

NASA/SCaN Coding, Modulation, and Link Protocol Study

Status Report to IOAG June 2007

- Purpose/Scope of CMLP Study
- Process used in study
- Catalog of SCaN architecture Driving Links
- Catalogs of codes, modulations, multiple access (MA) schemes and link protocol (LP) attributes
- Figures of Merit (FOM)
- Link classification
- Recommended schemes for link classes
- Future work
- Summary

Top Level Space Comm & Navigation Architecture

- SCaN has defined a set of links across the Solar System
- SCaN has recommended spectrum for these links
- SCaN has recommended some networking protocols
- SCaN has NOT yet recommended how to implement the physical link up to the link layer protocols (i.e., coding, modulation, link protocol, etc.)
- This is problematic for several reasons
 - In the absence of overall guidance, missions may chose multiple directions, thereby costing more to develop and operate
 - There is no direction to the international standards community
 - There is no direction to SOMD to implement these links in the NASA comm/nav infrastructure
 - There is no guidance to NASA technology investors to develop needed spacecraft comm/nav systems

- Plug this hole
- Recommend and justify link designs for the SCaN architecture
 - Defendable to naysayers
- Provide guidance
 - To NASA mission concept developers
 - To the builders of NASA's comm/nav infrastructure
 - To spacecraft technology developers
 - To the NASA Standards Program
- Identify key NASA comm/nav investments
- Engage international community

- Every link in the SCaN architecture through 2030
 - We exclude surface-to-surface links
- All reasonable coding, modulation, and multiple access schemes
 - We have applied common sense to narrow the study space
 - SCaN has acted as the approving authority for the elimination of schemes from specific link analyses
- We considered only certain properties of link protocols
 - We did not select specific protocols
 - We DID consider things that affect coding , modulation and link protocol)selection
 - Retransmission, Adaptive rate control ...
- Radiometrics and Navigation considered
- Engaged outside experts to review and provide comments
- Maximized use of results from other NASA studies

- The SCaN architecture represents a major change for NASA
 - Coding, modulation, multiple access, and link protocols may advance significantly beyond what current NASA systems support
 - CMLP is only one example of what will change
- Legacy systems will have to be supported until both spacecraft and ground systems complete transition
 - In some cases this will take many years
 - Spectrum (e.g., Cat A X-band), codes, modulations ...
- This study will be one input to SCaN architecture transition plan
 - SCaN system roadmaps
 - Technology investment and infusion (end-to-end)
 - International standards development
 - Policies for new missions

- In June, we are delivering a draft final report that includes
 - A catalog of NASA's existing links with descriptions
 - A catalog of the SCaN links with (for each link)
 - A list of all the coding, modulation, protocol, and access schemes studied including evaluation according to a set of "figures of merit" (FOMs)
 - A small number of recommended coding, modulation, link protocol attributes, and multiple access schemes
- This is a summary of that report for the IOAG
 - We will gather feedback from all of you
- Final report to be released in late Summer 2007
 - Additional participation of international partners as defined at this meeting

Plan and Status

	Task	Done	Explanation
e 1	Create catalog of existing NASA links	yes	
	Create catalog of SCaN links (w/ requirements)	yes	
ase `	Create list of FOMs for evaluation	yes	
Ph	Create list of coding, modulation, protocol, and access schemes for analysis	yes	
	Find all relevant, technically sound existing studies	yes?	
ş 2	Define (and get NASA expert agreement) a list of schemes to evaluate for each link	yes	
hase	Do the analysis and evaluate the FOMs	part	Mars in-situ still to be completed
4	Get agreement (with NASA experts) of FOM weighting for each link	part	Mars in-situ still to be completed
ase 3	Create recommendations for each link	part	Mars in-situ, MA, and international engagement still to be completed
Ph	Write draft final report	no	

- NASA has many communities that have an interest in the results of this study
- Here is how the various US communities have participated thus far

Stakeholder	Team Member	NASA oversight	Internal review	External Review
SCaN		x	x	
Technologists	x		x	
Comm infrastrcuture engineers	x	x	x	
Spacecraft comm engineers	x			
Mission Directorates		x		
Constellation		X	х	
Other gov't, industry & academia				x

Mission Type	Link type	Range (km)	Frequency (MHz)	Transmit Antenna	EIRP (dBW)	Receive Antenna	G/T (dB/K)	Data rate (kbps)	BER
Mars Lander	Sofo Modo	400,000,000	7183	70m DSN	116	Low Gain	-31	0.0078125	1.00E-06
or Orbiter	Sale Mode	400,000,000	8439	Low Gain	17	70m DSN	57	0.01	1.00E-03
	Operational	1 107 000 000	7183	34m DSN	110	6m	19	1000	1.00E-08
Titon Orbitor	Operational	1,197,000,000	8439	6m	72	70m DSN	57	600	1.00E-08
Titan Orbiter	High Pate	1 107 000 000	34316	34m DSN	122	6m	31	1000	1.00E-08
	nigh Rale	1,197,000,000	32028	6m	90	70m DSN	62	10000	1.00E-08
		400,000,000	7183	34m DSN	110	6m	19	6000	1.00E-08
		400,000,000	8439	6m	72	70m DSN	57	6000	1.00E-08
Mars Relay	Operational	E8 000 000	7183	34m DSN	110	6m	19	20000	1.00E-08
Orbiter		56,000,000	8439	6m	72	34m DSN	51	20000	1.00E-08
	Ligh Data	58,000,000	34316	34m DSN	112	6m	31	10000	1.00E-08
		56,000,000	32028	6m	90	34m DSN	56	500000	1.00E-08

Reference: High Capacity Communications from Martian Distances, A Report of the Space Communications Architecture Working Group (SCaN), March 2006

Mission	Link Characteristic	Orbit	Launch	H/K	H/K	Science	Science	Latency	Uplink	Potential
		Regime	Date	Freq Band	Data Rate	Freq Band	Data Rate		Band/Rate	Support
Medium Class Explor	rer									
MIDEX-08	SEL1	2015	?	?	X-or Ka	213Kbps	Near R/T	X/4Kbps	GN, DSN, Other	
JWST	Distance/Data Rate	SEL2	2013	S-Band	40Kbps	Ka-Band	24.5Mbps	Near R/T	S/16Kbps	GN, DSN
MIDEX-10	Distance/Data Rate	SEL2	2022	S-Band	16Kbps	Ka-Band	20Mbps		S/2-10Kbps	GN, DSN, Other
MIDEX-12	Distance/Data Rate	SEL2	2025	S-Band	32Kbps	Ka-Band	30Mbps		S/2-10Kbps	GN, DSN, Other
SNAP (JDEM)	Distance/Data Rate	SEL2	2021	X-Band	100Kbps	Ka-Band	150Mbps	Non R/T	X/100Kbps	GN, DSN
Earth System Science	Pathfinder									
ESSP-07	High Data Rate	LEO	2014	S-Band	64Kbps	X-or Ka	300Mbps	Near R/T	S/1Kbps	GN, SN
ESSP-08	High Data Rate	LEO	2016	S-Band	64Kbps	X-or Ka	300Mbps	Near R/T	S/1Kbps	GN, SN, Other
ESSP-09	High Data Rate	LEO	2018	S-Band	64Kbps	Ka-Band	600Mbps	Near R/T	S/1Kbps	GN, SN, Other
ESSP-10	High Data Rate	LEO	2020	S-Band	128Kbps	Ka-Band	600Mbps	Near R/T	S/1Kbps	GN, SN, Other
ESSP-11	High Data Rate	LEO	2022	S-Band	512Kbps	Ka-Band	1Gbps	Near R/T	S/2Kbps	GN, SN, Other
ESSP-12	High Data Rate	LEO	2024	S-Band	1Mbps	Ka-Band	1 Gbps	Near R/T	S/2Kbps	GN, SN, Other
Earth Systematic Proje	ect									
SYSP-01 High Data Ra		LEO - P	2017	S-Band	128Kbps	Ka-Band	1Gbps	Near R/T	X/2Kbps	GN, SN
SYSP-02	High Data Rate	LEO - P	2019	S-Band	512Kbps	Ka-Band	1Gbps	Near R/T	X/2Kbps	GN, SN, Other
SYSP-03	High Data Rate	LEO - P	2021	S-Band	512Kbps	Ka-Band	1Gbps	Near R/T	X/2Kbps	GN, SN, Other
SYSP-04	High Data Rate	LEO - P	2023	S-Band	512Kbps	Ka-Band	1Gbps	Near R/T	X/2Kbps	GN, SN, Other
SYSP-05	High Data Rate	LEO - P	2025	S-Band	1Mbps	Ka-Band	1Gbps	Near R/T	X/2Kbps	GN, SN, Other

