc = pk_mc_new
62 pk_mc_new = None
63 h_6 = H(h_5, c_5)
64 pre_key_mc ,pre_key_sat = prho_state_sat.finalize()
65 key_mc = KDF(pre_key_mc , h_6)
66 key_sat = KDF(pre_key_sat , h_6)
67 return key_mc , key_sat

11. Analysis

The Triple-KEM-protocol provides the following properties:

1. Confidentiality: Honestly generated keys remain indistinguishable from random-
ness (=confidential) if the ephemeral randomness used during their creation re-
mains confidential.

2. Authenticity: A party cannot be impersonated, as long as its long-term public
key and the peer’s ephemeral randomness remain uncompromised.

3. Honestly generated keys remain confidential if the pre-shared key remains uncom-
promised.

4. Honestly generated keys remain confidential as long as one party’s long-term key
and the peer’s ephemeral randomness remain uncompromised.

5. As long as a connection remains confidential (see above), no passive attacker can
learn more about a new long-term public-key than can be extracted from cipher-
texts for that public key.

We will prove properties 1 and 2, as they cover the requirements. Properties 3 and 4 fall
into the category of defense-in-depth where they are useful to mitigate some attacks that
may result from cryptanalytic progress or issues with the implementation, but should
not be relied upon on their own and are not required to meet the requirements. The
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same holds for Property 5, which given the lack of a need for privacy is not itself relevant
here, but may mitigate some attacks by denying the adversary knowledge about targeted
public-keys.

The Dual-KEM-protocol provides most of the same properties, except for the authentic-
ity of the responder:

1. Confidentiality: Honestly generated keys remain indistinguishable from random-
ness (=confidential) if the ephemeral randomness used during their creation re-
mains confidential.

2. Authenticity: The initiator cannot be impersonated, as long as its long-term
public key and the responder’s ephemeral randomness remain uncompromised.

3. Honestly generated keys remain confidential if the pre-shared key remains uncom-
promised.

4. Honestly generated keys remain confidential as long as one party’s long-term key
and the peer’s ephemeral randomness remain uncompromised.

5. As long as a connection remains confidential (see above), no passive attacker can
learn more about a new long-term public-key than can be extracted from cipher-
texts for that public key.

Considering the similarity between the protocols, the proofs for the Triple-KEM are,
with the exception of the responder-authenticity, fully applicable. Given the lack of
built-in responder-authenticity, Dual-KEM only achieves our targeted security-notion if
that authenticity is provided from other sources. Considering that the motivation behind
not requiring that built-in authenticity is that impersonating an orbiting satellite on a
physically narrow channel is assumed to be infeasible, we will make that assumption for
the proof.

We note that additionally (although out of scope for this study), the use of a pre-shared
secret allows to prevent a denial of service attack based on the cryptographic protocol.
More specifically, the use of the pre-shared secret allows the responder, i.e., the satellite,
to reject connection requests based on the first message and thereby prevents an attacker
from filling the memory with invalid partial sessions.

11.1. Model

We will use a modified version of the eCK-model [30]. At its core the eCK-model
(both the original and our version) works in a setting where 𝑛𝑝 parties can run up to
𝑛𝑠 key-exchanges (or „sessions“) each between them to compute shared secrets. The
adversary is in full control of the network and can tell parties when to send or receive
network-packets. Eventually the adversary gets to choose a target-session for which it
receives a candidate for the shared secret, that depending on the challenge-bit is either
the actual shared secret or a random and independent value of the same distribution.
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If the adversary manages to guess the challenge-bit correctly while observing certain
freshness-conditions, it wins. A protocol is considered secure if there is no Quantum
Polynomial Time (QPT)- attacker whose win-probability is non-negligibly higher than
0.5.

Our biggest modification to this model is that we do not provide an oracle to reveal
the ephemeral key to outlaw some classes of attacks that are out-of-scope. While this
results in a strictly weaker security-notion, we still benefit from the familiarity of eCK
and note that ephemeral key corruptions in the real world are almost exclusively caused
by bad random-number-generators and that the best way to prevent them is to harden
the random-number-generator.

This simplifies the freshness-predicates, because several failure-conditions depend on the
adversary querying ephemeral keys. Specifically a session sid is now considered fresh,
unless:

• The adversary queried to reveal the session key of sid or of its matching session (if
it exists).

• No matching session to sid exists and the adversary queried the long-term key of
the peer before the completion of the session.

The second, much more minor modification is that our version generates an initiator-
and a responder-key per session pair, rather than a single secret. As acquiring either of
them is considered a break, this is largely a technicality.

We will henceforth refer to this notion as “eCK-NEC”, with NEC being short for No
Ephemeral Corruption.

Furthermore we introduce the variables 𝑛𝑖 and 𝑛𝑟 that refer to the maximum number of
initiators and responders respectively: While both of these values are upper-bounded by
𝑛𝑝, especially 𝑛𝑖 will most of the time be significantly smaller in our use-case, allowing
us to get a better security-statement at no cost. For the same reason we separate 𝑛𝑠
into 𝑛𝑠𝑖

and 𝑛𝑠𝑟
as the maximum number of sessions that an initiator or responder may

respectively run: For the same reason for which there are often few initiators, these few
initiators may run a significantly higher number of sessions than most responders. Lastly
we remark that post-quantum KEMs often do not offer perfect correctness, that is even
an honestly generated ciphertext might not successfully decapsulate to the same shared
secret that the sender obtained when encapsulating. We will denote the probability of
this happening to a KEM KEM as KEM.𝛿.

