[image: image1.emf]
Draft Recommendation for
Space Data System Standards

	CCSDS Asynchronous Management Protocol

Proposed Draft Recommended Standard
CCSDS 734.4-R-0
Proposed Red Book
February 2021
AUTHORITY

	
	
	
	

	
	Issue:
	Proposed Red Book, Issue 0
	

	
	Date:
	February 2021
	

	
	Location:
	Not Applicable
	

	
	
	
	

(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF AUTHORITY:)

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS documents is detailed in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4), and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the e-mail address below.

This document is published and maintained by:

CCSDS Secretariat

National Aeronautics and Space Administration

Washington, DC, USA

E-mail: secretariat@mailman.ccsds.org

STATEMENT OF INTENT

(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF INTENT:)

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of its members. The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed Recommended Standards and are not considered binding on any Agency.

This Recommended Standard is issued by, and represents the consensus of, the CCSDS members. Endorsement of this Recommendation is entirely voluntary. Endorsement, however, indicates the following understandings:

o
Whenever a member establishes a CCSDS-related standard, this standard will be in accord with the relevant Recommended Standard. Establishing such a standard does not preclude other provisions which a member may develop.

o
Whenever a member establishes a CCSDS-related standard, that member will provide other CCSDS members with the following information:

--
The standard itself.

--
The anticipated date of initial operational capability.

--
The anticipated duration of operational service.

o
Specific service arrangements shall be made via memoranda of agreement. Neither this Recommended Standard nor any ensuing standard is a substitute for a memorandum of agreement.

No later than five years from its date of issuance, this Recommended Standard will be reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect the impact of new technologies, new requirements, or new directions; or (3) be retired or canceled.

In those instances when a new version of a Recommended Standard is issued, existing CCSDS-related member standards and implementations are not negated or deemed to be non-CCSDS compatible. It is the responsibility of each member to determine when such standards or implementations are to be modified. Each member is, however, strongly encouraged to direct planning for its new standards and implementations towards the later version of the Recommended Standard.

FOREWORD

TBD
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CCSDS shall not be held responsible for identifying any or all such patent rights.

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Recommended Standard is therefore subject to CCSDS document management and change control procedures, which are defined in the Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4). Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be sent to the CCSDS Secretariat at the e-mail address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· China National Space Administration (CNSA)/People’s Republic of China.

· Deutsches Zentrum für Luft- und Raumfahrt (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Federal Space Agency (FSA)/Russian Federation.
· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency (JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

· UK Space Agency/United Kingdom.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Belgian Federal Science Policy Office (BFSPO)/Belgium.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· China Satellite Launch and Tracking Control General, Beijing Institute of Tracking and Telecommunications Technology (CLTC/BITTT)/China.

· Chinese Academy of Sciences (CAS)/China.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· Danish National Space Center (DNSC)/Denmark.

· Departamento de Ciência e Tecnologia Aeroespacial (DCTA)/Brazil.

· Electronics and Telecommunications Research Institute (ETRI)/Korea.

· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Geo-Informatics and Space Technology Development Agency (GISTDA)/Thailand.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· Korea Aerospace Research Institute (KARI)/Korea.

· Ministry of Communications (MOC)/Israel.

· National Institute of Information and Communications Technology (NICT)/Japan.

· National Oceanic and Atmospheric Administration (NOAA)/USA.

· National Space Agency of the Republic of Kazakhstan (NSARK)/Kazakhstan.

· National Space Organization (NSPO)/Chinese Taipei.

· Naval Center for Space Technology (NCST)/USA.

· Scientific and Technological Research Council of Turkey (TUBITAK)/Turkey.

· South African National Space Agency (SANSA)/Republic of South Africa.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· Swiss Space Office (SSO)/Switzerland.

· United States Geological Survey (USGS)/USA.

PREFACE

This document is a draft CCSDS Recommended Standard. Its ‘Red Book’ status indicates that the CCSDS believes the document to be technically mature and has released it for formal review by appropriate technical organizations. As such, its technical contents are not stable, and several iterations of it may occur in response to comments received during the review process.

Implementers are cautioned not to fabricate any final equipment in accordance with this document’s technical content.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
DOCUMENT CONTROL

	Document
	Title
	Date
	Status

	CCSDS 734.4-R-0
	Voice and Audio Communications, Proposed Draft Recommended Standard, Issue 0
	February 2021
	Current draft

	
	
	
	

	
	
	
	

CONTENTS

Section
Page

1-11
Introduction

1-11.1
Purpose

1-11.2
Scope

1-11.3
Applicability

1-11.4
Rationale

1-11.5
Document Structure

1-11.6
Definitions

1-21.7
References

2-12
Overview

2-12.1
Introduction

3-13
Service Definition

3-13.1
Overview

3-13.2
Summary of Primitives

3-13.3
Summary of Parameters

3-13.4
Services Required of the Underlying Communication System

3-13.5
Services at the Agent

3-23.6
Services at the Manager

4-54
Protocol Data Units and Encodings

4-54.1
AMP Message Summary

4-54.2
Message Group Format

4-64.3
Message Format

4-74.4
Register Agent

4-74.5
Report Set

4-84.6
Perform Control

4-84.7
Table Set

4-94.8
Encodings

4-94.9
CBOR Considerations

4-104.10
AMM Type Encodings

4-184.11
AMM Resource Identifier (ARI)

4-214.12
ADM Object Encodings

 TOC \o "8-8" \h * MERGEFORMAT

A-1ANNEX A Protocol Implementation Conformance Statement (PICS) Proforma (NORMATIVE)

B-1ANNEX B Security, SANA, and Patent Considerations (Informative)

C-1ANNEX C Acronyms and Abbreviations (Informative)

D-1ANNEX D Informative References (Informative)

Figure
No table of contents entries found.
Table
No table of contents entries found.
1 Introduction

1.1 Purpose

TBD
1.2 Scope

TBD
1.3 Applicability

This Recommended Standard applies to any terrestrial and space voice and audio communications systems claiming to be interoperable through adherence to CCSDS Recommended Standards and for use in mission operations.

This book is heavily oriented to the voice communications used for human space flights. Non-crewed space missions are less complex than crewed ones, and requirements for audio in non-crewed space missions can be seen as a subset of the audio requirements for human space flight.

Real-time or near-real-time voice communication is applicable for relatively short distances, spanning at most a planet and its moon(s). For longer distances, audio file exchange is generally recommended.

1.4 Rationale

TBD
1.5 Document Structure

This document consists of seven sections and five annexes:

· section 1 presents the purpose, scope, applicability, and rationale of this document and lists the definitions and references used throughout the document;
· Section 2 provides some overview material on network management

· Section 3 contains the service interface

· Section 4 describes the protocol data units and encoding mechanisms
1.6 Definitions
The terms "Actor", "Agent", "Application Data Model", "Externally Defined Data", "Variable", "Control", "Literal", "Macro", "Manager", "Report Template", "Report", "Table", "Constant", "Operator", "Time-Based Rule" and "State-Based Rule" are used without modification from the definitions provided in [1].

1.6.1 Nomenclature

1.6.1.1 Normative Text

The following conventions apply for the normative specifications in this document:

a)
the words ‘shall’ and ‘must’ imply a binding and verifiable specification;

b)
the word ‘should’ implies an optional, but desirable, specification;

c)
the word ‘may’ implies an optional specification;

d)
the words ‘is’, ‘are’, and ‘will’ imply statements of fact.

