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Introduction 

This annex addresses concerns regarding the use of GMSK/PN in a high Doppler rate environment, i.e., 
when the signal experiences large frequency dynamics.  Particularly, we look at the likelihood that the 
GMSK demodulator will lose carrier lock.  To perform the analysis, we first need to define a carrier lock 
structure.  We choose the maximum a-posteriori probability (MAP) carrier synchronizer which we 
describe now. 

Receiver Model 

From [1], a receiver can be devised using an offset quadrature phase shift keying (OQPSK) architecture 
whose matched filters are designed using 𝐶଴ and 𝐶ଵ Laurent pulse shapes. Since we are implementing 
𝐵𝑇ௌ = 0.5 and 𝐵𝑇ௌ = 0.25 with a constrained complexity, our focus will be in developing carrier 
synchronization using only 𝐶଴. Our architecture is based on the low SNR implementation of the MAP 
carrier synchronizer [10]. Figure 1 shows a diagram of the carrier recovery loop. Complex envelope 
samples are passed through separate real and imaginary matched filters set to the 𝐶଴ pulse. There’s an 
optional Wiener equalizer prior to the matched filters to mitigate intersymbol-interference produced 
when implementing only the 𝐶଴ pulse for 𝐵𝑇ௌ = 0.25. The matched filter samples are then sent to a 
derotator whose function is to rotate the samples by a phase estimate, ϕ෩ .  Now there is some ambiguity 
with where the derotator should be placed either before or after the matched filters (and equalizer, if 
implemented). The placement of derotator affects the transfer function of the loop due to delay from 
the matched filters. When the derotator is before the matched filter as indicated in dashed lines, 
additional delays are incurred in the closed loop transfer function of the loop and thus the poles of the 
2nd order loop are deviated from its design [3].  We refer to this as the optional architecture.   To avoid 
this issue, the derotator can be placed after the matched filters as shown in solid lines. However, there 
is the issue of the additional delay incurred from the matched filter on the data samples.  The loop will 
process this delayed data and possibly not correct signal dynamics properly.  We call this the baseline 
architecture. We attempt to assess the impact to the system in either case, but we start with baseline 
first.  



 

Figure 1: Low SNR MAP Carrier Recovery Loop 

The derotation is accomplished by a complex multiplication of the samples with the exponential 𝑒௝ம෩ . 
The complex result of the derotation is passed to a real multiplication of the real and imaginary 
components and a real multiplication of the real and imaginary components delayed by 𝑇ௌ. The 
multiplicative results are subtracted from each other according to the diagram. This creates a 
discrimination at only once per 2𝑇ௌ time and the result are fed to a 2nd order control loop which is 
designed in the same manner as the phase locked loop found in [4], except that the input multiplier is 
replaced by the discriminator.  

The discriminator gain, 𝐾ௗ = 2𝑆ௗ, where 𝑆ௗ is found in [5]: 

𝑆ௗ = (2𝐸ௌ)ଶ − ෍ ℎଶ(𝑚 − 1/2),
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ℎ(𝑚) is the autocorrelation of the 𝐶଴ pulse, and 𝑚 is the index of the 𝑚௧௛ demodulated symbol.  

The S-curve of the discriminator is defined as: 

𝑆(θ) = 𝑆ௗ sin 2θ 

which signifies a 180∘ phase ambiguity similar to a BPSK Costas loop or squaring loop. Figure 2 shows a 
simulation of the S-curve based on 𝐶଴ and the accuracy of the S-curve with 𝐵𝑇ௌ = 0.5. As the plot 
shows, the prediction is exact. In this example, 𝑆ௗ = 6.1162. 

Since the S-curve of the discriminator is a sine function, we can model the discriminator as a 
conventional phase detector used in phase-locked loops as shown in Figure 3.  



 

Figure 2: S-curve based on 𝐶଴ pulse 

 

Figure 3: Mathematical Model of Baseline Architecture 

Note that we have included details of the second order control loop such as the detector gain, loop 
filter, voltage control oscillator (VCO) gain and VCO.  As mentioned before the control loop is designed in 
the conventional manner using an active proportional plus integrator.  To model the behavior of this 
loop, we need to calculate the noise variance of the loop.  We know that variance for 2𝜃 is [2]: 

𝜎ଶఏ
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where 𝐸ௌ is the GMSK bit energy, 𝑁଴ is the noise density and ாೄ

