	[image: image4.jpg]cnes

	

3
	C N E S
	SV-CNES-E-HB-80-503-CN

	SVOM
	Issue
	: 1.0
	Date
	: 14 Novembre 2011

	
	Rev.
	: <<gdocREVISION>>
	Date
	: <<gdocDATEREVISION>>

	
	Page: i.2

Centre National d'Etudes Spatiales
	
	

	Direction du Centre de Toulouse

	Produits et Segments Sol

	Techniques de Valorisation des données d'Ingénierie sol
	

	
	Issue
	: 1.0
	Date
	:

	
	MT
	: X
	Distribution Code
	: E

	
RULES AND GOOD PRACTICES FOR XML INTERFACE SPECIFICATION

	Written by:

	Date:

	

	Accepted by:

	Date:
	

	Approved by:

	Date:
	

Index Sheet

	CONFIDENTIALITY:
	KEYWORDS: XML, interface

	TITLE:
RULES AND GOOD PRACTICES FOR XML INTERFACE SPECIFICATION

	AUTHOR(s): Béatrice LARZUL

	SUMMARY: This document describes the rules applicable to the definition of interfaces in XML. It is a tailored document of the RNC-CNES-E-HB-80-503 document applicable to xxx project.

	RELATED DOCUMENTS: Stand alone document.
	LOCALIZATION:

	Volume: 1
	TOTAL NUMBER OF PAGES: 34 =
GDOCNBPAGESSUP + 34 * MERGEFORMAT
34

INCLUDING PRELIMINARY PAGES: 5
NUMBER OF SUPPL. PAGES: 0
	COMPOSITE DOCUMENT: N

	LANGUAGE: EN

	CONFIGURATION MANAGEMENT:
	CM RESP.:

	REASONS FOR EVOLUTION:

	CONTRACT: None

	HOST SYSTEM:
generated by DOORS/IRDRMFAO/WEXP
Project:

xxx
Module Name:

Baseline:

View Name:

Param Baseline:

Changes
	Version
	Date
	Modified by
	Comments

	
	
	
	

	
	
	
	

DOCHIST

TBC TABLE

TBD TABLE

TBW TABLE

Table of contents

11.
Introduction

2.
SUBJECT
2
3.
SCOPE
3
4.
DOCUMENTS
4
4.1.
REFERENCE DOCUMENTS
4
4.2.
Applicable documents
4
4.3.
Other Documents
4
5.
TERMINOLOGY
5
6.
COMPLIANCE WITH relevant specifications and standards
7
7.
FILE NOMENCLATURE RULES
8
8.
RULES APPLYING TO FORMAL DESCRIPTIONS IN XML SCHEMA (XSD)
10
8.1.
Reference
10
8.2.
documentation
11
8.3.
SYNTAX
12
8.4.
Design rules
22
8.5.
RULES of MANAGEMENT
24
9.
RULES APPLICABLE TO DATA IN XML
26

1. Introduction

The document “Rules and good practices for XML interface specification” is part of the E-80 “Data Engineering” branch of the CNES Standards Reference. It describes the rules to be applied for the definition of interfaces in XML.

This document is a tailored version for xxx project.

2. SUBJECT

The aim of this manual is to establish the rules and recommendations
for the formal definition of interfaces in XML. These rules and recommendations have been drawn up based on the “state of the art” and the “lessons learned” accumulated over the projects.

Choosing XML as the data exchange format brings numerous advantages. The main advantages are:


XML documents are structured


XML documents are portable and readable without proprietary tools

For uniform interfaces which are simple to use, it is however necessary to restrict the possibilities of XML. This is the objective of the rules and good practices set out in this document.

We wish to underline the fact that this document is neither an XML language reference manual, nor an XML Schema language reference manual.

It should be stressed that the application of the rules in this manual does not dispense the user project from making provision for rules for managing interfaces in XML (version management, ad hoc commissions, delivery mode for the interface definitions, etc.).

3. SCOPE

This document is applicable to the development and maintenance of Control Centre and Mission Centre ground segments, for the “Interfaces in XML” part.

This document is applicable to the definition of interfaces in XML for which no specific standard is available (e.g. is not applicable to a System DataBase that respects the XTCE standard).

XML interfaces are defined using the XML Schema syntax which means that the XML interfaces must be valid according to their definition in XML schema.

The rules set out in this document form a complete unit. However, in the context of a given project, certain rules may be of varying relevance.

The document is thus intended for more than one type of reader:


the project manager and/or quality engineer, whose responsibility is to validate the rules and possibly adapt and complete them in accordance with the project context,


the people who are responsible for defining the project interfaces: who must apply the selected rules,


the people who are responsible for creating the producer or consumer software for these XML interfaces.

4. DOCUMENTS

4.1. REFERENCE DOCUMENTS

[image: image1.wmf]RD

Identification

Title

(RD1)

RNC

-

CNES

-

E

-

40

-

507

Règles pour l’élaboration de documents de description d’interface

informatiques.

D. Minguillon, 27/06/2002, Ed. 1, Rev. 0

4.2. Applicable documents

[image: image2.wmf]AD

Identification

Title

(AD1)

Extensible Markup Language (XML) 1.0 (

Fifth

Edition), W3C

Recommendation

-

26 November 2008

-

(

http://www.w3.org/TR/xml/

(AD2)

XML Schema Part 0:

Primer Second Edition, W3C Recomme

ndation

-

 28 October 2004

-

 (

http://www.w3.org/TR/xmlschema

-

0/

)

(AD3)

XML Schema Part 1:

Structures Second Edition, W3C

Recommendation

–

 28 October 2004

-

(

http://www.w3.org/TR/xmlschema

-

1/

)

(AD4)

XML Schema Part 2:

Datatypes Second Edition, W3C

Recomme

ndation

–

 28 October 2004

-

(

http://www.w3.org/TR/xmlschema

-

2/

)

4.3. Other Documents


WWW XML specification Home Page (http://www.w3.org/XML/)


XML RULES AND CONVENTIONS - CSW-GSSP2-2005-TNR-2560 - Issue 1.1 dated 30/11/2005

European Technology Harmonisation on Ground Software Systems

5. TERMINOLOGY

An XML structure always has one or more elements which may contain other elements, which in turn may themselves contain further elements.