NOTE
–
These conventions do not imply constraints on diction in text that is clearly informative in nature.

1.6.1.2 Informative Text

In the normative sections of this document, informative text is set off from the normative specifications either in notes or under one of the following subsection headings:

–
Overview;

–
Background;

–
Rationale;

–
Discussion.

1.7 References

The following publications contain provisions which, through reference in this text, constitute provisions of this document. At the time of publication, the editions indicated were valid. All publications are subject to revision, and users of this Recommended Standard are encouraged to investigate the possibility of applying the most recent editions of the publications indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS publications.

[1]
CCSDS 730.3 Asynchronous Management Architecture for CCSDS: Rationale, Green Book, in process.
TBD
2 Overview

2.1 Introduction

Network management in challenged and resource constrained networks must be accomplished differently than the network management methods in high-rate, high-availability networks. The Asynchronous Management Architecture (AMA) [I-D.birrane-dtn-ama] provides an overview and justification of an alternative to "synchronous" management services such as those provided by NETCONF. In particular, the AMA defines the need for a flexible, robust, and efficient autonomy engine to handle decisions when operators cannot be active in the network. The logical description of that autonomous model and its major components is given in the AMA Data Model (ADM) [I-D.birrane-dtn-adm].

The ADM presents an efficient and expressive autonomy model for the asynchronous management of a network node, but does not specify any particular encoding. This document, the Asynchronous Management Protocol (AMP), provides a binary encoding of AMM objects and specifies a protocol for the exchange of these encoded objects.

3 Service Definition
3.1 Overview
3.2 Summary of Primitives

RegisterAgent.request;

RegisterAgent.indication;

PerformControl.request

ReceiveControls.indication;

ReportSet.indication;

TableSet.indication;

3.3 Summary of Parameters
NOTE
Do we need to PROVIDE parameters for the message headers (ACK, NACK, ACL) or are those set automatically based on the message type?
The agent EID parameter shall identify the ION endpoint identifier of the agent.

The manager EID parameter shall identify the ION endpoint identifier of the manager.
The controls parameter shall identify the controls a manager wishes to invoke on an agent.
The start time parameter shall indicate the time at which controls are to be run.

The manager names parameter shall indicate the set of managers to which a report set has been sent.

The report set data parameter shall contain the report(s) received at a manager from an agent.

The table set names parameter shall contain the names of the tables

The table set data parameter shall contain the table(s) received at a manager from an agent.

3.4 Services Required of the Underlying Communication System

The asynchronous management protocol presented here assumes a reliable underlying unitdata transfer service with the following primitives:

UNITDATA.request (UT_SDU, UT Address)

UNITDATA.indication (UT_SDU, UT Address)

3.5 Services at the Agent

3.5.1 RegisterAgent.request
3.5.1.1 Function

The RegisterAgent.request primitive shall be used by the agent to register with a particular network manager.

3.5.1.2 Preconditions

None.
3.5.1.3 Semantics

RegisterAgent.request shall provide parameters as follows:

RegisterAgent.request (agent EID, manager EID)

3.5.1.4 When Generated

RegisterAgent.request is generated by the AMP Agent at any time.

3.5.1.5 Effect on Receipt

Receipt of a RegisterAgent.request at a NM agent shall cause the agent to emit a registration request to the managed EID indicated in the request.

Additional Comments

None.

3.6 Services at the Manager

3.6.1 RegisterAgent.Indication

TBD – is there an implicit API requirement for this? If we have this indication we could use it instead of some separate API to list known agents.

Function

The RegisterAgent.indication primitive shall indicate to a manager that an agent has registered with the manager.

Preconditions

None

Semantics

RegisterAgent.indication shall provide parameters as follows:

RegisterAgent.indication(agent EID)

When Generated

The RegisterAgent.indiation is generated at an AMP manager on receipt of an agent registration.

Effect on Receipt

User-defined (used by the client of the NM service).

Additional Comments

None
3.6.2 PERFORMCONTROL.REQUEST

3.6.2.1 Function

The PerformControl.request primitive shall request a network manager to perform a set of controls on an agent.

3.6.2.2 Preconditions

The agent EID is registered with the network manager.

3.6.2.3 Semantics

PerformControl.request shall provide parameters as follows:

PerformControl.request(agent EID, start time, controls)

3.6.2.4 When Generated

The PerformControl.request is generated by an AMP manager at any time.

3.6.2.5 Effect on Receipt

On receipt of a PerformControl.request, the manger shall encode and send the commands to the agent.

3.6.2.6 Additional Comments

Note that ‘Control’ includes requesting telemetry / monitoring data from the agent.

3.6.3 ReportSet.Indication
3.6.3.1 Function

The ReportSet.indication shall indicate the receipt of a report set at a manager.

3.6.3.2 Preconditions

The agent has registered with the manager.
3.6.3.3 Semantics

ReportSet.indication
(manager names, report set data)

3.6.3.4 When Generated

ReportSet.indication is generated on receipt of a report set at a manager.

3.6.3.5 Effect on Receipt

User-defined (used by the client of the NM service).

Additional Comments

There is no defined service interface to retrieve ReportSet or TableSet information.

3.6.4 TableSet.INDICATION
3.6.4.1 Function

The TABLESet.indication shall indicate the receipt of a table set at a manager.

3.6.4.2 Preconditions

The agent has registered with the manager.

3.6.4.3 Semantics

TableSet.indication (manager names, table set data)
3.6.4.4 When Generated

TableSet.indication is generated on receipt of a report set at a manager.

3.6.4.5 Effect on Receipt

User-defined (used by the client of the NM service).

Additional Comments

None.
4 Protocol Data Units and Encodings
4.1 AMP Message Summary

The AMP message specification is limited to three basic communications:

Table 1: ADM Message Type Enumerations
 +------------+-------------+--+

 | Message | Enumeration | Description |

 +------------+-------------+--+

 | Register | 0 | Add Agents to the list of managed |

 | Agent | | devices known to a Manager. |

 | | | |

 | Report Set | 1 | Receiving a Report of one or more |

 | | | Report Entries from an Agent. |

 | | | |

 | Perform | 2 | Sending a Macro of one or more |

 | Control | | Controls to an Agent. |

 | | | |

 | Table Set | 3 | Receiving one or more tables from an |

 | | | Agent. |

 +------------+-------------+--+

The entire management of a network can be performed using these three messages and the configurations from associated ADMs.

4.2 Message Group Format

Individual messages within the AMP are combined into a single group for communication with another AMP Actor.
Messages within a group MUST be received and applied as an atomic unit.
A message group is encoded as a CBOR array with at least 2 elements, the first being the time the group was created followed by 1 or more messages that comprise the group. The format of the message group is illustrated in Figure 1.

 +---------------+

 | Message Group |

 | [ARRAY] |

 +------++-------+

 ||

 ____________________||___________________

 / \

 +-----------+-----------+ +-----------+

 | Timestamp | Message 1 | ... | Message N |

 | [TS] | [BYTESTR] | | [BYTESTR] |

 +-----------+-----------+ +-----------+

Figure 1: AMP Message Group Format
4.2.1.1 Timestamp

The creation time for this messaging group. Individual messages may have their own creation timestamps based on their type, but the group timestamp also serves as the default creation timestamp for every message in the group. This is encoded in accordance with Table 4.