ேబ
 is the GMSK bit signal-to-noise ratio 

(SNR).  The ratio 𝑁஻ಽ
=

஻ಽ

ோೄ
 is called the normalized loop bandwidth where 𝐵௅ is the loop bandwidth and 

𝑅ௌ = 1/𝑇ௌ is the GMSK bit rate. The 𝑆௅ term is called the squaring loss which is created by the existence 



of 𝑆𝑖𝑔𝑛𝑎𝑙 × 𝑆𝑖𝑔𝑛𝑎𝑙,  𝑆𝑖𝑔𝑛𝑎𝑙 × 𝑁𝑜𝑖𝑠𝑒 and 𝑁𝑜𝑖𝑠𝑒 × 𝑁𝑜𝑖𝑠𝑒 terms at the output of the discriminator.  
Unfortunately, the squaring loss is a complicated expression [2]: 
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μ
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where 𝜇, 𝛼, and 𝛽 are functions of the correlations of the pulse shape.  Therefore, out of convenience, 
we simulate to estimate (1). 

We know that for a square pulse, the variance has a similar structure to (1) [10], 
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where 𝐸஼ௌ = 2𝐸ௌ  is the energy of a demodulated channel symbol and is due to the Laurent 
decomposition [2]. 

From Figure 4, we can see that the variance for 𝐵𝑇ௌ = 0.5 and 𝐵𝑇ௌ = 0.25 is simply a scaling factor 
away from square pulse variance for the 𝐸஼ௌ/𝑁଴ simulation range of -5 to 20 dB.   Through curve fitting, 
we find that: 
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This completes the mathematical model of the baseline architecture, see Figure 3. Note that the symbol 
A refers to the amplitude of the received signal. 

 



 

Figure 4: Variance of Phase Error with Fitted Data Based on 𝜎ఏ
ଶ,௦௤௨  

 

Cycle slips 

Due to the sinusoidal nature of the S-curve, Figure 2, the stability of the carrier loop when locked around 
zero phase error can be lost due to noise or changes to the lock point cause by loop stress [6].  A second 
order loop may reestablish lock multiples of π cycles away.  The number of cycles depends on the nature 
of the phase error as noise, frequency steps and frequency ramps are the most stressful for second 
order loops.   

The mean time to cycle slip (MTCS) was calculated exactly in closed form for 1st order loops by Viterbi 
[7].  2nd order loop MTCS analysis was estimated and extended to cover Nth order analysis based on a 
double integral exponential calculation from Tausworthe [8].  It was later expanded to account for 
frequency ramps by Lindsey [9].  Our strategy is to perform simulations on the GMSK signal with and 
without PN and curve fit with no frequency dynamics using this analysis.  Once GMSK/PN is fitted, we 
make predictions on the MTCS performance with a frequency ramp specified by a normalized frequency 
ramp 𝛾 = frequency ramp × 2𝜋/𝜔௡

ଶ, where the frequency ramp is specified in Hz/sec and 𝜔௡ is the 
natural frequency of a second order loop in rads/sec2.   This semi-analytical approach has made good 
predictions of higher SNR simulation points that took months of execution time to verify.   

Results and Analysis 

For the case of 𝐵𝑇ௌ = 0.5, we set the normalized loop BW 𝑁஻ಽ
=2.5e-3 in Figure 5 and simulate with the 

baseline architecture without the PN interferer.  The curve fit is very tight with the simulation results 
and so we conclude that the approach very sound.  



In  Figure 6, we assess the impact of the PN as an interferer, we set the PN modulation index to 0.444 
using the T4B sequence, a sine waveform and record the loss.  The results show that an SNR loss of 0.76 
dB in the prediction matches the simulation data.   

 

 

 

  

Figure 5: MTCS for 𝐵𝑇ௌ = 0.5 

 

We now assess the dynamic compensation capability of the baseline architecture when signal is 
distorted with a frequency ramp.  FFigure 7 shows the MTCS prediction with a frequency ramp of 𝛾 =

0.01, 0.05, 0.1, 0.2, and 0.3. As the results show, the prediction tracks each ramp with good accuracy up 
to 𝛾 = 0.1, diverges at 0.2 slightly and more significantly at 0.3. This could be because of differences 
between discrete time implementation and the continuous differential equation model or the additional 

memory effects in the loop which gets more pronounced as 𝛾 →
ଵ

ଶ
.  Also, when 𝛾 = 0.4, 0.5 the 

prediction fails which is consistent with the simulations failures as well. Recall that for a second order 

squaring loop, there is a limit of 𝛾 =
ଵ

ଶ
  predicted from the linear model that is consistent with our 

prediction. Note that as 𝛾 →
ଵ

ଶ
, floors occur at lower 𝐸ௌ/𝑁଴ which is due to false locking after a cycle slip 

as indicated in the circled areas and will result in receiver failure. This phenomenon is discussed in [6].  