Each element opens with a character string in angle brackets, called a tag. This character string is broken down into items, the first of which is the name of the element (or name of the tag), and the others are the attributes and their values.

Unless the element is empty, it is ended using a tag with the same name as the start tag, preceded by the character ‘/’. The value of an element is the data found between the start tag and the end tag.

E.g.: <ALTITUDE unit="km">580.3</ALTITUDE>

In this example, the element ALTITUDE has an attribute (unit) and has the value 580.3.

Tag names may also contain namespaces. A namespace serves to distinguish two different definitions with the same name. It is a sort of context.

E.g.:
<gml:Point srsName="EPSG:4326">

<gml:pos>2.374167 43.190833</gml:pos>

</gml:Point>

In the above example, the element Point is not just any point. It refers to the point as defined in the GML (Geography Markup Language) standard, from the Open Geospatial Consortium (OGC). The prefix “gml” serves to identify the namespace (in this case http://www.opengis.net/gml) in a succinct way.

XML parsers (software responsible for reading XML files) normally interpret all the text in an XML document, but they ignore information placed in a CDATA section.

E.g.: <COMMENT>![CDATA[expected value > 2.4]]</COMMENT>

In this example, the character ‘>’ normally interpreted by the parsers as closing a tag, is ignored here.

If an XML document conforms to XML syntax (see AD1), it is said to be well-formed.

XML descriptors are used to formalise the structure and content of an XML document. There are several syntaxes available but we have selected XML Schema. If an XML document conforms to its XML Schema definition (see AD2, AD3 and AD4), it is said to be valid.

A formal interface description is henceforth referred to as an XSD, i.e. an XML document which adheres to XML Schema syntax.

An XML Schema is usually made up of types of data (a calendar date, an orbit, etc.) and elements (of explicit types or otherwise).

The definitions of data types used in different XML interfaces can be grouped together so as to avoid duplications and preclude difficulties in managing coherence. These types come together to define a common dictionary.

Depending on the size of the project (and therefore on the number of common definitions), types are grouped according criteria. These groups are called: themes.

When an XML schema is used as basic element of a common dictionary, it contains only one type.

A formal description of an interface in XML Schema can reuse types defined in the common dictionary.

A set of formal descriptions usually constitutes an ICD (Interface Control Document). A set of formal descriptions in XML Schema is referred to by the neologism XCI (that is, another ICD in XML).

Recap of the acronyms used
ICD
Interface Control Document

XCI
ICD in XML

XML
eXtended Markup Language

XSD
XML Schema Definition

6. COMPLIANCE WITH relevant specifications and standards

The rules set out in this document conform to XML version 1.0.

7. FILE NOMENCLATURE RULES

[XXXX-E-HB-80-503-REQ-0010]
File.Name

Only characters without accents shall be used for the names of XML files (whether schemas or data). If it is necessary to separate words, use an underscore ‘_’ or a hyphen ‘-‘. Characters shall be all upper case
.

Description for Data Filenames

Data Filenames are made up of sections separated by underscore '_' and respect the following syntax:

<MISSION_ID>_<PRODUCER>_<IF_NAME>_<ADDITIONAL_INFO>_<CREATION_DATE>.<EXTENSION>

Where:
<MISSION_ID> identifies the mission: the tag ANY is used when the data is not specific to a mission.

<PRODUCER> is the subsystem that produces the data (the list of subsystems are identified at the start of the project),

<IF_NAME> is the name of the interface,

<ADDITIONAL_INFO> contains optional additional information, such as e.g. the subsystem that consumes the data, or a qualifier for the data file.

<CREATION_DATE> is a date with the format: yyyy-MM-dd'T'HH-mm-ss-SSS (e.g. 2010-12-30T06-30-00-000). The date may be optional as some data file may have no date (e.g. procedures).

<EXTENSION> is XML (for XML data).

The use of underscore '_' is reserved to separate sections, and the use of hyphen '-' is reserved to separate words inside one section.

Description for Schema Filenames

Schema Filenames respect the following syntax:

<IF_NAME>.<EXTENSION>

Where:
<IF_NAME> is the name of the interface (the same as for data filename),

 <EXTENSION> is XSD (for XML Schema).

As for Data Filenames, the use of underscore '_' is forbidden inside the section, and the use of hyphen '-' is reserved to separate words inside the section.

Justification

Upper case characters may sometimes be changed to lower case (and vice versa) by Operating Systems which are not case-sensitive, and characters with accents are not standard from one platform to another.

Examples

XXXX_CCC_ORBIT-EVENTS_2010-12-30T06-30-00-000.XML contains some orbit events of the XXXX mission.

This file is described by the schema file:

ORBIT-EVENTS.XSD

ANY_OOC_SOLAR-ACTIVITY_2010-12-30T06-30-00-000.XML contains the solar activity sent by the Orbitography operational Center, independently of the mission. This file is described by the schema file:

SOLAR-ACTIVITY.XSD

[XXXX-E-HB-80-503-REQ-0020]
File.Correspondence

The names of XML schema files shall be deduced from the name of the XML root of their content.

Description

An XML schema must only have one single element called root (see rule Xsd.Syn.Uniqueness). The name of the root and the name of the file must correspond (see rule Xsd.Syn.RootId).

Justification

In the interests of readability, the name of the interface, its description and the name of its root must all correspond. This does not mean they are identical, simply that it is easy to deduce one from the other.

Example

For an interface named ORBIT-EVENTS, the schema file is ORBIT-EVENTS.XSD while the name of the root is ORBIT_EVENTS.

[XXXX-E-HB-80-503-REQ-0030]
File.Extension

The files shall have predefined extensions.

Description

The files shall have predefined extensions:


.XSD for XML schemas


.XML for XML data


.XSL for XML style sheets


.HTML for HTML pages.

Justification

In the interests of readability and to facilitate searches, each type of file has an associated file extension. The file extension (along with its case) is defined at the start of the project.

8. RULES APPLYING TO FORMAL DESCRIPTIONS IN XML SCHEMA (XSD)

The aim of this chapter is to specify a number of restrictions on the use of the XML-Schema 2001 standard.

The objective of these restrictions or rules is:


to avoid laxness in the description of exchanged data,


to harmonise practices, thereby simplifying the processing of the different project interfaces (to systematize the production of documents, in particular),


to facilitate dictionary management,


to formalise both syntactic (e.g. a real value with a given precision) and semantic (e.g. coordinates expressed in a certain reference frame) description.