11.2. Pseudo-Random Hash-Object (PRHO)

A major component of our protocol is the precise mechanism used for hashing.
PQNoise [4] introduced an abstracted interpretation of these hash-chains in the form of
a (Noise-) Pseudo-Random Hash-Object (PRHO), that produces an unlimited number
of values that are indistinguishable from randomness, once it has been fed randomness.
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It furthermore proved that the way the hashing is done securely implements such a
PRHO. Because this instantiation is precisely what we need as well, we point to the
PQNoise-paper for a more detailed discussion and analysis and will henceforth treat
the protocol as using a Noise-PRHO directly.

Formally a Noise-PRHO is a tuple of three deterministic algorithms: create, input, finalize,
and an integer-constant 𝑛.
create(1𝜆) → 𝑠 (conceptually) takes a security-parameter 𝜆 and returns a state 𝑠.
input(𝑠, 𝑚) → 𝑠′, ℎ takes a state 𝑠 and message 𝑚 ∈ {0, 1}∗ and returns a new state 𝑠′

and a list ℎ ∈ ({0, 1}𝜆)𝑛 of hashes of length 𝑛 .

finalize(𝑠, 𝑚) → ℎ works like input, except that it does not return a state.

For 𝑛 = 2, which is the relevant case for us, the instantiation of this primitive that Noise
and its derivatives use and that we recommend as well then looks as follows:

1 def create():
2 return ""
3

4 def input(state , m):
5 tmp = hmac_hash(state , m)
6 new_state = hmac_hash(tmp, b"\x00")
7 h1 = hmac_hash(tmp, new_state + b"\x01")
8 h2 = hmac_hash(tmp, h1 + b"\x02")
9 return new_state , [h1, h2]

10

11 def finalize(state , m):
12 h_0, [h_1, h_2] = input(state , m)
13 return [h_0, h_1]

We remark that the only situation where we require both outputs are the ones where
finalize is called, making it a desirable optimization to skip the computation of h_2 in all
cases; we only include it here for the sake of staying in line with pre-existing literature.

11.3. Outline

While eCK-NEC covers both authenticity and confidentiality at the same time, we treat
them largely separately as we consider that approach more intuitive.

11.3.1. Authenticity

The way the protocol provides authenticity is identical for both parties: It uses a long-
term KEM to derive a shared secret that should only be known to the encapsulating
party and the owner of the secret key and only accepts once the encapsulating party
receives a response that is encrypted with an AEAD-scheme that uses a key derived
from that shared secret. On a high-level they both work as follows:
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• In the first game-hop we abort if there is ever a hash-collision. This is sound,
because this should never happen if the hash-function is secure.

• In the second game-hop we guess the impersonated party and its peer and the
attacked session and abort upon a wrong guess.

• In the third game-hop we replace the shared-secret with a random string. We derive
the security of this step from the security of the long-term KEM in question.

• In the fourth game-hop we replace the subsequent outputs of the PRHO with
randomness. We derive the security of this step from the security of the hash-
object.

• In the fifth game-hop we abort the interaction upon receiving a reply in the
challenge-session. This is secure, because a valid reply could be used to break
the AEAD-security.

• At this point it is trivially impossible for the adversary to impersonate a party in
the challenge-session.

11.3.2. Confidentiality

Once authenticity is fully established, confidentiality only has to deal with passive at-
tacks. As we do not use keys that result from sessions that did not reach the stage where
the final key was accepted, and because any session that reached that stage without be-
ing fully honest would be a break of authenticity, the only sessions that remain to be
considered are sessions in which all messages are delivered honestly between the parties.

• In the first game-hop we abort if there is ever a hash-collision. This is sound,
because this should never happen if the hash-function is secure.

• In the second game-hop we guess the attacked initiator and initiator-session and
abort upon a wrong guess.

• In the third game we abort if there is ever a second honest initiator-session that
uses the same ephemeral public key as the target-session.

• In the fourth game we guess the peered responder and responder-session that is
targeted and abort upon a wrong guess.

• In the fifth game we abort if there is ever an honest responder session that recreates
the ciphertext for the ephemeral KEM in a non-targeted session.

• In the sixth game we abort if a non-partnered session shares the handshake-hash
with the target-session. (This is purely conceptual at this point.)

• In the seventh game-hop we replace the shared-secret with a random string. We
derive the security of this step from the security of the ephemeral KEM in question.
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• In the eighth game-hop we replace the subsequent outputs of the PRHO with
randomness. We derive the security of this step from the security of the hash-
object.

• In the ninth game-hop we replace the returned keys with randomness. We derive
the security of this step from the PRF-security of the used key-derivation-function.

• At this point the final keys are random, which restricts the adversary to guessing
a random bit with advantage 0.

11.4. Formal Security-Statements

Theorem 1. There is no polynomial-time quantum-adversary that can win the eCK-NEC-
game against Triple-KEM, with more than negligible probability. Specifically we find for
all such adversaries 𝒜:

AdveCK-NEC
𝒜, 3KEM (1𝜆) ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 ⋅ Advcoll-res
𝒜1, H (1𝜆)

+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ EKEM.𝛿

+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟

⋅ 3 ⋅ AdvIND-CCA
𝒜, EKEM (1𝜆)

+ 𝑛𝑠𝑟
⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ 1

1−IKEM⋅𝛿 ⋅ AdvIND-CCA
𝒜4, IKEM (1𝜆)

+ 𝑛𝑠𝑖
⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ 1

1−RKEM⋅𝛿 ⋅ AdvIND-CCA
𝒜4, RKEM (1𝜆)

+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟

⋅ 3 ⋅ AdvPRHO
𝒜, NHO (1𝜆)

+ (𝑛𝑠𝑖
+ 𝑛𝑠𝑟

) ⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ AdvEUF-CMA
𝒜6, AEAD (1𝜆)

+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟

⋅ 2 ⋅ AdvPRF
𝒜, KDF (1𝜆)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Proof. This follows directly from adding up the losses in Theorems 3-5, noting that
𝑛𝑖 ⋅ 𝑛𝑠𝑖

⋅ 𝑛𝑟 + 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟
+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖

⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟
≤ 𝑛𝑖 ⋅ 𝑛𝑠𝑖

⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟
⋅ 3, when summarizing the

PRHO-losses and simplifying the result.