  

Figure 6: Impact of PN interferer with Mod Index 0.444 

 

Figure 8 shows the performance of 𝐵𝑇ௌ = 0.25.  We can see here that performance is much worse than 
𝐵𝑇ௌ = 0.5.  In fact, the MTCS tends to hit a floor at 𝛾 > 0.01 compared to 𝐵𝑇ௌ = 0.5 where at  𝛾 > 0.3  
it becomes inoperable.   And therefore, the difference between 𝐵𝑇ௌ = 0.5 and 𝐵𝑇ௌ = 0.25 is an order 
of magnitude difference in normalized frequency ramp.  

To increase the frequency ramp performance of 𝐵𝑇ௌ = 0.25, we consider the optional architecture, i.e., 
moving the derotator in front of the matched filter.  The performance is shown at Figure 8 for  𝛾 = 0.01.  
We can see that there is a slight improvement in the MTCS, i.e., a factor of 2 gain at 𝐸஼ௌ/𝑁଴=1 dB, which 
leads us to conclude that some improvement can be gained with architecture.  However, it was still not 
possible to operate 𝛾 > 0.01. 



 

Figure 7: Baseline Architecture with Various Frequency Ramps 

 

 

Figure 8: 𝐵𝑇ௌ = 0.25 MTCS Performance 

 

Hardware validation 

Some effort was performed to validate the 𝐵𝑇ௌ = 0.25 MTCS performance with actual 
hardware for  𝑁஻ಽ

= 2.5𝑒 − 3, see Annex Reliable carrier phase synchronization with GMSK+PN - 
configuration aspects Table 3.   The 𝛾 = 0.02 inoperability threshold was confirmed.  We must 



caution that this conclusion has a caveat.  The architecture of the hardware is not identical to 
low-SNR MAP used in this analysis.  It is more related to the high-SNR MAP [10]. The fact that 
both architectures arrive at the same inoperable point leads one to conclude that the result is 
fundamental.  However, further hardware testing of other modes appears to exceed this 
threshold using a much smaller 𝑁஻ಽ

, see Annex Reliable carrier phase synchronization with 
GMSK+PN - configuration aspects Table 4.   We call these modes exceptional modes and simulated 
these conditions as best as we can, given the hardware and software limitations. The following 
section describe the analysis and results. 
 
Testing of exceptional modes 

Mode C4 from Annex Reliable carrier phase synchronization with GMSK+PN - configuration aspects 
Table 4 has the largest 𝑁஻ಽ

listed in the table.  Therefore, we target this mode for analysis.  The 𝑁஻ಽ
=

5.83𝑒 − 4 and the 𝛾 = 0.198. Due to memory limitations, the initial evaluation had a simulation time 
limited to 8 seconds. Results indicate there is a static phase error caused by the frequency ramp (and 
directly related to 𝛾) that will linearly drift upward until it reaches around గ

ଶ
 and slips.  The assumption is 

that the system is essentially noiseless due to the small 𝑁஻ಽ
 and if you apply too high of frequency ramp 

(possibly due to exceeding 𝛾 = 0.02 or pull-in time is too great), the loop cannot reacquire and 
therefore can no longer track the frequency ramp and a reset must occur.  This catastrophic failure is 
predictable; however, in real operations, it would depend on the spacecraft path and the accumulated 
phase error.  Figure 9 shows the entire run and the point is reached at around 7.5 seconds that the 
phase error will grow unbounded which indicates that a catastrophic failure has occurred.  In Figure 10, 
we show a close-up of the event that at a phase error of around π/2, the failure starts and grows 
unbounded.  Both figures show the output of the control loop filter and the prediction if the loop was 
tracking a frequency ramp properly. 

 

Figure 9: C4 Scenario with MAP sync and one symbol causal delay 

  



 

Figure 10: Zoomed in plot of Figure 9 

When we reduce 𝛾 = 0.01, the deterministic phase error growth no longer exists and the failure goes 
away, see Figure 11. 