8.1. Reference

[XXXX-E-HB-80-503-REQ-0040]
Xsd.Reference

The XML Schema shall remain the reference in terms of description

Description

The formal description prevails (should there be any ambiguity with a more informal document, such as a document with interface in a free text style).

Justification

The formal description in XML Schema is more precise and less ambiguous than an interface with a Word description.

[XXXX-E-HB-80-503-REQ-0050]
Xsd.Configuration

The XML Schema shall be managed in configuration.

Description

It is essential to make provision for management in configuration for the descriptive elements of the interfaces (XML Schema of the interface and common types dictionary).

Justification

In order to control the costs of evolving interfaces, the configuration must be controlled, and it must be possible to trace the differences between any two versions of the same interface.

It is to be noted that although this document does not cover the XML Schema management process, it is essential that the project deals with this particular issue in accordance with a defined process.

Remark

If the XML Schema is supplied by CNES, it is considered as an interface specification and as such it is managed using the documentary configuration management tool. If it is supplied by the company responsible for software development and if it is linked to a particular software component, in a particular version, it is thus managed using the software configuration management tool. For projects with both types of supply, one of the structures for management in configuration shall be selected.

It should also be noted that management rules may change during the development and integration phases, but these changes to the rules should nevertheless be specified at the start of the project.

[XXXX-E-HB-80-503-REQ-0060]
Xsd.Documentation

Every XML schema supplied shall come with decrypted documentation (e.g. html) deduced from the schema.

Description

It is recommended to provide for a translation of the descriptions in XML schema, into descriptions that everyone can read.

Justification

It is unreasonable to expect all participants in a project (in particular the interface managers) to be fluent in the syntax of XML Schema. Therefore, a less formal description (in HTML or PDF), respecting the syntactic and semantic content of the description, should also be produced alongside the formal description in XML Schema.

Remark

The SCRIBE tool is available to all managers who are called upon to deduce the documentation of an XML Schema. But the project has the scope to define the techniques for generating the documentation (xsl style sheets, for example).

8.2. documentation

[XXXX-E-HB-80-503-REQ-0070]
Xsd.Doc.Formalisation

The semantic description included in the XML Schema must be formalised.

Description

(RD1) sets out the rules to be followed for formalising the information that you wish to include in the computer interface description document. The nature and form of the information to be associated to each description element of the interface must be defined at the start of the project.

Justification

This encourages the editors of the XML Schema to provide the complete descriptions on a semantic level. With every editor adopting the same formalism, we obtain uniform descriptions and the resulting documentation is all the more relevant.

Example

Varying information may be included, like the interface production frequency or the calculation mode for a given data item, or even the expected precision of numerical values.

Appendix A provides an example of the formalisation of semantic information.

[XXXX-E-HB-80-503-REQ-0080]
Xsd.Doc.Location

The semantic description included in the XML Schema shall be located in the annotation part
, except for the interface description part, which is part of the IF document.

Description

The XML Schema standard provides a non-specifying zone for the structure of data: annotations.

An annotation is broken down into a documentation section (used for summarised information) and an appinfo section which can be structured (using a schema).

Justification

The XML Schema also allows for comments, but these may be prohibited for security reasons (see rule Data.Security). It has therefore been decided to use annotations to complete the description.

Example

The characteristics valid for the interface are located in the IF document.

The characteristics applicable at element level, i.e. valid for each of the current schema’s nodes, are gathered in the appinfo part structured as follows:
<DOC>

<DEFINITION>The position is defined using ...</DEFINITION>

<COMMENT>Some additional information</COMMENT>

<ALIAS>

<NAME>pos</NAME>

<CONTEXT>gml 3.1 see http://www.opengis.net/gml </CONTEXT>

</ALIAS>

<ALIAS>

<NAME>COORDINATE</NAME>

<CONTEXT>in xxx project</CONTEXT>

</ALIAS>

<UNIT>tbd</UNIT>

</DOC>

The <UNIT> element is required for any numerical data item (make use of NO_UNIT value if not applicable).

[XXXX-E-HB-80-503-REQ-0090]
Xsd.Doc.Requirements

The location of requirements
must be dealt with at the start of the project.

Description

The requirements relating to interfaces are usually written in the interface control documents. The project must establish if this practice is to be continued or if the requirements are to be noted in the XML schemas (as annotations). In the latter case, the interface control document (Word document) is an empty shell which points to the interface schema(s) (XSD).

Justification

In the absence of a formal description (with XML Schema for example), the interface control document (often in Word format) contains all the information (syntactic, semantic and requirements).

When there is a formal description, the interface control document must not duplicate; it must not contain any syntactic or semantic information. Depending on the requirement management tool selected for the project, we can also introduce the requirements into the XML Schema, which completely empties the conventional interface control document.

8.3. SYNTAX

[XXXX-E-HB-80-503-REQ-0100]
Xsd.Syn.Encoding

All XML schemas shall specify the XML version and the adopted encoding convention. UTF-8 encoding is adopted for all the schemas in the project.

Description

The XML standard points out that it is recommended to start all XML documents (and no less for all XML Schema documents) with a declaration which specifies, in particular, the XML version being used and the encoding used to encode the characters. This information is obligatory so that the parsers do not have to hypothesise when reading the XML files.

Example

<?xml version="1.0" encoding="UTF-8"?>

Justification

UTF-8 is recommended, rather than ISO-8859-1 (i.e. Latin-1) even though it is adapted to the French language. Most of the tools are in fact configured in UTF-8 by default. In addition, this encoding is better suited to file exchanges with other international organisations.

[XXXX-E-HB-80-503-REQ-0110]
Xsd.Syn.Uniqueness

An XML Schema shall describe one interface (of the file type or query/result type) and one only, using a single root element.

Description

In the interests of simplicity, it has been decided that any one XML schema will only be used to describe one single interface. Similarly, to avoid all ambiguity, an XML Schema shall only have one higher-level element, called root.

Justification

An XML Schema containing more than one root element could describe, and thus validate, more than one interface, resulting in a reduced level of control.

[XXXX-E-HB-80-503-REQ-0120]
Xsd.Syn.RootId

The root element shall identify the interface.

Description

The root element shall identify the interface: the identifier selected must designate the interface in an unambiguous manner.

