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1 Introduction

1.1 Background
With the advent of modern coding techniques, considerable improvement is possible over the existing BCH codes specified in the “TC Synchronization and Channel Coding” blue book [1].  Moreover, spacecraft and their communications protocols continue to become more complex, and so there is a corresponding demand for more sophisticated uplink coding capabilities.
Traditionally, uplink communication has been used primarily for telecommand, where short command sequences were transmitted to an unmanned spacecraft a few times per day to a few times per month. Current and future spacecraft use uplink communication for a much wider variety of uses.  While telecommand continues to be an essential application, both in normal and emergency situations, there is increasing demand for transmitting larger volumes of data to spacecraft.  Flight equipment can be reprogrammed, both with software for microprocessors and “logicware” for Field Programmable Gate Arrays (FPGAs).  Manned missions benefit from live uplink video and Internet access.

The space telecommunications environment has also evolved.  In some cases there may be many spacecraft in a small solid angle as observed from Earth, such as in the Mars vicinity, or at a lunar outpost, and there is interest in serving multiple spacecraft per antenna (MSPA).  As computation becomes cheaper relative to large mechanical structures, there is interest in retiring the 70 meter Deep Space Network (DSN) antennas, thus reducing the maximum available transmit power, and compensating with more elaborate protocols and signal processing algorithms.  Despite these changes, some facts hold constant: distances in deep space are immense, and received signal power is correspondingly miniscule.  Power efficiency remains a dominant priority.  When a spacecraft emergency affects the telecommunications system, delivering any information at all can be difficult, and there must be a method to deliver short commands at an extremely low data rate when necessary.

1.2 Purpose and Scope
The Next Generation Uplink (NGU) initiative identifies a greater variety of uplink needs, categorized into four modes as summarized in Table 1‑1.  These different applications place different demands on the telecommunications link, and hence the error correcting codes chosen for each application may also be different.
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Table 1‑1: Five modes of operation for uplink codes [3]
In this document, several sets of three short blocklength LDPC codes are presented as appropriate candidates for Modes A and B. These codes may be substituted in place of the BCH code specified in the “TC Synchronization and Channel Coding” Blue Book for improved performance, with virtually no impact to other aspects of the telecommand system.  Section 2 presents a family of three binary LDPC codes that have been reasonably well characterized.  Section 3 presents several design alternatives for families of non-binary LDPC codes.  These options all operate at a lower Signal to Noise Ratio than the binary codes, but at the cost of more complex decoders.
1.3 Nomenclature

The following conventions apply throughout this Specification:

a) the words ‘shall’ and ‘must’ imply a binding and verifiable specification;

b) the word ‘should’ implies an optional, but desirable, specification;

c) the word ‘may’ implies an optional specification;

d) the words ‘is’, ‘are’, and ‘will’ imply statements of fact.

1.4 Conventions

In this document, the following convention is used to identify each bit in an N-bit field.  The first bit in the field to be transmitted (i.e., the most left justified when drawing a figure) is defined to be ‘Bit 0’,  the following bit is defined to be ‘Bit 1’, and so on up to ‘Bit N-1’.  When the field is used to express a binary value (such as a counter), the Most Significant Bit (MSB) shall be the first transmitted bit of the field, i.e., ‘Bit 0’ (see figure 1‑1).
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The convention for matrices differs from that for bit fields.  Matrices are indexed beginning with the number ‘1’.

In accordance with standard data-communications practice, data fields are often grouped into 8-bit ‘words’ which conform to the above convention.  Throughout this Specification, such an 8-bit word is called an ‘octet’.

The numbering for octets within a data structure starts with ‘0’.
1.5 References

The following document contains provisions which, through reference in this text, constitute provisions of this Experimental Specification.  At the time of publication, the edition indicated was valid.  All documents are subject to revision, and users of this Experimental Specification are encouraged to investigate the possibility of applying the most recent edition of the document indicated below.  The CCSDS Secretariat maintains a register of currently valid CCSDS documents.
[1] CCSDS 231.0-B-2, “TC Synchronization and Channel Coding”, Blue Book. Issue 2. September, 2010.
[2] CCSDS 232.0-B-2, “TC Space Data Link Protocol”, Blue Book. Issue 2. September 2010.
[3] CCSDS 230.2-G-1, “Next Generation Uplink”, Green Book. Issue 1. July 2014.
2 Low Density Parity Check Code Specification
2.1 DESCRIPTION OF THE CODES
The three Low-Density Parity-Check (LDPC) codes defined here are systematic. All are transparent, so phase ambiguities may be resolved either by using frame markers (which are required for Codeblock synchronization), or by another means after decoding.