Reference Space Network Links

Mission	Link Characteristic	Orbit	Launch	H/K	H/K	Science	Science	Latency	Uplink	Potential
		Regime	Date	Freq Band	Data Rate	Freq Band	Data Rate		Band/Rate	Support
Earth Syster	n Science Pathfinder	-								
ESSP-07	High Data Rate	LEO	2014	S-Band	64Kbps	X-or Ka	300Mbps	Near R/T	S/1Kbps	GN, SN
ESSP-08	High Data Rate	LEO	2016	S-Band	64Kbps	X-or Ka	300Mbps	Near R/T	S/1Kbps	GN, SN, Other
ESSP-09	High Data Rate	LEO	2018	S-Band	64Kbps	Ka-Band	600Mbps	Near R/T	S/1Kbps	GN, SN, Other
ESSP-10	High Data Rate	LEO	2020	S-Band	128Kbps	Ka-Band	600Mbps	Near R/T	S/1Kbps	GN, SN, Other
ESSP-11	High Data Rate	LEO	2022	S-Band	512Kbps	Ka-Band	1Gbps	Near R/T	S/2Kbps	GN, SN, Other
ESSP-12	High Data Rate	LEO	2024	S-Band	1Mbps	Ka-Band	1 Gbps	Near R/T	S/2Kbps	GN, SN, Other
Earth System	natic Project									
SYSP-01	High Data Rate	LEO - P	2017	S-Band	128Kbps	Ka-Band	1Gbps	Near R/T	X/2Kbps	GN, SN
SYSP-02	High Data Rate	LEO - P	2019	S-Band	512Kbps	Ka-Band	1Gbps	Near R/T	X/2Kbps	GN, SN, Other
SYSP-03	High Data Rate	LEO - P	2021	S-Band	512Kbps	Ka-Band	1Gbps	Near R/T	X/2Kbps	GN, SN, Other
SYSP-04	High Data Rate	LEO - P	2023	S-Band	512Kbps	Ka-Band	1Gbps	Near R/T	X/2Kbps	GN, SN, Other
SYSP-05	High Data Rate	LEO - P	2025	S-Band	1Mbps	Ka-Band	1Gbps	Near R/T	X/2Kbps	GN, SN, Other
	- Martina - NATA - 14 - 4									
Global Preci	pitation Wission									
GPM Core	SN Multiple Access	LEO	2013	S-Band	?	S-Band	300Kbps		S-Band	SN , GN
GPM CX	SN Multiple Access	LEO	2014	S-Band	?	S-Band	300Kbps		S-Band	SN, GN

TDRSS KSAR Upgrade Augmentation (TKUP-A) Project) will demonstrate 1Gbps+ data rates through TDRSS in 2007.

Driving Constellation Links

Mission Phase	Link type	Frequency Band	Transmit Antenna	Receive Antenna	Rate (kbps)	EIRP (dBW)	G/T (dBK)
Loupob	Operational	S-Band	Low Gain	9.0m Dish	192	7.0	24.0
Launch	High Rate	S-Band	Low Gain	9.0m Dish	20,000	7.0	24.0
	Operational	S-Band	TDRS-SA	Low Gain	72	46.3	-29.1
	Operational	S-Band	Low Gain	TDRS-SA	192	17.5	10.3
Low Earth Orbit TDR55 Links	High Rate	Ka-band	TDRS-SA	0.75m Dish	6,000	59.5	11.0
	High Rate	Ka-band	0.75m Dish	TDRS-SA	25,000	48.5	23.0
	Rendezvous	S-Band	Low Gain	Low Gain	192	-1.0	-30.8
Dendezveve Linke	Rendezvous	S-Band	Low Gain	Low Gain	192	-4.2	-27.6
Rendezvous Links	Rendezvous	S-Band	Low Gain	Low Gain	6,000	-11.0	-30.8
	Rendezvous	S-Band	Low Gain	Low Gain	6,000	-14.2	-27.6
	Operational	S-Band	1m Dish	Low Gain	72	35.9	-28.4
	Operational	S-Band	Low Gain	1m Dish	192	17.5	-2.1
Lunar Relay Links	High Rate	Ka-band	1m Dish	0.75m Dish	6,000	46.7	11.0
	High Rate	Ka-band	0.75m Dish	1m Dish	25,000	48.5	18.0
	Nominal	S-Band	34.0m Dish	Low Gain	72	98.1	-29.1
	Nominal	S-Band	Low Gain	34.0m Dish	192	17.5	32.9
Lunar Oraurad Linka	Nominal	S-Band	34.0m Dish	0.75m Dish	1,000	98.1	-9.1
Lunar Ground Links	Nominal	S-Band	0.75m Dish	34.0m Dish	1,000	37.5	32.9
	High Rate	Ka-band	34m Dish	0.75m Dish	25,000	103.4	10.6
	High Rate	Ka-band	0.75m Dish	34m Dish	150,000	55.1	59.8

NOTE: these are **not** approved Constellation links. They should be considered **only** as representative for the purpose of this study.

Still to come:

- Mars in-situ
 - Expect much commonality with lunar in-situ

- Goal: recommend appropriate modulations for emerging space mission scenarios through 2030
- Key points of comparison:
 - Spectral efficiency, particularly at S-band and X-band
 - > 1 bit/s/Hz will be needed for some links
 - Power efficiency
 - Comparing *uncoded* modulation performance allows us to make modulation choices before having to consider which code to use
 - Constant envelope modulations preferred avoids distortion and need for amplifier back off
 - Complexity
 - Space receivers have limitations; ground receivers can be more complex
 - Modulation performance reported for Optimal, Integrate & Dump, and COTS receivers
 - Standardization,
 - Prefer modulations compliant with CCSDS and SFCG specifications
 - Maturity mission heritage, existing infrastructure support

CCSDS Products

The Standards Track has two branches:

- documents that are intended to be "Recommended Standards" (CCSDS 'Blue Books'), and;
- documents that are intended to be "Recommended Practices" (CCSDS 'Magenta Books').

The principal difference between these two branches is that:

- Recommended Standards are precise, prescriptive and/or normative specifications that define interfaces, protocols, or other controlling standards at a sufficient level of technical detail that they can be directly implemented and used for space mission interoperability and cross support.
- Recommended Practices are more general in nature and capture "best" or "state of the art" recommendations for applying standards or standardized processes. They differ from "Informational" documents in that they do provide controlling guidance, rather than purely descriptive material.

The Non-Standards Track includes CCSDS Experimental (Orange Book)

• The "Experimental" designation typically denotes a specification that is part of some research or development effort. Its funding and other associated resources are normally independently provided by the organization that initiates the work, so the CCSDS role is limited to one of periodic review and publication. Experimental work may be based on soft or "prospective" requirements, i.e., it may be looking into the future and may intend to demonstrate technical feasibility in anticipation of a "hard" requirement that has not yet emerged. This designation therefore allows the work to progress roughly to the equivalent technical status of a "Draft Standard" without being actually on the Standards Track and therefore consuming large amounts of CCSDS resources. Experimental work may be rapidly transferred onto the Standards Track if a hard requirement emerges, thus shortening the response time in satisfying the new customer.

