[image:]

	independent implementations for Optical On-Off-Keying telemetry Coding and synchronization

DRAFT CCSDS Record
CCSDS 142.1-Y-1
Draft Yellow Book
September 2023

FOREWORD

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This document is therefore subject to CCSDS document management and change control procedures, which are defined in the Procedures Manual for the Consultative Committee for Space Data Systems. Current versions of CCSDS documents are maintained at the CCSDS Web site:
http://www.ccsds.org/
Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.
At time of publication, the active Member and Observer Agencies of the CCSDS were:
Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.
· Canadian Space Agency (CSA)/Canada.
· Centre National d’Etudes Spatiales (CNES)/France.
· China National Space Administration (CNSA)/People’s Republic of China.
· Deutsches Zentrum für Luft- und Raumfahrt (DLR)/Germany.
· European Space Agency (ESA)/Europe.
· Federal Space Agency (FSA)/Russian Federation.
· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
· Japan Aerospace Exploration Agency (JAXA)/Japan.
· National Aeronautics and Space Administration (NASA)/USA.
· UK Space Agency/United Kingdom.
Observer Agencies
· Austrian Space Agency (ASA)/Austria.
· Belgian Federal Science Policy Office (BFSPO)/Belgium.
· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
· China Satellite Launch and Tracking Control General, Beijing Institute of Tracking and Telecommunications Technology (CLTC/BITTT)/China.
· Chinese Academy of Sciences (CAS)/China.
· Chinese Academy of Space Technology (CAST)/China.
· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
· Danish National Space Center (DNSC)/Denmark.
· Departamento de Ciência e Tecnologia Aeroespacial (DCTA)/Brazil.
· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.
· European Telecommunications Satellite Organization (EUTELSAT)/Europe.
· Geo-Informatics and Space Technology Development Agency (GISTDA)/Thailand.
· Hellenic National Space Committee (HNSC)/Greece.
· Indian Space Research Organization (ISRO)/India.
· Institute of Space Research (IKI)/Russian Federation.
· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
· Korea Aerospace Research Institute (KARI)/Korea.
· Ministry of Communications (MOC)/Israel.
· National Institute of Information and Communications Technology (NICT)/Japan.
· National Oceanic and Atmospheric Administration (NOAA)/USA.
· National Space Agency of the Republic of Kazakhstan (NSARK)/Kazakhstan.
· National Space Organization (NSPO)/Chinese Taipei.
· Naval Center for Space Technology (NCST)/USA.
· Scientific and Technological Research Council of Turkey (TUBITAK)/Turkey.
· South African National Space Agency (SANSA)/Republic of South Africa.
· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.
· Swedish Space Corporation (SSC)/Sweden.
· Swiss Space Office (SSO)/Switzerland.
· United States Geological Survey (USGS)/USA.
[bookmark: _Toc118456792][bookmark: _Toc145668647]DOCUMENT CONTROL

	Document
	Title and Issue
	Date
	Status

	CCSDS 142.1-Y-1
	Independent implementations for optical on-off keying telemetry coding and synchronization , Draft CCSDS Record, Issue 1
	September 2023
	Current draft

	
	
	
	

	
	
	
	

[bookmark: _Toc118456793][bookmark: _Toc145668648]CONTENTS
Section	Page
DOCUMENT CONTROL	1-3
CONTENTS	1-4
1	Introduction	1-5
1.1	Purpose	1-5
1.2	Scope	1-5
1.3	Document structure	1-5
1.4	References	1-5
2	Independent implementations of O3K coding and synchronization	2-1
2.1	Overview	2-1
2.2	Implementations	2-2
2.2.1	DLR	2-2
2.2.2	ESA	2-3
2.2.3	CNES	2-3
2.2.4	NASA JPL	2-3
2.3	Interoperability Testing	2-4
2.3.1	Text string at input to coding and synchronization Sublayer	2-4
2.3.2	Generation of an MD5 hash	2-4
2.3.3	O3K-RS Telemetry Signaling test cases and reported results	2-5
2.3.4	O3K-LDPC Telemetry Signaling test cases and reported results	2-1
3	Patent considerations	3-1
ANNEX A Example of generation of a hash	A-1
Generation of hash for test vectors in transmitter blocks	A-1

Table 2‑1: Managed Parameters for O3K-RS	2-1
Table 2‑2: Managed Parameters for O3K-LDPC	2-2
Table 2‑3: Example Input	2-4
Table 2‑4 Parameters for O3K-RS test cases	2-5
Table 2‑5: MD5 hashes for O3K-RS test cases	2-1
Table 2‑6 - Parameters for O3K-LDPC test cases	2-1
Table 2‑7: MD5 hashes for O3K-LDPC test cases	2-1