Justification

The name of the root element is the first label that is found in the XML data, which is why this name and the name of the interface must correspond.

[XXXX-E-HB-80-503-REQ-0130]
Xsd.Syn.Structure

The interface is made up of a header, a specific optional header and the “useful” interface data.

Description

The interface is made up of a header (common to all the project interfaces), a specific optional header (specific to the interface or a group of interfaces), and the interface “useful” data (the body of the interface).

Justification

A common header promotes uniformity in the interfaces exchanged on a project. In addition, it ensures that information considered to be indispensable is included, such as the name of the producer, the consumer(s), the date of production, etc.

Exception

For existing data file or data file that are exchanged with external entity, the rule may be not applicable.

[XXXX-E-HB-80-503-REQ-0140]
Xsd.Syn.Header

The header shall contain at least the name of the schema and the version of the schema

Description

As a minimum, the header shall contain the name of the schema and the version of the schema. It is recommended that it also includes the name of the producer of the interface and the name of the consumer(s). In case the consumer is unknown or if there are several consumers, the name is replaced by “ALL”. A data confidentiality level may also be indicated depending on the nature of the project.

For xxxx, the header has the structure specified in Annex A.

Justification

A header identifies in the data, in an unambiguous way, the schema which was used to produce and validate the data set.

Lessons learned

The version of the schema shall not be set by the schema (e.g. a unique enumeration value ‘1.2’) and is instead defined as a character string (xs:string). The interface producer writes its version in the interface and the consumer checks that the version is indeed that which is expected. A difference results in a warning, not an abrupt halt in the reading process (as would be the case if the version was hardcoded).

[XXXX-E-HB-80-503-REQ-0150]
Xsd.Syn.HeaderTailoring

A mechanism is used to define generic headers, in generic interface definition.

Description

For each varying element of the header (varying element from a mission to the next one), a mechanism is used to define a generic content (i.e. as a simple text). This mechanism allows to specialize the interface definition for a specific mission without changing the XML schema of the interface.

Justification

Some interfaces might be generic interfaces and are therefore specialized for a mission.

[XXXX-E-HB-80-503-REQ-0160]
Xsd.Syn.CharacterSet

The set of characters authorised shall be limited.

Description

The set of characters used in the descriptions in XML schema shall be limited to #x9 | #xA | #xD | [#x20-#xFF] characters, i.e. printable characters (Horizontal Tab, Line Feed, Carriage Return, Space and so forth).

Justification

The security checks ensure that the XML data (see rule Data.CharacterSet) and their schemas do not include destructive binary codes. This limitation of characters enables more efficient control.

[XXXX-E-HB-80-503-REQ-0170]
Xsd.Syn.Identifier

The identifiers shall follow the common rules, applicable to the whole project. These rules are:

- English language

- uppercase
(from 'A' to 'Z' and '0' to '9')

- underscore ('_') allowed

Description

The identifiers (type and data elements) adhere to the rules defined at the start of the project (upper case or lowerCamelCase, choice of language, restrictions on characters authorised, etc.).

Justification

We thus obtain descriptions which are more uniform.

 [XXXX-E-HB-80-503-REQ-0180]
Xsd.Syn.CDATA

The use of the CDATA tag shall be limited to descriptive elements.

Description

The use of the CDATA tag shall be limited to descriptive elements (annotations included).

Justification

The textual description of data may contain characters (e.g. ‘<’ or ‘>’) which render the XML Schema incorrect in the absence of CDATA.

[XXXX-E-HB-80-503-REQ-0190]
Xsd.Syn.ExplicitId

The data described shall be named using the most explicit XML identifiers possible.

Description

The data described shall be named using the most explicit XML identifiers possible. Correspondence with synonyms (required abbreviations, name in the original standard, etc.) is provided via a documentary element ‘ALIAS’ (several shall be authorised).

Justification

Avoid going to the extreme however, and giving excessively long names because they carry more meaning. Such a practice increases the volume of the exchanged data and does not necessarily improve readability.

The choice of the identifiers must be given careful consideration, particularly the abbreviations (necessary for reducing the volume of data). This process must bear in mind the need for uniformity of the descriptions. E.g.: Which is preferable PARAMETER or PARAM or P?

Remark

This requirement is more a recommendation that you should keep in mind than a formal rule.

[XXXX-E-HB-80-503-REQ-0200]
Xsd.Syn.XMLType

XML types shall be preferred to specific types.

Description

It is preferable to use a predefined XML base type if available, rather than a new definition.

Justification

This results in more standardised interfaces.

Example

<xs:element name="ORBIT_DATE" type="xs:date">

describes: <ORBIT_DATE>1967-08-13</ORBIT_DATE>

Preferable to: <ORBIT_DATE>13th August 1967</ORBIT_DATE>

[XXXX-E-HB-80-503-REQ-0210]
Xsd.Syn.Restriction

Careful strategic consideration shall be given to the restriction of types.

Description

Make sure that the types are restricted whenever possible.

Justification

This precludes different interpretations by interface producers and consumers.

Examples

Defining an identifier using xs:string when you know that it must be stored in a database and that it is thus limited (to 32 characters for example) is risky. It is just as well to define the identifier using a string restricted to 32 characters max.

<xs:element name="IDENT">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:maxLength value="32"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

Defining a date using xs:dateTime restricts the element to a certain extent, but it does not specify the exact format of the date (is it UTC? what is the level of precision?). It is recommended to use more restricted dates (by pattern), for example a UTC date to the nearest millisecond is defined using:

<xs:simpleType name="AN_UTC_MILLISEC_DATE_TIME">

<xs:restriction base="xs:dateTime">

<xs:pattern value="\d\d\d\d-\d\d-\d\dT\d\d:\d\d:\d\d\.\d\d\dZ"/>

</xs:restriction>

</xs:simpleType>

Consequently, there is no danger that the producer and consumer will hypothesise in any particular way on the format of the date.

Exception

For data with restrictions specified using system parameters (sighting angles for example), it is preferable to “relax” the restrictions as much as possible (for the angle, define limits between -90° and +90°) and use the producer (or consumer) application to check the values in accordance with restrictions specified elsewhere. This avoids having to create a new version of the interface every time the system parameters (inevitably!) change.

Remark

This requirement is more a recommendation that you should keep in mind than a formal rule.