Theorem 2. There is no polynomial-time quantum-adversary that can win the eCK-NEC-
game against Dual-KEM, with more than negligible probability. Specifically we find for
all such adversaries 𝒜:

AdveCK-NEC
𝒜, 2KEM (1𝜆) ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 ⋅ Advcoll-res
𝒜1, H (1𝜆)

+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ EKEM.𝛿

+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟

⋅ 3 ⋅ AdvIND-CCA
𝒜, EKEM (1𝜆)

+ 𝑛𝑠𝑟
⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ 1

1−IKEM⋅𝛿 ⋅ AdvIND-CCA
𝒜4, IKEM (1𝜆)

+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟

⋅ 2 ⋅ AdvPRHO
𝒜, NHO (1𝜆)

+ 𝑛𝑠𝑟
⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ AdvEUF-CMA

𝒜6, AEAD (1𝜆)
+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖

⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟
⋅ 2 ⋅ AdvPRF

𝒜, KDF (1𝜆)
+ AdveCK-NECCase A

𝒜, 2KEM (1𝜆)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Where AdveCK-NECCase A
𝒜, 2KEM (1𝜆) refers to the maximum achievable advantage for the adversary

to cause an unpeered, complete initiator-session.

Proof. This follows directly from adding up the losses in Theorems 4 and 5 as well as
AdveCK-NECCase A

𝒜, 2KEM (1𝜆) and, noting that 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟
+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖

⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟
≤ 𝑛𝑖 ⋅ 𝑛𝑠𝑖

⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟
⋅ 2,

when summarizing the PRHO-losses and simplifying the result.

11.5. Proof

There are three separate cases:

1. The initiator-session 𝜋𝑠
𝑖 has no peered session.

2. The responder-session 𝜋𝑠
𝑖 has no peered session.

3. The session 𝜋𝑠
𝑖 has a peered session.

As these cases are defined to be mutually exclusive by definition and cover all possibilities,
We analyze them separately and note that the adversarial advantage against our protocol
is upper-bounded by the sum of the adversarial advantages that can be achieved in the
sub-cases.

11.5.1. Case A: Unpeered Initiator Session

In this first case we treat the situation where the adversary impersonates the responder
(aka the satellite).

Theorem 3. There is no polynomial-time quantum-adversary that can win the eCK-NEC-
game of the triple-KEM protocol in the case where the target session is an initiator-session
that has no peered session, with more than negligible probability. Specifically we find for
all such adversaries 𝒜:

AdveCK-NECCase A
𝒜, 3KEM (1𝜆) ≤

⎛⎜⎜⎜⎜⎜
⎝

Advcoll-res
𝒜1, H (1𝜆)

+ 𝑛𝑠𝑖
⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ 1

1−RKEM.𝛿 ⋅ AdvIND-CCA
𝒜4, RKEM (1𝜆)

+ 𝑛𝑠𝑖
⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ AdvPRHO

NHO, 𝒜5
(1𝜆)

+ 𝑛𝑠𝑖
⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ AdvEUF-CMA

𝒜6, AEAD (1𝜆)

⎞⎟⎟⎟⎟⎟
⎠

Proof. Let Game 0 be the original eCK-NEC game.

In Game 1 we abort if there is ever a hash-collision. To show that this replacement
is sound, we initialize a collision-resistance-challenger for H and use whatever collision
would trigger an abort to win the collision-resistance-game. Since we always win that
game in case of an abort that results from the difference between Game 0 and Game 1
we find:

42



Pr [break1] ≤ Pr [break0] + Advcoll-res
𝒜1, H (1𝜆)

In Game 2 we guess the target-session, the party running it and the impersonated party
and abort upon a wrong guess. As there are at most 𝑛𝑖 possible initiators, 𝑛𝑟 possible
responders, and up to 𝑛𝑠𝑖

initiator-sessions we find:

Pr [break2] ≤ 𝑛𝑠𝑖
⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ Pr [break1]

In Game 3 we replace the shared secret k_sat of the challenge-session with a random
string. To show that this replacement is sound we initialize an IND-CCA-challenger for
the responder-KEM and perform the following substitutions:

• Instead of generating its long-term key-pair honestly, the responder will use the
challenge-public key.

• Whenever the responder needs to decapsulate a ciphertext, it uses the
decapsulation-oracle of the IND-CCA-game.

• Instead of generating the ciphertext and shared secret honestly in the challenge-
session, the initiator uses the challenge-ciphertext and the challenge-key.

• If any honest session recreates the challenge-ciphertext by chance, we will compare
the encapsulated key to the challenge-key and use the result to win the IND-CCA-
game and abort. The probability of winning in this case can be lower-bounded to
1 − 𝛿, as the probability of two encapsulations of a 𝛿-correct KEM that result in
the same ciphertext for the same public key can at most be 𝛿:
Assume to the contrary that the probability is 𝜀 > 𝛿. Let 𝑚0 be an honestly
generated ciphertext whose encapsulation claimed that the encapsulated key was
𝑘. By the definition of a 𝛿-correct KEM, there is now a probability of 1 − 𝛿 that
the decapsulation outputs the same 𝑘. By our assumption there is however also a
probability 𝜀 that another invocation of the encapsulation-algorithm would result
in a different shared secret 𝑘′ during the encapsulation. This means that there is
now a (1 − 𝛿) ⋅ 𝜀-probability of the second encapsulation decapsulating incorrectly
and a probability of 𝛿 that the first decapsulated wrongly. But for 0 < 𝛿 < 𝜀 < 1
we have (1 − 𝛿) > 0 and thus find that (1 − 𝛿) ⋅ 𝜀 + 𝛿 > 𝛿 which is in contradiction
to the assumption that the probability of a decryption-failure is at most 𝛿.
As a consequence there is a slight additional loss-factor of 1

1−𝛿 in the reduction of
this game.