[bookmark: _Ref118450350][bookmark: _Toc118456794][bookmark: _Toc118456815][bookmark: _Toc145668649]Introduction
[bookmark: _Toc358108439][bookmark: _Toc358533016][bookmark: _Toc358533146][bookmark: _Toc358533661][bookmark: _Toc358533828][bookmark: _Toc358534004][bookmark: _Toc358535601][bookmark: _Toc358606723][bookmark: _Toc379720019][bookmark: _Toc408893848][bookmark: _Toc408893901][bookmark: _Toc408893941][bookmark: _Toc408894210][bookmark: _Toc408894403][bookmark: _Toc408976872][bookmark: _Toc409327042][bookmark: _Toc409433604][bookmark: _Toc409509609][bookmark: _Toc409586878][bookmark: _Toc409593327][bookmark: _Toc409840089][bookmark: _Toc409856235][bookmark: _Toc409929471][bookmark: _Toc409930261][bookmark: _Toc410192913][bookmark: _Toc410811087][bookmark: _Toc411665696][bookmark: _Toc411738499][bookmark: _Toc411741279][bookmark: _Toc426533033][bookmark: _Toc448193419][bookmark: _Toc526154910][bookmark: _Toc1417919][bookmark: _Toc118456795][bookmark: _Toc118456816][bookmark: _Toc145668650][bookmark: _Ref138744327][bookmark: _Toc138744508]Purpose
This document is a record of four independent implementations of the optical on-off keying (O3K) telemetry coding and synchronization for optical communications proposed in CCSDS 142.0-P-2, “Optical Communications Coding and Synchronization” [1]. Changes to the Pink Sheet are possible during the final Agency Review, which will take place sometime after November 2022. In order to complete the standardization process, document CCSDS A02.1-Y-4, “Restructured Organization and Processes for the Consultative Committee for Space Data Systems” [2] requires that “at least two independent and interoperable prototypes or implementations must have been developed and demonstrated in an operationally relevant environment, either real or simulated. … The WG Chair is responsible for documenting the specific implementations that qualify the specification for CCSDS Recommended Standard status, along with reports relevant to their testing.” This document serves that purpose.
Document CCSDS A02.1-Y-4 [2] also requires, “If patented or otherwise controlled technology is required for the separate implementations, they each must also have resulted from separate exercise of the licensing process.” No patents of concern have been identified. Implementers are cautioned that there are many patents filed on the general topics of channel coding and synchronization, including those related to LDPC codes and LDPC decoders.
[bookmark: _Toc358108440][bookmark: _Toc358533017][bookmark: _Toc358533147][bookmark: _Toc358533662][bookmark: _Toc358533829][bookmark: _Toc358534005][bookmark: _Toc358535602][bookmark: _Toc358606724][bookmark: _Toc379720020][bookmark: _Toc408893849][bookmark: _Toc408893902][bookmark: _Toc408893942][bookmark: _Toc408894211][bookmark: _Toc408894404][bookmark: _Toc408976873][bookmark: _Toc409327043][bookmark: _Toc409433605][bookmark: _Toc409509610][bookmark: _Toc409586879][bookmark: _Toc409593328][bookmark: _Toc409840090][bookmark: _Toc409856236][bookmark: _Toc409929472][bookmark: _Toc409930262][bookmark: _Toc410192914][bookmark: _Toc410811088][bookmark: _Toc411665697][bookmark: _Toc411738500][bookmark: _Toc411741280][bookmark: _Toc426533034][bookmark: _Toc448193420][bookmark: _Toc473605662][bookmark: _Toc474649071][bookmark: _Toc478375599][bookmark: _Toc526154911][bookmark: _Toc1417920][bookmark: _Toc118456796][bookmark: _Toc118456817][bookmark: _Toc145668651]Scope
This document is not a part of any CCSDS Recommended Standard.
[bookmark: _Toc118456797][bookmark: _Toc118456818][bookmark: _Toc145668652]Document structure
This document is divided into three parts. Section 1 (this section) presents purpose, scope, and document structure. Section 2 documents four independent implementations of the optical communications coding and synchronization tests for interoperation. Section 3 contains a note about patented technology.
[bookmark: _Toc118456798][bookmark: _Toc118456819][bookmark: _Toc145668653]References
The following publications are referenced in this document. At the time of publication, the editions indicated were valid. All publications are subject to revision, and users of this document are encouraged to investigate the possibility of applying the most recent editions of the publications indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS publications.

[1] [bookmark: _Ref132803626]Optical Communications Coding and Synchronization, CCSDS 142.0-P-2, Pink Sheet, Washington, D.C., July 2022.
[2] [bookmark: _Ref132803640]Restructured Organization and Processes for the Consultative Committee for Space Data Systems, CCSDS A02.1-Y-4, Yellow Book, Washington, D.C., April 2014.
[3] [bookmark: _Ref145666697]TM Synchronization and Channel Coding, CCSDS Recommended Standard 131.0-B-4, Blue Book, Washington, D.C., April 2022.
[4] [bookmark: _Ref145667166]TM Synchronization and Channel Coding – Independent Implementation for the Selected LDPC Codes, CCSDS xxx.0-Y-1, Yellow Book, April 2011.

INDEPENDENT IMPLEMENTATIONS FOR OPTICAL ON-OFF KEYING TELEMETRY CODING AND SYNCHRONIZATION

CCSDS 142.0-Y-1	Page ii	June 2023
[bookmark: _Ref118450364][bookmark: _Toc118456799][bookmark: _Toc118456820][bookmark: _Toc145668654]Independent implementations of O3K coding and synchronization
[bookmark: _Toc1417923][bookmark: _Toc118456800][bookmark: _Toc118456821][bookmark: _Toc145668655]Overview
The proposed standard 142.0-P-2 [1] can be thought of as specifying a mathematical function with an input and an output: when provided with a set of CCSDS transfer frames produced by the Data Link Protocol Sublayer, the standard specifies the binary vector to be provided to the Physical Layer. The ‘ones’ and ‘zeroes’ of the binary vector indicate the slots that are to be pulsed and non-pulsed, respectively, in the optical transmission.
As noted in the proposed standard, compliance with the standard requires only that the proper output of the mathematical function is computed, and not that the individual algorithmic sub-steps are explicitly followed as described in the standard. This simplifies prototype testing into a verification of the input-output relationship of the prototype.
Because of the long length of the output binary vector, it is not feasible to report explicitly the output vectors in this document. Instead, the MD5 hash of the output is reported.
The proposed standard for optical on-off keying (O3K) telemetry signaling uses two sets of managed parameters, depending on the chosen forward error correction (FEC) coding scheme. The following managed parameters are used when the Reed-Solomon (RS) coding is used:
[bookmark: _Toc103552803][bookmark: _Toc118457277][bookmark: _Toc118457317][bookmark: _Toc145668669]Table 2‑1: Managed Parameters for O3K-RS
	[bookmark: _Hlk89082164]Managed Parameter
	Allowed Values

	TM/AOS/USLP transfer frame length (octets)
	Integer (max 65536)

	Symbol Interleaving Depth (I)
	1, 2, 3, 4, 5, 8

	Repeat factor list (RFs)
	, with and , with

	Interleaver block size K
	Multiple of 8 and factor of L

	Nominal number of interleaver rows
	Integer in the range 1 to (-1)

	Number of rows in the interleaver N
	 ;

	Transfer frame adaptation
	Used, not used

	IFS field (counter)
	Used, not used

	Number of blocks in a Sync Layer Sub Frame,

	Integer, NL=1 to N
Factor of , ∈ ℕ

The synchronization and channel coding parameters for O3K with low-density parity-check (LDPC) coding are handled both by management and by an inline communications protocol. The managed parameters for the O3K-LDPC telemetry signaling shall be those specified in the table below.
[bookmark: _Ref106978436][bookmark: _Ref63397157][bookmark: _Toc103552804][bookmark: _Toc118457278][bookmark: _Toc118457318][bookmark: _Toc145668670]Table 2‑2: Managed Parameters for O3K-LDPC
	Managed Parameter
	Allowed Values

