CCSDS RECOMMENDATIONS FOR RADIO FREQUENCY AND MODULATION SYSTEMS

Earth Stations and Spacecraft

[DRAFT]

2.4.25 MODULATION METHODS FOR HIGH CODED SYMBOL RATE TRANSMISSIONS IN 25.25–27.5 GHz BAND, INTER-SATELLITE SERVICE, SPACE RESEARCH, SPACE-TO-SPACE

The CCSDS,

considering

- (a) that the 25.25–27.5 GHz band is allocated on a primary basis to the inter-satellite service for space research and Earth exploration-satellite applications, and also <u>for</u> transmission of data originating from industrial and medical activities in space (ITU-RR-5.536);
- (b) that use of the 25.25-27.5 GHz band by the inter-satellite service includes high data rate space-to-space links for data relay satellites as well as <u>for</u> proximity communication links;
- (c) that the SFCG has recommended¹ that use of the 25.25-27.5 GHz band for proximity communication links be constrained to the sub-bands 25.25-25.6 GHz and 27.225-27.5 GHz;
- (d) that the SFCG has recommended² that lunar surface-to-lunar orbit links and lunar relay-to-relay crosslinks use the 27-27.5 GHz band;
- (e) that efficient use of RF spectrum resources is imperative with the increasing congestion of the frequency bands;
- (f) that GMSK³ and baseband filtered OQPSK⁴ are spectrally and power efficient modulations, and have been recommended by the CCSDS for high symbol rate space-to-space transmissions in the 22.55-23.15 GHz band as well as high symbol rate space-to-Earth transmissions in the 25.5-27 GHz band⁵;
- (g) that since GMSK modulation is inherently differential in nature, the use of GMSK with precoding is necessary to optimize bit error rate performance;
- (h) that GMSK³ and baseband filtered OQPSK⁴ modulation types can be demodulated using a conventional OQPSK receiver, but with higher end-to-end losses;
- (i) that GMSK³ and baseband filtered OQPSK⁴ modulations have only a small performance degradation as compared with ideal unfiltered suppressed carrier systems;
- (j) that GMSK³ and baseband filtered OQPSK⁴ modulations have immunity to interference (wideband and narrow band) comparable to unfiltered BPSK when demodulated with an OQPSK receiver matched to an unfiltered OQPSK waveform; the interference immunity of these modulations when demodulated with matched filter receivers is equivalent to or better than BPSK;
- (k) that the receiver tracking loops for GMSK BT_s=0.5 are able to track signals with higher Doppler rates compared to GMSK BT_s=0.25, assuming the same symbol SNR and data rate;
- (1) that GMSK BT_s=0.25 has better spectral efficiency (occupied bandwidth) than GMSK BT_s=0.5:

¹ See SFCG Recommendation 15-2R4 or latest version.

² SFCG Recommendation 32-2R²⁴ or latest version.

³ Gaussian Minimum Shift Keying $(BT_8 = 0.25)$, with pre-coding as in Figure 2.4.25-1. B refers to the one-sided 3-dB bandwidth of the filter.

 $^{^4}$ Filtered (Square Root Raised Cosine $\alpha=0.5$) Offset QPSK; Butterworth 6 poles, BT $_8=0.5$; agencies may also utilize filtered OQPSK modulation with other types of bandpass filters provided that the equivalent baseband BT $_8$ is not greater than 0.5 and they ensure compliance with SFCG Recommendation 21-2R3 (or latest version) and interoperability with the cross-supporting networks. B refers to the one-sided 3-dB bandwidth of the filter.

⁵ CCSDS Recommendations 401 (2.2.10) B-1 and 401 (2.4.21A) B-1

CCSDS RECOMMENDATIONS FOR RADIO FREQUENCY AND MODULATION SYSTEMS

Earth Stations and Spacecraft

2.4.25 MODULATION METHODS FOR HIGH CODED SYMBOL RATE TRANSMISSIONS IN 25.25–27.5 GHz BAND, INTER-SATELLITE SERVICE, SPACE RESEARCH, SPACE-TO-SPACE (Continued)

(k)(m) that some agencies channelize the frequency band and for this they prefer to use GMSK³ BT_s=0.25 in order to maximize the total number of channels available;

recommends

- that, for space-to-space transmissions to ensure an ability to obtain cross supportin the 25.25–27.5 GHz inter-satellite service band, GMSK³ BT_s=0.25 or baseband filtered OQPSK⁴ be used when [channelization of the band and/or a tighter spectral requirement][better spectral efficiency] is needed; otherwise GMSK³ BT_s=0.5 should be used when the coded symbol rate exceeds 10 coded Msymbol/s;
- that, to ensure an ability to obtain cross support in the 25.25–27.5 GHz inter satellite service band, GMSK³-BT=0.25 or baseband filtered OQPSK⁴-be used when channelization of the band and/or a tighter spectral requirement is needed; otherwise GMSK³-BT=0.5 should be used for space to space transmissions when the coded symbol rate is below or equal to 10 coded Msymbol/s⁶;
- that, for space-to-space transmissions to ensure an ability to obtain cross support in the 25.25–27.5 GHz inter-satellite service band, the residual carrier modulation schemes of Recommendations 2.3.1 and 2.4.7 may be used when the coded symbol rate is below 1 coded Msymbol/s⁶ and the suppressed carrier modulation schemes of Recommendation 2.3.2 may be used when the coded symbol rate is below 10 coded Msymbol/s⁶.

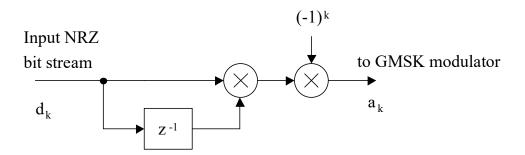


Figure 2.4.25-1: GMSK Precoder

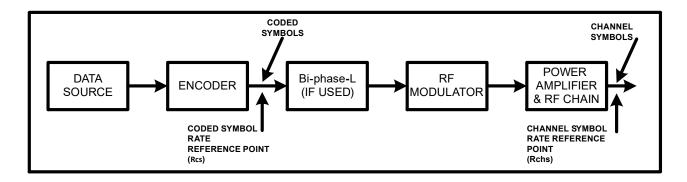


Figure 2.4.25-2: Telemetry Rates Definition

⁶ For the purpose of this Recommendation, the coded symbol rate is defined in Figure 2.4.25-2.