• if the responder receives the challenge-ciphertext, it will use the challenge-key
instead of decapsulating. Since this can only happen in a session that does not
match the challenge-session (by the definition of case A) and is not partnered with
an honest session (by the previous item), there is no need to modify any other
session in that case.
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If the challenge-bit of the IND-CCA-challenger is 0, then this is a purely conceptual
change and we are in Game 2. Otherwise the challenge-key is truly random and we are
in Game 3. Thus we find:

Pr [break3] ≤ Pr [break2] + 1
1 − RKEM.𝛿 ⋅ AdvIND-CCA

𝒜4, RKEM (1𝜆)

In Game 4 we replace all outputs of the (implicit) hash-object after inputting the
shared secret k_sat in the challenge-session and all responder-sessions that received
the challenge-public-key, with random values. To show that this replacement is sound
we initialize a PRHO-challenger for NHO and replace the initiator’s direct use of NHO
with the oracles in the following way: Whenever the initiator and the responder start
a session and would normally initialize a hash-object, they will instead call Create and
use the returned identifier 𝑖 for all oracle invocations in that session. Whenever they
would normally use the input/finalize functions of NHO it will instead invoke the In/Fin
oracle, with one exception: When they would normally input k_sat, they will instead
invoke Rand. This substitution is valid since k_sat is an independent random value by
Game 4. If the challenge bit 𝑏 of the PRHO game is 0, this is a purely conceptual change
and we are in Game 3. Otherwise, all outputs after inputting k_sat get replaced with
independent random values and we are in Game 4. Thus:

Pr [break4] ≤ Pr [break3] + AdvPRHO
NHO, 𝒜5

(1𝜆)

In Game 5 we abort after receiving a reply to the target-session.

To show that this replacement is sound, we initialize an EUF-CMA-challenger for AEAD
and forward c_2 to it as a potential forgery. This substitution is sound because the
AEAD-key k_1 is truly random by Game 4 and because c_2 is a fresh ciphertext:

As there is no matching session to the challenge-session (by the definition of case A),
and no collisions for the hash-function (by Game 1), and the expected response is the
only (and therefore last) message sent by the responder, and because c_2 cannot be a
replay of c_1, as they use both a different nonce and a different handshake-hash, and
the handshake-hash of the challenge-session is unique among all honest sessions.

This means that the associated data of c_2 is different from the associated data used
in any other honest session, which means that c_2 has to be fresh.

If the ciphertext is not valid, we would abort in any case and thus the behavior is identical
to Game 4. Otherwise the ciphertext is a valid forgery and we win the EUF-CMA-game
and thus find:

Pr [break5] ≤ Pr [break4] + AdvEUF-CMA
𝒜6, AEAD (1𝜆)

At this point the target-session never successfully completes and we therefore find triv-
ially that:

44



Pr [break5] = 0

By summarizing the losses up to this point, we find the adversarial advantage stated in
Theorem 3.

11.5.2. Case B: Unpeered Responder Session

In this second case we treat the situation where an attacker attempts to impersonate
the initiator (aka mission-control). This is largely analogous to Case A, with aside from
some substitutions of instances the most notable deviation being the need to create a
ciphertext for the AEAD-scheme. Furthermore this case applies to both the Dual-KEM
and the Triple-KEM protocol without any differences, as all of these differences are in
parts of the protocol that have no impact here.

Theorem 4. There is no polynomial-time quantum-adversary that can win the eCK-NEC-
game of the triple-KEM protocol in the case where the target session is a responder-session
that has no peered session, with more than negligible probability. Specifically we find for
all such adversaries 𝒜:

max( AdveCK-NECCase A
𝒜, 3KEM (1𝜆) ,

AdveCK-NECCase A
𝒜, 2KEM (1𝜆) ) ≤

⎛⎜⎜⎜⎜⎜
⎝

Advcoll-res
𝒜1, H (1𝜆)

+ 𝑛𝑠𝑟
⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ 1

1−IKEM.𝛿 ⋅ AdvIND-CCA
𝒜4, IKEM (1𝜆)

+ 𝑛𝑠𝑟
⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ AdvPRHO

NHO, 𝒜5
(1𝜆)

+ 𝑛𝑠𝑟
⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ AdvEUF-CMA

𝒜6, AEAD (1𝜆)

⎞⎟⎟⎟⎟⎟
⎠

Proof. Let Game 0 be the original eCK-NEC game.

In Game 1 we abort if there is ever a hash-collision. To show that this replacement
is sound, we initialize a collision-resistance-challenger for H and use whatever collision
would trigger an abort to win the collision-resistance-game. Since we always win that
game in case of an abort that results from the difference between Game 0 and Game 1
we find:

Pr [break1] ≤ Pr [break0] + Advcoll-res
𝒜1, H (1𝜆)

In Game 2 we guess the target-session, the party running it and the impersonated party
and abort upon a wrong guess. As there are at most 𝑛𝑖 possible initiators, 𝑛𝑟 possible
responders, and 𝑛𝑠𝑟

sessions we find:

Pr [break2] ≤ 𝑛𝑠𝑟
⋅ 𝑛𝑖 ⋅ 𝑛𝑟 ⋅ Pr [break1]
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In Game 3 we replace the shared secret k_mc of the challenge-session with a random
string. To show that this replacement is sound we initialize an IND-CCA-challenger for
the initiator-KEM and perform the following substitutions:

• Instead of generating its long-term key-pair honestly, the initiator will use the
challenge-public key.