	TM/AOS/USLP transfer frame length (octets)
	Integer (max 65536)

	The number of blocks of length 30720 within a Sync Layer Sub Frame, NL
	Integer, NL=1 to N

∈ ℕ

	Number of rows of the emitter configuration table NModeTable
	Integer, 1 to 62

	Emitter configuration Mode table (as defined in [1], section 4.8.2.6.4)
	· Mode ID
· Description: text
· Code rate, r  {1/2, 9/10}
· Repeat factor SF  {1, 2, 4, 8, 16}
· Number of rows in the interleaver N: Integer from 1 to 218
· Interleaver block size K  {64, 128, 256, 512, 1024}

	Transfer frame adaptation
	Used, not used

Implementations are listed in Section 2.2. Tests to demonstrate interoperability of independent implementations are reported in Section 2.3.

[bookmark: _Toc1417924][bookmark: _Ref118448970][bookmark: _Toc118456801][bookmark: _Toc118456822][bookmark: _Toc145668656]Implementations
Implementations are listed below.
[bookmark: _Toc118456802][bookmark: _Toc118456823][bookmark: _Toc145668657]DLR
DLR implemented the prototype for the Pink Sheet for O3K telemetry link – “Optical Communications Coding and Synchronization” [1] in software using MATLAB Simulink tool. All functional blocks described in the standard for the RS FEC coding option are supported. All modes of O3K telemetry signaling have been tested and verified for compliance as described in Section 2.3.

[bookmark: _Toc118456803][bookmark: _Toc118456824][bookmark: _Toc145668658]ESA

In the scope of the ESA Contract no. 4000135160/21/NL/GLC/mkn, “Simulator based validation of CCSDS Optical On Off Keying Coding Layer,” Politecnico di Torino implemented in software the signal processing as defined in the “Optical Communications Coding and Synchronization” Pink Sheet for the O3K telemetry link [1]. All functional blocks described in the standard, from the CCSDS transfer frame to the mapped binary vector indicating the pulsed slots, are implemented. Both FEC coding options (RS and LDPC) are supported. All modes of O3K telemetry signaling have been tested and verified for compliance as described in Section 2.3.
The implementation was done in MATLAB and it also includes the channel and the receiver. Fading time series may be loaded as part of the channel class, which includes other impairments such as additive white Gaussian noise, shot noise, and timing drift. Channel estimation, frame detection, and timing synchronization algorithms are implemented in the receiver class, while the LDPC decoder is implemented in C++ and incorporated via a MEX file.
[bookmark: _Toc118456804][bookmark: _Toc118456825][bookmark: _Toc145668659]CNES
Airbus Defence and Space Toulouse implemented for CNES the prototype for the Pink Sheet for O3K telemetry link – “Optical Communications Coding and Synchronization” [1] in software using MATLAB tool. All functional blocks described in the standard for the LDPC FEC coding option are supported. All modes of O3K telemetry signaling have been tested and verified for compliance as described in Section 2.3.
[bookmark: _Toc118456805][bookmark: _Toc118456826][bookmark: _Toc145668660]NASA JPL
All functional blocks described in the Pink Sheets for the proposed O3K standard [1] and pertaining to the LDPC option, from the CCSDS transfer frame to the mapped binary vector indicating the pulsed slots corresponding to bits to be 1, are implemented. Only the FEC coding option LDPC is supported. All modes of O3K telemetry signaling for LDPC code option have been tested and verified for compliance as described in Section 2.3.
The implementation of the transmitter chain was done in MATLAB on MacOS. Separate softwares are also implemented in both Matlab and Simulink to verify the performance of O3K telemetry signaling for LDPC code option. The software included the channel with and without fading and the receiver using an Avalanche Photo Detector model (APD) using parametrs agreed by all the participating agencies in the optical working group. The timing synchronization algorithms are also implemented in the receiver. The LDPC decoder is implemented in MATLAB and Simulink.
[bookmark: _Hlk127867240]All MD5 hash of the output test vectors are in complete agreement with those generated independently by ESA and CNES for all cases in Table 2‑7.
Although compliance with the standard requires only that the proper output of the mathematical function to be computed and an output hash per case to be reported, ANNEX A provides the hash for intermidate blocks for the case ID#1 in Table 2‑6 which could be the representative of other ID# cases excluding ID#12 and ID#19. The length of output test vectors in bytes and corresponding MD5 hash are provided in Table 2‑7.
[bookmark: _Ref446770442][bookmark: _Toc1417925][bookmark: _Toc118456806][bookmark: _Toc118456827][bookmark: _Toc145668661]Interoperability Testing
Just as an error correcting code will correct errors introduced by channel noise, it will also correct some implementation errors in the encoding operation. Hence, testing that encoded data can be properly decoded is not sufficient to validate that the encoding has been done properly. Instead, we test interoperability by providing identical inputs to independent implementations of the sending end, and verifying that their outputs exactly match, symbol by symbol. Implementers are free to build their receiving equipment in any way they choose, particularly with respect to decoding algorithms, and detection algorithms for the synchronization markers. Good implementations will have similar performance in a statistical sense, but individual results may vary.
[bookmark: _Toc118456807][bookmark: _Toc118456828][bookmark: _Toc145668662]Text string at input to coding and synchronization Sublayer
At the sending end, the Coding and Synchronization sublayer accepts Transfer Frames as input. While not consistent with what might be produced by the Data Link Protocol Sublayer, we use the 57-character (456 bit) ASCII text string, “Optical Communications Synchronization and Channel Coding”. This input is listed in hexadecimal in Table 2‑3; it is converted to a binary string by taking the hexadecimal octets in order, Most Significant Bit (MSB) first within each octet. The 456-bit string is repeated 1000 times to generate a sample Transfer Frame. In order to completely fill the memory of the channel interleaver described in Section 4.4 in [1], as many identical sample Transfer Frames as needed are generated, where their number depends on the transmit parameters reported in Sections 2.3.3 and 2.3.4. If the last replica of the 456-bit string exceeds the required length, it is truncated. The resulting bit string used as input sequence to the coding and synchronization layer. This input is used to test the telemetry signaling for both O3K-RS and O3K-LDPC.
[bookmark: _Ref118455272][bookmark: _Toc118457279][bookmark: _Toc118457319][bookmark: _Toc145668671]Table 2‑3: Example Input
4f 70 74 69 63 61 6c 20 43 6f 6d 6d 75 6e 69 63
61 74 69 6f 6e 73 20 53 79 6e 63 68 72 6f 6e 69
7a 61 74 69 6f 6e 20 61 6e 64 20 43 68 61 6e 6e
[bookmark: _Ref446757737]65 6c 20 43 6f 64 69 6e 67

