SE2 Challenge Team

MBSE Initiative — SE2 Challenge Team

COOKBOOK FOR MBSE WITH SYSML

Issue 1
19/01/2011

SE2

Cookbook for MBSE with SysML

Issue 1
19/01/2011
Page 2 of 120

Authors

Name Affiliation
R.Karban ESO
T.Weilkiens oose
R.Hauber HOOD Group
M.Zamparelli ESO
R.Diekmann

A. Hein TUM

Change record

Issue | Date Section / Reason / Initiation
Paragraph | Documents / Remarks
affected

1 19/01/2011 All First release

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 3 of 120

Contents

1 INTRODUGCTION L.ttt ettt ettt sttt et e e e sttt e e e s bt e e e e sk be e e e s abbeeeessabeeeessnbeeeeeanbaeeesrbeeeennn 7
11 SO e 7
1.2 PUT DO S it e e e s e 7
1.3 ADOUL SEN2 AN APE ...ttt e et e e e e aab e e nnrae s 7
1.4 ADDreviations and ACIONYIMSooiiiiiiiiiiee et et eesabr e e e s snnneees 8
15 Glossary and defiNitiONSuuiiiii e 8
1.6 DOCUMENT CONVENTIONSeutiiiiiiee ettt ettt e e e e e e s s aab b et e e e e e e e e e eannbeeeeaea e e e e anneeas 8
2 RELATED DOCUMENTSouiiiiiiiitteiiiiee e st e e e sttte e s st e e e stbee e e staeeaesasaaeeeasstaeeesssbaeeesssseeessnsasenans 8
2.1 REfEreNCE HOCUMEBNTSt e e e e e e e e s et e e e e e e e s e anbnbaneeeaeeesannsnrees 8
3 OVERVIEW OF THE APE CASE STUDY ...ttt ettt ettt stte e etae et a e e e 9
4 MODEL ORGANIZATION .. .ottt ettt ettt e st e e st e e e st e e e s eaba e e e s entaeeesannaaeessnseeeas 11
4.1 Overall Model OrganiZationcceciiiiiieiiee e s e e e e e e e e e e e s s annrreereeeees 12
4.2 Structuring the model USING PACKAGESuiiiiiiiiiiiiiee e 12
4.3 LEVEIS OF DELAII ...eiiieiiiiiie ittt et e e st e e e e enees 16
4.4 IV KR o) A= 1o] A = o] { Lo [P PPR PR 16
5 STYLE, LAYOUT, NAMING CONVENTIONS ...ttt 17
51 Formalizing the model with domain specific Stereotypesccooceveiviiie i 17
5.2 N F= T Yo T @do] V2= o 1 o o B PSSR 18
5.2.2 NamMIiNG OF QIAGIAMSeiiiiiiiiiee ittt b e sbb et e e s aabs e e e s sabee e e e annneeas 18
5.2.3 Naming of Modeling €IEMENLSoiiiiiiii e a e 19
5.23.1 ROIE NBIMES ...ttt e e e e et e e e e e e e e st e b e e e e e e e e e annbeeeeeas 20
5.2.3.2 Names of classifiers (e.g. <<Block>>, <<ValueType>>), Requirements, Activities, and
Packages (Definition of SOMEthiNg):......cocoiiiiiiiiiiiii e e 20
5.2.3.3 Names of actions, pins, ports, parameters, attributes, operations and all properties
(= Vo [cX o) lE=To 10 1= 1 1T Lo) SRR 20
5.2.3.4 Indicate type of model elementin the Name: ... 20
53 SEYIE AN LAYOUL...eeiiiiiiiiie ettt ettt ettt e e et e e e sttt e e s sabe e e e s snbnee e e abeeeen 20
5.3.1 DO NOT use grids in @any diagramS.coouiuureiieieae e aiiiiieee e e e e e sibereeee e e e e e s abeereeeaaaeeeaannee 20
5.3.2 Instead of emphasizing the diagram, emphasize the elements that are hyperlinked to
Lo =T | £= 10 1= T USRS 20

5.3.3 Every time you place a SysML comment consider what editorial stereotype might bring it to
life. 21

5.3.4 "Definition" BDD diagrams for a context are overrated. Focus on IBDS.cccccccevvvnnneee. 21
5.3.5 Span the Whole aCroSS itS PAITSccoiiiiiiiiiiiiie ittt 21
5.4 MOdEl DOCUMENTALIONeiiiiiiie ettt e e e e e st e e e e e e e s e anbnbe e e e e e e e e e annneeees 22
L O R © 1T o 1= - | SR RR 22
5.4.2 Documentation about the MOccuiiiiiiiiiii e 23
5.4.3 Documenting the System being Modeledooovviiiiiiiiiiiiee e 23
6 SYSTEM VIEWS......eoiio ittt ettt a bt e e e st e e e sttt e e e et e e e e bt e e e e sbee e e e anbeeeeennteas 23
6.1 Guidelines for necessary system aspects and pPersSpPectiVescccuuveeeeeeeeiniiiiiiieeeeeeeeeenns 23
6.1.1 MeChaniCal PEISPECHIVEccciciiiiieie ettt s e e e e e e s e e e e e e s e et e e e e e e e e s e sannraneees 26
N A @ o o= Y =T £ oYt 111 PR 27
6.1.3 EIECHICAl PEISPECHVEcevi e ittt e e e e e e s e e rr e e e e e s e s nnnaneeeeeees 28
6.1.4 INfOrmMation PEIrSPECHIVEccoiieiiiiiiiie ettt e e e e e s e et r e e e e e e e e nnntraeees 29
G0 O TP PPP TP PRPTPRPN 30
6.2 Relationship between Model ASPECES ..o 30
7 REQUIREMENT AND USE CASE MODELINGcccoiiiiiiiiiiie ettt ecee et 31
7.1 (O] 1 1=y 1Y [o o =1 11 oo PP TTPRPRUUR 31