4.2.1.2 Message N

The Nth message in the group.

4.3 Message Format

Each message in the AMP is encode as an OCTETS sequence formatted in accordance with Figure 2.

 +--------+----------+----------+

 | Header | Body | Trailer |

 | [BYTE] | [VARIES] | [VARIES] |

 | | | (opt.) |

 +--------+----------+----------+

Figure 2: AMP Message Format
4.3.1.1 Header

The message header BYTE is shown in Figure 3. The header identifies a message context and opcode as well as flags that control whether a Report should be generated on message success (Ack) and whether a Report should be generated on message failure (Nack).

 +----------+-----+------+-----+----------+

 | Reserved | ACL | Nack | Ack | Opcode |

 +----------+-----+------+-----+----------+

 | 7 6 | 5 | 4 | 3 | 2 1 0 |

 +----------+-----+------+-----+----------+

 MSB LSB

Figure 3: AMP Common Message Header
4.3.1.1.1 Opcode

The opcode field identifies which AMP message is being represented.

4.3.1.1.2 ACK Flag

The ACK flag describes whether successful application of the message must generate an acknowledgment back to the message sender. If this flag is set (1) then the receiving actor MUST generate a Report communicating this status. Otherwise, the actor MAY generate such a Report based on other criteria.

4.3.1.1.3 NACK Flag

The NACK flag describes whether a failure applying the message must generate an error notice back to the message sender. If this flag is set (1) then the receiving Actor MUST generate a Report communicating this status. Otherwise, the Actor MAY generate such a Report based on other criteria.

4.3.1.1.4 ACL Used Flag

The ACL used flag indicates whether the message has a trailer associated with it that specifies the list of AMP actors that may participate in the Actions or definitions associated with the message. This area is still under development.

4.3.1.2 Body

The message body contains the information associated with the given message.

4.3.1.3 Trailer

An OPTIONAL access control list (ACL) may be appended as a trailer to a message. When present, the ACL for a message identifiers the agents and managers that can be affected by the definitions and actions contained within the message. The explicit impact of an ACL is described in the context of each message below. When an ACL trailer is not present, the message results may be visible to any AMP Actor in the network, pursuant to other security protocol implementations.
4.4 Register Agent

The Register Agent message is used to inform an AMP Manager of the presence of another Agent in the network.

The body of this message is the name of the new agent, encoded as illustrated in Figure 4.

 +-----------+

 | Agent ID |

 | [BYTESTR] |

 +-----------+

Figure 4: Register Agent Message Body
4.4.1.1 Agent ID

The Agent ID MUST represent the unique address of the Agent in whatever protocol is used to communicate with the Agent.

4.5 Report Set

The Report Set message contains a set of 1 or more Reports produced by an AMP Agent and sent to an AMP Manager.

The body of this message contains information on the recipient of the reports followed by one or more Reports. The body is encoded as illustrated in Figure 5.

 +----------+----------+

 | RX Names | Reports |

 | [ARRAY] | [ARRAY] |

 +----------+----------+

Figure 5: Report Set Message Body
4.5.1.1 RX Names

This field captures the set of Managers that have been sent this report set. This is encoded as a CBOR array that MUST have at least one entry. Each entry in this array is encoded as a CBOR text string.

4.5.1.2 Reports

This field captures the set of reports being sent. This is encoded as a CBOR array that MUST have at least one entry. Each entry in this array is encoded as a RPT in accordance with 4.12.7.

4.6 Perform Control

The perform control message causes the receiving AMP Actor to run one or more preconfigured Controls provided in the message.

The body of this message is the start time for the controls followed by the controls themselves, as illustrated in Figure 6.

 +-------+-----------+

 | Start | Controls |

 | [TV] | [AC] |

 +-------+-----------+

Figure 6: Perform Control Message Body
4.6.1.1 Start

The time at which the Controls/Macros should be run.

4.6.1.2 Controls

The collection of ARIs that represent the Controls and/or Macros to be run by the AMP Actor. Every ARI in this collection MUST be either a Control or a Macro.

4.7 Table Set

The Table Set message contains a set of 1 or more TBLs produced by an AMP Agent and sent to an AMP Manager.

The body of this message contains information on the recipient of the tables followed by one or more TBLs. The body is encoded as illustrated in Figure 7.

 +----------+----------+

 | RX Names | Tables |

 | [ARRAY] | [ARRAY] |

 +----------+----------+

Figure 7: Table Set Message Body
4.7.1.1 RX Names

This field captures the set of Managers that have been sent this table set. This is encoded as a CBOR array that MUST have at least one entry. Each entry in this array is encoded as a CBOR text string.

4.7.1.2 Tables

This field captures the set of tables being sent. This is encoded as a CBOR array that MUST have at least one entry. Each entry in this array is encoded as a TBL in accordance with 4.12.10
4.8 Encodings

This document adopts the encodings defined in [draft-birrane-dtn-amp-08] and reproduced here.

This section describes the binary encoding of logical data constructs using the Concise Binary Object Representation (CBOR) defined in [RFC7049].
4.9 CBOR Considerations

All AMP encodings are of definite length and, therefore, indefinite encodings MUST NOT be used.

AMP encodings MUST NOT use CBOR tags.

Canonical CBOR MUST be used for all encodings.
All AMP CBOR decoders MUST run in strict mode.

NOTE --
Because AMA objects are self-delineating they can be serialized into, or deserialized from, OCTETS. CBOR containers such as BYTESTR and TXTSTR that encode length fields are only useful for data that is not self-delineating, such as name fields. Encoding self-delineating objects into CBOR containers reduced efficiency as length fields would then be added to data that does not require a length field for processing.

Encodings MUST result in smallest data representations.
NOTE -
There are several cases where the AMM defines types with less granularity than CBOR. For example, AMM defines the UINT type to represent unsigned integers up to 32 bits in length. CBOR supports separate definitions of unsigned integers of 8, 16, or 32 bits in length. In cases where an AMM type MAY be encoded in multiple ways in CBOR, the smallest data representation MUST be used. For example, UINT values of 0-255 MUST be encoded as a uint8_t, and so on.

4.10 AMM Type Encodings

4.10.1 Nicknames
4.10.1.1 ADM Type Enumerations
The ADM template presented in [I-D.birrane-dtn-adm] defines a series of object collections for the specification of various AMM objects. Enumerating these collections in a standard way allows for their compressed representation in the context of nicknames for objects stored in these collections.

The enumeration of ADM Template collections is provided in Table 1 below.

Table 2: ADM Type Enumerations

 +-----------------+-------------+

 | AMM Object Type | Enumeration |

 +-----------------+-------------+

 | CONST | 0 |

 | | |

 | CTRL | 1 |

 | | |

 | EDD | 2 |

 | | |

 | MAC | 3 |

 | | |

 | OPER | 4 |

 | | |

 | RPTT | 5 |

 | | |

 | SBR | 6 |

 | | |

 | TBLT | 7 |

 | | |

 | TBR | 8 |

 | | |

 | VAR | 9 |

 | | |

 | metadata | 10 |

 | | |

 | reserved | 11-19 |

 +-----------------+-------------+

NOTE: Collection enumerations are different from AMM object types. For example, the enumeration for the VAR collection (9) in an ADM is different from the VAR object type (12).

4.10.1.2 Nickname Definition

As an enumeration, a Nickname is captured as a 64-bit unsigned integer (UVAST) calculated as a function of the ADM enumeration and the ADM type enumeration, as follows.