[bookmark: _Toc118456808][bookmark: _Toc118456829][bookmark: _Toc145668663]Generation of an MD5 hash
Using the input described above, the Transfer Frame is processed as described in Section 4 in [1]. The MD5 hash is computed on either the sync layer frame or the IDLE frame, which are stored in an ASCII file which contains a sequence of ASCII "0"s and ASCII "1"s indicating the pulsed slots. The sequence of ASCII "0"s and ASCII "1"s is stored in the file as either a row or column vector. An example for the hash generation is provided in ANNEX A.

[bookmark: _Ref118453637][bookmark: _Toc118456809][bookmark: _Toc118456830][bookmark: _Toc145668664]O3K-RS Telemetry Signaling test cases and reported results
The following cases were tested, and MD5 hashes recorded. The DLR and ESA implementations recorded the same MD5 hashes in all the O3K-RS test cases.

[bookmark: _Toc145668672]Table 2‑4 Parameters for O3K-RS test cases
	#ID
	Symbol Interl. Depth
	Repeat factor
	Interl. block size
	Nominal number of interleaver rows NN
	Number of rows in the interl.
	Transfer frame adap.
	Number of subframes
	Number of blocks
	counter

	1
	1
	2^0
	8
	1024
	1024
	yes
	2
	512
	yes

	2
	2
	2^0
	8
	1024
	1024
	yes
	2
	512
	yes

	3
	3
	2^0
	8
	1024
	1024
	yes
	2
	512
	yes

	4
	4
	2^0
	8
	1024
	1024
	yes
	2
	512
	yes

	5
	5
	2^0
	8
	1024
	1024
	yes
	2
	512
	yes

	6
	8
	2^0
	8
	1024
	1024
	yes
	2
	512
	yes

	7
	3
	2^0
	24
	1024
	1024
	yes
	2
	512
	yes

	8
	3
	2^0
	40
	1024
	1024
	yes
	2
	512
	yes

	9
	3
	2^0
	72
	1024
	1024
	yes
	2
	512
	yes

	10
	3
	2^0
	120
	1024
	1024
	yes
	2
	512
	yes

	11
	3
	2^0
	136
	1024
	1024
	yes
	2
	512
	yes

	12
	3
	2^0
	360
	1024
	1024
	yes
	2
	512
	yes

	13
	3
	2^0
	408
	1024
	1024
	yes
	2
	512
	yes

	14
	3
	2^0
	680
	1024
	1024
	yes
	2
	512
	yes

	15
	3
	2^0
	1224
	1024
	1024
	yes
	2
	512
	yes

	16
	3
	2^0
	2040
	1024
	1024
	yes
	2
	512
	yes

	17
	2
	2^1
	8
	1024
	1024
	yes
	2
	512
	yes

	18
	2
	2^1
	8
	1024
	512
	yes
	2
	256
	yes

	19
	2
	2^2
	8
	1024
	256
	yes
	2
	128
	yes

	20
	2
	2^3
	8
	1024
	128
	yes
	2
	64
	yes

	21
	2
	2^4
	8
	1024
	64
	yes
	2
	32
	yes

	22
	2
	2^5
	8
	1024
	32
	yes
	2
	16
	yes

	23
	2
	2^6
	8
	1024
	16
	yes
	2
	8
	yes

	24
	2
	2^7
	8
	1024
	8
	yes
	2
	4
	yes

	25
	2
	2^8
	8
	1024
	4
	yes
	2
	2
	yes

	26
	2
	2^9
	8
	1024
	2
	yes
	2
	1
	yes

	27
	2
	2^10
	8
	2048
	2
	yes
	2
	1
	yes

	28
	2
	2^11
	8
	4096
	2
	yes
	2
	1
	yes

	29
	2
	2^12
	8
	8192
	2
	yes
	2
	1
	yes

	30
	2
	2^13
	8
	16384
	2
	yes
	2
	1
	yes

	31
	2
	2^0
	8
	1024
	1024
	no
	2
	512
	yes

	32
	8
	2^13
	8
	1
	1
	yes
	1
	1
	no

	33
	8
	2^3
	8
	1
	1
	no
	1
	1
	no

	34
	8
	2^0
	8
	1
	1
	no
	1
	1
	no

	35
	1
	2^0
	8
	1
	1
	no
	1
	1
	no

	36
	1
	2^3
	8
	1
	1
	no
	1
	1
	no

	37
	1
	2^13
	8
	1
	1
	no
	1
	1
	no

[bookmark: _Toc118457280][bookmark: _Toc118457320][bookmark: _Toc145668673]Table 2‑5: MD5 hashes for O3K-RS test cases
	#ID
	hash - input before TF adaptation
	hash - output
	Length of the binary test vectors (bytes) - input before TF adaptation
	Length of the binary test vectors (bytes) - output

	1
	f979d3500611889c90bf6ebad9f10f2d
	48eed6b6eab3b446ee31b68a4a9278d1
	228332
	261134

	2
	10d80fffd9b4d6251e721fb7b7a01f25
	12de136491b7c5e0888efd262d8409e5
	456668
	522254

	3
	6f8eed50e57517821519398cb5fb9a25
	5ec668064e41c607e1c87568d6c622b6
	685004
	783374

	4
	36763be0a0e4a7e51491d3a4360308ea
	cb72458550f69cc0aea85e9963689e66
	913340
	1044494

	5
	36321e5b3605f7db2646d0d8c3f4167d
	145c58434cc40f08e3f7553488ae04d5
	1141676
	1305614

	6
	faef65b87fd350db4780992a464ebf3d
	48a8c6319543d0c9126c6b7451b12d76
	1826684
	2088974

