Space Packet Protocol -- Green Book -- Executive Summary

X Executive Summary

X.1 Context (protocol stack)

The Space Packet Protocol is part of both the CCSDS Telecommand protocol stack and the CCSDS Telemetry protocol stack. A protocol stack is a group of cooperating protocol layers that are stacked one on top of another. To provide the context of the Space Packet Protocol, the Telecommand protocol stack will be considered. This stack provides reliable delivery of command data to a location within a spacecraft. The actual data to be delivered is supplied by the sender at the highest protocol layer (that data might be a Space Packet). The data makes its way down through the layers at the sender, across to the receiver, and back up through the same layers at the receiver.

The following is a short description of each protocol layer (starting with the lowest layer):

· The Physical Layer transmits data bits from the sender (this is typically a Ground Station) to the receiver (the spacecraft). Due to the unreliable nature of radio-frequency transmission, there may be data errors (the received bits may not match those sent).

· The Data Link Layer ensures that data is reliably delivered to the spacecraft (it fixes the data errors described above). The Data Link Layer consists of two sublayers:

· The Synchronization and Channel Coding sublayer ensures that only error-free data is accepted (by detecting data errors and either correcting them or discarding the data). Note that gaps are created when data is discarded.

· The Data Link Protocol sublayer fills gaps. The receiver detects gaps and requests retransmissions (these requests are delivered back to the sender via telemetry). The sender retransmits the data required to fill the gaps.

· The Network Layer delivers data to the proper destination within the spacecraft. This destination may be a higher protocol layer. A variety of Network Layer protocols may be used, including the CCSDS Space Packet Protocol and the Internet Protocol.

· There may be layers above the Network Layer (for example, a file transfer protocol).

Data units used by the stack include:

· Packets, which are generated by the Network Layer.

· Frames, which contain packets, and are generated by the Data Link Protocol sublayer.

· Codeblocks, which contain frames, and are generated by the Synchronization and Channel Coding sublayer.

· Communication Link Transmission Units (CLTUs), which contain groups of codeblocks, and are also generated by the Synchronization and Channel Coding sublayer.

For more information, refer to the CCSDS Green Book Overview of Space Link Protocols [reference TBD], especially Section 2.1 and Figure 2-1.
X.2 Rough sketch

This document deals with one of the supported Network Layer protocols: the Space Packet Protocol. The Space Packet Protocol defines the Space Packet data unit. The Space Packet is a standard container for transferring variable-length pieces of data. It can contain command or telemetry data. It provides multiplexing capabilities (i.e. multiple data source IDs), and supports capabilities such as time-stamping of data. Space Packets contain a sequence counter field, which enables the User to reassemble data in-order at the receiving end, if desired.

X.3 Space Packet structure

A Space Packet consists of a Packet Primary Header plus Packet Data.

The Packet Primary Header is specified by CCSDS, and is always 6 bytes long. It includes fields that identify the length and source of the data. The format of this header is the same for all Space Packets.

Packet data consists of a Packet Secondary Header and/or User Data.

The Packet Secondary Header is defined by the User (not by CCSDS). Each data source may define its own format. Typically, if this header is used, the same format is used by multiple data sources. One common use of the Packet Secondary Header is to contain a time stamp (e.g. "the User Data in this Space Packet was collected at this time"). The presence or absence of the Packet Secondary Header is indicated by a flag in the Packet Primary Header.

User Data is defined by the User. Each data source may define its own format.

X.4 Variable-Length

The length of a Space Packet is variable; each Space Packet can contain up to 64 kilobytes of Packet Data. The Space Packet contains a field to support spanning one User data unit across multiple Space Packets (refer to the Sequence Flags field in the Packet Primary Header).

X.5 Data Sources

The Space Packet provides 1024 independent data sources for telemetry, and an additional 1024 independent data sources for commands. Refer to the Application Process Identifier (APID) field in the Packet Primary Header.

X.6 Sequence Counter

Each Space Packet from a telemetry source includes a sequence counter. Each data source maintains an independent counter. Although the Space Packet protocol does not require the receiver of Space Packets to do anything in response to this counter's value, the counter does enable some capabilities that may be useful; for example:

· Detect data gaps.

· Determine quality of data link based on frequency and size of those gaps.

· Reorder data that was received out-of-sequence.

· Specify which data needs to be retransmitted.

If your project requires reliable delivery of datasets (e.g. science data files), consider using the CCSDS File Delivery Protocol (CFDP) [reference TBD].

Space Packets from command sources still contain the sequence counter field (refer to the Packet Sequence Count or Packet Name field in the Packet Primary Header). However, the command source is not required to maintain a counter -- it may set this field's contents to any value desired. Again, if your project requires reliable delivery of datasets (e.g. memory loads), consider using the CCSDS File Delivery Protocol (CFDP). If your project requires reliable delivery of individual command packets, consider using one of the Communication Operation Procedures (e.g. COP-1; or for Proximity Links, COP-P).

X.7 Services

The Services defined in the Blue Book are an abstract model that can be used as a baseline for Application Program Interfaces. They can be quite helpful when an interface crosses organizational boundaries. In situations where one organization is implementing multiple layers, the interfaces between the layers need not match the Services model.