 NN = ((ADM Enumeration) * 20) + (ADM Object Type Enumeration)

Note: as an example, assuming that ADM1 has ADM enumeration 9 and given that objects in the example were of type EDD, the NN for each of the 1974 items would be: (9 * 20) + 2 = 182. In this particular example, the ARI "/DTN/ADM1/Edd.item_1974" can be encoded in 5 bytes: two bytes to CBOR encode the nickname (182) and 3 bytes to CBOR encode the item's offset in the Edd

4.10.1.3 ADM Enumeration Considerations

The assignment of formal ADM enumerations SHOULD take into consideration the nature of the applications and protocols to which the ADM applies. Those ADMs that are likely to be used in challenged networks SHOULD be allocated low enumeration numbers (e.g. those that will fit into 1-2 bytes) while ADMs that are likely to only be used in well resourced networks SHOULD be allocated higher enumeration numbers. It SHOULD NOT be the case that ADM enumerations are allocated on a first-come, first-served basis. It is recommended that ADM enumerations should be labeled based on the number of bytes of the Nickname as a function of the size of the ADM enumeration.

These labels are shown in Table 3.

Table 3: ADM Enumerations Labels

 +-------------+--------+--------------+-----------------------------+

 | ADM Enum | NN | Label | Comment |

 | | Size | | |

 +-------------+--------+--------------+-----------------------------+

 | 0x1 - 0xCCC | 1-2 | Challenged | Constraints imposed by |

 | | Bytes | Networks | physical layer and power. |

 | | | | |

 | 0xCCD - | 3-4 | Congested | Constraints imposed by |

 | 0xCCCCCCC | Bytes | Networks | network traffic. |

 | | | | |

 | >=0xCCCCCCD | 5-8 | Resourced | Generally unconstrained |

 | | Bytes | Networks | networks. |

 +-------------+--------+--------------+-----------------------------+

4.10.2 Primitive Types

 The AMP encodes AMM primitive types as outlined in Table 4.
Table 4: Standard Numeric Types
 +--------+-------------+--+

 | AMM | CBOR Major | Comments |

 | Type | Type | |

 +--------+-------------+--+

 | BYTE | unsigned | BYTEs are individually encoded as unsigned |

 | | int or byte | integers unless the are defined as part of |

 | | string | a byte string, in which case they are |

 | | | encoded as a single byte in the byte |

 | | | string. |

 | | | |

 | INT | unsigned | INTs are encoded as positive or negative |

 | | integer or | integers from (u)int8_t up to (u)int32_t. |

 | | negative | |

 | | integer | |

 | | | |

 | UINT | unsigned | UINTs are unsigned integers from uint8_t |

 | | integer | up to uint32_t. |

 | | | |

 | VAST | unsigned | VASTs are encoding as positive or negative |

 | | integer or | integers up to (u)int64_t. |

 | | negative | |

 | | integer | |

 | | | |

 | UVAST | unsigned | VASTs are unsigned integers up to |

 | | integer | uint64_t. |

 | | | |

 | REAL32 | floating | Up to an IEEE-754 Single Precision Float. |

 | | point | |

 | | | |

 | REAL64 | floating | Up to an IEEE-754 Double Precision Float. |

 | | point | |

 | | | |

 | STRING | text string | Uses CBOR encoding unmodified. |

 | | | |

 | BOOL | Simple | 0 is considered FALSE. Any other value is |

 | | Value | considered TRUE. |

 +--------+-------------+--+

4.10.3 Derived Types

4.10.3.1 Byte Strings
The AMM derived type Byte String (BYTESTR) is encoded as a CBOR byte string.

4.10.3.2 Time Values and Time Stamps

An TV is encoded as a UVAST.
A TS is encoded as a UVAST.
The RTE is defined as the timestamp value for September 9th, 2017 (Unix time 1504915200).

Time values less than the RTE MUST be interpreted as relative times.
Time values greater than or equal to the RTE MUST be interpreted as absolute time values.

A relative TV is encoded as the number of seconds after an initiating event. An absolute TV (and TS) is encoded as the number of seconds that have elapsed since 1 Jan 2000 00:00:00 (Unix Time 946684800).

NOTES:

· Since TS values are the number of seconds since 1 Jan 2000 00:00:00, the RTE as a TS value is 1504915200 - 946684800 = 558230400.

· The potential values of TV, and how they should be interpreted as relative or absolute is illustrated below.

 Potential Time values

 ________________________/________________________

 / \

 Relative Times Absolute Times

 <------------------------><------------------------>

 0 - 558,230,400 558,230,401 - 2^64

 |------------------------|-------------------------|

 | |

 00:00:00 1 Jan 2000 00:00:00 9 Sep 2017

 Unix Time 946684800 Unix Time 1504915200

Figure 8: Potential Time Values
4.10.3.3 Type-Name-Value (TNV)

TNV values are encoded as a CBOR array that comprises four distinct pieces of information: a set of flags, a type, an optional name, and an optional value.
In the E(TNV) the flag and type information are compressed into a single value.
The CBOR array MUST have length 1, 2, or 3 depending on the number of optional fields appearing in the encoding.
The E(TNV) format is illustrated in Figure 9.

 +---------+

 | TNV |

 | [ARRAY] |

 +----++---+

 ||

 ||

 _______________/ ________________

 / \

 +------------+-----------+----------+

 | Flags/Type | Name | Value |

 | [BYTE] | [TXT STR] | [Varies] |

 | | (opt) | (opt) |

 +------------+-----------+----------+

 Figure 9: E(TNV) Format
The format of E(TNV) fields are defined as follows:
4.10.3.3.1 Flags/Type

The first byte of the E(TNV) describes the type associated with the TNV and which optional components are present. The layout of this byte is illustrated in Figure 10.

 +------+---------------+

 | Name | Struct |

 | Flag | Type |

 +------+---------------+

 | 7 | 6 5 4 3 2 1 0 |

 +------+---------------+

 MSB LSB

Figure 10: E(TNV) Flag / Type Byte Format
4.10.3.3.2 Name Flag

This flag indicates that the TNV contains a name field. When set to 1 the Name field MUST be present in the E(TNV). When set to 0 the Name field MUST NOT be present in the E(TNV).

4.10.3.3.3 Struct Type

This field lists the type associated with this TNV and MUST contain one of the types defined in [I-D.birrane-dtn-adm] with the exception that the type of a TNV MUST NOT be a TNV.
4.10.3.3.4 Name

This optional field captures the human-readable name for the TNV encoded as a CBOR text string. If there are 3 elements in the TNV array OR there are 2 elements in the array and the Name Flag is set, then this field MUST be present. Otherwise, this field MUST NOT be present.
4.10.3.3.5 Value

This optional field captures the encoded value associated with this TNV. The value is encoded in accordance with AMP rules for encoding of items of the type of this TNV. If there are 3 elements in the TNV array OR there are 2 elements in the array and the Name Flag is not set, then this field MUST be present. Otherwise, this field MUST NOT be present.
4.10.4 Collections

4.10.4.1 Type-Name-Value Collection (TNVC)

A TNVC is encoded as a sequence of at least 1 octet, where the single required octet includes the flag BYTE representing the optional portions of the collection that are present. If the flag BYTE indicates an empty collection there will be no following octets.The format of a TNVC is illustrated in Figure 11.
 +----------+

 | TNVC |

 | [OCTETS] |

 +----++----+

 ||

 ||

 ____________________________/ _____________________________

 / \

 +--------+---------+----------+----------+----------+----------+

 | Flags | # Items | Types | Names | Values | Mixed |

 | [BYTE] | [UINT] | [OCTETS] | [OCTETS] | [OCTETS] | [OCTETS] |

 | | (Opt) | (Opt) | (Opt) | (Opt) | (Opt) |

 +--------+---------+----------+----------+----------+----------+

 Figure 11: E(TNVC) Format
Notes:

· A TNV, defined in Section 4.10.3.3, consists of three distinct components: a type, a name, and a value. When all of the TNVs in the TNVC have the same format (such as they all include type information) then the encoding of the TNVC can use this information to save encoding space and make processing more efficient. In cases when all TNVs have the same format, the types (if present), names (if present), and values (if present) are separated into their own arrays for individual processing with type information (if present) always appearing first.