[XXXX-E-HB-80-503-REQ-0220]
Xsd.Syn.NumType

XML numerical types shall be restricted to xs:byte, unsignedByte, xs:short, unsignedShort , xs:int, unsignedInt , xs:long, unsignedLong, xs:float and xs:double.

Description

The following XML numerical types are prohibited: xs:decimal, xs:integer, xs:nonPositiveInteger, xs:nonNegativeInteger, xs:negativeInteger, xs:positiveInteger and other derivative types which have no machine representation.

Justification

If the XML interface is read or produced using input/output libraries automatically generated from the description in XML Schema, there must be non ambiguous correspondence between the XML type and the source code type (i.e. machine type). However, for XML types such as xs:integer, the limits are undefined (the xs:integer type covers an infinite set of values), and no machine representation is possible.

[XXXX-E-HB-80-503-REQ-0230]
Xsd.Syn.Precision

The numerical precision, when known, shall be specified in an annotation.

Description

A real value, due to its calculation mode, has a certain level of precision. This level of precision may be lower than that for the XML type used for its description. An annotation specifies the number of significant digits of the datum.

Justification

This information allows the interface producer to include only the effectively significant digits in the interface, and avoids increasing the volume of the interface unnecessarily.

[XXXX-E-HB-80-503-REQ-0240]
Xsd.Syn.TypeId

A type name shall be formed using an indefinite pronoun followed by a noun evoking the class it describes.

Description

This rule must be associated with rule Xsd.Syn.Identifier (concerning the choice of identifiers).

Justification

There is no requirement to use a “TYPE” prefix or suffix for type names because there is no risk of ambiguity between an element name and a type name.

Example

AN_ORBIT, A_COEFFICIENT etc.

Exception

You may depart from the above rule if you are re-using an existing type.

 [XXXX-E-HB-80-503-REQ-0260]
Xsd.Syn.TBD

The typing convention TBD shall be used for all elements whose definition is postponed.

Description

Still not defined elements shall be explicitly typed as TBD.

Justification

To easily identify elements still to be defined.

It is allowed in XML Schema not to define an element. It is therefore difficult to identify undefined elements.

Example

<xs:element name="EPHEMERIS" type="base:TBD">

[XXXX-E-HB-80-503-REQ-0270]
Xsd.Syn.Complete

All referenced XML schemas must be fully defined.

Description

The referencing of a schema assumes that there are no more TBD or anyType element types in the interface. It is thus assumed that all the elements have been defined (either locally or by reference to a type).

Justification

Fully defined does not mean definitively. We do not want to perpetuate descriptions which are unusable because they have been incompletely defined.

[XXXX-E-HB-80-503-REQ-0280]
Xsd.Syn.Structure

A structure (non-terminal element) shall be defined by a sequence or a choice.

Description

A structure shall be defined as an ordered sequence of elements or as a choice between n elements (‘sequence’ or ‘choice’ but not ‘all’). In the case of a choice, the elements are mutually exclusive.

Justification

‘all’ defines a non-ordered sequence of elements. The XML interface is then more difficult to process.

[XXXX-E-HB-80-503-REQ-0290]
Xsd.Syn.StructureId

A structure shall always have a name.

Description

A structure shall always have a name. A sequence may therefore only contain elements or choices. A choice may only contain elements.

Justification

A structure is a group of elements making up a coherent set. It must therefore be possible to give this group a name. This reinforces readability.

In addition, using input/output libraries automatically generated from the description in XML Schema, is complicated for non-named structures.

Exception

For post-defined schemas to describe pre-existing XML data.

Or to reduce the volume of corresponding XML data.

[XXXX-E-HB-80-503-REQ-0300]
Xsd.Syn.Terminal

A terminal element (simpleType) may be defined as a list of simple elements (‘list’).

Description

A terminal element (simpleType) may be defined as a base type (see AD4), as a restriction of a base type but also as a list of simple elements (‘list’).

Justification

Using ‘list’ enables a more succinct exchange of data (space-saving) which still allows the type of data to be controlled.

Example

<xs:simpleType name="A_CALIBRATION_FUNCTION">

<xs:list itemType="xs:double"/>

</xs:simpleType>

For data such as: <CALIBRATION_FUNCTION>10.0 5.3 6.2 0.001</CALIBRATION_FUNCTION>

Or:

<xs:element name="CALIBRATION_FUNCTION">

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element name="COEFFICIENT" type="xs:double"/>

</xs:sequence>

</xs:complexType>

</xs:element>

For data such as:

<CALIBRATION_FUNCTION>

<COEFFICIENT>10.0</COEFFICIENT>

<COEFFICIENT>5.3</COEFFICIENT>

<COEFFICIENT>6.2</COEFFICIENT>

<COEFFICIENT>0.001</COEFFICIENT>

</CALIBRATION_FUNCTION>

[XXXX-E-HB-80-503-REQ-0310]
Xsd.Syn.Union

A terminal element (simpleType) may be defined as the union of a simple type (base type or simple named type) and a single value type.

Description

A terminal element (simpleType) may also be defined as the union of a simple type (base type or simple named type) and a single value type.

Justification

To show that a value is not available or that it is out of limit, the value that is found in the interface is necessarily outside the scope of validity for the datum. For an interface to be said to conform to its schema, the terminal element must be defined by a union of the type of the datum (with its scope of validity) and of the exceptional value.

Example

<xs:simpleType name="A_TEMPERATURE">

<xs:union memberTypes="xs:float">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="SENSOR_OFF"/>

</xs:restriction>

</xs:simpleType>

</xs:union>

</xs:simpleType>

[XXXX-E-HB-80-503-REQ-0320]
Xsd.Syn.Ref

It is forbidden to use the attribute ‘ref’ in the declaration of an element.

Description

It is forbidden to use the attribute ref in the declaration of an element.

Justification

In the interests of simplicity and uniformity, the definition of an element is limited to a local definition or by reference to a type. Moreover, using ‘ref’ implicates several elements in the schema, and the root of the interface can no longer be designated in a simple manner (see Xsd.Syn.Uniqueness).

[XXXX-E-HB-80-503-REQ-0330]
Xsd.Syn.Mixed

Using ‘mixed content’ is forbidden.

Description

The use of ‘mixed content’, which authorises an element to contain other elements but also text, values, etc., is forbidden.

Justification

The interface becomes illegible and cannot be controlled.