	7
	6f8eed50e57517821519398cb5fb9a25
	ee7de57ceae2579b69ef7c8ed0f1f4cd
	685004
	783374

	8
	6f8eed50e57517821519398cb5fb9a25
	ef86abdeb3b08757c15ad8fb535badb7
	685004
	783374

	9
	6f8eed50e57517821519398cb5fb9a25
	a3dd3fad062985f5bffb599fc8751131
	685004
	783374

	10
	6f8eed50e57517821519398cb5fb9a25
	b6022c54a11dcd8e090ec1a5ec382810
	685004
	783374

	11
	6f8eed50e57517821519398cb5fb9a25
	ca2ced7334318afff9ce1fe36a50b5a5
	685004
	783374

	12
	6f8eed50e57517821519398cb5fb9a25
	d0c3f2d3bca16743ef55e2cfabc53852
	685004
	783374

	13
	6f8eed50e57517821519398cb5fb9a25
	4c145415ad9a1d7cf6c8802e1b82c7fa
	685004
	783374

	14
	6f8eed50e57517821519398cb5fb9a25
	061ed53b68c7565d8886df192d9ef77f
	685004
	783374

	15
	6f8eed50e57517821519398cb5fb9a25
	b726ff201fbabeba6b2fb44b4f505507
	685004
	783374

	16
	6f8eed50e57517821519398cb5fb9a25
	8474aebb7c585633851816c270f54b3c
	685004
	783374

	17
	10d80fffd9b4d6251e721fb7b7a01f25
	255b886341cd4c26787a09a933cd5185
	456668
	1044508

	18
	f979d3500611889c90bf6ebad9f10f2d
	94628041e4b9cf5d8b1f7b805d289cb6
	228332
	522268

	19
	0838965df63441fa018623dd1f95caaf
	fe7e851c994f02e423ea8be271b8ef2d
	114164
	522296

	20
	895f0dba16f01f3fb01b24dd9075aa48
	9ba692fd692156bb41b7dfeee0d83544
	57080
	522352

	21
	bbdddc545dac8418753818ced1211c4c
	ba3bf6b37dc82aa6d44ad19fc61b4bf1
	28540
	522464

	22
	9ff8c354c616980c7568cae1a07df137
	bd80580e078a3f713ec964295c6df8fd
	14268
	522688

	23
	c9bc4e316aa9cd1c6c386ba098ab2ba3
	e876b77c14ac99176c0da5152912b68c
	7132
	523136

	24
	56cb207e00cc669681dcb4fa87e54cc2
	e2028d3500d0f0fcbf2cd672a2f448f5
	3564
	524032

	25
	370472b858ef32ea7df86c43fb366058
	0d8d7bfff60c83705745361a9e19745e
	1780
	525824

	26
	bbd545bbc2aab9ed920f7c96456dcd16
	f27b296055b3434389d2e6062c2c9229
	888
	529408

	27
	bbd545bbc2aab9ed920f7c96456dcd16
	6be48cbe46266cb918f0fcaabec3d2b1
	888
	1058816

	28
	bbd545bbc2aab9ed920f7c96456dcd16
	35e2fdee97f165b1260f0d280fca4b15
	888
	2117632

	29
	bbd545bbc2aab9ed920f7c96456dcd16
	59f03e5ed7cafc91cc103347e27925d1
	888
	4235264

	30
	bbd545bbc2aab9ed920f7c96456dcd16
	5c69c1636e5656b0ddd71b7b97cc6ff5
	888
	8470528

	31
	41dbe591b26de973a577a5dbbc946c8d
	2c9eb43f47ce2bea632eb8d15046f337
	456704
	522254

	32
	370472b858ef32ea7df86c43fb366058
	8c8cadc730e738ca9ae1e6527555eb8a
	1780
	16744448

	33
	1d1ed8c7c6d4b069ad1d34fd01573539
	55729a4b138f200ba05626eadcce18fe
	1784
	16352

	34
	1d1ed8c7c6d4b069ad1d34fd01573539
	a0cc35081609201aaabc1f00a8eb8fd4
	1784
	2044

	35
	2f924ea0e366c95d3d50da7c3a3eb5de
	6acc63e57356882f58adae8575480986
	223
	259

	36
	2f924ea0e366c95d3d50da7c3a3eb5de
	4d9dba5683a86f2b746e7a6f5c631502
	223
	2072

	37
	2f924ea0e366c95d3d50da7c3a3eb5de
	f93a6161f80f9f278b0a4d1f36643f46
	223
	2121728

[bookmark: _Ref118453639][bookmark: _Toc118456810][bookmark: _Toc118456831][bookmark: _Toc145668665]O3K-LDPC Telemetry Signaling test cases and reported results
The following cases were tested, and MD5 hashes recorded. The CNES, ESA, and NASA implementations recorded the same MD5 hashes in all the O3K-LDPC test cases.

[bookmark: _Ref127867104][bookmark: _Ref127867097][bookmark: _Toc145668674]Table 2‑6 - Parameters for O3K-LDPC test cases
	#ID
	Number of blocks
	Interl. block size
	Code rate,
	Repeat factor SF
	Number of interl. rows
	Mode ID
	Gold seq. initial condition for IBS
	Transfer frame adap.
	Number of subframes