LDPC codes may be used to obtain greater coding gain than that provided by the BCH code.

NOTES

1 LDPC coding, by itself, cannot guarantee sufficient bit transitions to keep receiver symbol synchronizers in lock. Therefore, the Pseudo-Randomizer defined in reference [1] is required.

2 These LDPC codes possess relatively large minimum distance for their block length and undetected error rates lie several orders of magnitude below detected frame and bit error rates for any given operating signal-to-noise ratio. This property, combined with the Frame Error Control Field (FECF) specified in [2] assures an extremely low undetected error rate.
2.2 Specification
These LDPC codes are specified indirectly by an m-by-n parity-check matrix H consisting of m linearly independent rows. A coded sequence of n bits must satisfy all m parity-check equations corresponding to the m rows of H. An encoder maps an input frame of kn-m information bits uniquely into a codeblock of n bits.

Three LDPC codes are specified, with codeblock lengths (n=128, k=64), (n=256, k=128), and (n=512, k=256), so that each has code rate r=k/n=1/2.

2.2.1 Parity check matrices
The H matrices are constructed from MM submatrices, where M=k/4=n/8.  They are specified as:
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where  EQ I\s\do5(M) and  EQ 0\s\do5(M) are the MM identity and zero matrices, respectively, and  is the first right circular shift of IM.  That is,  has a non-zero entry in row i and column j if j=i+1 mod M.  Note that 2 is the second right circular shift of IM, etc., and 0=IM.  The 
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 operator indicates modulo-2 addition.

2.3 Encoding

One method for producing codeblocks consistent with the parity-check  matrices is to perform matrix multiplication by block-circulant generator matrices. These matrices may be constructed as follows.

1) Let P be the 4M 4M submatrix of H consisting of the last 4M columns. Let Q be the 4M M submatrix of H consisting of the first 4M columns.

2) Compute 
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3) Construct the matrix 
[image: image9.emf]








   

G

=

I

4

M

W

[ ]

, where I4M is the 4M 4M identity matrix, and W is a dense matrix of circulants of size 4M M.

For convenience, the matrices W can also be constructed from the hexadecimal values in Table 2‑1, Table 2‑2, and Table 2‑3.  Rows 1, M+1, 2M+1, and 3M+1 are found by converting the hexadecimal values to binary strings, and the other rows are constructed from right circular shifts of those strings.

	G64128
	

	   Row 1
	0E69 166B EF4C 0BC2

	   Row 17
	7766 137E BB24 8418

	   Row 33
	C480 FEB9 CD53 A713

	   Row 49
	4EAA 22FA 465E EA11


Table 2‑1: Generator matrix for (n=128,k=64) LDPC code
	G128256
	

	   Row 1
	73F5E839 0220CE51 36ED68E9 F39EB162

	   Row 33
	BAC812C0 BCD24379 4786D928 5A09095C

	   Row 65
	7DF83F76 A5FF4C38 8E6C0D4E 025EB712

	   Row 97
	BAA37B32 60CB31C5 D0F66A31 FAF511BC


Table 2‑2: Generator matrix for (n=256,k=128) LDPC code

	G256512
	

	  Row 1
	1D21794A22761FAE 59945014257E130D 74D6054003794014 2DADEB9CA25EF12E

	  Row 65
	60E0B6623C5CE512 4D2C81ECC7F469AB 20678DBFB7523ECE 2B54B906A9DBE98C

	  Row 129
	F6739BCF54273E77 167BDA120C6C4774 4C071EFF5E32A759 3138670C095C39B5

	  Row 193
	28706BD045300258 2DAB85F05B9201D0 8DFDEE2D9D84CA88 B371FAE63A4EB07E


Table 2‑3: Generator matrix for (n=512,k=256) LDPC code

2.4 Performance
Performance for the three codes has been determined by software simulation, and is shown in Figure 2‑1.  These curves were generated using the min* decoding algorithm [15] with 100 iterations maximum.  Results for the short (n=128, k=64) code are shown in red, those for the medium (n=256, k=128) code are in blue, and the long (n=512, k=256) code are in green.  The uppermost fan of dashed curves show the CodeWord Error Rate (CWER), and the overlapping fan of solid curves give the Symbol Error Rate (SER, very similar to Bit Error Rate).  Also shown for the short code are undetected codeword error rate (U-CWER) and undetected symbol error rate (U-SER).  For the medium length code, initial results for U-CWER and U-SER are shown, but the data is not reliable.  No undetected errors have been observed for the long (n=512, k=256) code.
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Figure 2‑1: Total and undetected error rates of short blocklength LDPC codes: green=(512,256), blue=(256,128), red=(128,64); dashed=CWER, solid=SER