[XXXX-E-HB-80-503-REQ-0340]
Xsd.Syn.All

Using ‘all’ is forbidden.

Description

The use of ‘all’, which defines a non-ordered sequence of elements, is forbidden.

Justification

An interface in which the data appear as non-ordered is difficult to control. In addition, if data are optional, minOccurs (at 0) or choice can be used.

[XXXX-E-HB-80-503-REQ-0350]
Xsd.Syn.Redefine

Using ‘redefine’ is forbidden.

Description

The use of ‘redefine’, which allows a type to be redefined, is forbidden.

Justification

It is not advisable to designate different things with the same name (same type name for different definitions).

[XXXX-E-HB-80-503-REQ-0360]
Xsd.Syn.Substitution

Using substitution is forbidden.

Description

The use of substitution, which allows elements of substitution (distinct labels, of the same type as the element or of a type derived from the element) for a given element, is forbidden.

Justification

This is to facilitate interoperability. Its use must be wholly justifiable, because it adversely affects readability.

Example

For exactly the same information, the label <NUMBER> and <NUMERO> can both be found indifferently in the interface.

[XXXX-E-HB-80-503-REQ-0370]
Xsd.Syn.Attribut

The use of XML attributes shall be limited.

Description

XML element should be used prior to XML attribute except for some cases where the use of attributes is relevant (to save space, to enforce readability)
Justification

There is nothing to clearly justify the use of an attribute instead of an element. In the interests of uniformity, we give systematic privilege to elements.

Examples

To save space:
<SUBMESH mesh_id="3" submesh_id="5">00212 00215 00218 00221 00224 00230 01236 02242 03248</SUBMESH>

Is accepted instead of:
<SUBMESH>

<MESH_ID>3</MESH_ID>

<SUBMESH_ID>5</SUBMESH_ID>

<FORECAST>00212 00215 00218 00221 00224 00230 01236 02242 03248</FORECAST>
</SUBMESH>

To enforce readability:
<ALTITUDE unit="km">750</ALTITUDE>

Is more suitable than:
<ALTITUDE>750</ALTITUDE>

Exception

Attributes are tolerated when types are re-used or for a simple type attribute, on demonstration of the gain to the entity on using an attribute.

The gain is already proven for:

-
large-volume XML interfaces (as the use of attributes saves space).

-
the unit of values when conveyed in the interface (to reinforce readability).

Remark

This requirement is more a recommendation that you should keep in mind than a formal rule.

[XXXX-E-HB-80-503-REQ-0380]
Xsd.Syn.RecursiveDef

Defining recursive types is forbidden.

Description

The definition of recursive types is forbidden (practice authorised in XML Schema as soon as a breakpoint is set in the definition).

Justification

It is a complicated practice which really must be restricted to those cases where any other type of modelling proves impossible.

[XXXX-E-HB-80-503-REQ-0390]
Xsd.Syn.DefaultValue

Default values are forbidden.

Description

Default values are forbidden. Default values for attributes allow the attributes (and their values) not to be included in the XML data; default values for elements allow for an empty (albeit present) element in the data.

Justification

This allows the value of an element to be omitted from the data. An error (omission type) may be generated on reading the interface in the absence of the associated schema. This adversely affects readability.

Example of what not to do

<xs:simpleType name="A_PROGRAMMING_PERIOD_NUMBER">

<xs:restriction base="xs:short">

<xs:minInclusive value="1"/>

<xs:maxInclusive value="400"/>

</xs:restriction>
</xs:simpleType>

<xs:element name="PROG_PERIOD" type="A_PROGRAMMING_PERIOD_NUMBER" default="1"/>

This definition makes the following datum legal:

<PROG_PERIOD/>

The XML data parser (or library for reading) returns the value 1 for the element PROG_PERIOD, if the XML schema is available; and nothing otherwise.

Exception

The use of default values is accepted when the default value is used to initialise processing or displays and when it is certain that the value will always be present in the data.

8.4. Design rules

[XXXX-E-HB-80-503-REQ-0400]
Xsd.Design.Type

An element shall be assigned a type as soon as its definition becomes potentially reusable.

Description

An element is assigned a type (by the XML attribute «xs:type» in the element’s declaration) as soon as its definition becomes potentially reusable. The definition remains local if the element is specific to the interface; it is moved to another schema if it may be shared by more than one interface.

Justification

The aim is to avoid duplicate definitions and to facilitate updating.

Lessons learned

Using type dictionaries is strongly recommended (promotes uniform interfaces) but the process requires proper organisation. Creating a dictionary before starting work on interface definition is not easy since it tends to result in the creation of types which will never be used. It is too late to create a dictionary when all the interfaces have been defined: we then realise that the definitions, whilst not identical, are similar, but nobody subsequently agrees to modify the interfaces. The process should ideally be carried out in cycles, where the interfaces and dictionaries are defined, and before the end of phase B in any case.

Remark

This requirement is more a recommendation that you should keep in mind than a formal rule.

[XXXX-E-HB-80-503-REQ-0410]
Xsd. Design.Name

Two different types shall not have the same name.

Description

It is forbidden to select identical names for distinct definitions.

Justification

This is a cause of errors which must be avoided through centralised interface management. This rule is anyway required by the use of direct referencing of types.

[XXXX-E-HB-80-503-REQ-0420]
Xsd. Design.Vol

The XML schema shall be designed bearing the volume of the corresponding data in mind.

Description

An XML Schema may result in extremely high volumes of XML data. At the interface definition stage, be sure to increase the production frequency for data (for lighter files), or use lists instead of multiple elements, or even use attributes. Lastly, carefully consider the names of the tags chosen.

Justification

The files are otherwise difficult to edit, and may become difficult to read and control.

Remark

This requirement is more a recommendation that you should keep in mind than a formal rule.

[XXXX-E-HB-80-503-REQ-0430]
Xsd. Design.Change

Successive versions of an XML Schema shall be designed bearing the ascending compatibility of existing data in mind.

Description

When the project is well underway, modifying the XML schema in any way must be studied with the compatibility of existing data in mind.

Justification

In a project, the production of validation data is an activity into itself. Modifying the interface definition necessarily leads to the production of new data (to validate the new functionality that justifies the new version of the interface). The activity is made easier, however, if the existing data remain valid with the regard to the new schema.