7.1.1 Purpose of context diagrams Of @& SYSIEM........ccoiiiiiiiiiiiii e 31

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 4 of 120

7.1.2 Modeling the information flow in the context diagram...........ccocvieiiiiiiie e 34
7.1.3 Modeling different CONTEXESciuiiiieiiiiii et 34
7.2 O LY O 1Y =N 1Y To Lo 11 11 o FO PSSR 36
7.2.1 PUrPOSE Of @ USE CASE ..ciiiiiiiiiiiiiiiii e e e ettt e e s sttt e e e e e s s e e e e e s s et ee e e e e e e e s snnrnanneeeas 36
7.2.2 Modeling monitoring and CONtrol aCHIVILIESccoiiiiiiieiiiee e 38
7.2.3 Modeling operations related to SUbSysStems With USE CASES.........cccovviiieiriiiieeiiiiiiee e 38
7.2.4 EXIErNal EleMENT TYPES. ..coi ittt 39
7.2.5 Modeling a system of SyStems With USE CASESoouiiiiiiiiiiiiiiiice e 39
7.2.6 Use Cases vs. Standard UML INtErfaCesS........couiiiiiiiiiiiiae it 39
7.2.7 Tracing test cases to use cases and reqUIrEMENLScouuiiuriiiieieaeaiiiiiiieee e e e e ereeeeeeee s 40
7.2.8 NAMING Of USE CASES ...ceiiiiiiiiiiiiiiiie ettt ettt et e e e e s et b e e e e e e e e e e anbbeeeeeae e e s e annbeeeeeas 41
7.2.9 Do | need to refine every requirement with a Use Case?......ccccceeveeeeiiiiiiiiineeee e scciinneeeenn 41
7.3 Guidelines for modeling reqUIrEMENTEScocciiiiciiiiiiiie e e e e 41
7.3.1 Requirements Engineering BeSt PraCtiCesuviiiiiiiiiiiiiie et 41
7.3.2 SysML for Requirements DeVEIOPMENTc.ouiiiiiiiiiieiia et 42
7.3.3 Modeling for Requirements SPecifiCation ..o 43
7.3.4 From Requirements to SysML Architecture Models ... 43
7.3.5 Guidelines for modeling the system reqUIr€mMEeNtS...........ccoovciiiiiriee s 44
7.3.6 Background derived reqUIrEMENLScuuviiiiee et e e e e e e s s e e e e e e s s e e e e e e e s e s snraraeeeeeas 45
7.3.7 Stakeholder vs. SyStem reqUIrEMENLScuiiiieiiiiiiiiieieee e e e e e e e e e e snrraeeeeeas 45
7.3.8 How do | model relationships between requirement and design element?ccccceee.... 46
7.3.9 How should I structure a requirement hierarcChy?ccccoevciieiiiie e 46
7.3.10 Requirements qUAality CHEEIIAeeiiiiiiiie e 50
7.4 Requirements Boilerplates and binding t0 deSignceoiiiiiiiiiiiii e 50
7.4.1 Instantiation Of BOIEIPIAIESuueeiiiii i e e e e e e e s 51
7.4.2 CONSLrain the DESIGN.....ueeiiiieii i e e e e s s e e e e e s s se e ereeeeeeannnrnneees 52
8 STRUCTURE MODELINGttiiititiite ettt ettt ettt e ettt e e e s bt e e e s ssbeeeessnbaeeessnbeeeeeanes 53
8.1 Starting to build @ deSign MOAEl.......ocuuiiiiiiii e 53
8.2 SETUCTUTE BrEAKAOWN ...eeiiiiiiiie ettt ettt ettt e e e st e e e s bt e e e s sabeeeessnbeeee e 54
8.2.1 Definition of SYyStem hIErarChi€sccuuiiiiiiiiiiiiii e 54
8211 SysML elements to model connected nested StruCtures.........cccceveevviviviiieeeeee e 58
8.2.2 How do I distinguish a sub system and an assembly? ... 60
8.2.3 Where do | put systems which are part of the project and needed in different contexts but
NOt part of the SYSIEM IESEIF? ... e 63
8.2.4 Usage of <<external>>, <<system>>, <<SUDSYSIEM>>..........ccccciiiiiiiii e 63
8.3 SETUCTUTE REIALIONS ...ttt ettt e e sttt e e s sabe e e e s snbbeee e snbeee e e 64
8.3.1 Whatis the relationship between part, property and bIOCK?ccoeeviiiiiiiiiiiieinieee, 64
8.4 Y (U oa (0=l ol o] =] L= USRS 64
8.4.1 Representation of entities flowing in the SYSteM..........cccviiiiiiie i 64
8.4.2 If | have blocks of the same type (like 10 FPGASs) in the BDD how do | properly use them on
the IBD as different PrOPEITIES?co i e s e e 65
8.4.3 Usage of puBbliC @nd PriVALE...........eeiiiiiiiiii it 65
8.5 Reuse of model structural ElEMENTSc..oeiiiiiiii e 66
SRR S = 1= I o - T SR 72
8.6 Modeling PhYSICal ASPECESouiiiiiiiiie et 73
8.6.1 Modeling physical distance DEtWEEN PAIScccceeiiiiiiiiiiiee e e 73
8.6.2 Model of a magnetic field which exists between two physical entities.............ccccccceevennnneen. 73
9 INTERFACE MODELINGcotiiiitiiie ittt ettt s et ettt e sttt e e s st e e s sntbee e e ssaeeaesssaeaesnnneees 74
9.1 Port and FIOW BaSICS ..o 74
LS T I S = T o F= o Il o] £ UEPTO PP UPRPPRO 74
LS T o (o Y o] 4 £ PP PP PPRPROP 75
Lo T B = - 1 [1T T OSSR 76
9.1.3.1 SEeNSOMACIUALOT UALAvveeeiiiiiee e iiiiee et ee et e et e et e e e st e e s s stbeee e s srbeeeessnbaeeeeanes 76
9.1.3.2 Input and OUPUL OFf BVENTS.........uuviiiiiie e e e e e e e e e e e e 76
9.1.4 What's the relation port and standard UML interface?ccoeccvvveeieeeiiicciiieieee e 76

9.2 Combining ports and flows to represent interfacescccccceeeviiicc e 76

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 5 of 120

9.2.1 Modeling a structural interface like a socket, screw, hole etc.........cccccccovviiiiiiinieiniicinnne, 76
9.2.2 Modeling standards like RS232, CAN DUS €1C.......ccceiiiiiiiiiiieee it e e eseeee e e 77
9.2.2.1 Model "eVEIYNING e a e 77
9.2.2.2 Modeling ONLY A FLOW Of @NELIES. ..ot e e 77
9.2.3 HOW dO I MOl @ CADIE?......oeiieeeee et e e e e e e 77
9.2.4 Combining physical connector type and floW..........ccooviiiiiieii e 78
9.3 Layered Command and Data INterfaces........cccvviei i e 81
0.3.1 EXAMIPIE e bbb e e esann s 81
LS IR 0 O o o1 () (RS PRR 81
LS RS TR T o (0] o] (=1 o TP PUPRRRO 81
Lo R 0 R S 1o 11 1T o SRS PRR 82
O0.3.5 SYSML STALUS ...uuiiiiiii ittt ettt e e e e e et e aaaaaaes 86
9.3.6 Allocation of @ NESLEA DIOCKc.uueiiiiiiiii i 86
9.4 FIOW Properties VS. FIOW POISuuiiiiiiii e e e ee e e e e e e e nnnnees 86
LS I e T oo =TT PUPR RO 86
Lo B Oo o1 () SRS PRR 86
LS I T o (0] o] (=1 o TP PUPR PR 87
Lo R S 1o 11T o [SRS PRR 87
9.5 Modeling interfaces which are represented by a document (e.g. ICD - Interface Control
370 T o3 012 01T 01) ORI 88
9.6 Relations DetWeen INTEIfACEScoi it sree e e anes 89
9.6.1 How can | type a CONNECtOr DELWEEN POIS?.....cvieeeiiicciiieeiee e s e e e e e e e 89
9.6.2 How/When do | use realize With POItS?ccuiiiiiiiie e 90
9.7 FIOWS . 90
9.7.1 Model that something flOWS iN OF OULccciiiiiiiii e 90
9.7.2 Should | use direction on flOW POMS?ccociiiiiiie e e 90
9.7.3 Is the flow specification describing the physical layout of a medium or the items which flow?
90
9.7.4 Do | put the specification for an image flow on the port or as item on the connector?........ 91
9.7.5 What's the difference between item flow and information flow?ccccccviiiiiiniiiinnne. 91
9.8 Overview of Interfaces modeled with FIows and POrtsS ... 91
10 BEHAVIOR MODELINGcttiiiiiiiiite ittt sttt e st e e s st e e e sntsee e e snneaeaesnsseeesnnneeas 92
10.1 MOAEING ACTIVITIES ..oiiiiiiiiii ettt e e sbe e e s sbb e e e e senees 92
10.1.1 What is the relationship of Activity, Activity diagram, Action, CallBehaviorAction?......... 93