The undetected error rate can be improved, at a cost in total error rate, by modifying the decoder.  One method is to decrease the maximum number of iterations performed.  For the short (n=128, k=64) code, two sets of results are shown in Figure 2‑2.  The red curves are identical to those shown in Figure 2‑1; the black curves are for a decoder that performs a maximum of 10 iterations instead of 100.  In the measurable region, this lowers the undetected error rates by about an order of magnitude.  Other, better, methods for building incomplete decoders are described in [3] and [4]. 
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Figure 2‑2: Total and undetected error rates of the (128,64) code with two decoders: red=100 iterations, black=10 iterations

The minimum distance of the (128,64) code is dmin=14, for the (256,128) code, dmin=24, and for the (512,256) code, dmin remains unknown.
2.5 Code Design
Based on experience at JPL, other NASA centers, and of the research community at large, a protograph plus circulant construction [5] was selected.  This construction permits fast, simple encoders, and is amenable to fast, well-structured decoders.  The protograph design is also amenable to analysis during code design and characterization.  For long blocklength codes, research shows that good designs typically use about 3.5 edges per variable node; for short codes, this number must be increased to eliminate small trapping sets [6] and low weight codewords.  A wide variety of protographs were studied, and that shown in Figure 2‑3 yields excellent performance for short block lengths.
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Figure 2‑3: Protograph for short blocklength LDPC codes

In this figure, circles represent variable nodes, and squares represent check nodes, or constraint equations.  To construct a full-size LDPC code, one replicates the protograph M times, in this case yielding 8M variable nodes (one per transmitted channel symbol), and 4M constraints on those channel symbols.  Each edge in the protograph becomes a bundle of M edges; these are cut, cyclically permuted, and reconnected.  Cyclic shifts must be chosen for each edge in the protograph; this is done using a variant of Progressive Edge Growth (PEG) [7], a greedy algorithm that intends to maximize loop length among other metrics. Note that while the protograph has parallel edges, they do not remain so when the full graph is constructed.

This process was repeated three times to generate a family of codes with three blocklengths: (n=128, k=64), (n=256, k=128), and (n=512, k=128), where k is the number of information bits encoded, and n is the number of transmitted code symbols.  The resulting circulant choices are listed in Table 2‑4, Table 2‑5, and Table 2‑6.  The full parity check matrix, H128x64, for the (n=128, k=64) code is shown in Figure 2‑4.  Here, dots are used to indicate 1’s in the parity check matrix, and lines are added to clarify the block structure.

	
	A
	B
	C
	D
	E
	F
	G
	H

	A
	0,7
	2
	14
	6
	
	0
	13
	0

	B
	6
	0,15
	0
	1
	0
	
	0
	7

	C
	4
	1
	0,15
	14
	11
	0
	
	3

	D
	0
	1
	9
	0,13
	14
	1
	0
	


Table 2‑4: Circulant selections for (128,64) LDPC code

	
	A
	B
	C
	D
	E
	F
	G
	H

	A
	0,31
	15
	25
	0
	
	20
	12
	0

	B
	28
	0,30
	29
	24
	0
	
	1
	20

	C
	8
	0
	0,28
	1
	29
	0
	
	21

	D
	18
	30
	0
	0,30
	25
	26
	0
	


Table 2‑5: Circulant selections for (256,128) LDPC code

	
	A
	B
	C
	D
	E
	F
	G
	H

	A
	0,63
	30
	50
	25
	
	43
	62
	0

	B
	56
	0,61
	50
	23
	0
	
	37
	26

	C
	16
	0
	0,55
	27
	56
	0
	
	43

	D
	35
	56
	62
	0,11
	58
	3
	0
	


Table 2‑6: Circulant selections for (128,64) LDPC code
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Figure 2‑4: Parity check matrix for (128,64) LDPC code