· Extracting type information to the "front" of the collection optimizes the performance of type validators. A validator can inspect the first array to ensure that element values match type expectations. If type information were distributed throughout the collection, as in the case with the TNVC, a type validator would need to scan through the entire set of data to validate each type in the collection.

4.10.4.2 The E(TNVC) fields are defined as follows.

4.10.4.2.1 Flags

The first byte of the E(TNVC) describes which optional portions of a TNV will be present for each TNV in the collection.

If all non-reserved flags have the value 0 then the TNVC represents an empty collection, in which case no other information is provided for the E(TNVC). The layout of this byte is illustrated in Figure 12.
 +----------+------+------+------+------+

 | Reserved | Mix | Type | Name | Val |

 | Flags | Flag | Flag | Flag | Flag |

 +----------+------+------+------+------+

 | 7-4 | 3 | 2 | 1 | 0 |

 +----------+------+------+------+------+

 MSB LSB

Figure 12: E(TNV) Flag Byte Format
4.10.4.2.1.1 Mixed Flag

This flag indicates that the set of TNVs in the collection do not all share the same properties and, therefore, the collection is a mix of different types of TNV. When set to 1 the E(TNVC) MUST contain the Mixed Values field and all other flags in this byte MUST be set to 0. When set to 0 the E(TNVC) MUST NOT contain the Mixed Values field.
4.10.4.2.1.2 Type Flag

This flag indicates whether each TNV in the collection has type information associated with it. When set to 1 the E(TNVC) MUST contain type information for each TNV. When set to 0, type information MUST NOT be present.
4.10.4.2.1.3 Name Flag

This flag indicates whether each TNV in the collection has name information associated with it. When set to 1 the E(TNVC) MUST contain name information for each TNV. When set to 0, name information MUST NOT be present.
4.10.4.2.1.4 Value Flag

This flag indicates whether each TNV in the collection has value information associated with it. When set to 1 the E(TNVC) MUST contain value information for each TNV. When set to 0, value information MUST NOT be present.
4.10.4.2.2 Number of Items

The number of items field lists the number of items that are contained in the TNVC. Each of the types, names, and values sequences (if present) MUST have exactly this number of entries in them. This field MUST be present in the E(TNVC) when any one of the non-reserved bits of the Flag Byte are set to 1.

4.10.4.2.3 Types

The types field is encoded as an OCTETS sequence where the Nth byte in the sequence represents the type for the Nth TNV in the collection. This field MUST be present in the E(TNVC) when the Type Flag is set to 1 and MUST NOT be present otherwise. If present, this field MUST contain exactly the same number of types as number of items in the TNVC.
4.10.4.2.4 Names

The names field is encoded as an OCTETS sequence containing the names of the TNVs in the collection. Each name is encoded as a CBOR string, with the Nth CBOR string representing the name of the Nth TNV in the collection. This field MUST be present in the E(TNVC) when the Names Flag is set to 1 and MUST NOT be present otherwise. If present, this field MUST contain exactly the same number of CBOR strings as number of items in the TNVC.
4.10.4.2.5 Values

The values field is encoded as an OCTETS sequence containing the values of TNVs in the collection.
This field MUST be present in the E(TNVC) when the Value Flag is set to 1 and MUST NOT be present otherwise. If present, this field MUST contain exactly the same number of values as number of items in the TNVC.
If the Type Flag is set to 1 then each entry will be encoded in accordance with the corresponding index in the type field
If the Type Flag is set to 0 then the values will be encoded as native CBOR types.
NOTE - CBOR types do not have a one-to-one mapping with AMP types and it is the responsibility of the transmitting AMP actor and the receiving AMP actor to determine how to map these to AMP types.
4.10.4.2.6 Mixed

The mixed field is encoded as an OCTETS sequence containing a series of E(TNV) objects.
This field MUST be present when the Mixed Flag is set to 1 and MUST NOT be present otherwise.If present, this field MUST contain exactly the same number of E(TNV) objects as the number of items in the TNVC.
4.10.4.3 ARI Collections (AC)

An ARI collection is encoded as a CBOR array with each element being an encoded ARI, as illustrated in Figure 13.

 +---------+

 | AC |

 | [ARRAY] |

 +----++---+

 ||

 ||

 ________/ _________

 / \

 +-------+ +-------+

 | ARI 1 | ... | ARI N |

 | [ARI] | | [ARI] |

 +-------+ +-------+
Figure 13: E(AC) Format
4.10.4.4 Expressions (EXPR)

The Expression object encapsulates a typed postfix expression in which each operator MUST be of type OPER and each operand MUST be the typed result of an operator or one of EDD, VAR, LIT, or CONST.

The Expression object is encoded as an OCTETS sequence whose format is illustrated in Figure 14.
 +----------+

 | EXPR |

 | [OCTETS] |

 +-----++---+

 ||

 ||

 _________/ _________

 / \

 +---------+------------+

 | Type | Expression |

 | [BYTE] | [AC] |

 +---------+------------+

Figure 14: E(EXPR) Format
4.10.4.5 The EXPR fields are defined as follows:
4.10.4.5.1 Type

The enumeration representing the type of the result of the evaluated expression. This type MUST be defined in [I-D.birrane-dtn-adm] as a "Primitive Type".

4.10.4.5.2 Expression

An expression is represented in the AMP as an ARI collection, where each ARI in the ordered collection represents either an operand or operator in postfix form.

4.11 AMM Resource Identifier (ARI)

The ARI, as defined in [I-D.birrane-dtn-adm], identifies an AMM object. There are two kinds of objects that can be identified in this scheme: literal objects (of type LIT) and all other objects.

4.11.1 Encoding ARIs of Type LITERAL

A literal identifier is one that is literally defined by its value, such as numbers (0, 3.14) and strings ("example"). ARIs of type LITERAL do not have issuers or nicknames or parameters. They are simply typed basic values.

The E(ARI) of a LIT object is encoded as an OCTETS sequence and consists of a mandatory flag BYTE and the value of the LIT.
The E(ARI) structure for LIT types is illustrated in Figure 15.

 +--------+----------+

 | Flags | Value |

 | [BYTE] | [VARIES] |

 +--------+----------+

Figure 15: E(ARI) Literal Format
 These fields are defined as follows.