Modulations: Catalog

Modulation ID	Shaping/Filter Type	Receiver Type	Modulation ID	Shaping/Filter Type	Receiver Type
BPSK	Unfiltered	Optimum	SOQPSK-A		I&D Trellis
BPSK	Unfiltered	COIS	SOOPSK-B		
BPSK	SRRC (roll-off factor=1)	Optimum	8-PSK	Unfiltered	Optimum
BPSK	SRRC (roll-off factor=0.5)	Optimum	8-PSK	SRRC (roll-off factor=1)	Optimum
BPSK	SRRC (roll-off factor=0.2)	Optimum	8-PSK	SRRC (roll-off factor=0.5)	Optimum
BPSK	Manchester-coding (Bi-phase)	Optimum	8-PSK	SRRC (roll-off factor=0.35)	Optimum
Binary DPSK	Unfiltered	Optimum	16-PSK	Unfiltered	Optimum
Duobinary		Optimum	16-PSK	SRRC (roll-off factor=0.5)	Optimum
PCM/PSK/PN		Optimum	16-PSK	SRRC (roll-off factor=0.35)	Optimum
MSK (h=0.5)	Unfiltered	Irellis	16-QAM (rectangular)	Unfiltered	Optimum
Precoded GMSK(h=0.5)	Gaussian (BT_b=0.5)	Irellis	16-QAM (rectangular)	SRRC (roll-off factor=0.5)	Optimum
Precoded GMSK(h=0.5)	Gaussian (BT_b=0.5)	COIS	16-QAM (rectangular)	SRRC (roll-off factor=0.35)	Optimum
Precoded GMSK(h=0.5)	Gaussian (BT_b=0.5)	L&D	16-APSK (12-4)	Unfiltered	Optimum
Precoded GMSK(h=0.5)	Gaussian (BT_b=0.25)	Optimum	16-APSK (12-4)	SRRC (roll-off factor=0.5)	Optimum
Precoded GMSK(h=0.5)	Gaussian (BT_b=0.25)	COIS	16-APSK (12-4)	SRRC (roll-off factor=0.35)	Optimum
Precoded GMSK(h=0.5)	Gaussian (BT_b=0.25)	I&D	32-PSK	Unfiltered	Optimum
GMSK (h=0.5)	Gaussian (BT_b=0.3)	Trellis	32-PSK	SRRC (roll-off factor=0.5)	Optimum
GMSK (h=0.5)	Gaussian (BT_b=0.3)	I&D	32-PSK	SRRC (roll-off factor=0.35)	Optimum
QPSK	Unfiltered	Optimum	32-QAM (cross)		Optimum
Quaternary DPSK	Unfiltered	Optimum	32-QAM (cross)	SRRC (roll-off factor=0.5)	Optimum
pi/4-DQPSK	Unfiltered	Optimum	32-QAM (Cross)	SRRC (foll-off factor=0.35)	Optimum
OQPSK (SQPSK)	Unfiltered	Optimum	32-APSK (16/12/4)		Optimum
OQPSK (SQPSK)	Unfiltered	COTS	32-APSK (16/12/4)	SRRC (IOII-OII Iactor=0.5)	Optimum
OQPSK (SQPSK)	SRRC (roll-off factor=1)	Optimum	52-APSK (10/12/4) 64-OAM (rectangular)	Unfiltered	Optimum
OQPSK (SQPSK)	SRRC (roll-off factor=1)	I&D	64-QAM (rectangular)	SRRC (roll-off factor=0.5)	Optimum
OQPSK (SQPSK)	SRRC (roll-off factor=0.5)	Trellis	64-QAM (rectangular)	SBBC (roll-off factor=0.35)	Optimum
OQPSK (SQPSK)	SRRC (roll-off factor=0.5)	COTS	64-APSK(28/20/12/4)	Unfiltered	Optimum
OQPSK (SQPSK)	SRRC (roll-off factor=0.5)	I&D	64-APSK(28/20/12/4)	SRRC (roll-off factor=0.5)	Optimum
OQPSK (SQPSK)	SRRC (roll-off factor=0.2)	Trellis	64-APSK(28/20/12/4)	SRRC (roll-off factor=0.35)	Optimum
OQPSK (SQPSK)	SRRC (roll-off factor=0.2)	I&D	128-QAM (cross)	Unfiltered	Optimum
OOPSK/PM	Butterworth 6th order	I&D	Binary FSK	Unfiltered	Optimum
OOPSK/PM	Bessel 6th order	I&D	OFDM/BPSK	Unfiltered	Optimum
FOPSK-B		Trellis	OFDM/QPSK	Unfiltered	Optimum
FOPSK-B			8		
SOQPSK-A		Trellis			

Orange = CCSDS Orange Book Specification

20

- Goal: recommend appropriate codes for emerging space mission scenarios through 2030
- Key points of comparison:
 - Power efficiency
 - Required Eb/N0 to achieve a target error rate
 - Complexity (encoding and decoding)
 - Space receivers have limitations; ground receivers can be more complex
 - Standardization
 - Prefer codes compliant with CCSDS specifications
 - Maturity mission heritage, existing infrastructure support

Catalog of Codes 1

	Code ID	Туре	Rate	Info length (k)		Code ID	Type	Rate (r)	Info length (k)
1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 15 16 17 8 9 20 21 22 23 24	Code ID Uncoded CC(3,1/2) CC(5,1/2) CC(7,1/2), delay=5 bits, Q=inf CC(7,1/2), delay=10 bits, Q=inf CC(7,1/2), delay=30 bits, Q=inf CC(7,1/2), delay=60 bits, Q=inf CC(7,1/2), delay=10 bits, Q=inf CC(7,1/2), delay=inf, hard dec. CC(7,1/2), delay=inf, Q=3 CC(7,1/2), delay=inf, Q=inf CC(7,2/3), delay=10 bits, Q=inf CC(7,3/4), delay=120 bits, Q=inf CC(7,5/6), delay=60 bits, Q=inf CC(7,7/8), delay=120 bits, Q=inf CC(7,7/8), delay=120 bits, Q=inf CC(7,7/8), delay=120 bits, Q=inf	Type Uncoded Convolutional	Rate (r) 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Info Iength (k) 1022 1020 Inf Inf Inf 1784 3568 8920 16384 Inf Inf Inf Inf Inf 8920 1024 8920 1024 8920 1024 8920 1024	31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55	Code ID RS(255,239) RS(252,220) RS(255,223)+(7,1/2), l=1 RS(255,223)+(7,1/2), l=2 RS(255,223)+(7,1/2), l=3 RS(255,223)+(7,1/2), l=4 RS(255,223)+(7,1/2), l=5 RS(255,223)+(7,1/2), l=5 RS(255,223)+(7,1/2), l=16 RS(255,239)+(7,1/2), l=1 RS(255,239)+(7,1/2), l=2 RS(255,239)+(7,1/2), l=3 RS(255,239)+(7,1/2), l=3 RS(255,239)+(7,1/2), l=3 RS(255,239)+(7,1/2), l=5 RS(255,239)+(7,1/2), l=5 RS(255,239)+(7,1/2), l=5 RS(255,223)+(7,1/2), l=5 RS(255,223)+(7,2/3), l=5 RS(255,223)+(7,3/4), l=5 RS(255,239)+(7,2/3), l=5 RS(255,239)+(7,2/3), l=5 RS(255,239)+(7,2/3), l=5 RS(255,239)+(7,2/3), l=5 RS(255,239)+(7,2/3), l=5 RS(255,239)+(7,2/3), l=5 RS(255,239)+(7,3/4), l=5 RS(255,239)+(7,3/4), l=5 RS(255,239)+(7,3/4), l=5 RS(255,239)+(7,3/4), l=5 RS(255,239)+(7,3/4), l=5 RS(255,239)+(7,3/4), l=5 RS(255,239)+(7,3/4), l=5 RS(255,239)+(7,3/4), l=5 RS(255,239)+(7,3/4), l=5 RS(255,239)+(7,5/6), l=5 RS(255,	Type Reed-Solomon Reed-Solomon Concatenated	Rate (r) 0.94 0.87 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.4	Info length (k) 1912 1760 1784 3568 5352 7136 8920 14272 28544 1912 3824 5736 7648 9560 15296 30592 4780 6373 7170 7966 8365 4780 6373 7170 7966
23 24 25	CC(7,7/8), delay=00 bits, Q=inf CC(7,7/8), delay=120 bits, Q=inf CC(9,1/2) delay=452 Q=inf	Convolutional	0.87	6920 1024 63	55 56	RS(255,239)+(7,5/6), I=5 RS(255,239)+(7,7/8), I=5	Concatenated Concatenated	0.78 0.82	7966 8365
25 26 27	CC(9,1/2), delay=45?, Q=Inf CC(9,1/2) CC(9,1/2)	Convolutional Convolutional Convolutional	0.5 0.5 0.5	63 1016 4088	57 58 59	Turbo(1784,1/6) Turbo(1784,1/4) Turbo(1784,1/3)	Turbo Turbo Turbo	0.17 0.25 0.33	1784 1784 1784
28 29 30	CC(15,1/4) CC(15,1/6) RS(255,223)	Convolutional Convolutional Reed-Solomon	0.25 0.16 0.87	1010 1010 1784	60	Turbo(1784,1/2)	Turbo	0.5	1784