Some of the circulants selected are free parameters, because variable nodes and check nodes can be relabeled without changing the performance of the code.  This freedom was used to put identity circulants on the main diagonal of the left half of the parity check matrix, and on the first sub-diagonal of the right half of H (considered as a block-matrix).  This may simplify memory addressing in a hardware decoder implementation.  Moreover, check equations may be reordered at will, and with the last row of circulants moved to the top, the matrix has the structure suggested by Richardson and Urbanke in [16], and this may simplify encoding in some cases.
3 Non-binary LDPC Codes
3.1 Introduction
The vast majority of LDPC coding research has studied binary codes, though some recent results ([8],[9],0) show that short non-binary LDPC codes, defined over the finite field GF(256), can offer performance improvements of 1.0 to 1.3 dB over corresponding binary LDPC codes.   However, decoders for these are far more complex than decoders for the binary codes.  Two designs of GF(256) LDPC codes are described in Sections 3.2 and 3.3. LDPC codes over the smaller finite field GF(16) can offer much of the performance gain of the GF(256) codes, potentially with much less decoding complexity.  Initial results for a set of GF(16) codes are given in Section 3.4.
Decoding of non-binary LDPC codes remains a field of research.  Edge messages are probability vectors over each of the field elements.  Over GF(q), each edge message consists of q probabilities, or rather q–1degrees of freedom because the probabilities must sum to unity.  Computation at the graph nodes is generally done with finite-field fast Fourier transforms, with complexity on the order of q log(q).  Sub-optimal decoding algorithms can reduce this complexity considerably, but with some cost in performance.  In general, the complexity of practical decoding algorithms is not well understood, and this currently makes it difficult to select among different coding options.
3.2 LDPC Codes over GF(256) by Liva, Paolini, Scalise, Chiani

Liva, Paolini, Matuz, Scalise and Chiani provided a structured non-binary IRA LDPC design tailored to the NGU requirements [8]-[10]. The design is based on a protograph for a rate-1/2 cycle code, depicted by a base matrix with form
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The graph has been obtained by expanding the protograph targeting a large girth. In particular, whenever possible, the resulting graph has been selected in the category of cages, i.e., graphs with a minimum number of vertices for a given girth 0.

The choice of the coefficients in the final parity-check matrix has been performed with the aim of maximizing the minimum distance of the binary image of each check equation, following the approach proposed in 0.
For the (128,64) case, the parity-check matrix has been obtained by lifting the graph with a lifting factor 4, resulting in a 16 x 8 parity-check matrix over GF(256), depicted below.
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where  is the primitive element of the Galois field, i.e., the root of the polynomial p(x)=1+x2+x3+x4+x8. The performance of the code is depicted in Figure 3‑1.
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Figure 3‑1: Codeword Error Rate performance of the (128,64) code over GF(256).
The performance of the code in terms of codeword error rate (CER) has been simulated over the binary-input additive white Gaussian noise (AWGN) channel. The performance is provided in CER versus Eb/N0, Eb being the energy per information bit and N0 the one-sided noise power spectral density. The performance of the non-binary IRA code is compared to that of the (128, 64) binary protograph LDPC code under consideration within this document and to the sphere packing bound. The non-binary LDPC code provides a performance within 1 dB from the SPB down to CER ≃ 4 · 10−9, gaining almost 1.5 dB over the binary LDPC code. For sake of completeness, the performance of the (63, 56) BCH code in SEC mode is reported, as well as under soft-decision Bahl-Cocke-Jelinek-Raviv (BCJR) decoding (although the latter decoding algorithm is not considered by the CCSDS recommendation).
3.3 LDPC Codes over GF(256) by Divsalar and Dolecek
Divsalar and Dolecek have pursued protograph constructions for non-binary LDPC codes, much as described in Section 2.5, but now with multiplicative coefficients or “scale factors” on each of the graph edges [13]