 

 

Figure 11: 𝛾 reduced to 0.01 

Our conclusion here is that delays from the loop will create a non-static phase error which will increase 
linearly with predictable time that will produce a catastrophic slip.  Note that the above results from 
Figures 9-11 were performed with the baseline architecture.  We attempted to use the optional 
architecture as well, but this was found to be ineffective.  Therefore, we try to focus on minimizing the 



delays in the loop and they were two-fold: 1) delay from matched filter and 2) delay from causality in 
loop.  A causality delay is required for any discrete feedback loop.  The matched filter delay cannot be 
changed, therefore we looked to minimize causality delay.  Our MAP architecture implemented a single 
symbol delay to be in line with decimation to one sample per symbol. As a possible reduction in the 
delay, we can instead implement a single sample delay which would reduce the causality by a fraction of 
a symbol, the actual value depends on the number of samples per symbol.  Figure 12 shows the 
simulation under these conditions.  Note that the determistic failure has been mitigated.  We also ran 
the simulation with the equalizer on (see Figure 13) and the results were the same. 

 

Figure 12: One Sample Causal Delay MAP Sync for 8 Seconds 

We now increased 𝛾 = 0.3 and ran the simulation again and observed a random catastrophic failure 
(see Figure 14).  Compared to the single symbol delay circuit, it’s likely that the single sample delay 
circuit is an improvement because you removed the deterministic catastrophic failure, however, results 
indicate that a probabilistic failure around 2.4 seconds will create the same catastrophic failure as a 
symbol delay circuit. 

We tried different settings for mode C4 using: 1. PN square pulse and 2. 𝐵𝑇ௌ = 0.5.  What we found was 
that a square PN pulse has no ability to track any of the γ settings we used.  And 𝐵𝑇ௌ = 0.5 shows 
similar behavior. 

 



 

Figure 13: One Sample Causal Delay MAP Sync with Equalizer On 

 

 

Figure 14: Gamma set to 0.3 on Second Run and Observed a Random Catastrophic Failure 

 

Conclusion 

We have mathematically modelled the low-SNR MAP carrier lock successfully using a semi-analytical 
approach where we curve fit simulation data of GMSK/PN and then use a mathematical formula to 
estimate its performance with a frequency ramp.  𝐵𝑇ௌ = 0.5 demonstrated robustness to normalized 
ramp of 𝛾 ≤ 0.3 using 𝑁஻ಽ

= 2.5𝑒 − 3, however, 𝐵𝑇ௌ = 0.25 showed an order of magnitude loss in 



performance, i.e., 𝛾 ≤ 0.01.  We tried to mitigate this loss by using the optional architecture.  However, 
we were not successful.  Hardware testing confirmed the 𝛾 = 0.02 inoperability point for this case 
scenario.  Subsequent testing using smaller 𝑁஻ಽ

 settings allowed higher values of 𝛾, however, when we 
analyzed the C4 scenario catastrophic failures occurred. 

We showed that delays can cause catastrophic deterministic sync failures in MAP synchronization 
circuits.  A new single sample delay sync design over the previous single symbol sync design was 
considered. This demonstrated that it may be possible that deterministic sync failures shown in C4 
scenario with symbol delay loops can be mitigated with a sample delay loop.  However, we cannot 
conclusively say this is an improvement since we can’t do an MTCS analysis for 𝑁஻ಽ

 so low. We have also 
shown that if we further take 𝛾 = 0.3 in C4 scenario with a sample delay loop, it will randomly produce 
catastrophic failures.  The static phase error worsens as an increasing function of 𝛾. Also that if you keep 
𝛾 < 0.02, the tilt in the phase error goes away in symbol delay loop. Since we are constrained by 
computer memory, we cannot assess the MTCS for the C4 scenario. Given that we cannot fully validate 
C4, we would not recommend using the 𝛾 = 0.198 setting.  However, should the implementer choose 
to use the C4 scenario with a high value of 𝛾 ≥ 0.02, they should do extensive testing to ensure that 
occurrence of random catastrophic failures do not significantly reduce the mission link availability 
requirement. As a conservative design strategy, setting 𝛾 < 0.02 will produce a robust system according 
to the simulations and analysis for both 𝐵𝑇ௌ = 0.5 and 𝐵𝑇ௌ = 0.25. If systems need to reach higher 
frequency ramp tolerance, 𝐵𝑇ௌ = 0.5 with 𝑁஻ಽ

= 2.5𝑒 − 3 was shown to be robust to frequency ramps 
of 𝛾 < 0.2 with some false locking at lower SNRs with 𝛾 = 0.2, 0.3.   
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