4.11.1.1 Flags

The Flags byte identifies the object as being of type LIT and also captures the primitive type of the following value. The layout of this byte is illustrated in Figure 16.
 +-------------------+-------------+

 | VALUE TYPE OFFSET | STRUCT TYPE |

 +-------------------+-------------|

 | 7 6 5 4 | 3 2 1 0 |

 +-------------------+-------------+

 MSB LSB

Figure 16: E(ARI) Literal Flag Byte Format
4.11.1.2 Value Type Offset

The high nibble of the flag byte contains the offset into the Primitive Types enumeration defined in [I-D.birrane-dtn-adm]. An offset of 0 represents the first defined Primitive Type. An offset of 1 represents the second defined Primitive Type, and so on.
4.11.1.3 Structure Type

The lower nibble of the flag byte identifies the type of AMM Object being identified by the ARI. In this instance, this value MUST be LIT, as defined in [I-D.birrane-dtn-adm].
4.11.1.4 Value

This field captures the CBOR encoding of the value. Values are encoded according to their Value Type as specified in the flag byte in accordance with the encoding rules provided in 4.10.1.
4.11.2 Encoding Non-Literal ARIs

All other ARIs are defined in the context of AMM objects and may contain parameters and other meta-data. The AMP, as a machine-to- machine binary encoding of this information removes human-readable information such as Name and Description from the E(ARI). Additionally, this encoding adds other information to improve the efficiency of the encoding, such as the concept of Nicknames, defined in 4.10.1.

The E(ARI) is encoded as an OCTETS sequence and consists of a mandatory flag byte, an encoded object name, and optional annotations to assist with filtering, access control, and parameterization. The E(ARI) structure is illustrated in Figure 17.

 +--------+---------+-----------+---------+-----------+-----------+

 | Flags | NN | Name | Parms | Issuer | Tag |

 | [BYTE] | [UVAST] | [BYTESTR] | [TNVC] | [BYTESTR] | [BYTESTR] |

 | | (opt) | | (opt) | (opt) | opt) |

 +--------+---------+-----------+---------+-----------+-----------+
Figure 17: E(ARI) General Format
4.11.2.1 These fields are defined as follows.

4.11.2.1.1 Flags

Flags describe the type of structure and which optional fields are present in the encoding. The layout of the flag byte is illustrated in Figure 18.

 +----+------+-----+-----+-------------+

 | NN | PARM | ISS | TAG | STRUCT TYPE |

 +----+------+-----+-----+-------------+

 | 7 | 6 | 5 | 4 | 3 2 1 0 |

 +----+------+-----+-----+-------------+

 MSB LSB
Figure 18: E(ARI) General Flag Byte Format
4.11.2.1.2 Nickname (NN)

This flag indicates that ADM compression is used for this E(ARI). When set to 1 the Nickname field MUST be present in the E(ARI). When set to 0 the Nickname field MUST NOT be present in the E(ARI). When an ARI is user-defined, there are no semantics for Nicknames and, therefore, this field MUST be 0 when the Issuer flag is set to 1.
NOTE
Implementations SHOULD use Nicknames whenever possible to reduce the size of the E(ARI).
4.11.2.1.3 Parameters Present (PARM)

This flag indicates that this ARI can be parameterized and that parameter information is included in the E(ARI). When set to 1 the Parms field MUST be present in the E(ARI). When set to 0 the Parms field MUST NOT be present in the E(ARI).
4.11.2.1.4 Issuer Present (ISS)

This flag indicates that this ARI is defined in the context of a specific issuing entity. When set to 1 the Issuer field MUST be present in the E(ARI). When set to 0 the Issuer field MUST NOT be present in the E(ARI).
4.11.2.1.5 Tag Present (TAG)

This flag indicates that the ARI is defined in the context of a specific issuing entity and that issuing entity adds additional information in the form of a tag. When set to 1 the Tag field MUST be present in the E(ARI). When set to 0 the Tag field MUST NOT be present in the E(ARI). This flag MUST be set to 0 if the Issuer Present flag is set to 0.
4.11.2.1.6 Structure Type (STRUCT TYPE)

The lower nibble of the E(ARI) flag byte identifies the kind of structure being identified. This field MUST contain one of the AMM object types defined in [I-D.birrane-dtn-adm].
4.11.2.1.7 Nickname (NN)

This optional field contains the Nickname as calculated according to 4.10.1.
4.11.2.1.8 Object Name

This mandatory field contains an encoding of the ADM object. For elements defined in an ADM Template (e.g., where the Issuer Flag is set to 0) this is the 0-based index into the ADM collection holding this element. For all user-defined ADM objects, (e.g., where the Issuer Flag is set to 1) this value is as defined by the Issuing organization.
4.11.2.1.9 Parameters

The parameters field is represented as a Type Name Value Collection (TNVC) as defined in Section 4.10.4.1. The overall number of items in the collection represents the number of parameters. The types of the TNVC represent the types of each parameter, with the first listed type associated with the first parameter, and so on. The values, if present, represent the values of the parameters, with the first listed value being the value of the first parameter, and so on.
4.11.2.1.10 Issuer

This is a binary identifier representing a predetermined issuer name. The AMP protocol does not parse or validate this identifier, using it only as a distinguishing bit pattern to ensure uniqueness. This value, for example, may come from a global registry of organizations, an issuing node address, or some other network-unique marking. The issuer field MUST NOT be present for any ARI defined in an ADM.
4.11.2.1.11 Tag

A value used to disambiguate multiple ARIs with the same Issuer. The definition of the tag is left to the discretion of the Issuer. The Tag field MUST be present if the Tag Flag is set in the flag byte and MUST NOT be present otherwise.
4.12 ADM Object Encodings

The autonomy model codified in [I-D.birrane-dtn-adm] comprises multiple individual objects. This section describes the CBOR encoding of these objects.

NOTE -
The encoding of an object refers to the way in which the complete object can be encoded such that the object as it exists on a Manager may be re-created on an Agent, and vice-versa. In cases where both a Manager and an Agent already have the definition of an object, then only the encoded ARI of the object needs to be communicated. This is the case for all objects defined in a published ADM and any user-defined object that has been synchronized between an Agent and Manager.
4.12.1 Externally Defined Data (EDD)

Externally defined data (EDD) are solely defined in the ADMs for various applications and protocols. EDDs represent values that are calculated external to an AMA Agent, such as values measured by firmware.

The representation of these data is simply their identifying ARIs. The representation of an EDD is illustrated in Figure 19.

 +-------+

 | ID |

 | [ARI] |

 +-------+
Figure 19: E(EDD) Format
4.12.1.1 ID

This is the ARI identifying the EDD. Since EDDs are always defined solely in the context of an ADM, this ARI MUST NOT have an ISSUER field and MUST NOT have a TAG field. This ARI may be defined with parameters.

4.12.2 Constants (CONST)

Unlike Literals, a Constant is an immutable, typed, named value. Examples of constants include PI to some number of digits or the UNIX Epoch.

Since ADM definitions are preconfigured on Agents and Managers in an AMA, the type information for a given Constant is known by all actors in the system and the encoding of the Constant needs to only be the name of the constant as the Manager and Agent can derive the type and value from the unique Constant name.
The format of a Constant is illustrated in Figure 20.

