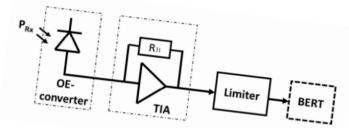
O3K: Standard APD-Frontends Sensitivity

Dirk Giggenbach, Amita Shrestha

20191205

DLR - IKN



Motivation:

- For simulation of O3K-receiver system performance, besides the power fading vectors, also the Receiver Frontend (RFE) behavior model must be agreed
- A free-space bulk RFE will be based on APD-diodes. These exhibit a sensitivity behavior between a pure thermal limited PIN, and a perfect shot-noise limited receiver (such as for coherent BPSK)
- Two models exist for describing the sensitivity-run of such APD-RFEs:
 - (simple) analytical formula from receiver theory (6)
 - empirical $P_{Q=2}$ model (5) and [10], as favorable to derive a model from measurements
- regarding channel rates as typical for O3K (TIA-noise depends on bandwidth / datarate)
- trying to find reasonable parameter values for measured APD-RFE behavior did not succeed (see the end of this presentation)

DLR.de • Chart 3

Regarding RFE-behavior

- RFE converts optical P_{Rx} into electrical signal voltage, with noise that is either constant, or partly
 dependent on the signal photons (... and on background-light and dark current). We assume Gaussian
 noise since number of received signal photons is always high (>~50Ph/bit)
- in a DD binary receiver with OOK and optimum decision threshold this means *:

$$BER = \frac{1}{2} \cdot erfc\left(\frac{Q}{\sqrt{2}}\right) = \frac{1}{2} \cdot erfc\left(\frac{f(\overline{P}_{Rx})}{\sqrt{2}}\right) \quad \text{with quality factor } Q = sqrt(SNR)$$
(4)

- thermal-noise limited RFEs run as $Q \sim \overline{P}_{Rx}$, while coherent receivers run as $Q \sim \operatorname{sqrt}(\overline{P}_{Rx})$; APD-RFEs run in-between, thus can be modelled as $Q(\overline{P}_{Rx}) = 2\left(\frac{\overline{P}_{Rx}}{\overline{z}}\right)^n$ with 0.5<n<1 (5)
- simple Formula for Q of APD is a rational term:

(disregarding minor effects such as dark-current or distortions by binary decider / limiter, since these shall be negligible)

$$Q_{st,OOK} = \frac{M R \cdot \left(2\overline{P}_{Rx}\right)}{\sigma_t + \sqrt{\sigma_{s,1}^2 + \sigma_t^2}}$$
(6)

* \overline{P}_{Rx} is the mean Rx-power, averaged over longer than bit-time but shorter than scintillation speed; thus it is the mean of ~100µs

 $\sigma_t = i_n \cdot \sqrt{B}$: thermal noise current, with thermal noise current density i_n $\sigma_{s,1}^2 = 2eM^2 F_A RB \cdot (2\overline{P}_{Rx})$: signal shot noise current variance in an APD,

Derivation of common APD-RFE parameters

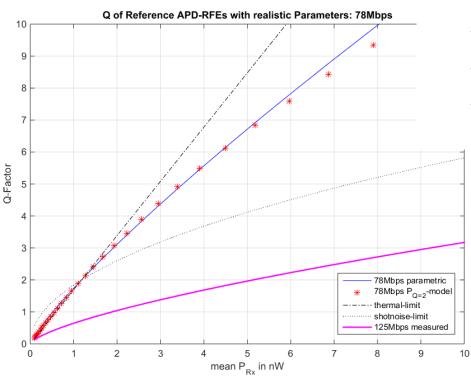
- modelling the Q-formula (6) by datasheets parameters
- RFE is with Hard Decision (limiter-element)
- parameters for three O3K channel rates: 78.125Mbps 1.25Gbps 10Gbps
- TIA-datasheets indicate input-referred noise densities:
 - 2pA/sqrt(Hz) at ~100MHz \rightarrow 1.5pA/sqrt(Hz) at 78Mbps
 - 5.9pA/sqrt(Hz) for ~1GHz / 1.25Gbps CWDM-PIN-receiver
 - 10pA/sqrt(Hz) at 6GHz / 10Gbps Values for 78Mbps and 10Gbps are approximated from TIA-data sheets close to such bandwidths
- InGaAs-APDs datasheets indicate M=20 for advanced APD types; although highvoltage and thus M can be optimized to P_{Rx}, here it is assumed fixed.
- InGaAs-APDs datasheets indicate excess noise factor F=5...5.5 for M=20
- Responsitivity R=0.9A/W
- assuming quality selection of COTS APDs, so best values shall be achieved