Blue = CCSDS Blue Book Standard

Orange = CCSDS Orange Book Specification

Green = Infrastructure support

22

Catalog of Codes 2

·	Code ID	Туре	Rate (r)	Info length (k)		Code ID	Туре	Rate (r)	Info length (k)
61	Turbo(3568, 1/6)	Turbo	0.17	3568	01	TPC (64 57)/2	Turbo Product	0.70	3240
62	Turbo $(3568, 1/6)$	Turbo	0.17	3568	91	$TPC(64, 57)^{1/2}$	Turbo Product	0.79	3249 2024
63	Turbo(3568, 1/3)	Turbo	0.20	3568	03	TPC (30, 32)/2	Turbo Product	0.75	1024
64	Turbo(3568,1/2)	Turbo	0.00	3568	94	TPC(32,26)/2	Turbo Product	0.07	676
65	Turbo(7136.1/6)	Turbo	0.17	7136	95	TPC(19,13)^2	Turbo Product	0.47	169
66	Turbo(7136.1/4)	Turbo	0.25	7136	96	TPC(32.26)x(32.26)x(4.3)	Turbo Product	0.5	2028
67	Turbo(7136,1/3)	Turbo	0.33	7136	97	TPC(32,26)x(32,26)x(16,11)	Turbo Product	0.45	7436
68	Turbo(7136,1/2)	Turbo	0.5	7136	98	TPC(16,11)x(16,11)x(16,11)	Turbo Product	0.32	1331
69	Turbo(8920,1/6)	Turbo	0.17	8920	99	TPC(S16xH64^2)	Turbo Product	0.74	48735
70	Turbo(8920,1/4)	Turbo	0.25	8920	100	TPC(H64xH32xS32)	Turbo Product	0.7	45942
71	Turbo(8920,1/3)	Turbo	0.33	8920	101	TPC(H64xH32^2)	Turbo Product	0.59	38532
72	Turbo(8920,1/2)	Turbo	0.5	8920	102	TPC(H16xH64^2)	Turbo Product	0.55	35739
73	Turbo(16384,1/6)	Turbo	0.17	16384	103	TPC(S4xH16xH32^2)	Turbo Product		
74	Turbo(16384,1/4)	Turbo	0.25	16384	104	TPC(H16^4)	Turbo Product		
75	Turbo(16384,1/3)	Turbo	0.33	16384	105	TPC(S16xH32^2)	Turbo Product	0.62	10140
76	Turbo(16384,1/2)	Turbo	0.5	16384	106	BCH-LDPC(16200,1/4)	BCH-LDPC	0.19	3072
77	BCH-SEC(63,56)	BCH	0.89	56	107	BCH-LDPC(16200,1/3)	BCH-LDPC	0.32	5232
78	BCH-TED(63,56)	BCH	0.89	56	108	BCH-LDPC(16200,2/5)	BCH-LDPC	0.39	6312
79	AR4JA(64,1/2)	LDPC	0.5	64	109	BCH-LDPC(16200,1/2)	BCH-LDPC	0.43	7032
80	AR4JA(1024,1/2)	LDPC	0.5	1024	110	BCH-LDPC(16200,3/5)	BCH-LDPC	0.59	9552
81	AR4JA(1024,2/3)	LDPC	0.67	1024	111	BCH-LDPC(16200,2/3)	BCH-LDPC	0.66	10632
82	AR4JA(1024,4/5)	LDPC	0.8	1024	112	BCH-LDPC(16200,3/4)	BCH-LDPC	0.72	11712
83	AR4JA(4096,1/2)	LDPC	0.5	4096	113	BCH-LDPC(16200,4/5)	BCH-LDPC	0.77	12432
84	AR4JA(4096,2/3)	LDPC	0.67	4096	114	BCH-LDPC(16200,5/6)	BCH-LDPC	0.81	13152
85	AR4JA(4096,4/5)	LDPC	0.8	4096	115	BCH-LDPC(16200,8/9)	BCH-LDPC	0.88	14232
86	AR4JA(16384,1/2)	LDPC	0.5	16384	116	BCH-LDPC(64800,1/4)	BCH-LDPC	0.25	16008
87	AK4JA(16384,2/3)		0.67	16384	117	BCH-LDPC(64800,1/3)	BCH-LDPC	0.19	12408
88	AK4JA(16384,4/5)		0.8	16384	118	BCH-LDPC(64800,2/5)	BCH-LDPC	0.4	25728
89			0.87	1130	119	BCH-LDPC(64800,1/2)	BCH-LDPC	0.5	32208
90	TPC(128,120) ²	Turbo Product	0.88	14400	120	BCH-LDPC(64800,3/5)	RCH-LDPC	0.6	38688