10.1.2 How can | model a decision in an activity which is taken asynchronously (like an operator
decision)? 94

10.1.3 When should | use <<discrete>> or <<continuous>> in activity diagrams?.................... 95
10.1.4 How do | represent CONIOl IOOPS?uuuiiiieeiie it e e e s e e e e s e e e e e s e nnnanneeeeeas 96
11 GUIDELINES FOR MODELING NON-FUNCTIONAL ASPECTS.....cccceeeeiieee et 96
111 QUANTY OF SEIVICE ..ttt e e e s nbn e e e saeeee s 97
11.1.1 How do | define Quality Of SEIVICE?uuviiiiii i e 97
11.1.2 How does it relate to Parts and POMS?cuuiviiiiiiieiiiiee et snaee e 98
12 ONTOLOGIES.ctiiie ittt ettt s et e e sttt e e s ettt e e e aab et e e e ssbb e e e e ansae e e e s sseeeesnbbeeesansseesnneneeas 98
13 INTEGRATION WITH OTHER DISCIPLINEScoiiiiiiieiiiiiie et 101
13.1 Transition to UML fOr SOfIWEAIEuuuiiiiiiiii s 101
13.2 Interdisciplinary analyses and trade Off..........cccciiiiiiii i 105
14 VARIANT MODELINGcoiiitiiiiiiiiiie ettt sttt e e e et e e st ae e e s nnbbe e e e enees 108
I R B 1= 10 11 4 (o] o S P TPUUTT T PUPRPPTRP 108
14.2 SYSMOD Variant Profile.. ... s e e e e n e e e e e e e e e 110
14.3 Variant CoNfiQUIAtIONS ... s e e e e e s e et e e e e e e e e e sennnnraaeeaaeeeaans 111
0 V(o o [I = T 13 0] 1 4 =1 410 1 1T 112
14.4.1 (0 0= I ST U =PRI 113

145 Trade-Off @NaAIYSIS ..uuiiiiiii i e s e e e e e s e a e e e e e e s e e e e e e enn 114

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 6 of 120

15 CROSS-CUTTING THE MODEL AND TRACEABILITY oot 114
15.1 Guidelines for @llOCATIONSoiiii it e e e e e e e e e e as 114
15.1.1 Can the same element be allocated to different blockS?...........cooviiiii, 114
15.1.2 Should | allocate to part properties or t0 bIOCKS?ccvveiiviiiiiiiiiee e 114
15.1.3 How do | map an information port/connector to a physical one?cccccceeevvvicvvvnennnnn. 114
16 DOMAIN SPECIFIC MODEL EXTENSIONS ...ttt e 115
16.1 AdditioNal SEEIEOTYPES ...ttt e et e e e e et e e e e e e e s nnbb e e e e e e e e e 115
16.1.1 Where do | put (new) domain specific model elements, like stereotypes? 115
16.2 Modeling domain specific Quantities, Units, and Values TYPEeScccccvevviiireeniineeennnn 117
17 CHALLENGES OF SYSML DEPLOYMENT IN AN ORGANIZATION......cccciveeiiiiieeeeiiee e 118
18 TOOL (MAGICDRAW) RELATED GUIDELINES.ccoti ittt 119
B0 R V] 1= I= 1 [I o 1 U SO PPSR 119
18.1.1 Remove stereotype <<block>> of parts in IBDs to increase readability........................ 119

B N F- VA o - 4 o] o RO PP T R PPPPPPTR 119

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 7 of 120

1 Introduction

1.1 Scope

This document provides modeling patterns, recipes, guidelines, and best practices for the application
of SysML. The presented examples are rather methodology independent and can be used (maybe
with some adaption) in any MBSE environment.

Furthermore, it provides additional explanation on SysML syntax, semantics, and concepts. It partially
annotates the SysML specification.

This Cookbook gives also some advice on general system modeling strategies and assumes basic
knowledge of SysML. The Cookbook is not an introduction to SysML.

Our examples are about the Active Phasing Experiment (APE) project and modeled with the modeling
tool MagicDraw from NoMagic. Unless mentioned otherwise everything is independent of these can be
applied to other domains and tools.

1.2 Purpose

Each project has to establish a minimal set of rules for using SysML constructs and how to organize
the model. SysML is just a language which can be used or abused.

The document provides to the modeler solutions for day to day modeling problems, the modeling
“technicalities”. Applying those recipes the modeler can focus more on the content of the system of
interest than on modeling problems.

Systems Engineering diagrams always look so simple!

The Systems Engineering exercise is to first make the problem real to the reader/participant, then
second to show an 'obvious' solution. To a casual reader these systems decisions should look like no-
brainers - that is the value of systems engineering.

This cookbook is organized in this way:

Chapter 3 contains recipes about the organization of models

Chapter 4 proposes style, layout and naming conventions

Chapter 5 gives guidelines about modeling the system views.

Chapter 6 gives guidelines about modeling requirement and use cases.
Chapter 7 contains recipes for modeling the system structure.

Chapter 8 describes the modeling of interfaces.

Chapter 9 deals with the behavior modeling.

Chapter 10 provides guidelines for modeling non-functional aspects.
Chapter 11 is about document generation out of the model.

Chapter 12 discusses the integration with other engineering disciplines.