 REF _Ref210748860 \n \h 
[14].  The coefficients may be introduced in a couple of different ways, but in each case, the code construction technique begins with the design of a protograph with unlabeled edges.  As with binary codes, protograph performance in the waterfall region can be predicted with EXIT chart analysis, but here, their decoding threshold is also a function of the field size.  Five small protographs are shown in Figure 3‑2, and their decoding thresholds are shown in Figure 3‑3.  For reference, the capacity of the Binary-input Additive White Gaussian Noise (BIAWGN) channel is 1/2 bit per channel use at Eb/N0=0.187 dB.  The figure shows that with the proper choice of field size, these protographs have thresholds within a small fraction of a dB of capacity.  EXIT chart analysis assumes infinite block size, and does not predict error floor behavior, so protograph selection depends on experimentation and code simulation in addition to analysis.
Finite field coefficients can be added to a protograph in a couple of ways.  The most flexible is to expand the protograph into a full Tanner graph using the standard copy-and-permute procedure (using cyclic permutations), and then to assign field elements to each edge in the graph.  This procedure is shown schematically in Figure 3‑4, and is called the unconstrained non-binary protograph based (U-NBPB) method of code construction.  Alternatively, finite field elements may be assigned to the edges of the protograph, and then copied with the edges as the protograph is expanded into a full Tanner graph, as shown in Figure 3‑5.  This approach, called the constrained non-binary protograph based (C-NBPB) method, has less code design freedom, but simplifies the coefficient selection process, and may simplify LDPC decoding.
These non-binary protographs are expanded with circulants, as are the binary codes.  Circulant selection is done to minimize the number of small loops.  Due both to the small final code sizes and large finite field size, the protograph expansion factor is small, only 4, 8, and 16 for the cases considered here.  This limits the choices of circulants, and the girths of the graphs that can be achieved.

With the field GF(256), the regular (2,4) protograph was selected, as shown in Figure 3‑2.  As an unlabeled protograph matrix, this is written,
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To construct a (128,64) binary code, this protograph is expanded by a factor of 4, by using circulants of size 4x4.  If we let

[image: image18.emf]S O = O

S — O O

— o O O

S O O —










s=

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

é

ë

ê

ê

ê

ê

ù

û

ú

ú

ú

ú


then circulants can be denoted as powers of .  The circulants selected for the (128,64) code are
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Similarly,
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 and 
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In the U-NBPB code construction method, these matrices are written out, and then GF(256) field elements are selected for each non-zero entry.  For the (128,64) case, the result is,
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Figure 3‑2: Five protographs for nonbinary LDPC codes
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where  is a primitive element of GF(256). Finally, this is converted into a binary code by expansion of the field elements. By using the primitive polynomial 
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, we may also represent  as the 8x8 matrix,
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Substituting powers of this matrix into H gives the full binary parity check matrix.  Performance curves for three U-NBPB codes are shown in Figure 3‑6, with performances of the corresponding binary codes included for comparison.
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Figure 3‑3: Thresholds of five protographs with the BIAWGN channel
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Figure 3‑4: Unconstrained non-binary protograph based code construction
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Figure 3‑5: Constrained non-binary protograph based code construction
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Figure 3‑6: Performance of U-NBPB codes over GF(256)

Constrained non-binary protograph based LDPC codes are constructed by substituting the elements of Hp with powers of .  Those chosen here are,
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This matrix is then copy-and-permuted using the same circulants as in the U-NBPB case.  This provides a complete description of three GF(256) LDPC codes, and their performances are given in Figure 3‑7.  Note that these are marginally inferior to those in Figure 3‑6, due to the extra constraints on the code design.
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Figure 3‑7: Performance of C-NBPB codes over GF(256)

3.4 LDPC Codes over GF(16) by Divsalar and Dolecek

In a search for lower complexity codes, Divsalar and Dolecek have performed initial studies of LDPC codes over GF(16) [13]

 REF _Ref210748860 \r \h 
[14].  The same U-NBPB construction method described for GF(256) is used again here.  Performance curves are shown for codes with binary sizes (128,64), (256,128), and (512,256) in Figure 3‑8, with both the binary and the GF(256) LDPC codes for comparison.
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Figure 3‑8: Performance of U-NBPB LDPC codes over GF(16)
The GF(16) codes achieve most of the performance benefits of the GF(256) codes, especially at the longer block lengths.  Supposing that decoder complexity is reasonably approximated as q log2(q), then we can expect decoders for these codes to be about 1/32 times as complex as those for the larger field.  However, the number of required iterations is not yet well characterized, and as with all LDPC codes, there are a wealth of suboptimal decoding algorithms to explore.
ANNEX A 