Catalog of Codes 3

			Info			_	Info
Code ID	Туре	Rate (r)	length (k)	Code ID	Туре	Rate (r)	length (k)
BCH-LDPC(64800,2/3)	BCH-LDPC	0.66	43040	151 F-LDPC(16k, 4/5)	LDPC	0.8	16384
BCH-LDPC(64800,3/4)	BCH-LDPC	0.73	47408	152 F-LDPC(16k, 8/9)	LDPC	0.89	16384
BCH-LDPC(64800,4/5)	BCH-LDPC	0.8	51648	153 F-LDPC(16k, 16/17)	LDPC	0.94	16384
BCH-LDPC(64800,5/6)	BCH-LDPC	0.83	53840	154 (3,1/2)+acc.	SCCC		
BCH-LDPC(64800,8/9)	BCH-LDPC	0.89	57472	155 CRC-32	CRC		
BCH-LDPC(64800,9/10)	BCH-LDPC	0.9	58192	156 CRC-96	CRC		
Flarion-low threshold	LDPC	0.5	4096	157 CRC-128	CRC		
Flarion-low floor	LDPC	0.5	4096	158 CRC-192	CRC		
LDPC(432,3/4) 802.16e	LDPC	0.75	432	159 CRC-16-CCITT	CRC		
LDPC(1008,3/4) 802.16e	LDPC	0.75	1008	160 CRC-16-IBM	CRC		
LDPC(1728,3/4) 802.16e	LDPC	0.75	1728	161 CRC-16-IEEE	CRC		
LDPC(1/2) 802.16e	LDPC	0.5		162 SCCC(k=428,1/3)	SCCC	0.33	428
LDPC(2/3) 802.16e	LDPC	0.67		163 SCCC(k=428,5/6)	SCCC	0.83	428
LDPC(5/6) 802.16e	LDPC	0.83		164 SCCC(k=428,9/10)	SCCC	0.9	428
(3,4,7)LPDC(64)	LDPC	0.5	64	165 SCCC(n=16384,1/3)	SCCC	0.33	5461
(3,4,7)LPDC(128)	LDPC	0.5	128	166 SCCC(n=16384,5/6)	SCCC	0.83	13653
(3,4,7)LPDC(256)	LDPC	0.5	256	167 SCCC(n=16384,9/10)	SCCC	0.9	14745
LDPC 802.11n	LDPC		10.0.0				
F-LDPC (4096, _)	LDPC	0.5	4096				
F-LDPC (4096, 2/3)	LDPC	0.67	4096				
F-LDPC (4096, 4/5)	LDPC	8.0	4096				
F-LDPC (4096, 8/9)	LDPC	0.89	4096				
F-LDPC (4096, 16/17)	LDPC	0.94	4096				
F-LDPC (8192, _)	LDPC	0.5	8192				
F-LDPC (8192, 2/3)		0.67	8192				
F-LDPC(8192, 4/5)		0.8	8192				
F-LDFC(0.192, 0/9)		0.09	0192 9102				
I = LDPC (0 32, 0/17) $E = LDPC (16k)$		0.94	16387				
F-LDPC(16k, 2/3)	LDPC	0.67	16384				
	Code ID BCH-LDPC($64800,2/3$) BCH-LDPC($64800,3/4$) BCH-LDPC($64800,3/4$) BCH-LDPC($64800,3/4$) BCH-LDPC($64800,5/6$) BCH-LDPC($64800,8/9$) BCH-LDPC($64800,9/10$) Flarion- low threshold Flarion- low threshold Flarion- low floor LDPC($432,3/4$) 802.16e LDPC($1728,3/4$) 802.16e LDPC($1728,3/4$) 802.16e LDPC($1/2$) 802.16e LDPC($1/2$) 802.16e LDPC($2/3$) 802.16e LDPC($5/6$) 802.16e ($3,4,7$)LPDC(64) ($3,4,7$)LPDC(128) ($3,4,7$)LPDC(256) LDPC 802.11n F-LDPC ($4096, 2/3$) F-LDPC ($4096, 8/9$) F-LDPC ($4096, 8/9$) F-LDPC ($4096, 16/17$) F-LDPC ($4096, 16/17$) F-LDPC ($8192, 2/3$) F-LDPC ($8192, 4/5$) F-LDPC ($8192, 4/5$) F-LDPC ($8192, 16/17$) F-LDPC ($8192, 16/17$) F-LDPC($16k, _$) F-LDPC($16k, _$)	Code ID Type BCH-LDPC(64800,2/3) BCH-LDPC BCH-LDPC(64800,3/4) BCH-LDPC BCH-LDPC(64800,3/4) BCH-LDPC BCH-LDPC(64800,4/5) BCH-LDPC BCH-LDPC(64800,5/6) BCH-LDPC BCH-LDPC(64800,8/9) BCH-LDPC BCH-LDPC(64800,9/10) BCH-LDPC BCH-LDPC(64800,9/10) BCH-LDPC Flarion- low threshold LDPC LDPC(432,3/4) 802.16e LDPC LDPC(1008,3/4) 802.16e LDPC LDPC(1728,3/4) 802.16e LDPC LDPC(1/2) 802.16e LDPC	Code IDRate (r)BCH-LDPC (64800,2/3)BCH-LDPC0.66BCH-LDPC (64800,3/4)BCH-LDPC0.73BCH-LDPC (64800,4/5)BCH-LDPC0.83BCH-LDPC (64800,5/6)BCH-LDPC0.83BCH-LDPC (64800,9/10)BCH-LDPC0.99Flarion- low thresholdLDPC0.5LDPC (432,3/4)802.16eLDPC0.75LDPC (1008,3/4)802.16eLDPC0.75LDPC (1028,3/4)802.16eLDPC0.75LDPC (1028,3/4)802.16eLDPC0.55LDPC (1028,3/4)802.16eLDPC0.55LDPC (1028,3/4)802.16eLDPC0.55LDPC (1028,3/4)802.16eLDPC0.55LDPC (1028,3/4)802.16eLDPC0.55LDPC (1/2)802.16eLDPC0.55LDPC (1/2)802.16eLDPC0.55LDPC (1/2)802.16eLDPC0.55LDPC (1/2)802.16eLDPC0.55LDPC (1/2)802.16eLDPC0.55LDPC (802.11nLDPC0.55F-LDPC (4096, 2/3)LDPC0.67F-LDPC (4096, 4/5)LDPC0.88F-LDPC (4096, 4/5)LDPC0.88F-LDPC (4096, 4/5)LDPC0.88F-LDPC (8192, 2/3)LDPC0.67F-LDPC (8192, 4/5)LDPC0.89F-LDPC (8192, 4/5)LDPC0.89F-LDPC (8192, 4/5)LDPC0.89F-LDPC (8192, 16/17)LDPC0.94F-LDPC (16k,	Code ID Info (r) Info (ength (k) BCH-LDPC (64800,2/3) BCH-LDPC 0.66 43040 BCH-LDPC (64800,3/4) BCH-LDPC 0.73 47408 BCH-LDPC (64800,3/4) BCH-LDPC 0.8 51648 BCH-LDPC (64800,3/4) BCH-LDPC 0.8 51648 BCH-LDPC (64800,5/6) BCH-LDPC 0.8 51842 BCH-LDPC (64800,9/10) BCH-LDPC 0.89 57472 BCH-LDPC (64800,9/10) BCH-LDPC 0.9 58192 Flarion-low threshold LDPC 0.5 4096 LDPC (1008,3/4) 802.16e LDPC 0.75 432 LDPC (1728,3/4) 802.16e LDPC 0.5 1008 LDPC (1728,3/4) 802.16e LDPC 0.5 128 LDPC (1728,3/4) 802.16e LDPC 0.5 128 LDPC (5/6) 802.16e LDPC 0.5 128 LDPC (5/6) 802.16e LDPC 0.5 128 LDPC (5/6) 802.16e LDPC	Code ID Type Info (r) Info (r) Info (r) Code ID BCH-LDPC(64800,2/3) BCH-LDPC 0.66 43040 151 F-LDPC(16k, 4/5) BCH-LDPC(64800,3/4) BCH-LDPC 0.73 47408 152 F-LDPC(16k, 8/9) BCH-LDPC(64800,4/5) BCH-LDPC 0.8 53840 153 F-LDPC(16k, 16/17) BCH-LDPC(64800,5/6) BCH-LDPC 0.89 57472 155 CRC-32 BCH-LDPC(64800,9/10) BCH-LDPC 0.9 58192 156 CRC-32 BCH-LDPC(64800,9/10) BCH-LDPC 0.5 4096 158 CRC-192 LDPC(108,3/4) 802.16e LDPC 0.75 1328 159 CRC-16-CITT LDPC(102,3) 802.16e LDPC 0.75 1728 161 CRC-16-IBM LDPC(102,8) 802.16e LDPC 0.5 164 SCCC(k=428,5/6) LDPC(108,302,16e LDPC 0.5 164 SCCC(k=428,5/6) 164 LDPC(102,8) 802.16e LDPC	Code ID Type Info (r) Info length Code ID Type BCH-LDPC(64800,2/3) BCH-LDPC 0.66 43040 151 F-LDPC(16k, 4/5) LDPC BCH-LDPC(64800,3/4) BCH-LDPC 0.73 47408 152 F-LDPC(16k, 8/9) LDPC BCH-LDPC(64800,4/5) BCH-LDPC 0.8 5144 153 F-LDPC(16k, 8/9) LDPC BCH-LDPC(64800,8/9) BCH-LDPC 0.8 53840 154 (3,1/2)+acc. SCCCC BCH-LDPC(64800,9/10) BCH-LDPC 0.8 54192 156 CRC-32 CRC Flarion-low threshold LDPC 0.5 4096 157 CRC-182 CRC LDPC(1023,3/4) 802.16e LDPC 0.75 432 159 CRC-16-CITT CRC LDPC(1728,3/4) 802.16e LDPC 0.75 1728 161 CRC-16-IBM CRC LDPC(1728,3/4) 802.16e LDPC 0.5 164 SCCC(k=428,1/3) SCCC LDPC(366) 802.16e	Info Code ID Type Info (r) Rate (r) Info (r) Code ID Type Rate (r) BCH-LDPC(64800,2/3) BCH-LDPC 0.66 43040 151 F-LDPC(16k, 4/5) LDPC 0.89 BCH-LDPC(64800,3/4) BCH-LDPC 0.85 154 151 F-LDPC(16k, 8/9) LDPC 0.89 BCH-LDPC(64800,4/5) BCH-LDPC 0.85 53840 154 (3,1/2)+acc. SCCC 0.94 BCH-LDPC(64800,8/9) BCH-LDPC 0.89 57472 155 CRC-32 CRC Flarion-low threshold LDPC 0.5 4096 157 CRC-128 CRC LDPC(64300,3/4) B02.16e LDPC 0.5 4096 158 CRC-128 CRC Flarion-low threshold LDPC 0.5 4096 159 CRC-16-LCTT CRC LDPC(108,3/4) 802.16e LDPC 0.75 132 162 SCCC(k=428,1/3) SCCC 0.33 LDPC(102,3/4) 802.16e LDPC 0.5 164

- Developed descriptions of legacy, variations on legacy, and new multiple access techniques for support of simultaneous communications and tracking
- Simultaneous support to multiple assets has been achieved by use of:
 - Communications & Tracking Network Resources
 - Multiple ground stations or data relay satellites
 - Multiple antennas at a ground station or on a data relay satellite
 - Antenna/Spectrum Resources
 - Multiple frequency bands on a ground station or data relay satellite antenna
 - Multiple frequencies in a frequency band by assignment of unique frequencies to users
 - Multiple users at a frequency
 - Assignment of user-unique spectrum spreading codes or time slots
 - Multi-beam or phased array antennas for spatial segregation of users
 - Service Multiplexing
 - Multiple simultaneous services to a user Command and telemetry communications (emergency, operational, mission) data and radiometric tracking data (range & Doppler)

Multiple Access Catalog

МА Туре	Implementation / Description
Time Shared	Scheduled-based time sharing approach
FDMA	General – Frequency Division Multiple Access
FDMA	Orthogonal Frequency Division Multiplexing (OFDM)
FDMA	Wavelength Division Multiple Access (WDMA)
DAMA	Demand Assignment Multiple Access
TDM	Time Division Multiplexing
TDMA	Time Division Multiple Access
CDMA/DSSS	Traditional – Direct Sequence Spread Spectrum (Used by TDRSS)
CDMA/DSSS	Constant Envelope
CDMA/FHSS	Frequency Hopped Spread Spectrum (FHSS)
CDMA/DS/FHSS	Direct Sequence/FHSS
Random Access	Pure ALOHA
Random Access	Slotted ALOHA
Random Access	Carrier Sense MA (CSMA)
Random Access	CSMA/CA – with Collision Avoidance
Random Access	CSMA/CD – with Collision Detection
Random Access	Multiple Access with Collision Avoidance (MACA)
Random Access	Reservation ALOHA
Random Access	Packet Reservation MA (PRMA)
Hybrid	FDMA/CDMA (Used by TDRSS)
Hybrid	Time CDMA (TCDMA)
Hybrid	Time Division Frequency Hopping (TDFH)
Other	Time Hopping – Pulse Position Modulation (TH-PPM)

Orange = CCSDS Orange Book Specification

- Data Transfer
 - Transfer variable-sized data units (SDUs) over serial links
 - Recognize data units and length at receiver
 - Provide Segmentation and Reassembly
 - Provide fill data when required by Physical Layer; synchronization
 - Provide Link Layer encapsulation and addressing
 - Provide compatibility with multiple network layer protocols (IPv4, IPv6, and legacy network layers)
 - Minimize overhead (impact on throughput/utilization)
 - Minimize impact on coding and lower layers
- Reliability and Quality of Service (QoS)
 - Support class of service capability at Link Layer
 - Prioritization
 - Provide strong error detection capability at Link Layer
 - Support rich Link Layer metrics for accountability
- Channel Access and Usage
 - Operate over a shared channel
 - Virtual Channels
 - Medium Access Control (MAC)
 - Provide link establishment (hailing)
 - Provide channel management and link adaptation
- Link Layer Security