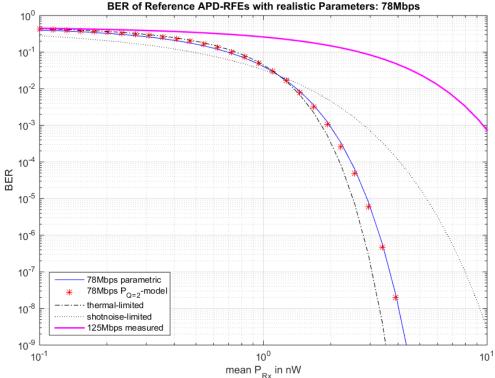
APD-RFE parameters to use for simulations (λ =1550nm)

	Symbol	unit	78.125Mbps / B=39.065MHz	1.25Gbps / в=625МHz	10Gbps / B=5GHz				
Responsivity	R	A/W	0.9	0.9	0.9				
TIA noise density	i _{n,th}	A/sqrt(Hz)	1.5E-12	5E-12	10E-12				
multip. factor	М	1	20	20	20				
excess noise factor	noise factor F		5	5	5				
from these calculate P _{Q=2} -modell parameters for a hard-decision OOK Frontend [10]:									
Rx-Power for Q=2	<i>P</i> _{<i>Q</i>=2}	W	1.18E-9	16.1E-9	96.4E-9				
Photons per bit	N _{Q=2}	1	116	100	75				
sensit. slope expon.	п	1	0.839	0.818	0.777				
span P _{Q6} /P _{Q2}	S	1	3.71	3.83	4.1				
for comparison: values for a thermal-limited RFE (PIN-diode): $Q_{th,OOK} = R * \overline{P}_{Rx} / (i_{n,th} * sqrt(B))$									
Thermal noise	i _{n,th}	A/sqrt(Hz)	1.5E-12	5E-12	10E-12				
4									

For comparison only: Measured APD-RFE $P_{Q=2}$ Modelling (as for magenta curves) [10]

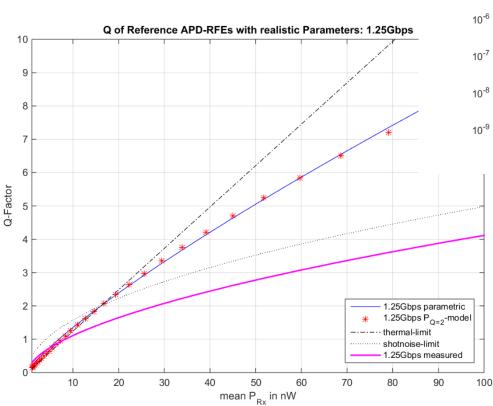
$$\mathcal{Q}\left(\overline{P}_{Rx}\right) = 2\left(\frac{\overline{P}_{Rx}}{\overline{P}_{Q=2}}\right)^n$$

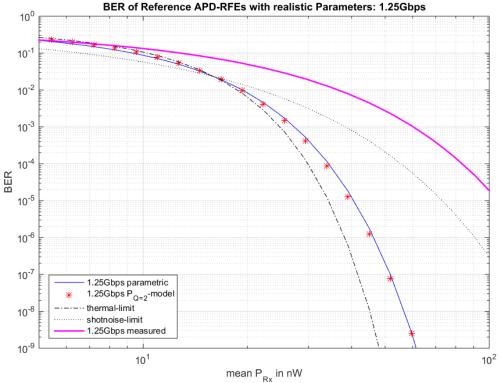

	Symbol	unit	125Mbps	1.25Gbps	10Gbps *
Rx-Power for Q=2	<i>P</i> _{<i>Q</i>=2}	W	5.13E-9	28.1E-9	273E-9
Photons per bit for Q=2	N _{Q=2}	1	320	175	213
sensitivity slope exponent	n	1	0.692	0.569	0.729
span P _{Q6} /P _{Q2}	S	1	4.9	6.9	4.5