1.3 About SE*2 and APE

In the framework of INCOSE's strategic initiative, the Systems Engineering Vision 2020, one
of the main areas of focus is model-based systems engineering. In keeping with this emphasis, the
European Southern Observatory (ESO; http://iwww.eso.org/) is collaborating with the German Chapter of
INCOSE (http:/iwww.gfse.de/) in the form of the “MBSE Challenge” team SE”2. The founders of the team
were Robert Karban (ESO), Tim Weilkiens (oose) and Andreas Peukert (TUM). Afterwards Dr. Rudolf
Hauber (HOOD Group), Michelle Zamparelli (ESO), Rainer Diekmann, and Andreas Hein (TUM)
joined the team.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 8 of 120

The team’s task is to demonstrate solutions to challenging problems using MBSE. The Active
Phasing Experiment (APE; see Gonte et al. 2004), a European Union Framework Program 6 project,
was chosen as the subject of the SE*2 Challenge Team (http://mbse.gfse.de/). Many technical products in
the telescope domain show an increasing integration of mechanics with electronics, information
processing, and also optics, and can therefore be rightly considered as optomechatronic systems.

The SysML models were created by reverse engineering from existing documentation and
from interviews with systems engineers. We will make use of Ingmar Ogren’s concept of a common
project model (Ogren 2000) to establish a common understanding of the system.

1.4 Abbreviations and acronyms

SysML OMG Systems Modeling Language
IBD Internal Block Diagram

BDD Block Definition Diagram

PAR Parametric Diagram

Table 1. Acronyms

1.5 Glossary and definitions
Not applicable.

1.6 Document conventions
TBD

2 Related documents

2.1 Reference documents

The following documents provide background information as to the present document. Under no
circumstance shall the content of reference documents be construed as applicable to the present
document, in part or in full, unless explicitly mentioned in the present document.

RD1 SysML Specvl.2
RD2 The Art of Systems Engineering, Maier, Rechtin, CRC Press 2002
RD3 E. Hull, K. Jackson, J. Disk, “Requirement Engineering”, Springer, 2005.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 9 of 120

3 Overview of the APE Case Study

Large telescopes pose a continuous challenge to systems engineering due to their complexity in terms
of requirements, operational modes, long duty lifetime, interfaces and number of components. A
multitude of decisions must be taken throughout the life cycle of a new system, and a prime means of
coping with complexity and uncertainty is using models as one decision aid.

The potential of descriptive models based on the OMG Systems Modeling Language (OMG SysML™)
is shown in different areas: building a comprehensive model serves as the basis for subsequent
activities of soliciting and review for requirements, analysis and design alike.

Furthermore a model is an effective communication instrument against misinterpretation pitfalls which
are typical of cross disciplinary activities when using natural language only or free-format diagrams.
Modeling the essential characteristics of the system, like interfaces, system structure and its behavior,
are important system level issues which are addressed.

Also shown is how to use a model as an analysis tool to describe the relationships among
disturbances, opto-mechanical effects and control decisions and to refine the control use cases.

The Active Phasing Experiment has been supported by the FP6 research program of the European
Union. It started beginning 2005 to finish in June 2009. The consortium which participated to this
research project is composed of the Instituto de Astrofisica de Canarias in La Laguna in Tenerife in
Spain, Fogale Nanotech in Nimes in France, the Laboratoire d'Astrophysique de Marseille in France,
the Osservatorio Astrofisico di Arcetri (INAF) in Italy and of the European Southern Observatory
(ESO).

Some of the next generation of giant optical telescopes will be equipped with segmented primary
mirrors composed of hundreds of hexagonal segments. It is necessary to operate at the diffraction
limit of such telescopes if the telescope is to use adaptive optics and be a science driver, and this can
only be achieved if the segments are well-aligned both in height, called from now on “piston”, and in tip
and tilt. The fast control of the rigid body positions of the segments will be based on measurements
made with edge sensors.

These, however, can only measure differential movements between adjacent segments and therefore
have to be supplied with reference values for the absolute measurements of the piston steps at the
intra-segment borders. At the moment, such reference values can only be obtained with a precision of
the order of a few nanometers by optical measurements, preferably using the light of a star in the field
of the telescope.

The Active Phasing Experiment has then been proposed by the ESO to demonstrate its capability to
align in tip-tilt and piston within few nanometers the segmented primary mirror of a giant telescope,
performance which has not been made up to now in Europe. The goal was to simulate a VLT having a
segmented primary mirror composed of 61 segments in order to demonstrate the functionality of 4
different optical phasing technologies and also new control principles using theses Optical Phasing
Sensors (OPS).

The four OPSs have been first tested in laboratory using an atmospheric turbulences generator and
VLT simulator. Then it has been shipped and installed on the Nasmyth platform of Melipal (UT3) on
Paranal. A total of 30 nights were dedicated for the commissioning and the experiment on sky. APE
has been dismounted and shipped back to Garching in June 2009.

The essential purpose of the Active Phasing Experiment was to explore, integrate and validate
non-adaptive wavefront control schemes and technologies for an European Extremely Large Optical
Telescope (ELT). This includes:

e Evaluating and comparing the performance of four phasing wavefront sensors, in the
laboratory and on-sky;

e Integrating segmented aperture control into an active system (including field stabilization and
active optics), and driving both the active system and the segments control system from the
output of the system.

To this end, APE was conceived as a technical instrument fully compliant with the ESO
VLT/instrument standard to be installed and tested on-sky at a Nasmyth focus of a VLT unit.: The
telescope provided all active functions (field stabilization, focusing, centering and active deformable
mirrors) and the APE instrument emulated the optical effect of segmentation only.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 10 of 120

Figure 1 APE fully installed on Melipal Nasmyth A.

In practice, this was realized by re-imaging the telescope pupil onto a small Active Segmented Mirror
(ASM), and by directing the output beam(s) of the instrument towards the Optical Phasing Sensors
module.

The segments of the mirror were activated in piston and tip-tilt with 3 piezo actuators and controlled in
closed loop using the Internal Metrology (IM) developed by Fogale Nanotech. The optical phasing
sensor module included four OPSs, each based on a different technology and developed by a different
partner. IAC had the responsibility to develop a curvature sensor, LAM a phase and spatial filtering
sensor, INAF a pyramid sensor, and finally ESO had to develop a new type of Shack-Hartmann
sensor and also the Opto-Mechanical Bench (OMB).

APE, as any complex system, has a large number of functional, performance, physical and interface
requirements which have to be satisfied. This implies the need for a professional requirements
engineering and management during the project. This is the first application of SysML during the
development.

APE has been designed as a modular system on a 3 by 2 m2 optical table. The main subsystems are
a turbulence generator (called MAPS), the Active Segmented Mirror, a dual wavelength phase shifting
interferometer called Internal Metrology, four optical phasing sensors, the junction boxes and the
OMB. The OMB is considered as a sub-system in itself and contains all opto-mechanical components
which have not been listed as a subsystem like the derotator, the calibration unit, the off-axis parabola
etc.

Three electronics cabinets contain the amplifiers, the analogue-to-digital converter cards, the
controllers and the nine central processing units required for the control of the electronic components
of APE (six CCDs, five translation stages, twelve rotating stages, two fast steering mirrors and the 183
actuators of the 61 segments incorporated in the ASM). The cabinets are linked to the OMB via the
junction boxes. The control system alone consists of 12 computing nodes.