• Whenever the initiator needs to decapsulate a ciphertext, it uses the decapsulation-
oracle of the IND-CCA-game.

• Instead of generating the ciphertext and shared secret honestly in the challenge-
session, the responder uses the challenge-ciphertext and the challenge-key.

• If any honest session recreates the challenge-ciphertext by chance, we will compare
the encapsulated key to the challenge-key and use the result to win the IND-CCA-
game and abort. The probability of winning in this case can be lower-bounded to
1 − 𝛿, as the probability of two encapsulations of a 𝛿-correct KEM that result in
the same ciphertext for the same public key can at most be 𝛿:
Assume to the contrary that the probability is 𝜀 > 𝛿. Let 𝑚0 be an honestly
generated ciphertext whose encapsulation claimed that the encapsulated key was
𝑘. By the definition of a 𝛿-correct KEM, there is now a probability of 1 − 𝛿 that
the decapsulation outputs the same 𝑘. By our assumption there is however also a
probability 𝜀 that another invocation of the encapsulation-algorithm would result
in a different shared secret 𝑘′ during the encapsulation. This means that there is
now a (1 − 𝛿) ⋅ 𝜀-probability of the second encapsulation decapsulating incorrectly
and a probability of 𝛿 that the first decapsulated wrongly. But for 0 < 𝛿 < 𝜀 < 1
we find that (1 − 𝛿) ⋅ 𝜀 + 𝛿 > 𝛿 which is in contradiction to the assumption that the
probability of a decryption-failure is at most 𝛿.
As a consequence there is a slight additional loss-factor of 1

1−𝛿 in the reduction of
this game.

• if the initiator receives the challenge-ciphertext, it will use the challenge-key instead
of decapsulating. Since this can only happen in a session that does not match the
challenge-session (by the definition of case A) and is not partnered with an honest
session (by the previous item), there is no need to modify any other session in that
case.

If the challenge-bit of the IND-CCA-challenger is 0, then this is a purely conceptual
change and we are in Game 2. Otherwise the challenge-key is truly random and we are
in Game 3. Thus we find:

Pr [break3] ≤ Pr [break2] + 1
1 − IKEM.𝛿 ⋅ AdvIND-CCA

𝒜4, IKEM (1𝜆)

In Game 4 we replace all outputs of the (implicit) hash-object after inputting the
shared secret k_mc in the challenge-session and all responder-sessions that received the
challenge-public-key, with random values. To show that this replacement is sound we
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initialize a PRHO-challenger for NHO and replace the initiator’s direct use of NHO with
the oracles in the following way: Whenever the initiator and the responder start a session
and would normally initialize a hash-object, they will instead call Create and use the
returned identifier 𝑖 for all oracle invocations in that session. Whenever they would
normally use the input/finalize functions of NHO it will instead invoke the In/Fin oracle,
with one exception: When they would normally input k_mc, they will instead invoke
Rand. This substitution is valid since k_mc is an independent random value by Game
4. If the challenge bit 𝑏 of the PRHO game is 0, this is a purely conceptual change
and we are in Game 3. Otherwise, all outputs after inputting k_mc get replaced with
independent random values and we are in Game 4. Thus:

Pr [break4] ≤ Pr [break3] + AdvPRHO
NHO, 𝒜5

(1𝜆)

In Game 5 we abort after receiving a reply to the target-session’s message.
To show that this replacement is sound, we initialize an EUF-CMA-challenger for AEAD
perform the following substitutions:

• The responder will disregard k_3 and instead use the encryption-oracle provided
by the EUF-CMA-game to compute c_4 if necessary (c_4 encrypts the updated
long-term key pk_sat_new and is thus never needed in Dual-KEM).

• Upon receiving c_5, we forward it to the EUF-CMA-challenger as a potential
forgery.

This substitution is sound because the AEAD-key k_3 is truly random by Game 4 and
because c_5 cannot be a replay of c_4, as they use both a different nonce and a different
handshake-hash as associated data by Game 1.
As there is no matching session to the challenge-session (by the definition of case A), and
no collisions for the hash-function (by Game 1), and the expected response is the last
message in the handshake, the handshake-hash of the challenge-session is unique among
all honest sessions.
If the ciphertext is not valid, we would abort in any case and thus the behavior is identical
to Game 4. Otherwise the ciphertext is a valid forgery and we win the EUF-CMA-game
and thus find:

Pr [break5] ≤ Pr [break4] + AdvAEAD
𝒜5, AEAD (1𝜆)

At this point the target-session never successfully completes and we therefore find triv-
ially that:

Pr [break5] = 0

By summarizing the losses up to this point, we find the adversarial advantage stated in
Theorem 4.
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11.5.3. Case C: Peered Session

This last case intuitively treats adversaries that attempt to break the confidentiality of
the protocol.