- a. Supports legacy missions (time span, percent of features)
- b. Spectrum utilization
- c. Power efficiency ($P_T/(RN_0)$ to get required performance)
- d. User burden (Percent cost increase)
- e. Infrastructure burden (Percent cost increase)
- f. Alignment with international standards (Probability of alignment)
- g. Provide radiometrics for navigation (Accommodation % cost increase)
- h. Robustness
- i. Latency (seconds)
- j. Technology maturity (TRL)
- k. Capacity (aggregate BPS)

General Downselect Process

- Uplink considered independently of downlink
 - Downlink (ground) receiver & decoder can be complex
 - Uplink (spacecraft) receiver & decoder must be relatively simple
- Deep Space Link Classes
 - X-band low rate, power limited
 - High rate X-band; Bandwidth limits vs. symbol rate
 - (SFCG rec. 23-1)
 - High rate Ka-band
- Near Earth Link Classes
 - S-band
 - X-Band
 - Ka-band

GN and SN Modulation Downselect Example

S-Band

Link Name	Link Desc	cription	Remaining M First Stage	odulations after Downselect ^(1,2)	First Stage Downselect Process	Second Stage Downselect Process (Rank remaining 1st stage modulations relative to each other)										Second Stage Downselect ^{(1,2} (Eliminate clear	
Link Name	Link Type	Data Rate	Modulation ID	Shaping/Filter Type	(Eliminate modulations which underperform on certain critical FOMs)	Supports Legacy Missions	Spectrum Util. (in nonlinear channel)	Power Efficiency	User Burden	Infrastructu re Burden	Alignment with Int'l Stds	Robustnes s	Latency	Technology Maturity	Score (w/ FOM weighting lower = better)	Modulation ID	Shaping/Filter Type
			Precoded GMSK (h = 0.5)	Gaussian (BT_b = 0.5)	- Req'd Eb/No at 1E-5 BER <= 11.0 dB	7	1	4	3	1	1	1	1	3	10.2		
				SRRC (roll-off factor = 1.0)	 Req d bandwidth (considering all potential applicable codes) <= 6 MHz (standard S-band allocation) Spectral efficiency >= 0.95 using 99% bw (i.e., meet the 	3	5	1	3	1	7	4	1	3	11.4		
			OQPSK (SQPSK)	SRRC (roll-off factor = 0.5)	NTIA out-of-band emission mask) - High hardware maturity required (i.e., keep forward operational link simple and low risk: no trellis receiver	4	4	2	3	1	1	4	1	3	10.6		
	Operational Forward	² 60 kbps		Butterworth 6th order	possible) - Special exceptions to this process have been made for methodices which have accure acress at law C/Ne is a	5	2	2	3	1	1	1	1	3	8.3	OQPSK/PM	Butterworth 6th order
			OQPSK/PM	Bessel 6th order	PCM/PSK/PM and PCM/PM/NRZ - Although not recommended here, differential PSK	6	3	4	3	1	1	1	1	3	11.0		
			PCM/PSK/PM	тво	modulations should be considered in cases where a low- complexity, high-reliability link design is required - this safety is at the expense of worse BER performance	1	6	6	1	1	1	6	1	1	14.0		
			PCM/PM/NRZ	тво	relative to modulations recommended by the downselection process 1	1	6	6	1	1	1	6	1	1	14.0		
			Proceeded CMCK (h 0.5)	Gaussian (BT_b = 0.5)		8	6	1	3	3	1	1	1	3	10.6		
			Precoded GMSK (n = 0.5)	Gaussian (BT_b = 0.25)	Pogid Eb/No at 15 5 REP <= 11.0 dP	9	3	1	3	9	1	1	1	3	11.3		
			GMSK (h = 0.5)	Gaussian (BT_b = 0.3)	- Req'd bandwidth (considering all potential applicable	13	4	1	3	13	1	1	1	3	13.9		
				SRRC (roll-off factor = 1.0)	codes) <= 6 MHz (standard S-band allocation) - Spectral efficiency >= 0.95 using 99% bw and assuming	3	11	1	3	3	12	9	1	3	18.8		(
			OQPSK (SQPSK)	SRRC (roll-off factor = 0.5)	a rate 1/2 code (i.e., meet the NTIA out-of-band emission	4	10	1	3	3	1	9	1	3	15.8	8 1 5 Precoded GMSK (h = 0.5)	Gaussian (BT_b =
S-band				SRRC (roll-off factor = 0.2)	- Medium or high hardware maturity required (i.e., keep	7	9	1	3	3	12	9	1	10	22.1		Butterworth 6th
o band	Operational	² 60 kbps		Butterworth 6th order	- Special exceptions to this process have been made for	5	7	1	3	3	1	1	1	3	10.5		
	Return		OQPSK/PM	Bessel 6th order	modulations which help ensure carr acq at low C/No, i.e., PCM/PSK/PM and PCM/PM/NRZ	6	8	1	3	3	1	1	1	3	11.2	0.000//01/	
			FOPSK-B	Defined by modulation	- Although not recommended here, differential PSK	12	4	1	13	9	1	1	1	10	20.9	OQPSK/PM	order
			SOOPSK-A	Defined by modulation	complexity, high-reliability link design is required - this	10	1	1	11	9	1	1	1	10	18.0		
			SOOPSK-R	Defined by modulation	safety is at the expense of worse BER performance relative to modulations recommended by the	11	2	1	11	9	1	1	1	10	18.7		
			PCM/PSK/PM	TBD	downselection process	1	12	12	1	1	1	12	1	1	26.0		
			PCM/PM/NRZ	TBD		1	12	12	1	1	1	12	1	1	26.0		
				Gaussian (BT_b = 0.5)		6	6	1	1	1	1	1	1	1	7.5		
			Precoded GMSK (h = 0.5)	Gaussian (BT_b = 0.25)		7	3	1	1	7	1	1	1	1	8.2		
			GMSK (h = 0.5)	Gaussian (BT_b = 0.3)		11	4	1	1	11	1	1	1	1	10.8		
				SRRC (roll-off factor = 1.0)	- Req'd Eb/No at 1E-5 BER <= 11.0 dB	1	11	1	1	1	10	9	1	1	15.2	Precoded GMSK	Gaussian (BT_b =
	Operational /		OQPSK (SQPSK)	SRRC (roll-off factor = 0.5)	 Req'd bandwidth (considering all potential applicable codes) <= 6 MHz (standard S-band allocation) 	2	10	1	1	1	1	9	1	1	12.7	(h = 0.5)	0.5)
	Science	> 60 kbps		SRRC (roll-off factor = 0.2)	- Spectral efficiency >= 0.95 using 99% bw and assuming	5	9	1	1	1	10	9	1	8	18.5		
	Return		OOPSK/PM	Butterworth 6th order	mask)	3	7	1	1	1	1	1	1	1	7.4	OODEK/DM	Butterworth 6th
				Bessel 6th order	 Medium or high hardware maturity required 	4	8	1	1	1	1	1	1	1	8.1	0QPSK/PM B 7.8	Butterworth 6th order
			FQPSK-B	Defined by modulation		10	4	1	11	7	1	1	1	8	17.8		
			SOQPSK-A	Defined by modulation	n 8	8	1	1	9	7	1	1	1	8	14.9 15.6		
			SOQPSK-B	Defined by modulation		9	2	1	9	7	1	1	1	8			

- Following are the current modulation techniques that are part of the existing SN and GN and are expected to be utilized for some time in the future:
 - Filtered QPSK for GN* and SN forward and return links
 - Filtered OQPSK for GN* and SN forward and return links
 - Filtered BPSK for GN* and SN forward and return links
 - PCM/PSK/PM for GN and forward SN links
 - PCM/PM for GN and forward SN links