On sky the telescope replaces MAPS. In total there are 42 optical surfaces (lenses, filters, mirrors,
beam splitters, etc.) between the focus of the telescope and the entrance foci of the phasing sensors.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 11 of 120

Parébola :

Figure 2 Top view of the APE bench

These elements offer all kinds of optical, mechanical, electronic and software interfaces, both system
internal and external to other systems. It also challenges the control, since there are several open and
closed loop systems required. A significant amount of data is produced by image processing data
flows. Since APE will be deployed in the lab and in an already existing telescope, slightly different
functional aspects are active depending on the deployment mode. Therefore different interfaces to
existing systems are needed.

All these characteristics made APE well suited to evaluate SysML potential in tackling similar issues.

SysML is only a graphical language. It defines a set of diagrammatics, modeling elements, a formal
syntax and semantics. As any language (formal or informal) it can be used in many different ways and
many wrong ways too. Most notably the creation of nonsense models is possible.

The SE~2 MBSE challenge team defines as its main goals to

Provide examples of SysML, common modelling problems and approaches.
Build a comprehensive model, which serves as the basis for providing different views to
different engineering aspects and subsequent activities.

o Demonstrate that SysML is an effective means to define common concepts.
Demonstrate that a SysML model enhances traceability

The Cookbook covers topics like naming conventions, model annotations, external references;
necessary system models, aspects and views; heuristics for modeling system requirements;
guidelines for modeling the system structure (product tree, context variants, design variants, re-usable
parts, system hierarchies); Interface modeling (logical and concrete, mechanical and flow, ports);
allocation strategies; test case tracing; parametrics for performance models; style and layout issues.

4 Model organization

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 12 of 120

If you start modeling a complex system considering many different engineering aspects you can end
up very fast in a very confusing model because of a unclear organization of all its model elements.
Therefore organizing the model in a proper way is crucial for the understanding and usability of the
model.

4.1 Overall Model organization

SysML packages are the element to organize the model. How packages are used for organization is of
fundamental importance in order to have a scalable, consistent, and navigable model structure which
works also for large models. The model structure supports different levels of abstraction and deeply
nested system hierarchies.

The SE2Profile defines an Ontology for the model's organization where every package has a defined
meaning, and certain diagrams must exist within those packages for navigation and definition of
system elements.

The model is organized and decomposed along the product tree (i.e. the product breakdown structure)
of the system being modeled. At each decomposition level a recurring package structure appears
which corresponds to the different aspects of the system (e.g. structure, behavior, requirements, etc.).

4.2 Structuring the model using packages

To increase readability of and support navigation within the model, these guidelines for setting up
model packages should be followed:

wizontentCiagrams
]

pag [Model] APE_Project[[APE_Project_Cortent | Modification date | 5/a/10 1:32 P

«Project Yiews:s
APE Project Views

Ea OCSMP

£7 Cookbook

Ea ToDoList

E@ APE Electrical View

s
+System Models A
APE
| | ' | |
|«<aRRls |«apply limport:s |«imparts |«imports
| | ‘L | |
pro#lre prof\Ji.Ire Rhaiase 2loguss modeIL;trar\; moﬁelLibrary
] ¥] ¥ #l E &l k-
SYSMOD SE2Profile éPEmI::;SE:;aIDQUE SE2Definitions RequirementsBoilerPlates
i Physicglmedia 1 Units £ TelescopeDomain
£ Electronics 1 Quantities 1 UniversalDomain
1 Software C1ValueTypes
£ Optics 3 Enumerations
£3 Mechanics £ Factors
£ InterfaceTypes 51 ViewPoints

Figure 3 Top Level package content diagram

e Packages are the basic tool for separating concurrent modeling tasks and assigning
responsibility.

e Use recursive package structure patterns in the model to establish a good and easily
understandable model structure: packages created at the highest level of the model shall be
repeated for every lower level

e Structures (the design) are organized according to the system's product tree.

SE2

Issue 1
Cookbook for MBSE with SysML 19/01/2011

Page 13 of 120

Use packages to separate different aspects (each serving a distinct purpose) of the system.
Having, conceptually, independent aspects allows:

0 Independent reorganization, if needed
Easier integration (import) of an external requirements model (like Doors)
Each aspect becomes simpler.
You can link in a more obvious way the model elements with <<trace>> and
<<satisfy>>.
Create separate (auxiliary) packages containing model information, references to external
information (like drawings, existing requirements or design documents) and information about
the model. They are prefixed with _ (underscore) to distinguish them from packages which
represent a view of the system.
The top level package is <projectname>_Project. It contains the System Model package, the
used parts catalogs, applied profiles, and other model libraries.
The BDD of each substructure defines its elements and therefore its product tree
Group Comments, Errors and Issues in separate packages to find them easily.
Recurring packages in every model level are:

o0 Behavior

o Context. The package Context exists typically only at the top level because the lower
level context is implicitly defined by the IBDs of the higher level.
Data
Iltems
Performance
Requirements
Structure
Traceability
Variations
Verification
Views
_Comments
_Drawings
_Errors
_External
_Issues
_Problems

o0 _Rationales
At the top level the Requirements package contains Objectives, Stakeholder requirements and
System requirements. Whereas on lower levels it contains only derived requirements of the
sub structures. They are kept together with the design to have a consistent package, e.g. to
give to a contractor. The same applies to behavior. Every decomposition level defines its
behavior, which is part of the higher level behavior.
Naming convention for model elements are another important point to improve understanding.
For example, all APE packages related to a certain (sub) system have as a prefix the name of
the (sub) system, i.e. its owning package to have a unique identification of the package for
navigation. e.g. APE_Requirements, ASM_Requirements.
All packages have stereotypes applied with a defined semantic according to the Model
Structure Ontology.

(el elNe]

O O0OO0OO0OO0OO0OO0OO0OO0O0O0O0O0OO0OO0OO0OOo

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 14 of 120

Conkainrnenkt o I X
sl B Y -B
Bl-f=] APE_Project «Projects (by rkarban)
E}- 2 Relations
--E‘j APE_Project_Miews «Project Wiewss (by rkarban)
E}-ET Playground
B} RequirementsBoilerPlates smodellibrarys
--D SE20ntologies (by rkarban)
ﬁ APE_PartsCatalogue «partscatalogues [APE_ParksCatalogue #49]
E}-E= SYSMOD
EIE BPE «5vwskem Models (by rkarban)
A Relations
£ _APE_Comments «Commenkss (by rkarban)
£ _APE_Drawings «Drawingss (by rkarban)
£ _APE_Errors (by rkarban)
£ _APE_External «Externals (by rkarban)
£ _APE_Issues «lz=uess (by rkarban)
£ _APE_Parsed «Parseds: (by rkarban)
£ _APE_Pictures «Picturess: (by rkarbamn)
B3 _APE_Problems «Problerns: (by rkarban)
E| _APE_Rationales «Fationales: (by rkarban)
--E‘j APE_EBehawiour «Eehavior Aspecks (by rkarban)
--E‘j APE_Conkext «Conkext dspecks (by rkarban)
+ G APE_Data «Data Aspects (by rkarban)
£ APE_Ttems «Swstem Ikemss (by rkarban)
--E APE_Performance «Performance Aspecks (hy rkarban)
--E‘j APE_Requirements «<Fequirements fspects (by rkarban)
--E APE_Struckure «Structure Aspecks (by rlkarban)
--E‘j APE_Traceahility «Model Traceabilicys by rlkarban)
--E‘j APE _Wariations «variations Aspects (by rkarbam)
--E‘j APE _Werification «Verificakion Aspects (by rkarban)
G APE_Miews «Svstem Yiewss (by rkarban)
7-[@] Hyperlinks
APE_Conkent «ContentDiagranm: (by rkarban]
APE_Project_Content «ContentDiagran:

Figure 4 The Containment tree of the Model Structure

The _Content diagram is a package diagram and is used to navigate with in a sub-system. It shows all
its aspects as structure, performance, requirements, behavior, etc.

The _ProductTree is a block definition diagrams and is located in the structure package. It shows the
product tree; i.e. how the sub-system is composed.

The purpose of the product tree diagram is merely to give a managerial perspective of which parts
need to be built or procured, also, but not exclusively to get cost information for the project. The
criteria to include elements by means of composition in this diagram is, that they have been
built/procured explicitly for the system. The product tree does not in general show a snapshot of a
system configuration. Multiplicity information is relevant for a product tree. Use the composition
relationship in a whole-part relation when the whole and the part share the same life-cycle, use
reference otherwise.

The need to provide uncluttered readable diagrams normally conflicts with the one to produce a high
level overview of which parts are crucial / relevant to the system. It is recommended that a product
tree diagram only contain at most two levels of decomposition. The need to have an all exploded

SE2

Issue 1
19/01/2011
Page 15 of 120

Cookbook for MBSE with SysML

comprehensive product tree may in theory be satisfied by automatically merging all existing product
tree diagrams into a big one (remember, each sub-system contains recursively its product tree).

«Product TreeDiagrams . . 2110 3149
bdd [Structure Aspect] ZEUS_Structure [[ZEUS_ProductTree] Modification date | o,
sphysicals
ZEUS
shut les
smechanicss electronicss sthechanicss ephysicals sphysicals sphysicals stmechanicss:
Breadboard Compur Cover Zeusl CS ColourFilterwheel HeutralDensityFitterwheel CCDMount
43
ts cfw | ndt "
«physicals " - CECZELE
sphysicals sphysicals
HiEEE L AT ZEUS ColorFilterWheel ||ZEUS Heutral Density Filter Wheel ElEEEEED
CCD57-10
properties
photonioise
vales
chipid : pix = 512{unit = Pizel}
chifgy : pi = 51 24unt = Pixel}
pixelSize : nm = 13{unit = Manometer
5 5 darkCourt
P cf powverConsumption ;W = SO{unit = Wt}
zopticss emechanicss smechanicss opticas price : Real = 2500
PhaseMask Mount PhaseMaskPlate ColorFilter guantumEtficiency
readouthloise
vales vales hinning
pinkole : arcsec{unit = Arcsecond} weavelength : nmdunit = Manometer }
opid : nmfunit = Manometer } bandwicth : nm{unit = Manometer}
light Tranzmizzion = 0.99
W h

«Rationale: Eu -

«electronicss
_|PIM-511.DG

«electronicss
Pl M-305.CG

The electrical

High precision
required for
vertical axis.

«lzsues
Meed to model the
conztrairt far the
high precision
motors” necessity.

ZEUS_Content

" - -~
- -
tocoH1 tocdH2 weaterln waterCut - - fpMsz : MotorCortral_fs
- X

sportyroup:

«electricals s | allobates

ZEUS_eif s

Vs
7
ndf cfwe may - sph=zz : ThickRoundPlught
sComment:

interface is a plate

mounted on the

_jcover of the
SENE0r

shlocks
— —|ThickRoundPlugh

A typed standard port represents
the physical connector since & flow
pott cannot have & structure. &n
azgocisted flowe specification
represents the actual flowe
Allacation is uzed to azsociate the Ty
.

«FlowySpecifications
MotorControl_fs

Figure 5 Product Tree of the ZEUS substructure

ZEUS is one of the evaluated phasing sensors (Figure 5) and is based on the modified Mach-
Zehnder interferometer phasing sensor. It is mounted on a breadboard and consists of a shutter, a
cover, a color filter wheel, a neutral density filter wheel, and a translation stage which carries a
phase mask. Different phase masks can be moved to the focal position by means of a translation

stage, able to move in the X and Y directions.
The two filter wheels located after the phase mask translation stage:
e A neutral Density Filter wheel: a set of 8 different neutral density filters are available

e An optical filter wheel: a set of 8 different optical filters centered on different wavelengths and
with different bandwidths are available

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 16 of 120

4.3 Levels of Detall

The level of detail of a model is a very contentious issue. Systems can easily be “modeled to death”
just for the sake of modeling.

Therefore the purposes of the model should be defined upfront, like:
¢ Which stakeholder shall use the model for what purpose?
e What does the modeler or systems engineer want to achieve with the model?
e What information shall be extracted from the model?

e Should the model give an overview or define in detail all flows?

We recommend to ask and answer these questions for each greater model element as well.

What is modeled and which model elements are used depends from the answers to the questions;
e.g. a system engineer needs more sophisticated modeling elements to express different aspects,
while a tester may need only test scenarios modeled simple in sequence diagrams.

4.4 Levels of abstraction

The levels of abstraction depend very much on the used methodology. The methodology defines if a
logical (functional) model is built, if the logical model is only about behavior or also about structure,
how the functional model relates to the physical model (the bill of materials), etc.

Since the intention of this cookbook is to keep it largely methodology independent, a simple split in
functional and physical model is done.

e one modeling level is functional, describing system behavior (e.g. activities)
e one modeling level is physical, describing system structure (e.g. blocks)

e allocation is done by allocating behavior to structure

The physical model corresponds to a bill of material, i.e. a system which can be purchased off a
catalogue.

Functional/Logical structure elements and their technological representations could be:

Functional/Logical element Technological Element

Display LCD, CRT, HMD, LED, etc

Receiver Analogue radio receiver, DVB-T, etc

Electric Generator Solar cells, Diesel-engine, Water-turbine, etc.
Cooling Unit Fridge, Fan, Peltier, etc.

Container Shipping container, air container, etc

Data Storage Device Disk, USB stick, DVD, etc.

Computing Node Desktop, Embedded, Blade-Server, etc.
Motor DC, Stepper, etc.