Theorem 5. There is no polynomial-time quantum-adversary that can win the eCK-NEC-
game of the triple-KEM protocol in the case where the target session has a peered session,
with more than negligible probability. Specifically we find for all such adversaries 𝒜:

max( AdveCK-NECCase C
𝒜, 3KEM (1𝜆) ,

AdveCK-NECCase C
𝒜, 2KEM (1𝜆) ) ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Advcoll-res
𝒜1, H (1𝜆)

+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ EKEM.𝛿

+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟

⋅ 3 ⋅ AdvIND-CCA
𝒜, EKEM (1𝜆)

+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟

⋅ AdvPRHO
𝒜, NHO (1𝜆)

+ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟

⋅ 2 ⋅ AdvPRF
𝒜, KDF (1𝜆)

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Proof. Let Game 0 be the original eCK-NEC game.
In Game 1 we abort if there is ever a hash-collision. To show that this replacement
is sound, we initialize a collision-resistance-challenger for H and use whatever collision
would trigger an abort to win the collision-resistance-game. Since we always win that
game in case of an abort that results from the difference between Game 0 and Game 1
we find:

Pr [break1] ≤ Pr [break0] + Advcoll-res
𝒜1, H (1𝜆)

In Game 2 we guess the initiator of the target-interaction as well as the initiator-session
of that interaction and abort upon a wrong guess. Because there are 𝑛𝑖 possible initiators
who initiate up to 𝑛𝑠𝑖

sessions each we find:

Pr [break2] ≤ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ Pr [break1]

In Game 3 we abort if there is ever an honest session that shares the public key with
the initiator-session. To show that this substitution is valid we initialize an IND-CCA1-
challenger for EKEM and embed the challenge public-key into the initiators target-session,
using the decapsulation-oracle for decapsulation. If we now honestly recreate that pub-
lic key in a different session, we can use the secret key to break the security of EKEM:
Because we assume that the probability of an decapsulation-failure with honestly gen-
erated ciphertexts (such as the challenge-ciphertext) of EKEM is at most EKEM.𝛿 and
because the ciphertexts depends only on the public key and independent randomness,
the secret key of the colliding public key is a (or sometimes: the) matching secret key
for the challenge public key. (We remark that this doesn’t even just break IND, but is
in fact a full key-extraction attack.) We thus find:

Pr [break3] ≤ AdvIND-CCA1
ℬ, EKEM (1𝜆) + EKEM.𝛿 + Pr [break2]
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In Game 4 we guess the responder of the target-interaction and the targeted responder-
session and abort upon a wrong guess. As there are 𝑛𝑟 potential responders and 𝑛𝑠𝑟
responder-sessions we find:

Pr [break4] ≤ 𝑛𝑟 ⋅ 𝑛𝑠𝑟
⋅ Pr [break3]

In Game 5 we abort if there is ever an honest responder-session that is not part of the
target-interaction that produces the same ciphertext for the EKEM that is used in the
challenge-interaction for the same public-key that is used in the challenge-interaction.
(By Game 3 there is only one honest initiator-session that uses that public key, but
there may be dishonest ones in addition.) To show that this substitution is sound we
initialize an IND-CPA-challenger for EKEM and again replace the public key used in the
initiator’s challenge-session with the challenge public-key. Furthermore we replace the
ciphertext used in the challenge-session with the challenge-ciphertext and the resulting
key with the challenge-key. If any later honest session recreates the challenge-ciphertext,
then the contained key can be used to trivially win the IND-CPA-game. (We remark that
this is in fact a full plaintext-recovery attack.) We thus find:

Pr [break5] ≤ AdvIND-CPA
ℬ, EKEM (1𝜆) + Pr [break4]

In Game 6 we abort if there is ever an honest session that is not part of the target-
interaction but shares the handshake-hash h_6 with it.
This is perfectly indistinguishable from Game 5, because Game 1 ensures that there are
no hash-collisions, Game 3 ensures that the EKEM public key of the target-interaction
is different from that in all other honest initiator-sessions, and Game 5 ensures that the
EKEM-ciphertext in the challenge interaction is different from that in all other honest
responder-sessions. Since both of these values make their way into the handshake-hash
and since any interaction that involves at least one honest party will therefore add at least
one value that is different from the one in the challenge-interaction we can conclude that
the handshake-hash of the challenge-interaction is not repeated in any honest sessions.
Because this is a purely conceptual change at this point we find:

Pr [break6] = Pr [break5]

In Game 7 we replace the shared secret k_e that is encapsulated for the target-
session’s ephemeral key and fed into the pseudo-random hash-object with a random
string. To show that this replacement is sound we initialize an IND-CCA-challenger for
the ephemeral KEM and perform the following substitutions:
Instead of generating the ephemeral keypair for the target-session himself, the initiator
will use the challenge-public key of the IND-CCA-game.
Instead of generating the KEM-ciphertext honestly, the responder will use the challenge-
ciphertext of the IND-CCA-game.
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Both parties will use the challenge-key of the IND-CCA-game in place of any encapsu-
lated keys.

In the event that the initiator receives a different ciphertext than the challenge-ciphertext
(due to adversarial actions), he will use the decapsulation-oracle of the IND-CCA-game.

If the challenge-bit of the IND-CCA-game is 0, this is a purely conceptual change and
we are in Game 6. Otherwise the challenge-key is a truly random string and we are in
Game 7 and thus find:

Pr [break7] ≤ Pr [break6] + AdvIND-CCA
𝒜, EKEM (1𝜆)

In Game 8 we replace the outputs of the pseudo-random hash-object, after feeding
it the EKEM-key, with random strings. To show that this replacement is sound we
initialize a PRHO-challenger for NHO and perform the following substitutions:

Whenever the initiator and the responder start a session and would normally initialize
a hash-object, they will instead call Create and use the returned identifier 𝑖 for all
oracle invocations in that session. Whenever they would normally use the input/finalize
functions of NHO it will instead invoke the In/Fin oracle, with one exception: When they
would normally input k_e, they will instead invoke Rand. This substitution is valid since
k_e is an independent random value by Game 7. If the challenge bit 𝑏 of the PRHO
game is 0, this is a purely conceptual change and we are in Game 7. Otherwise, all
outputs after inputting k_e get replaced with independent random values and we are in
Game 8. Thus:

Pr [break8] ≤ Pr [break7] + AdvPRHO
𝒜, NHO (1𝜆)

In Game 9 we replace the final keys with random strings. To show that this replacement
is sound we will use two sub-games.