Category A Recommendations: New Modulations

Lin	k Descrip	tion	Recommende	Comments			
Direction	Band	Data Rate ⁽¹⁾	Modulation ID	Shaping/Filter Type	Comments		
Forward	S-band	² 6 Mbps		Butterworth 6th order	 S-band maximum channel BW: 6 MHz X-band maximum channel BW: 		
Torward	X-band	² 10 Mbps		(BTs = 1.0)	10 MHz - CCSDS compliant		
			Precoded GMSK (h = 0.5)	Gaussian (BT_b = 0.5)			
		² 5 Mbps	OQPSK/PM ⁽⁴⁾	Butterworth 6th order (BTs=1)	- GMSK (BT_b=0.5) is technically not CCSDS compliant for Cat A		
	S-band	6 Mbps	OQPSK/PM ⁽⁴⁾	Butterworth 6th order (BTs=1)			
		20 Mb/sec	OQPSK/PM ⁽⁴⁾	Butterworth 6th order (BTs=1)	Constellation launchMaximum channel BW: 10 MHzCCSDS compliant		
	X-band	² 10 Mbps SRS	Precoded GMSK (h = 0.5)	Gaussian (BT_b = 0.5)	- Maximum channel BW/: 10 MHz		
Return		² 12 5 Mbps EES	OQPSK/PM ⁽⁴⁾	Butterworth 6th order (BTs=1)	SRS, 300 MHz EES		
		> 240 Mbps ² 30 0 Mbps	8PSK	SRRC (roll-off factor = 0.5) SRRC (roll-off factor = 0.35)	GMSK (BI_b=0.5) is technically not CCSDS compliant for Cat A		
			Precoded GMSK (h = 0.5)	Gaussian (BT_b = 0.5)			
	Ka band	² 55 0 Mbps	OQPSK/PM ⁽⁴⁾	Butterworth 6th order (BTs=1)	- Maximum channel BW: 650 MHz		
	r\a-ball0	600 Mbps	OQPSK/PM ⁽⁴⁾	Butterworth 6th order (BTs=1)	CCSDS compliant		
		> 650 Mbps ² 100 0 Mbps	OQPSK (SQPSK)	SRRC (roll-off factor = 0.2)			

Notes:

1. Only data rate ranges that have relevance to future Category A missions considered.

SRRC = Square Root Raised Cosine

Modulation recommendations formulated excluding consideration of multiple access technique and ranging technique. If certain multiple access and ranging techniques are ultimately
recommended for the types of links described here, the modulation recommendations provided here may need to be modified.
Return link modulation recommendations based upon the assumption of a trellis receiver detection method. If the trellis receiver cannot be used, recommendation of these modulation types

may be withdrawn.

4. Baseband filtered OQPSK with linear Phase Modulator (OQPSK/PM). Fully suppressed carrier, constant envelope modulation technique. This is not a subcarrier modulation.

Blue = CCSDS Blue Book Standard

Orange = CCSDS Orange Book Specification

Green = Infrastructure support

- Baseband-Filtered OQPSK/PM
 - Fully suppressed carrier, Constant envelop modulation technique
 - Good power efficiency regardless of data detection method
 - Outperforms GMSK when a Trellis receiver is not available
 - Good spectral efficiency even in a nonlinear channel
 - Outperforms standard filtered
 OQPSK in a nonlinear channel
 - Similar performance as GMSK
 - Fully compatible with existing customer and SN receiver hardware
 - Aligned with international standards

- Precoded GMSK (h=0.5, BT_b=0.5)
 - Constant envelop modulation technique
 - Good power efficiency when used with a Trellis receiver
 - Performance consistent with unfiltered BPSK when a Trellis receiver is used
 - Good spectral efficiency even in a nonlinear channel
 - Outperforms standard filtered OQPSK in a nonlinear channel
 - Slightly outperforms OQPSK/PM
 - Fully compatible with existing customer and SN receiver hardware
 - Aligned with international standards
 - Technically, international standards recommend BT_b=0.25

L	ink Descri	ption	Recommend	Comments			
Direction	Band	Symbol Rate	Modulation ID	Shaping/Filter Type	Comments		
Forward	X-band Low rate		PCM/PSK/PM	Unfiltered	Enables large residual carrier, which is needed to coherently demodulate very weak signals		
(Uplink)	X-band	High rate	OOPSK/PM	Butterworth 6 th order	Constant envelope; simple integrate & dump receiver		
	Ka-band	All rates					
		<180 ksps Mars, else <360 ksps	PCM/PSK/PM	Unfiltered	Enables large residual carrier, which is needed to coherently demodulate very weak signals		
	X-band*	<6 Msps Mars, X-band* else <9 Msps		Precoded GMSK (h = 0.5)	SRRC (roll-off factor = 0.5)	Best bandwidth efficiency with minimum $E_{\rm b}/N_{\rm o}$	
Return (Downlink)		<18 Msps Mars, else <27 Msps	8-PSK	SRRC (roll-off factor = 0.35)	Best spectrum efficiency for modulation order 8		
		<24 Msps Mars	16-QAM (TBR)	SRRC (roll-off factor=0.35)	Minimum E _b /N _o for modulation order 16		
	Ka-band All rates		Precoded GMSK (h = 0.5)	Gaussian (BT_b = 0.5)	Best bandwidth efficiency with minimum $E_{\rm b}/N_{\rm o}$		
* X-band downlin Link.	nk symbol rate lin	its based on SFCG Reco	mmendation 23-1, Efficient Spectrum	Utilisation for Space Research Service, I	Deep Space (Category B) in the Space-to-Earth		

Codes: Category A Recommendations

Link Description				Recommended Codes				
Direction	Band	BW (MHz)	Data Rate (Mbps)	Code ID	Rate	Input length	Comments	
			< 0.001	CC(7,1/2)	1/2	< 1000	CC offers best latency Š use when realtime operation needed at < 1 kbps	
	O h an d	6	0.001 to 3	AR4JA LDPC	1/2	1024 to 16384	Best coding gain; lower complexity and error floor than r=1/2 turbo	
Forward (Uplink)	S-band	6	3 to 4.8	AR4JA LDPC	2/3, 4/5	1024 to 16384		
			> 4.8	C2 LDPC	0.87	7136	High bandwidth efficiency; better coding gain than RS-only	
	X-band	50	< 25	AR4JA LDPC	1/2	1024 to 16384		
	S-band	6	< 0.001	CC(7,1/2)	1/2	< 1000		
			0.001 to 3	AR4JA LDPC	1/2	1024 to 16384		
			3 to 4.8	AR4JA LDPC	2/3, 4/5	1024 to 16384		
			> 4.8	C2 LDPC	0.87	7136		
Return (Downlink)	S-band (launch)	20	16 to 22	AR4JA LDPC	1/2	1024 to 16384		
	Yhond	50	< 50	Turbo	1/6, 1/4, 1/3, 1/2	8920	Best coding gain for rates $< \frac{1}{2}$	
	v-nano	50	50 to 150	AR4JA & C2 LDPC	0.5 to 0.87	1024 to 16384		
	Ka-band	650	< 300	Turbo	1/6, 1/4, 1/3, 1/2	8920		
	na-band	000	300 to 650	AR4JA & C2 LDPC	1/2 to .87	1024 to 16384		

Orange = CCSDS Orange Book Specification

Link Description				Recom	mended C	odes			
Direction	Band	BW (MHz)	Data Rate (Mbps)	Code ID	Rate	Input length	Comments		
			< 0.001	CC(7,1/2)	1/2	< 1000	CC offers best latency \check{S} use when realtime operation needed at < 1 kbps		
	Vhord		0.001 to 40	AR4JA LDPC	1/2, 2/3, 4/5	1024 to 16384	Best coding gain at r=1/2; lower complexity & error floor than r=1/2 turbo		
Forward (Uplink)	X-band	50	0.001 to 15	Turbo	1/6, 1/4, 1/3	1784 to 8920	Can use when additional coding gain needed, and UER not an issue		
			> 40	C2 LDPC	0.87	7136	High bandwidth efficiency; better coding gain than RS-only		
			All	AR4JA LDPC	1/2	1024 to 16384			
	Ka-band	500		Turbo	1/6, 1/4, 1/3	1784 to 8920	Can use when additional coding gain needed, and UER not an issue		
			< 50	Turbo	1/6, 1/4, 1/3, 1/2	8920	Best coding gain for rates $< \frac{1}{2}$		
Return (Downlink)	X-band	50	50 to 150	AR4JA & C2 LDPC	0.5 to 0.87	1024 to 16384			
	Ka-band	500	< 300	Turbo	1/6, 1/4, 1/3, 1/2	8920			
			300 to 500	AR4JA & C2 LDPC	1/2 to .87	1024 to 16384			

- All recommended codes are in existing CCSDS blue and orange books
- Summary of recommendations:
 - CCSDS turbo codes (r = 1/6, 1/4, 1/3): for low code rate applications
 - CCSDS AR4JA codes (r = 1/2, 2/3, 4/5): for higher rate applications
 - C2 code (r = 0.87): for bandwidth constrained links
 - CC: for low data-rate, real-time links; complexity-limited applications; and legacy systems
 - Uncoded operation can be used when link SNR is sufficient
 - Recommendations in table assume coding gain is needed or useful
 - Legacy CC, RS+CC, BCH, and turbo codes will continue to be used
 - In the near-term, because of flight heritage and infrastructure support
 - In the long-term, for CC, because of excellent latency performance