For each technological element there is in the end a concrete technology which is part of the bill of
material and can be bought. For example, a particular Mercedes Diesel-engine, or a particular
Siemens Water-turbine is used for the final system which complies with the performance constraints.

Typically, the concrete items are collected in a catalogue of pieces which can be re-used for every
system.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 17 of 120

bdd [Package] DCMotors [@ DiChotors_Catalogue]J

[modiication date|ai2311 0 1:01 Pu

selectronics:
NMbtor

|

welectronics:
D motor

selectronics: welectronics: «electronicss selectronicss
MICOS CM DT 80 Hewport M-UTM 100 CC1DD Hewport M-UTM 50 CC1DD Hewport MFA-CC
valwes values values vales
posverConzumption ;YW = S0unit = Watt} | (| povwerConsumption | W = 85{unit =WWatt} | [povwerConzumption ;W = S0unit = Watt} | |powerConsumption : W = T5{unit = VWatt}
price : Real = 900 price : Real = 1700 price : Real = 2300 price : Real = 1300
eesionice «Electronic:
fallb1s105.CG Pl M-511.0G

Electronics_Content PartsCatalogue_Content

Figure 6 Different DC motor types in a parts catalog

In the beginning of modeling it is often unclear which particular catalog item will be used in the end. It
will depend on different factors, like cost, performance, supplier warranty, etc. There might be even
different variations of the system evaluated.

14Style, Layout, Naming Conventions

5.1 Formalizing the model with domain specific stereotypes

A major challenge is to keep the model organization, naming, and style consistent. One way is to
define naming conventions and enforce them. However, since they are only strings it is more difficult
to check them automatically. Having only naming conventions is also quite restrictive and a simple
typo can change its meaning.

Therefore it is better to define one or more Ontologies (formal definition of terms and concepts and
their relations), see chapter 12.

The Ontologies are implemented in the model by stereotypes, domain specific extensions of the
SysML language.

This Cookbook defines a set of stereotypes which gives every model element, diagram, etc. a
meaning. This meaning corresponds to the definition within the modeling Ontologies.

For example, a BDD which is used as product tree (product breakdown) diagram has the stereotype
<<ProductTreeDiagram>>, an IBD which represents the electrical view of a block has the stereotype
<<electrical>>, or a package which contains the behavioral aspect of the system has the stereotype
<<Behavior Aspect>>.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 18 of 120

Those stereotypes are introduced along the way.All stereotypes are defined in the <<profile>>
SE2Profile.

5.2 Naming Conventions

5.2.2 Naming of diagrams

Although each diagram has a fully qualified name within the model and is therefore unique, naming
conventions make it easier for the modeler to navigate and understand the context of a diagram.

The header of a SysML diagram consists of four parts: <diagramKind> [modelElementType]
<modelElementName> [diagramName]. The first 3 elements are set automatically by the modeling
tool. Only the diagram name is set individually by the model builder.

e <diagramKind> is the type of the diagram
¢ [modelElementType] is the type of the model element that the diagram represents
e <modelElementName> refers to the element which is represented by the diagram
e [diagramName] describes what can be seen in the diagram; should be unique and say
something about its context.
e If necessary, modelElementName is followed (after underscore) by more information, what the
diagram contains:
o0 postfix modelElementName of BDDs and IBDs with containing package name, e.g.
bdd [Structure Aspect] APE_Structure [APE_ProductTree]
o postfix modelElementName with specific view that are modeled e.g. ibd [Structure]
ibd [System] APE [APE_Electrical], ibd [System] APE [APE_Mechanical]
Use diagram info with timestamps and who modified last the diagram

The following postfix notations are used for the following diagram types:

Diagram Type | Meaning and stereotype Postfix naming convention

BDD Product tree, <<ProductTreeDiagram>> _ProductTree

Shows the product breakdown for a system
element.

PKG Content, <<ContentDiagram>> _Content

Shows the package structure within another
package for easier navigation

IBD Engineering Specific View _Eelectrical, _Optical,
_Mechanical, _Information,
<<electrical>>, <<optical>>, <<mechanical>>, _Thermal
<<information>>, <<thermal>>
PAR <<element constraint>> _Constraint

Constraining a system element.

BDD, CLASS | Define system independent element, like _Definition
guantities, units, stereotypes.

e ProductTree ... BDD
e Content ... PKG
e _Electrical, _Optical, _Mechanical, _Information ... IBD

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 19 of 120

e Constraint ... PAR
e _Definition ... BDD, CLASS

#Product TreeDiagram:
bdd [Structure Aspect] APE_Structure [@.&F‘E_F‘rnducﬂree]

Figure 7 Diagram header with Naming Convention

Conkainrent o 0 =
o 2By Y - B

--E‘j APE_Performance =Performance Aspects (by rkarban) ;I
--E‘j APE_Requirements «Feguirements Aspects (by rkarban)
EI@ APE_Struckure «Structure dspecks (by rlkarban)

- Relations

--E‘j 835M «Decomposed3ystemElements by rkarban)

--B Constraints (by rkarban)

--E ControlSystem «DecomposedsystemElement: (by rlkarba
--E‘j DIPSI «DecomposedSystemElements (by rkarban)
--E‘j aGuidingCamera «DecomposedSystemElements (by rkarbz
--E‘j ImagingZamera «DecomposedSystemElements (by rlkarb.
--E InternalMetrology «DecomposedsystemElements: (bey rla
--E‘j OpktoMechanicalBench «Decomposed3ystemElements: by
--E‘j PYPS «DecomposedSystemElements (by rkarban)

--E SHAPS «DecomposedSystemElement: (by rkarban)
--E‘j ZEUS «DecomposedSystemElements (by rkarban)

E}@ APE «3ystems «allocateds (by rkarban)

Bl Relations

E APE_Beamuality _Constraint «System Constrainks: o
@ APE_Electrical «electricals (by rlkarban)

@ APE_iptical «opticals (by rkarban)

@ APE_Mechanical «mechanicals (by rkarban)

@ APE_Information =informations (by rkarban)

Fl-mE +asm i APEAPE_Structure: A3M:ASM_Structure:
EEI---|E| Hyperlinks

- Phasing Wavefromt Sersor «Blocks «allzcabads (by rkark
iz SupporbStruchre smechanicas by rkarkan)

EE}--E Hypetlinks

@ APE_ProductTree «ProductTreeliagrams (by rkarban)
-1 These sub ... by rkarban)

E-F1 APE_Traceabilicy «Model Traceability: (by rkarban)

E-{1 APE_Variations «variations Aspects (by rkarban)

-1 APE_Werification «verification Aspects (by rkarban)

b

b

-1 APE_Yiews =System Yiewss (by rkarban)

(2] Hyperlinks

APE_Content «ConktentDiagrams (by rkarban) |
APE_Project_Content «ContentDiagranms -

Rl I 0[5

Figure 8 Naming Conventions as seen in the Containment Tree

5.2.3 Naming of modeling elements

In general, do not use SysML keywords (like connector or interface) as names in the model to avoid
confusion between SysML concepts and the system model.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 20 of 120

5.2.3.1 Role Names

Use Role Names for Part Properties only when there is more than one part of the same type; e.g. if
you have a primary and a backup server.