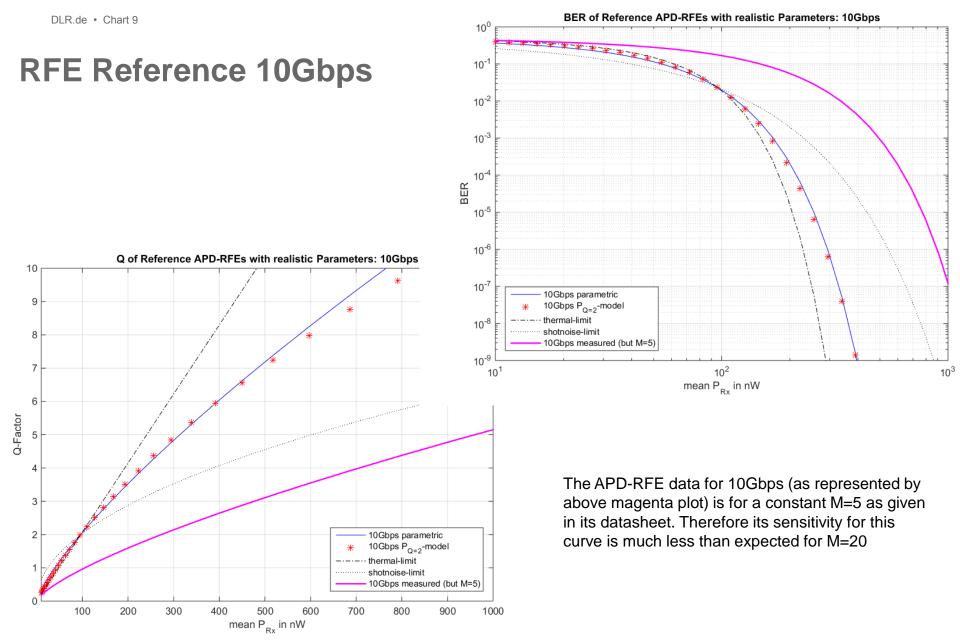

* in datasheet for M=5 only, better should be possible with higher M / APD-voltage

RFE Reference for 78Mbps

(for (6) with values from table slide 5)


- RFE with parameters as preceeding table slide
- * the $P_{Q=2}$ -model for above RFE-parameters
- -.-. pure thermal noise, for same $P_{Q=2}$
- pure signal-dep. shotnoise, for same $P_{Q=2}$
- measured RFE, or data sheet (for comparison only)




thermal- and shotnoise-limited curves are normalized to same $P_{Q=2}$, thus are for slope-comparison only, they do not indicate absolute sensitivity

measured and parametric RFEs differ in slope: measured RFE slope appears more like shot-noise limited, while its absolute sensitivity ($P_{Q=2}$) is worse. The slope behavior but is caused by real-world electronics effects

Summary "APD-RFE sensitivity run"

- The above absolute assessment of APD-RFE-behavior helps to estimate linkbudgets and required link-parameters such as transmit power, beam divergence, and Rx-aperture. Thus it is assumed green-book material.
- To estimate coding gain, sensitivity curves are also relevant for FEC evaluation under fading
- above sensitivity curves are for optimum threshold binary decision of bits (HD).
- M=20 is kept constant since scintillation changes P_{Rx} quickly. But sensitivity of RFEs could be improved by dynamically optimizing *M* to P_{Rx}.
- *Measurement* from RFEs could NOT be used as reference parameters, since no fitting to *expected* parameter ranges was achieved (see end of this presentation).

References & Abbreviations

[1] D. Giggenbach, S. Parthasarathy, A. Shrestha, F. Moll, R. Mata Calvo, "Power Vector Generation Tool for Free-Space Optical Links – PVGeT", IEEE-Xplore, ICSOS 2017

[2] D. Giggenbach, F. Moll, "Scintillation Loss in Optical Low Earth Orbit Data Downlinks with Avalanche Photodiode Receivers", IEEE-Xplore, ICSOS 2017

[3] F. Moll, "Experimental analysis of channel coherence time and fading behavior in the LEO-ground link", ICSOS 2014

[4] A. Mustafa, D. Giggenbach, J. Poliak, S. ten Brink, Quantifying the Effect of Atmospherically-Induced Pointing Errors in Optical Geostationary Satellite Feeder Links Using Transmitter Diversity", IEEE-Xplore, ICSOS 2017 Japan.

[5] Normalized jitter values and bandwidth: verbal communication with K. Saucke of TESAT

[6] M. Toyoshima and K. Araki, "Effects of time averaging on optical scintillation in a ground-to-satellite atmospheric propagation," Appl. Opt., vol. 39, no. 12, pp. 1911–1919, 2000.