	1
	16
	64
	1/2
	1
	1024
	0
	8
	yes
	64

	2
	16
	128
	1/2
	1
	1024
	1
	10
	yes
	64

	3
	16
	256
	1/2
	1
	1024
	2
	12
	yes
	64

	4
	16
	512
	1/2
	1
	1024
	3
	14
	yes
	64

	5
	16
	1024
	1/2
	1
	1024
	4
	16
	yes
	64

	6
	16
	128
	1/2
	2
	1024
	5
	18
	yes
	128

	7
	16
	128
	1/2
	4
	1024
	6
	20
	yes
	256

	8
	16
	128
	1/2
	8
	1024
	7
	22
	yes
	512

	9
	16
	128
	1/2
	16
	1024
	8
	24
	yes
	1024

	10
	16
	128
	9/10
	1
	1024
	9
	26
	yes
	64

	11
	1
	128
	1/2
	1
	1024
	10
	28
	yes
	1024

	12
	1024
	128
	1/2
	1
	1024
	11
	30
	yes
	1

	13
	16
	128
	1/2
	1
	1024
	12
	32
	no
	64

	14
	16
	128
	1/2
	1
	16384
	13
	34
	yes
	1024

	15
	16
	64
	1/2
	1
	32768
	14
	36
	yes
	2048

	16
	16
	128
	9/10
	16
	1024
	15
	38
	yes
	1024

	17
	16
	128
	9/10
	1
	16384
	16
	40
	yes
	1024

	18
	16
	64
	9/10
	1
	32768
	17
	42
	yes
	2048

	19
	16
	N/A
	N/A
	1
	N/A
	N/A
	4
	N/A
	N/A

[bookmark: _Ref120542961][bookmark: _Toc118457281][bookmark: _Toc118457321][bookmark: _Ref120542530][bookmark: _Ref120542956][bookmark: _Toc145668675]Table 2‑7: MD5 hashes for O3K-LDPC test cases
	#ID
	hash - input before TF adaptation
	hash - output
	Length of the binary test vectors (bytes) - input before TF adaptation
	Length of the binary test vectors (bytes) - output

	1
	774c1d311f9b9cd4a998d2b83b6d868e
	93acde0df7ffad71d3c8e015ff785f21
	1965940
	3981312

	2
	774c1d311f9b9cd4a998d2b83b6d868e
	44295db1e0a40606ae0fa2f7b600a165
	1965940
	3981312

	3
	774c1d311f9b9cd4a998d2b83b6d868e
	a0e84b43bab695e063760d471b56b5e6
	1965940
	3981312

	4
	774c1d311f9b9cd4a998d2b83b6d868e
	051542a728115a7156518d945249ab18
	1965940
	3981312

	5
	774c1d311f9b9cd4a998d2b83b6d868e
	fcf8d46da3be74b9f43090d0760998f4
	1965940
	3981312

	6
	774c1d311f9b9cd4a998d2b83b6d868e
	4f90ff342dd83078667fb5121d235ac4
	1965940
	7962624

	7
	774c1d311f9b9cd4a998d2b83b6d868e
	a40db53645620e299fef9f54765e48d2
	1965940
	15925248

	8
	774c1d311f9b9cd4a998d2b83b6d868e
	4829bdb0d52e76875d82272d6b6cb192
	1965940
	31850496

	9
	774c1d311f9b9cd4a998d2b83b6d868e
	0bc057f95acb41702132a01033c4ed66
	1965940
	63700992

	10
	587a7556af41c4616acfe5e00adf8323
	65ce092d58b4456e86a0b8f18f600020
	3538692
	3981312

	11
	774c1d311f9b9cd4a998d2b83b6d868e
	0b7e1027ea7bf1fbc55c8e05ef86064c
	1965940
	4718592

	12
	774c1d311f9b9cd4a998d2b83b6d868e
	3c845dd66e2b2f307a3fc49b62de8496
	1965940
	3932928

	13
	908e095ddf70b4a8cef34a01f0edbc90
	89dd50b8b04b8fd8c4a03dead1efeacd
	1966080
	3981312

	14
	40ace465a4be717ec73d477243c774b9
	63ddd6824e349e6b8059a2528110ea92
	31455072
	63700992

	15
	5681f8fe2c30d843cb764b39d436b4df
	d90e3152363c4c9e77531fd304d46d54
	62910144
	127401984

	16
	587a7556af41c4616acfe5e00adf8323
	86cf0feac29779bf7d25c7ce787a70ad
	3538692
	63700992

	17
	78f544ae8267fcca1c3de9ca5ee50f2d
	3be697a6d2b615f2936fa53125e6e8e1
	56619128
	63700992

	18
	54a7c9a36bd88836875a67bbef5e37c8
	f3eefe8e2c1de1864d0e94be6fefb882
	113238260
	127401984

	19
	N/A
	7622bbc4321bcb16a3f12b21e81a318d
	N/A
	62208

[bookmark: _Ref118450376][bookmark: _Toc118456811][bookmark: _Toc118456832][bookmark: _Toc145668666]Patent considerations

The CCSDS draws attention to the fact that it is claimed that compliance with this document may involve the use of patents concerning Low-Density Parity-Check Coding. The CCSDS takes no position concerning the evidence, validity, and scope of these patent rights. The holders of these patent rights have assured the CCSDS that they are willing to negotiate licenses under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statements of the holders of these patent rights are registered with CCSDS. Information can be obtained from the CCSDS Secretariat at the address indicated on page i. Contact information for the holders of these patent rights is provided below.

Potential user agencies should direct their requests for licenses to:

Office of Technology Transfer
California Institute of Technology
1200 E. California Blvd., Mail Code 210-85
Pasadena, CA 91125
Tel: +1 626 395 3822, +1 626 577 2528
E-mail: Vieregg@Caltech.edu

The LDPC codes used in this document were developed by Airbus Defence and Space. For the LDPC 9/10-rate code, one patent was identified:
· US Patent 7,343,539, “ARA Type Protograph Codes”, issued March 11th, 2008.

This patent was already used for the AR4JA LDPC in [3]. Caltech provided to the CCSDS a letter from the Office of Technology Transfer at Caltech that grants free use of these patents for scientific space applications [4]. Considering that the LDPC 9/10-rate code of O3K and the LDPC of [3] cover the same usage, the same patent considerations are applied.

There are dozens, probably hundreds, of patents filed on the general topics of LDPC codes and LDPC decoders. In this environment, it is difficult to know what is covered and what is not. However, many companies have successfully implemented commercial products including LDPC encoders and decoders.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. The CCSDS shall not be held responsible for identifying any or all such patent rights.

[bookmark: _Ref127867069][bookmark: _Toc145668667]

Example of generation of a hash

The script below provides an example computation of the MD5 hash for the 456-bit string, saved as a binary file, obtained in MATLAB running on a Windows PC. The resulting hash is also reported below.
 hex='0x4f70746963616c20436f6d6d756e69636174696f6e732053796e6368726f6e697a6174696f6e20616e64204368616e6e656c20436f64696e67';
b=hex2poly(hex);
filename = 'messagev.bin';
fileID = fopen(filename, 'w');
fwrite(fileID, b', 'ubit1', 0, 'b');
fclose(fileID);
unix('certutil -hashfile messagev.bin MD5');
MD5 hash of messagev.bin: 48a192e4095eb094f7ad03abb85766d1

For MATLAB running on a Linux PC, the following line should replace the last line in the script above:
unix('MD5 messagev.bin');
Any software or platform can be used to generate the binary file. The MD5 hash can be generated using the following command:
· certutil -hashfile messagev.bin MD5 on Windows machines;
· [bookmark: _Ref120541424]md5sum messagev.bin on Linux machines.