In Game 9.A we replace key_mc with a random string. To show that this replacement
is sound we initialize a PRF-challenger for KDF and replace the evaluation of KDF using
pre_key_mc as key with an invocation of the challenge-oracle. This substitution is
sound because pre_key_mc is truly random by Game 8 and because h_6 is a different
message than used in any other session by Game 6, including sessions where the peer is
not honest. If the challenge-bit is 0, then this is therefore a purely conceptual change
and we are in Game 8. Otherwise key_mc is a truly random string and we are in Game
9.A and find:

Pr [break9.𝐴] ≤ Pr [break8] + AdvPRF
𝒜, KDF (1𝜆)

In Game 9.B we replace key_sat with a random string. To show that this replacement
is sound we initialize a PRF-challenger for KDF and replace the evaluation of KDF using
pre_s_g as key with an invocation of the challenge-oracle. This substitution is sound
because pre_s_g is truly random by Game 8 and because h_6 is a different message
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than used in any other session by Game 6, including sessions where the peer is not
honest. If the challenge-bit is 0, then this is therefore a purely conceptual change and
we are in Game 9.A. Otherwise key_mc is a truly random string and we are in Game
9.B and find:

Pr [break9.𝐵] ≤ Pr [break9.𝐴] + AdvPRF
𝒜, KDF (1𝜆)

By noting that Game 9.B=Game 9 and summarizing the losses in the sub-games we
find:

Pr [break9] ≤ Pr [break8] + 2 ⋅ AdvPRF
𝒜, KDF (1𝜆)

At this point we note that the final keys are originally outputs of the PRHO-challenger
and thus random; Therefore the adversary has to distinguish a random string from a
random string which trivially limits the adversarial to 1

2 with an advantage of 0:

Pr [break9] = 0

By summarizing the security-losses in the previous games and noting that 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅

(AdvIND-CCA1
ℬ, EKEM (1𝜆) + 𝑛𝑟 ⋅ 𝑛𝑠𝑟

⋅ (AdvIND-CPA
ℬ, EKEM (1𝜆) + AdvIND-CCA

𝒜, EKEM (1𝜆))) ≤ 𝑛𝑖 ⋅ 𝑛𝑠𝑖
⋅ 𝑛𝑟 ⋅ 𝑛𝑠𝑟

⋅
3 ⋅ AdvIND-CCA

𝒜, EKEM (1𝜆) to simplify the resulting equation, we find the adversarial advantage
claimed in Theorem 5.
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A. Detailed KEM+Signature Protocol

The detailed protocol for the KEM+Signature-update contains protection against a
power-outage; this is especially necessary for one-time-signatures as they must not be
used to sign a different message, even if a handshake is interrupted.
The idea here is to derandomize the protocol by sampling a random seed before anything
else and storing it in safe memory. In the event of a power-outage this seed will not be
regenerated, but just loaded from storage. After the completion of the handshake it will
on the other hand be deleted.
This seed is then fed into a cryptographically secure random-number-generator whose
output is the sole randomness used in the exchange from that point onwards. If the
satellite has a power-outage during the exchange it will restart the exchange from the
beginning waiting for mission control to resend its initial packet. Mission control must
resend the exact same packet until it arrives and the satellite can verify it. In the case
of a signature-chain there is no risk of a different message arriving since the signing-key
of mission control is only used once for the specific message that the satellite should
receive. The satellite will then recompute its response deterministically and resend it,
until mission control receives it.
In the case of a power-outage at mission control, the recreatable randomness allows to
recreate the exact initial message and update in a similar manner.
We remark that this protection is possible in general, but possibly less relevant for KEM-
based challenge-response protocols, since they can more easily be rerun independently
in case of a power-failure.

1 def send_1():
2 if seed is None: # Possibly set from aborted earlier interaction
3 seed = true_rng()
4 if ctr_mc is None:
5 ctr_mc = 0
6 prng = csprng(seed)
7 prho_state_mc = NoiseHashObject.gen()
8 psk = (key_mc + key_sat) if key_mc is not None else b'\0\0...'
9 h_0 = H(PROTOCOL_TOKEN , pk_mc , pk_sat)

10 k_0 = prho_state_mc.input(psk)
11 pk_e, sk_e = EKEM.gen(prng())
12 h_1 = H(h_0, pk_e)
13 ctr_mc += 1
14 payload = ctr_mc
15 if update_longterm:
16 pk_mc_new , sk_mc_new = Sig.gen(prng())
17 payload += pk_mc_new
18 c_0 = AEAD.enc(k_0, payload , 0, h_0)
19 h_2 = H(h_1, c_0)
20 sig_mc = Sig.sign(sk_mc , h_2) # optionally encrypt
21 sk_mc = sk_mc_new # Optional: wait until response for key-confirmation
22 h_3 = H(h_2, sig_mc)
23 send(pk_e, c_0, sig_mc)
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24

25 def receive_1((pk_e, c_0, sig_mc)):
26 if seed is None: # Possibly set from aborted earlier interaction
27 seed = true_rng()
28 if ctr_sat is None:
29 ctr_sat = 0
30 prng = csprng(seed)
31 prho_state_sat = NoiseHashObject.gen()
32 psk = (key_mc + key_sat) if key_mc is not None else b'\0\0...'
33 h_0 = H(PROTOCOL_TOKEN , pk_mc , pk_sat)
34 k_0 = prho_state_sat.input(psk)
35 h_1 = H(h_0, pk_e)
36 ctr_mc , pk_mc_new = AEAD.dec(k_0, c_0, 0, h_0)
37 h_2 = H(h_1, c_0)
38 if not Sig.verify(pk_mc , sig_mc , h2) or ctr_mc != ctr_sat + 1:
39 error()
40 ctr_sat = ctr_mc
41 h_3 = H(h_2, sig_mc)
42 if update_longterm:
43 pk_mc = pk_mc_new
44