Binary LDPC Code Implementation
Encoders and decoders for these three binary LDPC codes have been implemented on a Field Programmable Gate Array (FPGA).  As with most FPGA problems, the speed of an LDPC encoder or decoder will scale essentially linearly with FPGA area.  The designs reported here were intended to be small and not especially fast. Each is small enough that it would use only a few percent of any FPGA that might be used in a spacecraft design (such as the Xilinx radiation-tolerant XQR2V1000), and will support any data rate that is anticipated for these codes.  The encoders produce one code symbol per clock cycle; the decoders use 26 clock cycles per iteration per information bit.  Speed and area results are given in Table A‑1 and Table A‑2 for implementations on an FPGA in the Xilinx Virtex-2 family.
	Encoder
	Look-up Tables (LUTs)
	Max Clock Rate
	symbols/sec
	bits/sec

	(n=128, k=64)
	89
	200 MHz
	200 Msps
	100 Mbps

	(n=256, k=128)
	155
	230 MHz
	200 Msps
	100 Mbps

	(n=512, k=256)
	155
	230 MHz
	200 Msps
	100 Mbps


Table A‑1: Implementation results for LDPC encoders on Xilinx Virtex-2 FPGAs
	Decoder
	Look-up Tables (LUTs)
	Max Clock Rate
	Iterations at WER=10-6
	bits/sec

	(n=128, k=64)
	521
	70 MHz
	2.3
	1170 Kbps

	(n=256, k=128)
	521
	70 MHz
	3.1
	868 Kbps

	(n=512, k=256)
	558
	70 MHz
	4.1
	656 Kbps


Table A‑2: Implementation results for LDPC decoders on Xilinx Virtex-2 FPGAs

ANNEX B 

Interaction of Short Uplink Codes with Other TC Protocol Layers
B.1 Interaction with other elements within the coding sublayer
The TC standard was developed with the expectation that the transfer frames from the data link protocol sublayer would fill one or a few BCH codewords, and modestly larger data volumes were accommodated with the addition of PLOP-2 to the protocol.  This is the same application profile for which the short-blocklength LDPC codes are designed (low data-rate command and emergency communications), and so the same design remains appropriate.  For next-generation uplink applications that involve larger data volumes and higher speeds, a different set of longer blocklength LDPC codes is proposed, and surrounding protocol should also be modified to be similar to the CCSDS Telemetry standards.  In this document, attention is restricted to the short-blocklength codes. 

The coding and synchronization sublayer of the telecommand protocol consists of four operations, as shown in Figure B‑1, from the perspective of the transmitter. The new LDPC codes are proposed as a direct substitution for the current BCH code, with the single modification that the randomizer is mandatory with the LDPC codes.  In the remainder of this section, we discuss the implications more carefully.
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Figure B‑1: Components of the Coding and Synchronization Sublayer
With either the BCH code or the LDPC codes, fill data is added if necessary to complete the last codeword, and it may be added either before or after randomization.  It is suggested that the fill data is added first as shown in Figure B‑1 for a couple of minor reasons.  First this is the better inverse of the receive side that always de-randomizes before passing the fill data up to the TC data link protocol sublayer; second, this reduces the minor spectral effects that the fill data may introduce.

The randomizer is mandatory with the LDPC codes, because the codewords may be longer, and longer transition-free runs are possible in the unrandomized symbol stream. Note that the parity symbols of the BCH codewords are inverted to prevent long runs.  When LDPC codes are used, the randomizer is mandatory, and the parity symbols are not inverted.

CLTU generation (the addition of the start sequence and tail sequence) is performed with LDPC codewords in exactly the same way as with BCH codewords.
   Note that there are no synchronization markers between LDPC codewords, as there is in the TM standard.  This is acceptable because resynchronization is accomplished at the end of each CLTU. Marker-less codeword synchronization may be used if desired for marginally improved performance.

The following sections address the various implications of the code design on the CCSDS physical layer and upper layers. The case of binary LDPC codes is explored, although the considerations have a broader scope and hold also in the case of the other coding families (e.g., non-binary LDPC codes) drawn in this experimental recommendation.

B.2 Impact on the Radio Frequency and Modulation Layer
The proposed LDPC codes can operate at a lower Signal to Noise Ratio (SNR) than the current (63,56) BCH code for several reasons: the code rate is reduced to 1/2 from 0.89, they are typically decoded with a soft-decision decoder which saves about 2 dB as a rule of thumb, and all three LDPC codes have longer codeword lengths than the BCH code.  These changes need not have any significant impact on the transmit side of an uplink communications link, but there are two notable impacts on the receive side.