[7] M. Toyoshima, "Long-Term Statistics of Laser Beam Propagation in an Optical Ground-to-Geostationary Satellite Communications Link", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 53, NO. 2, FEBRUARY 2005

[8] U.G. Gujar, R.I. Kavanagh, "Generation of Random Signals with Specified Probability Density Functions and Power Density Spectra", *IEEE Transactions on Automatic Control*, 1968

[9] B. Epple, "Simplified Channel Model for Simulation of Free-Space Optical Communications", J. Opt. Commun. Netw., 2010, 2

[10] D. Giggenbach, R. Mata-Calvo, "Sensitivity Modeling of Binary Optical Receivers", Applied Optics, Vol. 54, No. 28, pp 8254-8259 / October 1, 2015

ACOV	AutoCOVariance
DL	DownLink
FWHM	Full-Width Half-Maximum
HWHM	Half-Width Half-Maximum
ILV	InterLeaVer
IRT	Index-of-Refraction Turbulence
PE	Pointing Error
PSI	Power Scintillation Index
PV	Power Vector

DLR.de · Chart 12

DLR

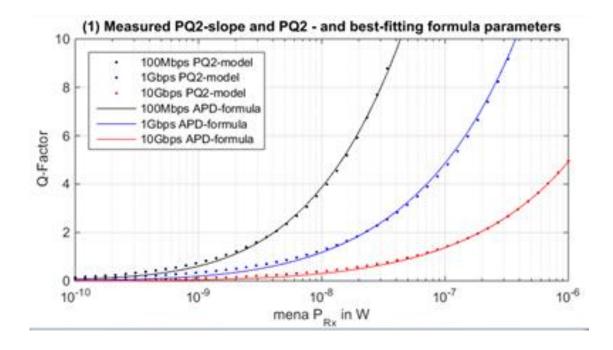
OLD (Sept2019) attempt to fit parameters to measured sensitivity-runs – on following slides

- since models for P_{Q=2} and *n* are existing based on measurements of various implemented APD-RFEs [10], we tried to find the formula-(6) parameter values, (*M*, *i_n*, *F_A*) that fit best to those measurements.
- however such derived parameters would be far from what has to be expected for such parameters these attempts are shown on the next slides. While absolute sensitivity in terms of $P_{Q=2}$ is close to expectation, the sensitivity-run (slope) for higher received powers differs substantially from those given by formula-parameters.
- we expect that specific "real-world" electronic behavior is responsible for the APD-RFE behavior
- due to this mal-fitting, we decided to elaborate APD-RFE models that are purely based on values from datasheets → first slides of this presentation

OLD and for EXPLANATION ONLY:

Parameters for RFEs at 100Mbps / 1Gbps / 10Gbps

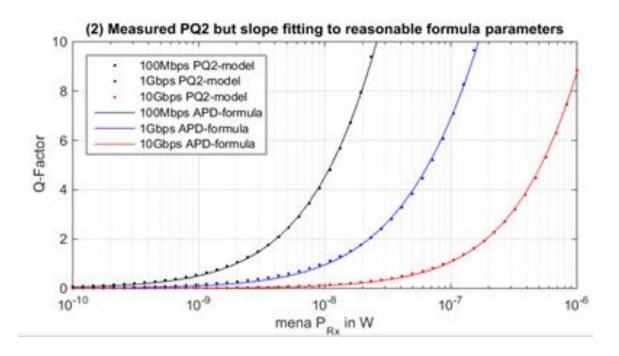
trying to fit M, F, in to measured slopes is problematic since ...


- realistic M, F, i_n do not result in the measured low slope "n" and sensitivity P_{Q2} that would require unrealistic parameters to fit the formula (6) to measured curve runs (... this was the initial reason why P_{Q2}-model was developed)
- rational term does not perfectly fit to exponential term (this is only minor issue)

We tried different modelling:

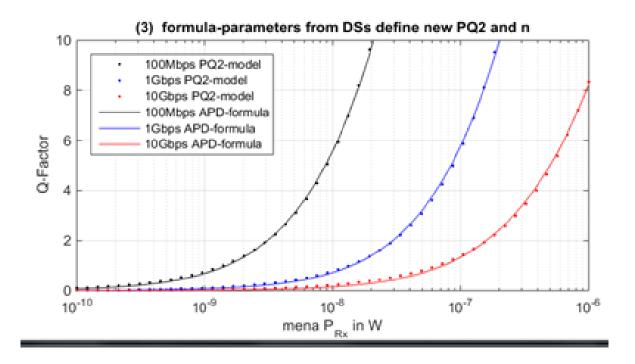
- 1) Find parameters M, F, i_n that fit formula (6) and then model the RFEs at **100Mbps**, **1Gbps**, **10Gbps** which are based on the measured P_{Q2} and n as from table below
- 2) leave P_{Q2} -sensitivity as based-on-measured, but fitted *n* to realistic parameter-values Measured Receiver Model Parameters Summary. Sorted by Mean Energy per Bit \overline{F}