45 def send_2():
46 c_e, k_e = EKEM.enc(prng())
47 # c_e may optionally be encrypted with k_0
48 h_4 = H(h_3, c_e)
49 k_1 = prho_state_sat.input(k_e)
50 payload = ""
51 if update_longterm:
52 pk_sat_new , sk_sat_new = Sig.gen(prng())
53 payload += pk_sat_new
54 c_1 = AEAD.enc(k_1, payload , 0, h_4)
55 h_5 = H(h_4, c_1)
56 sig_sat = Sig.sign(sk_sat , h_5) # optionally encrypt
57 sk_sat = sk_sat_new # Optional: wait until response for key-confirmation
58 h_6 = H(h_5, sig_sat)
59 send(c_e, c_1, sig_sat)
60 pre_key_mc ,pre_key_sat = prho_state_sat.finalize()
61 key_mc = KDF(pre_key_mc , h_6)
62 key_sat = KDF(pre_key_sat , h_6)
63 return key_mc , k_s
64

65 def receive_2((c_e, c_1, sig_sat)):
66 k_e = EKEM.dec(sk_e, c_e)
67 h_4 = H(h_3, c_e)
68 k_1 = prho_state_mc.input(k_e)
69 pk_sat_new = AEAD.dec(k_1, c_1, 0, h_4)
70 h_5 = H(h_4, c_1)
71 h_6 = H(h_5, sig_sat)
72 if not Sig.verify(pk_sat , sig_sat , h_4):
73 error()
74 if update_longterm:
75 pk_sat = pk_sat_new
76 pre_key_mc ,pre_key_sat = prho_state_mc.finalize()
77 key_mc = KDF(pre_key_mc , h_6)
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78 key_sat = KDF(pre_key_sat , h_6)
79 return key_mc , key_sat

B. Packet-Sizes

The following packet sizes assume the existence of psk and include the corresponding
authentication tag.

• Triple-KEM:

– Packet 1: RKEM-ct + AEAD-tag + EKEM-pk + IKEM-pk[opt1] + AEAD-
tag

– Packet 2: EKEM-ct + AEAD-tag + IKEM-ct + AEAD-tag + RKEM-
pk[opt2] + AEAD-tag[opt2]

– Packet 3: AEAD-tag
– TK(Kyber512,McEliece348864)

∗ Packet 1: 96 + 16 + 800 + 261120[opt1] + 16 = 928/262048
∗ Packet 2: 768 + 16 +96 + 16 + 261120[opt2] + 16[opt2] = 896/262032
∗ Packet 3: 16

– TK(Kyber512+X25519)
∗ Packet 1: 800 + 16 + 832 + 832[opt1] + 16 = 1664/2496
∗ Packet 2: 800 + 16+ 800 + 16 + 832[opt2] + 16[opt2] = 1632/2480
∗ Packet 3: 16

– TK(Kyber768+X25519)
∗ Packet 1: 1120 + 16 + 1216 + 1216[opt1] + 16 = 2368/3584
∗ Packet 2: 1120 + 16 + 1120 + 16 + 1216[opt2] + 16[opt2] = 2272/3504
∗ Packet 3: 16

– TK(Kyber1024+X25519)
∗ Packet 1: 1600 + 16 + 1600 + 1600[opt1] + 16 = 3232/4832
∗ Packet 2: 1600 + 16 + 1600 + 16 + 1600[opt2] + 16[opt2] = 3232/4848
∗ Packet 3: 16

• Sign+KEM:
The following packet sizes assume the existence of psk and include the correspond-
ing authentication tag.

– Packet 1: ctr + EKEM-pk + Sig-pk[opt1] + AEAD-tag + Sig
– Packet 2: EKEM-ct, Sig-pk[opt2] + AEAD-tag + Sig
– SK(Kyber512+X25519, Dilithium2+ECDSA)

∗ Packet 1: 16 + 832 + 1344[opt1] + 16 + 2484 =3348/4692
∗ Packet 2: 800 + 1344[opt2] + 16 + 2484 = 3300/4644

– SK(Kyber512+X25519, Falcon512+ECDSA)
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∗ Packet 1: 16 + 832 + 929[opt1] + 16 + 730 = 1594/2523
∗ Packet 2: 800 + 929[opt2] + 16 + 730 = 1546/2475

– SK(Kyber512+X25519, XMSS-SHA2_10_256)
∗ Packet 1: 16 + 832 + 64[opt1] + 16 + 2500 = 3364/3428
∗ Packet 2: 800 + 64[opt2] + 16 + 2500 = 3316/3380

• Signature-Chain

– Packet 1: EKEM-pk + Sig-pk + AEAD-tag + Sig
– Packet 2: EKEM-ct, Sig-pk + AEAD-tag + Sig
– SC(Kyber512+X25519,WOTS+(32,16))

∗ Packet 1: 832 + 32 + 16 + 2144 = 3024
∗ Packet 2: 800 + 32 + 16 + 2144 = 2992

– SC(Kyber768+X25519,WOTS+(32,16))
∗ Packet 1: 1216 + 32 + 16 + 2144 = 3408
∗ Packet 2: 1120 + 32 + 16 + 2144 = 3312

– SC(Kyber1024+X25519,WOTS+(32,16))
∗ Packet 1: 1600 + 32 + 16 + 2144 = 3792
∗ Packet 2: 1600 + 32 + 16 + 2144 = 3792

– SC(Kyber1024+X25519,WOTS+(64,16))
∗ Packet 1: 1600 + 32 + 16 + 8384 = 10032
∗ Packet 2: 1600 + 32 + 16 + 8384 = 10032
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