[bookmark: _Toc145668668]Generation of hash for test vectors in transmitter blocks

% For #ID=1 to generate O3K test vector and MD5 check sum using
% MATLAB on Mac (for hash on Windows use
% unix('certutil -hashfile messagev.bin MD5'); and for hash on Linux use
% md5sum messagev.bin as mentioned above)
% All lines and numerical values are based on O3K standard
% Only the MATLAB functions in public domain are provided here.
% The user should implement their own function for the encoder.
% The interleaver and the randomizer as defined in O3K standard are provided in
% Matlab.
% The Gold code to generate the required synchronization sequences for the
% given initial conditions specified in the O3K standard is provided in
% Matlab.

% For ID=1, LDPC case use code-rate=1/2
code_rate=0.5; % code-rate
L=30720; % codeword length
PP=2560; % punctured nodes length at start of message
LP=L+PP; % codeword length pluse punctured nodes length
K_m=15360; % message length k (here notation K_m is used)
N=1024; %Interleaver depth is also the number of codewords to be
 % written in the interleaver. The interleaver size in bits is N*L
K=64; % for interleaving after writing to rows K bits are read from each row
LK=L/K; % L/K
SF=1; % number of repetition of interleaving frame bits
N_SF=64; % number of subframes
N_L=SF*N/N_SF; % subframe size N_L, which in this case N_L=16
numcodewords=N; % number of codewords is the same as N the interleaving depth
NK=N*K_m; % total N message size, N messages of total length NK=N*K_m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NReplicasPerTF = 1000;
Max_TF = 65536; % bytes
encoder_input_blocklength=K_m;
ndata = N*encoder_input_blocklength;
TF_Adaptation=1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%generating input message for LDPC using repeated HPE message of length 456 bits
 hex='0x4f70746963616c20436f6d6d756e69636174696f6e732053796e6368726f6e697a6174696f6e20616e64204368616e6e656c20436f64696e67';
%convert to binary row vector
 bb=hex2poly(hex);
 xxdata_temp = repmat(bb,1,NReplicasPerTF); %% 1 TF
 length_TF = length(xxdata_temp)/8; % in bytes
 if (length_TF <= 0 || length_TF > Max_TF)
 fprintf('Main: TF length (%d) must be in range [1,65536]\n',length_TF);
 return
 end
 % compute number of required TFs
 Nrep = ceil(ndata/(456*NReplicasPerTF+32*TF_Adaptation));
 ndata_beforeTFA = ndata - 32*TF_Adaptation*Nrep;
 if(TF_Adaptation)
 ASM=[0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1];
 ASM_bin=ASM;
 xxdata_temp2 = [ASM_bin xxdata_temp];
 else
 xxdata_temp2 = xxdata_temp;
 end
 Input_actual_temp = repmat(xxdata_temp,1,Nrep);
 Input_actual = Input_actual_temp(1:ndata_beforeTFA);
 L_input = ndata_beforeTFA/8; % in bytes

 xxdata=repmat(xxdata_temp2,1,Nrep);
 xdata = (xxdata(1,1:ndata))';
 Input_block = int8(xdata)'; %%%% for hash

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
filename = 'messagev_ID1.bin';
fileID = fopen(filename, 'w');
fwrite(fileID, Input_actual, 'ubit1', 0, 'b');
fclose(fileID);
% Check the size of the written vector
disp(['The written input vector before TF adapt is ' num2str(dir(filename).bytes) ' bytes long.'])
% computing the hash
unix('MD5 messagev_ID1.bin');
% For the ID=1 user should get
% The written input vector before TF adapt is 1965940 bytes long.
% MD5 (messagev_ID1.bin) = 774c1d311f9b9cd4a998d2b83b6d868e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Generating N codewords and puncturing. encoder requires
% H martixis based on description in CCSDS blue book
codewords=encoder(code_rate,xdata,L,K_m,PP,LP,numcodewords);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
filename = 'codewords_ID1.bin';
fileID = fopen(filename, 'w');
fwrite(fileID, codewords, 'ubit1', 0, 'b');
fclose(fileID);
% Check the size of the written vector
disp(['The written codewords is ' num2str(dir(filename).bytes) ' bytes long.'])
% computing the hash
unix('MD5 codewords_ID1.bin');
% For the ID=1 user should get
% The written codewords is 3932160 bytes long.
% MD5 (codewords_ID1.bin) = 7a8b0f94881ac3f97752ea7054868dc0
%%
% interleaver of size N*L using K based on description in CCSDS blue book
 interleaved_codewords=interleaver(codewords,K,LK,L,N);
%%
filename = 'interleaved_codewords_ID1.bin';
fileID = fopen(filename, 'w');
fwrite(fileID, interleaved_codewords, 'ubit1', 0, 'b');
fclose(fileID);
% Check the size of the written vector
disp(['The written interleaved_codewords is ' num2str(dir(filename).bytes) ' bytes long.'])
% computing the hash
unix('MD5 interleaved_codewords_ID1.bin');
% For the ID=1 user should get
% The written interleaved_codewords is 3932160 bytes long.
% MD5 (interleaved_codewords_ID1.bin) = e0d7b9a2a4a35b9c3635e9278c0ea44f
%%%
% repeat bits SF times
 repeated_interleaved_codewords=repelem(interleaved_codewords,SF,1);
%%
filename = 'repeated_interleaved_codewords_ID1.bin';
fileID = fopen(filename, 'w');
fwrite(fileID, repeated_interleaved_codewords, 'ubit1', 0, 'b');
fclose(fileID);
% Check the size of the written vector
disp(['The written repeated_interleaved_codewords is ' num2str(dir(filename).bytes) ' bytes long.'])
% computing the hash
unix('MD5 repeated_interleaved_codewords_ID1.bin');
% Since SF=1 for the ID=1 user should get the same numbers as for interleaved_codewords
% The written repeated_interleaved_codewords is 3932160 bytes long.
% MD5 (repeated_interleaved_codewords_ID1.bin) = e0d7b9a2a4a35b9c3635e9278c0ea44f
%%%