 +-------+

 | ID |

 | [ARI] |

 +-------+
Figure 20: E(CONST) Format
4.12.2.1 ID

This is the ARI identifying the Constant. Since Constant definitions are always provided in an ADM, this ARI MUST NOT have an ISSUER field and MUST NOT have a TAG field. The ARI MUST NOT have parameters.
4.12.3 Controls (CTRL)

A Control represents a pre-defined and optionally parameterized opcode that can be run on an Agent. Controls in the AMP are always defined in the context of an AMA; there is no concept of an operator- defined Control. Since Controls are pre-configured in Agents and Managers as part of ADM support, their representation is the ARI that identifies them, similar to EDDs.
The format of a Control is illustrated in Figure 21.

 +-------+

 | ID |

 | [ARI] |

 +-------+

Figure 21: E(CTRL) Format
4.12.3.1 ID

This ARI MUST NOT have an ISSUER field and MUST NOT have a TAG field. This ARI may have parameters.

4.12.4 Macros (MAC)

Macros in the AMP are ordered collections of ARIs (an AC) that contain Controls or other Macros. When run by an Agent, each ARI in the AC MUST be run in order.

Any AMP implementation MUST allow at least 4 levels of Macro nesting. Implementations MUST prevent recursive nesting of Macros.

The ARI associated with a Macro MAY contain parameters. Each parameter present in a Macro ARI MUST contain type, name, and value information. Any Control or Macro encapsulated within a parameterized Macro MAY also contain parameters. If an encapsulated object parameter contains only name information, then the parameter value MUST be taken from the named parameter provided by the encapsulating Macro. Otherwise, the value provided to the object MUST be used instead.
 The format of a Macro is illustrated in Figure 22.

 +-------+------------+

 | ID | Definition |

 | [ARI] | [AC] |

 +-------+------------+

Figure 22: E(MAC) Format
4.12.4.1 ID

This is the ARI identifying the Macro. When a Macro is defined in an ADM this ARI MUST NOT have an ISSUER field and MUST NOT have a TAG field. When the Macro is defined outside of an ADM, the ARI MUST have an ISSUER field and MAY have a TAG field.
4.12.4.2 Definition

This is the ordered collection of ARIs that identify the Controls and other Macros that should be run as part of running this Macro.

4.12.5 Operators (OPER)

Operators are always defined in the context of an ADM. There is no concept of a user-defined operator, as operators represent mathematical functions implemented by the firmware on an Agent. Since Operators are preconfigured in Agents and Managers as part of ADM support, their representation is simply the ARI that identifies them.

The ADM definition of an Operator MUST specify how many parameters are expected and the expected type of each parameter. For example, the unary NOT Operator ("!") would accept one parameter. The binary PLUS Operator ("+") would accept two parameters. A custom function to calculate the average of the last 10 samples of a data item should accept 10 parameters.

Operators are always evaluated in the context of an Expression. The encoding of an Operator is illustrated in Figure 23.
 +-------+

 | ID |

 | [ARI] |

 +-------+

Figure 23: E(OP) Format
4.12.5.1 ID

This is the ARI identifying the Operator. Since Operators are always defined solely in the context of an ADM, this ARI MUST NOT have an ISSUER field and MUST NOT have a TAG field.

4.12.6 Report Templates (RPTT)

A Report Template is an ordered collection of identifiers that describe the order and format of data in any Report built in compliance with the template. A template is a schema for a class of reports. It contains no actual values and may be defined in a formal ADM or configured by users in the context of a network deployment.

The encoding of a RPTT is illustrated in Figure 24.

 +-------+----------+

 | ID | Contents |

 | [ARI] | [AC] |

 +-------+----------+
Figure 24: E(RPTT) Format
4.12.6.1 ID

This is the ARI identifying the report template.

4.12.6.2 Contents

This is the ordered collection of ARIs that define the template.

4.12.7 Report (RPT)

A Report object is comprised of the identifier of the template used to populate the report, an optional timestamp, and the contents of the report.
A Report is encoded as a CBOR array with either 2 or 3 elements. If the array has 2 elements then the optional Timestamp MUST NOT be in the Report encoding. If the array has 3 elements then the optional timestamp MUST be included in the Report encoding.
The Report encoding is illustrated in Figure 25.
 +---------+

 | RPT |

 | [ARRAY] |

 +---++----+

 ||

 ||

 _____________/ ______________

 / \

 +----------+-----------+----------+

 | Template | Timestamp | Entries |

 | [OCTETS: | [TS] | [OCTETS: |

 | ARI] | (opt) | TNVC] |

 +----------+-----------+----------+

Figure 25: E(RPT) Format
4.12.7.1 Template

This is the ARI identifying the template used to interpret the data in this report.

This ARI may be parameterized and, if so, the parameters MUST include a name field and have been passed-by-name to the template contents when constructing the report.

4.12.7.2 Timestamp

The timestamp marks the time at which the report was created. This timestamp may be omitted in cases where the time of the report generation can be inferred from other information. For example, if a report is included in a message group such that the timestamp of the message group is equivalent to the timestamp o
4.12.7.3 Entries

This is the collection of data values that comprise the report contents in accordance with the associated Report Template.
4.12.8 State-Based Rules (SBR)

A State-Based Rule (SBR) specifies that a particular action should be taken by an Agent based on some evaluation of the internal state of the Agent. A SBR specifies that starting at a particular START time an ACTION should be run by the Agent if some CONDITION evaluates to true, until the ACTION has been run COUNT times. When the SBR is no longer valid it may be discarded by the agent.

An SBR object is encoded as an OCTETS sequence as illustrated in Figure 26.
 +----------+

 | SBR |

 | [OCTETS] |

 +----++----+

 ||

 ||

 _______________________/ _______________________

 / \

 +-------+-------+--------+--------+--------+--------+

 | ID | START | COND | EVALS | FIRES | ACTION |

 | [ARI] | [TV] | [EXPR] | [UINT] | [UINT] | [AC] |

 +-------+-------+--------+--------+--------+--------+

Figure 26: E(SBR) Format
4.12.8.1 ID

This is the ARI identifying the SBR. If this ARI contains parameters they MUST include a name in support of pass-by-name to each element of the Action AC.

4.12.8.2 START

The time at which the SBR condition should start to be evaluated. This will mark the first evaluation of the condition associated with the SBR.

4.12.8.3 CONDITION

The Expression which, if true, results in the SBR running the associated action. An EXPR is considered true if it evaluates to a non-zero value.

4.12.8.4 EVALS

The number of times the SBR condition can be evaluated. The special value of 0 indicates there is no limit on how many times the condition can be evaluated.

4.12.8.5 FIRES

The number of times the SBR action can be run. The special value of 0 indicates there is no limit on how many times the action can be run.

4.12.8.6 ACTION

The collection of Controls and/or Macros to run as part of the action. This is encoded as an AC in accordance with 4.10.4.2 with the stipulation that every ARI in this collection MUST be of type CTRL or MAC.

4.12.9 Table Templates (TBLT)

A Table Template (TBLT) describes the types, and optionally names, of the columns that define a Table.

The format of the TBLT Object Array is illustrated in Figure 27.

 +-------+

 | ID |

 | [ARI] |

 +-------+
Figure 27: E(TBLT) Format
NOTE

Because TBLTs are only defined in the context of an ADM, their definition cannot change operationally. Therefore, a TBLT is encoded simply as the ARI for the template.

4.12.9.1 ID

This is the ARI of the table template encoded in accordance with Section 4.11.

4.12.10 Tables (TBL)

A Table object describes the series of values associated with a Table Template.