Caution: this rule only applies to projects which are well underway and where the volume of validation data is already significant, because the ascending compatibility of the XML Schema also implies more relaxed description.

Remark

This requirement is more a recommendation that you should keep in mind than a formal rule.

8.5. RULES of MANAGEMENT

[XXXX-E-HB-80-503-REQ-0440]
Xsd.Mngt.Version

XML schemas shall have a version (using the “version” attribute).

Description

Interface descriptions shall have a version. The XML schema version attribute shall be used.

Justification

It must be possible to distinguish between different versions of the same formal description in an unambiguous way. The version number from the Change Request number could be used as a suffix for temporary versions.

Opt not to hardcode the version number in the header, because the schema will consequently not enable the reading of data produced with another version of the description, even if the data are compatible on a syntactic level.

[XXXX-E-HB-80-503-REQ-0450]
Xsd.Mngt.Diff

A new version of an interface shall be accompanied by the description of how it differs from its former version.

Description

A new version of an interface shall be accompanied by the description of how it differs from its former version.

Justification

It must be possible to track the changes between two successive versions of the same XML Schema so that all involved have a clear vision of the differences and can anticipate their impact on the applications that use the interface.

[XXXX-E-HB-80-503-REQ-0460]
Xsd.Mngt.Namespace

One-type XML schemas shall have a target namespace.

Description

An XML schema only containing one type definition is a part of a dictionary. Managing versions of dictionaries (and parts of dictionaries) is indispensable, as is ensuring that the XML schema in which they are referenced can unambiguously identify the required version. This is achieved with the namespace associated to the XML schema.

The rule for the namespace is:
http:// <scope>/<component>/<theme>/<type>/<version>
Where <scope> may have the following values: generic, mission or to be defined scope name.

Where <version> is the version of the type.

The attribute schemaLocation used to specify the physical location of the XML schema file is, in that case:

schemaLocation="<relative or absolute path>/<dictionary>/<component>/<theme>/<type>/<version>/<type>.XSD"

Justification

A reminder of the namespace (targetNamespace) is made on importing.

Lessons learned

Manufacturers have criticised the practice of putting the version of the referenced file in the namespace, but we insist upon it since it makes it immediately obvious whether or not the interface definition is using the right dictionary.

The use of one-type schemas reduces the drawback.

[XXXX-E-HB-80-503-REQ-0470]
Xsd.Mngt.Namespace -2

XML schemas that describe one interface shall not have a target namespace.

Description

It is not recommended to use the target namespace to define interfaces between components of the same project. One reason is that an XML schema used for interface description shall never be imported in another XML schema.

Justification

It is unnecessary to overload the XML data with namespaces in the context of exchanges between components of a single project because it is assumed that within the project, the same name will not be used for different notions (see rule Xsd.Design.Name).

9. RULES APPLICABLE TO DATA IN XML

The aim of this chapter is to specify certain restrictions relating to the production of XML data.

The following rules are only applicable to XML data that are exchanged between software components (not to XML data that are resident, e.g. used as configuration file).

[XXXX-E-HB-80-503-REQ-0480]
Data.Encoding

All XML data shall specify the XML version and the adopted encoding convention. E.g.:

<?xml version="1.0" encoding="UTF-8"?>

Description

The XML standard points out that it is recommended to start all XML documents with a declaration which specifies, in particular, the XML version being used and the encoding used to encode the characters. This information is obligatory so that the parsers do not have to hypothesise when reading the XML files.

Example

<?xml version="1.0" encoding="UTF-8"?>

Justification

UTF-8 is recommended, rather than ISO-8859-1 (i.e. Latin-1) even though it is adapted to the French language. Most of the tools are in fact configured in UTF-8 by default. In addition, this encoding is better suited to file exchanges with other international organisations.

[XXXX-E-HB-80-503-REQ-0490]
Data.CharacterSet

The set of characters authorised shall be limited.

Description

The set of characters used in the XML data shall be limited to #x9 | #xA | #xD | [#x20-#xFF] characters, i.e. printable characters (Horizontal Tab, Line Feed, Carriage Return, Space and so forth).

Justification

The security checks ensure that the XML data and their schemas (see Xsd.Syn.CharacterSet) do not include destructive binary codes. This limitation of characters enables more efficient control.

[XXXX-E-HB-80-503-REQ-0500]
Data.CDATA

CDATA is forbidden in XML data.

Description

CDATA is forbidden in XML data (Syntax: <![CDATA[…]]>).

Justification

The security checks ensure that the XML data do not include destructive binary codes. This limitation enables more efficient control.

Remark

An XML schema on its own cannot check for the absence of CDATA in the associated XML data. An external checking mechanism is thus required.

[XXXX-E-HB-80-503-REQ-0510]
Data.Security

Certain notations are forbidden in XML data.

Description

The following notations are also forbidden in XML data:

<!-- … --> (XML comment)

<? … ?> (Processing instruction with a target other than xml)

<!ENTITY … >

<!NOTATION … >

<!DOCTYPE … >

<!ATTLIST … >

<![INCLUDE … >

<![IGNORE … >

Justification

The security checks ensure that the XML data do not include destructive binary codes. This limitation enables more efficient control.

If it is required to insert comments (e.g. for history), it is recommended to add this information as an element (named COMMENT) in the XML data. This means that the COMMENT element is part of the definition of the interface (in specific header or in 'useful' data part).

[XXXX-E-HB-80-503-REQ-0520]
Data.SchemaLocation

The data shall make no hardcoded reference to the schema that validates them.

Description

There must be no attribute xsi:schemaLocation nor xsi:noNamespaceSchemaLocation.

Justification

It cannot be assumed that the location of the schemas (with regard to XML data) will be the same for both the producer and the interface consumer.

Example of what not to do

<CLIMATO_PERIODS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="C:\temp\bea\climato_periods.xsd">

…/…

</CLIMATO_PERIODS>

[XXXX-E-HB-80-503-REQ-0530]
Data.StyleSheet

The data shall not make hardcoded reference to a style sheet.

Description

In the XML data there must be no directive for applying a presentation style sheet (that can be interpreted by a browser).

Justification

It cannot be assumed that the location of the style sheet (with regard to XML data) will be the same for both the interface producer and consumer.

Moreover, the information exchange concerns the datum, not its presentation. The consumer is free to choose a data presentation technique for itself (style sheet, form, etc.).