1. It will be advantageous for the spacecraft’s radio receiver to work at a lower symbol SNR than with the current BCH code.  By analogy, a communications system is only as capable as its weakest link.  The BCH code is currently a weak link, and by replacing it with the stronger LDPC code, the system becomes more capable.  The next-weakest link may be the SNR at which the receiver can maintain symbol synchronization, and in this case, further performance gains may be won by improving the receiver’s tracking loops.  If the receiver cannot be improved though, of course the use of the modern codes can only be an improvement.  If one aims to achieve a particular Word Error Rate (WER), the potential gains are shown in Figure B‑2, where the horizontal axis shows the symbol-SNR, rather than the more common bit-SNR.  If the receiver can maintain synchronization at an SNR below that required by an LDPC code, then the full power of the code can be used; otherwise the benefits are smaller.  Similarly, if one has a constraint on the Undetected Word Error Rate (UER), the potential gains are shown in Figure B‑3.

2. An LDPC code is generally decoded using “soft symbols”, rather than the binary “hard symbols” typically used for a BCH code.  This provides a performance improvement of about 2 dB, but depends on a receiver that can produce soft outputs.  This modification is not mandatory, however, for a belief propagation decoder can also operate on the hard symbols if necessary.  Conversely, BCH codes are typically decoded with an algebraic decoder that operates on binary inputs, but there are soft-decision BCH decoding algorithms that can provide a performance improvement at a substantial cost in complexity.
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Figure B‑2: Word Error Rates for several uplink coding schemes
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Figure B‑3: Undetected Error Rates for several coding schemes
Currently, the CCSDS standards specify that telecommand uses one of two Physical Layer Operations Procedures (PLOPs).  All missions whose planning began after September 2010 are to use PLOP-2, as shown in Figure B‑4; the older PLOP-1 differs only in that the loop returns to CMM-1 (Carrier Modulation Mode 1) instead of to CMM-3.  No modification is required to use the PLOP-2 protocol and the short-blocklength LDPC codes together.  Any additional changes to the RFM protocol layer are at the discretion of the Next Generation Uplink working group.
[image: image37.png]BEGIN COMMUNICATIONS SESSION

l

CMM-1:  UNMODULATED CARRIER ONLY

v

CARRIER MODULATED WITH

CMM-2 {CQUISITION SEQUENCE

¥

(OPTIONAL: CARRIER MODULATED
(CMM-4J: WiTH IDLE SEQUENCE)

L2

CARRIER MODULATED WITH DATA:

CMM-3 TRANSMIT ONE CLTU

v

(OPTIONAL: CARRIER MODULATED
(CMM-4J: WiTH IDLE SEQUENCE)

v

REPEAT (4) AND (5) FOR EACH CLTU

L2

CMM-1:  UNMODULATED CARRIER ONLY

END COMMUNICATIONS SESSION





Figure B‑4: PLOP-2 telecommand protocol, reproduced from Figure 6-2 of [2]
B.3 Interactions with Upper Protocol Layers
The Coding and Synchronization sublayer exchanges variable length TC Transfer Frames with the TC Space Data Link Protocol [2].  Because these are of variable length, the protocol sublayers are almost completely isolated from each other.

The “All Frames Generation Function” is responsible for computing the Frame Error Control Field (FECF), more commonly known as a Cyclic Redundancy Check (CRC), and passing the resulting Transfer Frames to the coding sublayer.  Its behavior, like those of the functions above it, remains unchanged.

The “All Frames Reception Function” is responsible for stripping fill data from TC Transfer Frames, and validating the resulting frames.  Because the LDPC codewords can be up to 64 octets long, as many as 63 octets of fill may have to be stripped from the end of a TC Transfer Frame.  As with the BCH coding scheme, there is the possibility that the fill may be mistaken for a Transfer Frame Header, but for the same reasons, it will fail the standard frame validation check procedure.

Any additional changes to the TC Space Data Link Protocol sublayer are at the discretion of the Next Generation Uplink working group, and are independent of the error correcting codes.  Perhaps the most compelling is the opportunity to modify the go-back-n retransmission scheme to improve its efficiency and storage demands.
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