A Table object is encoded as a CBOR array, with the first element of the array identifying the Table Template and each subsequent element identifying a row in the table. The format of the TBL Object Array is illustrated in Figure 28.

 +---------+

 | TBL |

 | [ARRAY] |

 +---++----+

 ||

 ||

 ______________/ _______________

 / \

 +---------+--------+ +--------+

 | TBLT ID | Row 1 | | Row N |

 | [ARI] | [TNVC] | ... | [TNVC] |

 +---------+--------+ +--------+

Figure 28: E(TBL) Format
The TBL fields are defined as follows.

4.12.10.1 Template ID (TBLT ID)

This is the ARI of the table template describing the format of the table and is encoded in accordance with Section 4.11.

4.12.10.2 Row

Each row of the table is represented as a series of values with optional type information to aid in type checking table contents to column types. Each row is encoded as a TNVC and MAY include type information. AMP implementations should consider the impact of including type information for every row on the overall size of the encoded table. Each TNVC representing a row MUST contain the same number of elements as there are columns in the referenced Table Template.
4.12.11 Time-Based Rules (TBR)

A Time-Based Rule (TBR) specifies that a particular action should be taken by an Agent based on some time interval. A TBR specifies that starting at a particular START time, and for every PERIOD seconds thereafter, an ACTION should be run by the Agent until the ACTION has been run for COUNT times. When the TBR is no longer valid it MAY BE discarded by the Agent.

The TBR object is encoded as an OCTETS sequence as illustrated in Figure 29.

 +----------+

 | TBR |

 | [OCTETS] |

 +----++----+

 ||

 ||

 ___________________/ ___________________

 / \

 +-------+-------+--------+--------+--------+

 | ID | START | PERIOD | COUNT | ACTION |

 | [ARI] | [TV] | [UINT] | [UINT] | [AC] |

 +-------+-------+--------+--------+--------+

Figure 29: E(TBR) Format
4.12.11.1 ID

 This is the ARI identifying the TBR and is encoded in

 accordance with 4.11. If this ARI contains parameters

 they MUST include a name in support of pass-by-name to each

 element of the Action AC.

4.12.11.2 START

The time at which the TBR condition should start to be evaluated.

4.12.11.3 PERIOD

The number of seconds to wait between running the action associated with the TBR.

4.12.11.4 COUNT

The number of times the TBR action can be run. The special value of 0 indicates there is no limit on how many times the action can be run.

4.12.11.5 ACTION

The collection of Controls and/or Macros to run as part of the action. This is encoded as an ARI Collection in accordance with Section 4.10.4.2 with the stipulation that every ARI in this collection MUST represent either a Control or a Macro.
4.12.12 Variables (VAR)

Variable objects are transmitted in the AMP without the human-readable description.

Variable objects are encoded as an OCTETS sequence whose format is illustrated in Figure 30.

 +-----------+

 | Variable |

 | [OCTETS] |

 +-----++----+

 ||

 ||

 ______/ _____

 / \

 +-------+-------+

 | ID | Value |

 | [ARI] | [TNV] |

 +-------+-------+

Figure 30: E(VAR) Format
4.12.12.1 ID

This is the ARI identifying the VAR and is encoded in accordance with Section 4.11. This ARI MUST NOT include parameters.

4.12.12.2 Value

This field captures the value (and optionally the type and name) of the variable, encoded as a TNV.

ANNEX A

Protocol Implementation Conformance
 Statement (PICS) Proforma

(NORMATIVE)

A1 Introduction

A1.1 Overview

A1.1.1 Columns

A1.1.1.1 General

In order to reduce the size of tables in the PICS proforma, notations have been introduced that have allowed the use of a multi-column layout, where the columns are headed ‘Status’ and ‘Support’. The definition of each of these follows.

A1.1.1.2 Status Column

The ‘Status’ column indicates the level of support required for conformance to the standard. The values are as follows:

M

Mandatory: support is required.

C

Conditional: support depends on conditions stated below table.
O

Optional: support is permitted for conformance to the standard. If implemented, it must conform to the specifications and restrictions contained in the standard. These restrictions may affect the optionality of other items.

O.n

Support of at least one of the options labeled with the same number n is mandatory.
n/a

Not applicable.

A1.1.1.3 Support Column

The ‘Support’ column is completed by the supplier or implementer to indicate the level of implementation of each feature. The proforma has been designed such that the only entries required in the ‘Support’ column are:

Y

Yes, the feature has been implemented.

N

No, the feature has not been implemented.

–

The item is not applicable.

A1.1.2 Item Reference Numbers

Within the PICS proforma, each line that requires implementation detail to be entered is numbered at the left hand edge of the line. This numbering is included as a means of uniquely identifying all possible implementation details within the PICS proforma. The need for such unique referencing has been identified by the testing bodies.
The means of referencing individual responses is to specify the following sequence:

· a reference to the smallest subsection enclosing the relevant item;

· a solidus character, ‘/’;

· the reference number of the row in which the response appears;

· if, and only if, more than one response occurs in the row identified by the reference number, then each possible entry is implicitly labeled a, b, c, etc., from left to right, and this letter is appended to the sequence.

A2 Completion of the PICS

The implementer shall complete all entries in the column marked ‘Support’. In certain subsections of the PICS proforma, further guidance for completion may be necessary. Such guidance shall supplement the guidance given in this subsection and shall have a scope restricted to the subsection in which it appears. In addition, other specifically identified information shall be provided by the implementer where requested. No changes shall be made to the proforma except the completion as required. Recognizing that the level of detail required may, in some instances, exceed the space available for responses, a number of responses specifically allow for the addition of appendices to the PICS.

Voice formats should be specified between the Agencies in order to carry out the testing. For cases 3, 4 and 5 the dedicated voice loops and the frequencies used must be specified if more than one Agency is involved.

A3 REFERENCED BASE STANDARDS

Voice and Audio Communications (V&A in this document and in the yellow book) is the only base standard referenced in the PICS. In the tables below, numbers in the Reference column refer to applicable subsections within this document.

A4 GENERAL INFORMATION

A4.1 IDENTIFICATION OF the PICS

	Date of statement (yyyy-mm-dd)
	

	PICS version
	

	System Conformance Statement cross-reference
	

	Other information
	

A4.2 Identification of the system supplier / test laboratory client

	Organization name
	

	Contact name
	

	Address
	

	Telephone
	

	E-mail
	

	Other information
	

TBD
ANNEX B

Security, SANA, and Patent Considerations

(Informative)

B1 Security Considerations

B1.1 INTRODUCTION

TBD
B1.2 SECURITY CONCERNS With REspect to this CCSDS Document

TBD
B2 SANA Considerations
TBD
B3 Patent Considerations

It is expected that implementation of this Recommended Standard by space-agency users will occur through the use of commercial off-the-shelf equipment that implements the referenced standards, and that patent-rights issues for such equipment will have been settled between the equipment manufacturer and the patent-right holders. It is not expected that space-agency users will develop new equipment based on the standards referenced herein. Therefore patent rights for the referenced standards are outside the scope of this Recommended Standard.
ANNEX C

Acronyms and Abbreviations

(Informative)

Term
Meaning
TBD
Definition
ANNEX D

Informative References

(Informative)

 [D

 SEQ ref \s 8 * MERGEFORMAT * MERGEFORMAT 1]
J. Postel. Internet Protocol. STD 5. Reston, Virginia: ISOC, September 1981.
TBD