Example of what not to do

<?xml-stylesheet type="text/xsl" href="printHTML.xsl"?>.

[XXXX-E-HB-80-503-REQ-0540]
Data.Namespace

The data shall not make reference to namespaces (xmlns).

Description

Data shall not make reference to namespaces (xmlns) except when the latter are indispensable (coming from schemas whose elements/attributes are qualified - hma, ohr or gml, etc.). This assumes targetNamespace to be absent in the XML schemas describing the interfaces.

Justification

It is unnecessary to overload XML data with namespaces in the context of exchanges between the components of the same projects (see rule Xsd.Gest.EspaceNom-2).

[XXXX-E-HB-80-503-REQ-0550]
Data.SpaceCharacter

The identifiers defined as character strings with a fixed length shall have no leading and trailing spaces.

Description

The identifiers defined as character strings with a fixed length, must not contain the following characters at either the start or the end: #x9 (tab), #xA (line feed), #xD (carriage return) and #x20 (space).

Justification

These identifiers of fixed length are often used as keys for searches (and are therefore unique within the application). Using space characters reduces the distinguishing nature of the identifier.

Also, certain software deletes leading and trailing space characters located at the start and the end of a string on reading, thereby rendering the value incorrect.

ANNEX A: Definition of the header
For generic interface, the header has the following structure:
 [image: image3.png]() Altova XMLSpy - [A HEADERXSD] o . — ———

D EBR E0IG IRE oo Mok DEd Y BEam FEIEY

Fie Edit Project XML DTD/Schema Schema design XSL/XQuery Authentic Convert View Browser WSDL SOAP Tools Window Help -8x

E =] components ax
E complexType =
Germeroe

[rr——
[SCHEMA_NAME
L T Naref e sone =

[FSCHEMA_VERSION

0L S vemon (o
speched n e verson
b of e s

PRODUCTION_DATE

D 2nd Trma L
Fom

I

[FProDUCER
Encey thar prodces he
e

“ il D

by Type [by Namespace

Encey that makes usa of the Detais

modelsequence
mnoce |1
max0ce |1 =1
i

i v Detais

Facets ax

il)

Facets
XMLSpy v2007 sp2 Registered to USER USER (CNES) ©1998-2007 Altova GmbH. AP NUM SCRL

The element SCHEMA_NAME contents the name of the XML schema defining the structure of the interface. It is defined as:

<xs:element name="SCHEMA_NAME">

<xs:annotation>

<xs:documentation>Name of the XML Schema file, including the extension.</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="ORBIT-EVENTS.XSD"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

The element SCHEMA_VERSION contents the version of the XML schema. It is defined as an XML string as:

<xs:element name="SCHEMA_VERSION" type="xs:string">

<xs:annotation>

<xs:documentation>XML Schema version (also specified in the version attribute of the schema).</xs:documentation>

</xs:annotation>

</xs:element>

NB: The version of the schema is not set by the schema (e.g. a unique enumeration value ‘1.2’) and is instead defined as a character string (xs:string). The interface producer writes its version in the interface and the consumer checks that the version is indeed that which is expected. A difference results in a warning, not an abrupt halt in the reading process (as would be the case if the version was hardcoded).

Other elements (SATELLITE, PRODUCER, CONSUMER and CONFIDENTIALITY items) may have a generic content if used in generic interface definitions. They are defined as character strings. The possible values of theses elements are not known at the time where the generic interfaces are defined. However there are known for a specific mission and must be defined precisely. For that purpose, an attribute is added to generic elements. The attribute refer to an external list of the possible values. This list is specific to the mission and is a way to specialise the header without changing the formal definition of the interface.

The generic elements are defined as for the PRODUCER element:

<xs:element name="PRODUCER" type="AN_ENTITY:AN_ENTITY">

<xs:annotation>

<xs:documentation>Entity that produces the interface.</xs:documentation>

</xs:annotation>

</xs:element>

Where AN_ENTITY is a common type defined as:
<xs:complexType name="AN_ENTITY">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="codeList" type="xs:string" use="required" fixed="ENTITY_CONFIG.XML"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

In that case, ENTITY_CONFIG.XML is an XML file that contents the possible PRODUCERs in xxx context.

In general case (i.e. when not generic), SATELLITE, PRODUCER, CONSUMER and CONFIDENTIALITY items are defined using enumerated types.
�There are more recommendations than rules. Shall we distinguish for each requirement, if it is a rule or a recommendation?

�Could be lower case (not camel case). Must be an agreed common rule.

�To be discussed. Simple description could be located in the documentation part.

�To be discussed according requirement management tool.

�Could be lowerCamelCase.

CNES TOULOUSE (CST): 18 av. E.Belin 31401 TOULOUSE Cedex 9 Tél. 05 61 27 31 31

L:\Documents\Support\ISIS_CSO_SVOM\E-HB-80-503\SV-SY-PG-376-CNES-e1r0.doc - 08/04/15 09:04

[image: image4.jpg][image: image5.jpg]cnes

_1377329089.doc
PAGE

2/1

		RD

		Identification

		Title

		(RD1)

		RNC-CNES-E-40-507

		Règles pour l’élaboration de documents de description d’interface informatiques.

D. Minguillon, 27/06/2002, Ed. 1, Rev. 0

Modèle de document par défaut CNES version 1.7 Août 2008 Document1

Modèle de document par défaut CNES version 1.7 Août 2008 Document1

_1382783815.doc
PAGE

2/1

		AD

		Identification

		Title

		(AD1)

		

		Extensible Markup Language (XML) 1.0 (FifthEdition), W3C Recommendation - 26 November 2008-

(http://www.w3.org/TR/xml/

		(AD2)

		

		XML Schema Part 0: Primer Second Edition, W3C Recommendation - 28 October 2004 - (http://www.w3.org/TR/xmlschema-0/)

		(AD3)

		

		XML Schema Part 1: Structures Second Edition, W3C Recommendation – 28 October 2004 -(http://www.w3.org/TR/xmlschema-1/)

		(AD4)

		

		XML Schema Part 2: Datatypes Second Edition, W3C Recommendation – 28 October 2004 -(http://www.w3.org/TR/xmlschema-2/)

Modèle de document par défaut CNES version 1.7 Août 2008 Document1

Modèle de document par défaut CNES version 1.7 Août 2008 Document1