- Links subject to SFCG 23-1 bandwidth limitations (Cat. B X-band RTN Mars and other deep space) become incompatible with extant tracking signals at high symbol rates:
 - Sequential tone ranging
 - PN ranging
- The CMLP team is investigating novel methods to combine wideband tracking signals with highly bandwidth-efficient modulation (GMSK) for bandwidth-limited channels
- Example signal: GMSK comm + PN subcarrier
- Goals being pursued (and achieved) for Mars X-band RTN
 - Data symbol rates up 6-7 Msps
 - PN chip rate ~ 1 MHz
 - Constant envelope
 - Minimal SNR impact to GMSK comm
 - Adequate tracking SNR
 - Adequate spectral separation of comm and tracking signal
 - SFCG 23-1 compliance by parameter choices: data symbol rate; subcarrier modulation index; subcarrier frequency; PN chip rate

- Identified five MA applications in architecture
 - Near Earth Relay
 - Lunar DTE/DFE
 - Lunar Relay
 - Mars
 DTE/DFE
 - Mars Relay
- Developed scenarios for each for downselection of MA techniques
- Lunar Relay Satellite trunk line to Earth LRS LRS Lunar Relay Satellite Cro Jeparting cr Outnos Luna FarSide Lunar Astronomica Comm Lunar Outpost Terminal Astronaut EVA Including SPU 's et Human Lunar F Lunar Surface Explorers L SAM Descent Stage Robotic Science Rovers) **Communications** Terminal

Lunar Relay Satellite (LRS) Multiple Access Scenario

- Example: evaluation scenario considered in the MA downselect for lunar environment

- Capacity must be sufficient to meet link/network scenario data rate and simultaneous user requirements
- Capacity/efficiency must remain sufficient to meet link/network scenario data rate and simultaneous user requirements in a high latency environment
- Spectral efficiency must be such that anticipated spectral allocations are sufficient to enable full link/network scenario support
- User burden must be low
- Technology maturity must be medium to high

Operational Link MA Downselect (S-, X-band)

Link	Remaining MA Schemes	A Schemes Initial Downselect Comments							
	CDMA								
	FDMA	• Dendem access techniques are incompetible with point to multipoint links							
	TDM	 Random access techniques are incompatible with point-to-multipoint links time-shared approach eliminated due to inability to meet simultaneous users requirement dictated by 							
Forward (Point- to-Multipoint)	FDMA/CDMA	link/network scenario - DAMA eliminated due to the effect of large latency on network efficiency							
	FDMA/TDM	- TH-PPM eliminated due to the difficulty in establishing and maintaining strict time synchronization among the system and users as well as stringent user position accuracy requirements							
	TCDMA	system and users as well as stringent user position accuracy requirements							
	TDFH								
	FDMA	 Random access techniques eliminated due to the effect of large latency on network efficiency TDMA eliminated due to the difficulty in establishing and maintaining strict time synchronization among the 							
Return (Multipoint-to- Point)	CDMA	 system and users TH-PPM eliminated due to the difficulty in establishing and maintaining strict time synchronization among the system and users as well as stringent user position accuracy requirements Time-shared approach eliminated due to inability to meet simultaneous users requirement dictated by link/network scenario 							
	FDMA/CDMA	 DAMA eliminated due to the effect of large latency on network efficiency Hybrid techniques FDMA/TDMA, TCDMA and TDFH eliminated due to the difficulty in establishing and maintaining strict time synchronization among the system and users 							

High Rate Link MA Downselect (Ka-Band)

Link	Remaining MA Schemes	Initial Downselect Comments						
Forward (Point- to-Multipoint)	FDMA	 Random access techniques are incompatible with point-to-multipoint links Time-shared approach eliminated due to inability to meet simultaneous users requirement 						
	TDM	 dictated by link/network scenario DAMA eliminated due to the effect of large latency on network efficiency CDMA eliminated due to excessive bandwidth expansion on high rate links and expected high hardware complexity for extreme chip rates TH-PPM eliminated due to the difficulty in establishing and maintaining strict time synchronization among the system and users as well as stringent user position accuracy requirements 						
	FDMA/TDM							
Return (Multipoint-to- Point)	FDMA	 Random access techniques eliminated due to the effect of large latency on network efficiency TDMA eliminated due to the difficulty in establishing and maintaining strict time synchronization among the system and users TH-PPM eliminated due to the difficulty in establishing and maintaining strict time synchronization among the system and users as well as stringent user position accuracy requirements Time-shared approach eliminated due to inability to meet simultaneous users requirement dictated by link/network scenario DAMA eliminated due to the effect of large latency on network efficiency Hybrid techniqes FDMA/TDMA, TCDMA and TDFH eliminated due to the difficulty in establishing and maintaining strict time synchronization among the system and users CDMA eliminated due to excessive bandwidth expansion on high rate links and expected high hardware complexity for extreme chip rates FDMA/CDMA eliminated due to expected high hardware complexity 						

- CDMA and FDMA systems operate efficiently in a high latency environment, whereas, random access systems become very inefficient in such environments
 - Scenarios where random access techniques would have been considered, such as lunar surface communications, were not within the scope of this study
- CDMA and FDMA systems do not require strict time synchronization across a widely distributed system, whereas, TDMA and some other MA techniques do require such synchronization
- CDMA and FDMA systems can be designed to support the necessary number of simultaneous users, whereas, time-shared systems cannot support simultaneous users

- CDMA and FDMA systems do not require user hardware to support burst data rates, whereas, TDMA does
- CDMA and FDMA are mature space technologies, whereas, random access techniques are not mature space technologies
- CDMA and FDMA are supported access techniques of the SN, GN and DSN (FDMA), whereas, TDMA and other access techniques are not supported

- Identified Link Protocol functions that may be applied to space communications links
 - Some functions are more suited for shorter-range links, and many require two-way communications
- Identified Link Protocol relationships with lower layers affecting trades
- Link Protocol scope is "one-hop" as compared to the protocols considered by the SCaN Network Architecture Team (NAT) that were "multi-hop" or end-to-end (e.g., IP). Full consideration Link Protocols and higher layers has not yet been fully treated.
- The down-selection of the Link Protocols has therefore not been completed

- Link Layer Retransmission vs. Frame Error Rate
 - May operate with higher Frame Error Rate and overcome with retransmissions
 - Within certain operational regimes, can result in performance gain
- Other considerations of Link Layer impacts on lower layer
 - Virtual Channels vs. physical channels
 - VCs offer greater efficiency, ease/flexibility of bandwidth management
 - VCs require some overhead (header bits, processing)
 - Quality of Service (QoS)
 - Ability to differentiate prioritized traffic types allows data rate to be adjusted accordingly and increase total volume delivered
 - Link Layer Services
 - Provide services of data accountability, metadata (e.g. timestamp, s/c ID), handling of data grouped as user has offered (vs. bitstream)
 - 10% overhead vs. 0.4 dB link margin

- Collect and respond to IOAG comments
 - Engage existing international fora for selected issues
- Complete analysis and formulate recommendations
 - Mars in-situ links
 - Multiple access
- Write draft final report
- Review within NASA and international partners
- Publish final report
- Post report work:
 - Merge results into SCaN roadmaps and technology strategy
 - Develop NASA transition plan
 - Engage standards community to do further analytical work and create any required new standards

- Successfully brought CMLP study to this point
- Need to incorporate IOAG comments/thoughts/ suggestions
- Need to complete technical work leading to recommendations for each link type in the architecture
- Work on final draft report to begin this month
- Resolution for new MA standards effort
- Resolution for new surface-to-surface link study

	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Generate link template									
Identify & group missions									
Assemble NASA link catalog									
Identify driving links									
Coding and modulation catalog									
Multiple access catalog		I I							
Link protocol attribute catalog		1							
Evaluate performance of alternatives									
Generate alternative solutions									
Compare based on cost & FOMs									
Identify "best" solutions									
Cross check against NASA link catalog									
Draft final report									
IOAG meeting									
Finish final report									

- Monty Andro (GRC)
- Dan Brandel (HQ)
- Loren Clare (JPL)
- Dariush Divsalar (JPL)
- Sam Dolinar (JPL)
- Pat Eblen (NASA HQ)
- Wai Fong (GSFC)
- Jay Gao (JPL)
- Jon Hamkins (JPL)
- Dave Israel (GSFC)
- Dennis Lee (JPL)
- Peter Militch
- Bob Nelson
- Gary Noreen (Cx)
- Richard Orr (Sa-Tel)
- Fabrizio Pollara (JPL)
- Tudor Stoenescu (JPL)
- Scott Sands (GRC)
- Victor Sank (GSFC)
- Len Schuchman (Sa-Tel)
- John Wesdock (GSFC)
- Dave Zillig (GSFC)

Subteam Leads:

Systems Engineering:Gary NoreenCoding and Modulation:Jon HamkinsMultiple Access:Dave ZilligLink Protocols:Loren Clare