, QZ ,	-	MEASURED RECEIVER M	ODEL PARAMET	ERS SUMMARY,	SORTED BY 1	MEAN ENERGY P	ER BIT $\overline{E}_{Q=2}$	S	<u>ee [10]</u>
3) used typical M, F, in from datasheets and	No.	RFE-Type	data rate	$\overline{P}_{\mathcal{Q}=2}$	5	$\overline{E}_{\mathcal{Q}=2}$	$\overline{N}_{\mathcal{Q}=2}$	n	RMSRE
calculated resulting P_{Q2} and n	{1}	Homodyne BPSK SyncBit (1064nm)	2Mbps	0.672pW	8.0	0.336aJ	1.80	0.529	7.2%
g (Qz and h	{2}	APD-RFE-SILEX (820nm), M-fix	4Mbps	48.8pW	7.1	12.2aJ	50.3	0.558	4.3%
	{3}	APD-RFExG-200µm@700MHz, M-opt	1.6Gbps	35.3nW	7.8	22.1aJ	172	0.536	0%
	{4}	APD-RFExG-80µm@2500MHz, M-opt	3.2Gbps	71.2nW	8.8	22.2aJ	173	0.507	2.1%
	{5}	APD-RFExG-200µm @700MHz, M-opt	1.25Gbps	28.1nW	6.9	22.5aJ	175	0.569	1.4%
Remark:	{6 }	commercial APD-TIA module, M-fix	10Gbps	273 n W	4.5	27.3aJ	213	0.729	6.3%
	{7}	APD-RFE100@65MHz, M-opt	125Mbps	5.13nW	4.9	41.0aJ	320	0.692	2.8%
(6) does not take into account dark-current,	{8}	APD-RFE1G@650MHz filter, M-opt	1.3Gbps	57.1nW	6.6	43.9aJ	342	0.581	2.2%
however also a formula including dark current doe	{9}	APD-RFE1G@100MHz filter, M-opt	200Mbps	12.8nW	7.9	64.0aJ	499	0.529	3.0%
not improve the fitting	{10}	APD-RFE1G@20MHz filter, M-opt	40Mbps	4.36nW	8.7	109aJ	849	0.508	2.9%
	{11}	commercial CWDM-PIN-receiver	1.25Gbps	296nW	3.2	237aJ	1.85E3	0.951	3.2%
1	{12}	ASK-PIN-RFE	40Gbps	24.9µW	4.6	623aJ	4.86E3	0.720	2.0%


1) Find parameters M, F, i_n that fit formula (6) and then model the RFEs at 100Mbps, 1Gbps, 10Gbps

*** (1) measured PO2 and n, and somehow fitting formula-parameters ***

datarates [Gps]	0.1	1	10
P_02 [nW]	4.1	22.4	192
exponent n [1]	0.7	0.57	0.55
Exc Noise F [1]	35.9929	40.9937	45.9944
Multip, H [1]	70 80 5	90	
Noise [W/sq(Hz)]	1.4585e-1	11 1.6572e-11	2.8395e-11


2) P_{Q2}-sensitivity as based-on-measured, but fitted n to realistic parameter-values

	(2)	Т¢.	sasured	PQ2	but	fitted	to	a	set	of	reasonable	formula-parameters	
all some a			C Change 3		A 4						1.0		

dararares [ops]		V . 1		2.0
P_02 [nW]		4.1	22.4	192
exponent n [1]	:	0.89	0.82	0.9
Exc Noise F [1]	1	8.4667	8.4667	3.4
Multip, M [1]		15 15	5	
Noise [W/sq(Hz)]		4.0609e-	12 6.6032e-12	6.403e-12

3) Typical M, F, i_n from datasheets and calculate P_{Q2} , n

••• (3)	formula-parameters	from DSs	define	new	PQ2	and	n	***	
---------	--------------------	----------	--------	-----	-----	-----	---	-----	--

datarates [Gps]	1	0.1	1	10
P_Q2 [nW]	;	3.1	30	160
exponent n [1]	:	0.86	0.86	0.78
Exc Noise F [1]	:	8.4667	8.4667	8.4667
Multip. M [1]	:	15 15 15		
Noise [W/sq(Hz)]	:	3e-12	9e-12	1.4e-11

Results of APD-run evaluations (20191021)

- measured APD-RFEs do not fit to noise-behavior from formulas: parameters from datasheets would result in steeper slopes than measured
 - \rightarrow only unrealistic noise-parameters emulate measured behavior (1)
- realistic parameters result in acceptable PQ2, but in not-measured slope n(3)
- could we evaluate other measured APD-sensitivity curves ?

\rightarrow

suggest to generate parameters for channel rates:

10GGbps – 1.25Gbps – 78.125Mbps

 if no other RFE data is provided: suggest DLR fixes and provides a "compromise parameter set" from datasheets and measurements