% Pseudo Randomizer
 random_codewords=randomizer(repeated_interleaved_codewords,L,N,SF);
%%
filename = 'random_codewords_ID1.bin';
fileID = fopen(filename, 'w');
fwrite(fileID, random_codewords, 'ubit1', 0, 'b');
fclose(fileID);
% Check the size of the written vector
disp(['The written random_codewords is ' num2str(dir(filename).bytes) ' bytes long.'])
% computing the hash
unix('MD5 random_codewords_ID1.bin');
% For the ID=1 user should get
% The written random_codewords is 3932160 bytes long.
% MD5 (random_codewords_ID1.bin) = 64946a05647bdad305c3e1b6f0e7e127
%%%

% Generation of frame synch marker using intial condition A=2
% Note that the polynomial definition in MATLAB for feedback
% connections is reciprocal of the CCSDS definition. The comm.GoldSequence
% is a MATLAB function.
% If one uses MATLAB for Gold sequence of period 2047,
% the fist First Polynomial should be'x^11+x^9+1'
% and the Second Polynomial should be'x^11+x^10+x^8+x^6+1'
% The First Initial Conditions is first_initial specified by the managed
% parameter A. The Second Initial Conditions is second_initial and always
% corresponds to 1. Note that a "0" should be appended at the end of Gold
% sequence to make it of size 2048.
% The second initial condition second_initial which corresponds always to
% 1,is generated once for the rest of this program. But the first intial
% condition “first_initial” depends on the managed parameter A which
% will be changed.

% Sync Layer Frame Marker (FSM,IBS,IBS)

 second_initial=reshape(dec2bin(1, 11).'-'0',1,[]);

 A=2;
 first_initial=reshape(dec2bin(A, 11).'-'0',1,[]);
 FSM=Goldcode(first_initial,second_initial);
% Generation of two identical In-Band Signaling IBS frames using intial
% condition A=8 as in the CCSDS O3K blue book standard
second_initial=reshape(dec2bin(1, 11).'-'0',1,[]);
A=8;
first_initial=reshape(dec2bin(A, 11).'-'0',1,[]);
IBS1=Goldcode(first_initial,second_initial);

A=8;
first_initial=reshape(dec2bin(A, 11).'-'0',1,[]);
IBS2=Goldcode(first_initial,second_initial);

subFsize=L*N_L;
subframe(1:subFsize,1)=random_codewords(1:subFsize,1);

PLFM=[FSM;
 IBS1;
 IBS2;
 subframe(:,1)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
filename = 'PLFM_ID1.bin';
fileID = fopen(filename, 'w');
fwrite(fileID, PLFM, 'ubit1', 0, 'b');
fclose(fileID);
% Check the size of the written vector
disp(['The written PLFM is ' num2str(dir(filename).bytes) ' bytes long.'])
%computing the hash
unix('MD5 PLFM_ID1.bin');
% For the ID=1 user should get at this point
% The written PLFM is 62208 bytes long.
% MD5 (PLFM_ID1.bin) = 8398f4ef9377764bfba009901063210b
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% If N_SF>=2 use the following
for kln=2:N_SF
 for isf=1:subFsize
 subframe(isf,kln)=random_codewords(((kln-1)*subFsize+isf),1);
 end

 A=2;
 first_initial=reshape(dec2bin(A, 11).'-'0',1,[]);
FSM=Goldcode(first_initial,second_initial);
% Generation of IBS and IFS frames using initial condition depending on ID#.
% For ID=1 we used A=8 and A=6 for two consecutive IBS and IFS as are
% described in O3K standard

 A=8;
 first_initial=reshape(dec2bin(A, 11).'-'0',1,[]);
IBS=Goldcode(first_initial,second_initial);

 A=6;
 first_initial=reshape(dec2bin(A, 11).'-'0',1,[]);
IFS=Goldcode(first_initial,second_initial);

PLFM=[PLFM;
 FSM;
 IBS;
 IFS;
 subframe(:,kln)];

end

filename = 'test_vector_ID1.bin';
fileID = fopen(filename, 'w');
fwrite(fileID, PLFM, 'ubit1', 0, 'b');
fclose(fileID);
% Check the size of the written vector
disp(['The written output test vector is ' num2str(dir(filename).bytes) ' bytes long.'])
% computing the hash
unix('MD5 test_vector_ID1.bin');
% For the ID=1 user should get
% The written output test vector is 3981312 bytes long.
% MD5 (test_vector_ID1.bin) = 93acde0df7ffad71d3c8e015ff785f21

% end of test vector generation for ID=1

Gold code generation in Matlab

function output=Goldcode(first_initial,second_initial)

SY0=zeros(2048,1);
goldseq = comm.GoldSequence('FirstPolynomial','x^11+x^9+1',...
 'SecondPolynomial','x^11+x^10+x^8+x^6+1',...
 'FirstInitialConditions',first_initial,...
 'SecondInitialConditions',second_initial,...
 'Index',0,'SamplesPerFrame',2047);
SY0 = goldseq();
output=logical([SY0;
 0]);
end

Interleaver generation in Matlab

function interleaved_codewords=interleaver(codewords,K,LK,L,N)
NL=N*L;
interleaved_codewords=logical((zeros(NL,1)));
for i=1:LK
 for j=1:N
 for ij=1:K
 interleaved_codewords(((i-1)*N*K+(j-1)*K+ij),1)=codewords(((j-1)*L+(i-1)*K+ij),1);
 end
 end
end
end

Randomizer in Matlab

Function random_codewords=randomizer(repeated_interleaved_codewords,L,N,SF)

 out_random=logical(0);
 b_random=logical(zeros(15,1));
 for i=1:(N*SF)
 b_initial=(logical([1 0 1 1 0 1 0 0 1 0 1 1 0 1 1]))';
 b_random=b_initial;
 for j=1:L
 out_random=b_random(15);
 for kcount=1:14
 b_random(15-kcount+1)=b_random(15-kcount);
 end
 b_random(1)=xor(b_random(1),out_random);

 random_codewords((i-1)*L+j,1)=xor(repeated_interleaved_codewords((i-1)*L+j,1),out_random);
 end

 end

image1.emf