5.2.3.2 Names of classifiers (e.g. <<Block>>, <<ValueType>>), Requirements, Activities, and
Packages (Definition of something):

e use expressive short names
e do not write complete sentences, only string of words

e every word starts with a capital letter to distinguish Definition from Usage

e do not use underscores but use spaces to improve readability and allow word wrapping in the
tools

5.2.3.3 Names of actions, pins, ports, parameters, attributes, operations and all properties (Usage of
something):

e same as for classifiers but first word starts with lower case letter

5.2.3.4 Indicate type of model element in the name:

type suffix

flow specifications <name> fs
standard interfaces <name>_if
flow ports <name>_fp
standard ports <name>_sp
electrical interface portgroup <name>_eif
information interface portgroup <name>_iif
mechanical interface portgroup <name>_mif
optical interface portgroup <name>_oif

A <<portgroup>> is specification for an interface of a system element. It is explained in chapter 9.

5.3 Style and Layout

5.3.1 DO NOT use grids in any diagrams.
They really distract",.

5.3.2 Instead of emphasizing the diagram, emphasize the elements that are hyperlinked to
diagrams.

In systems engineering culture one expects to drill down from the O-th level. In general, it is
recommended to emphasize the relationship between system elements rather than the physical
packaging, or the diagram types and icons. To make that work you MUST hyperlink every single
element to something else (except for trivial leafs).

In general, navigation should happen through the diagrams, and not through the containment tree.
Having that in mind, the diagram has a lot more importance, in particular hyper linking diagram
elements to other diagrams.

! In MagicDraw You can switch off the default under Options->Project->Symbols->Default->Diagram

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 21 of 120

5.3.3 Every time you place a SysML comment consider what editorial stereotype might bring it to
life.

<<Rationale>>, <<Problem>>, <<Issue>>, <<ERROR>>, <<parsed>>. The above stereotypes use
tagged values for metadata (there is an author:String tag). All mentioned stereotypes can be applied
to SysML comments.

gCOmment:
asmServer

{authar="RKA"

— — — — = A Syshl software block iz
allocated to a UML package,
which zerves as the starting
point for S design,

Figure 9 Comment with author tag

5.3.4 "Definition" BDD diagrams for a context are overrated. Focus on IBDs.

e Just use a product tree for each Block showing its attributes, operations, and nearest related
elements”.

e Reflect the systems engineering process with your system sub packages. And please always
hyperlink every single package to a package diagram.

5.3.5 Span the Whole across its parts

To show better the Whole-Part relationship in a BDD span (graphically) the Whole Block graphically
across the parts it is composed of. Figure 10 shows the product tree of the Active Segmented Mirror
which is the most important element in APE. It consists of 61 hexagonal, piezo-actuated mirrors. Each
segment is actuated by three piezo-actuators, which makes 183 position actuators.

% You can drag an IBD or BDD focus diagram for a Block onto parts typed by that Block in IBDs to
"open the part up” into the Block that types it.
Place a matching BDD "product tree diagram" icon on the IBD of a Block

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 22 of 120

zProduct TreeDizgr ame - - .
bdd [Structure Aspect] ASM_Structure [@.&SM_PruductTree 1 Medification date | B26M 1 58 S

«physicals
ActiveSegmentedMirror
valwe s
povverConsumption : WWunit = Watt}
B 183
sopticss #mechanics: amechanics:
Segment PositionActuator Mount
values values

lightTransmission = 0.55 povverConzumption : W= 0.1 {unit =""att}

diameter . mm =15 44unit = Millimeter } || = . Strokefunit = Nanometer }
bandwidth ; Hz{unit = Hertz}
lag : s{unt = Second}

ASM_Content

Figure 10 ASM Product Tree

5.4 Model Documentation

5.4.1 General

e Each relevant model element has to be documented, e.g. package, block, port, interface,
connector, data, and property.

e For each diagram describe what it shows. Think about why you draw the diagram and for
whom. Describe what is important but not directly visible: design decisions, and so on

Two types of documentation exist, documentation about the model and documentation relevant for the
system being modeled.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 23 of 120

5.4.2 Documentation about the model

This documentation contains information why something has been modeled in a particular way, or if it
unclear how to model something.

Annotations regarding the modeling approach or the meta-model:

e <<Comment>>:
o for documenting system specific modeling approaches and decisions.
o for documenting model elements which for example are extracted from a document, to
document where they come from
e <<lIssue>>: for marking questions on modeling methodology, e.g. what stereotypes should be
used; if an <<issue>> is solved by decision of the team, its solution becomes part of this
Modeling guidelines or its stereotype is changed to <<Comment>>
e <<ERROR>>: for marking SysML tool problems; use red borders with black text on white (not
red background) for error comments \
e <parsed>>: a model element has been automatically parsed from a text document

5.4.3 Documenting the System being modeled

Annotation can contain information about the system elements of the system that is being modeled:

e regular notes: for documenting the content of the system you model, to enhance
understanding of the system;

e <<Problem>>: for marking a potential problem in the system development e.g. requirements
cannot be met or interface conflicts

e <<Rationale>>: for justifying any decision during the development, e.g. <<derive>> of a
requirement or decision on design alternatives

3

This allows better use of the documentation for generation of printed documents.

6 System Views

6.1 Guidelines for necessary system aspects and perspectives

The necessary views depend on the purpose of the modeling. Typical views were adopted from [RD2],
which defines Behavior, Data, Purpose/Obijectives, Performance, Form, and Managerial models as
parts of an integrated system models.

The integrated system model consists of different sub-models which address the different aspects.

e Behavioral (Functional) aspect

e Context aspect

e Data aspect

e Performance aspect

¢ Requirements aspect (including the Use Case model)
e Structural aspect

e Variations aspect

* IMPORTANT: In MagicDraw the specification of every model element has a Documentation category
where plain text or HTML text can be entered. Use this category to maintain information about a
system element instead of maintaining the text directly in a SysML Note. When a Note is attached to a
symbol, the related documentation can be displayed in the Note automatically (select from the Note's
context specific menu ‘Text Display Mode’ -> ‘Show Documentation’). Other modeling tools provide
similar concepts

Issue 1

SE2 Cookbook for MBSE with SysML 19/01/2011
Page 24 of 120

e Verification aspect

We do not use SysML <<view>>s, because a SysML <<view>> may not contain model elements, but
we considered it important to group the aspect relevant elements together with the diagrams..

There are several additional packages for organizational reasons.

gCortertDisgrams
pkg [Model] APE([APE_COI‘ﬁeI‘it 1
Modification date | 318310140
«Behavior Aspects #Data Aspects «Performance Aspects sReguirements Aspects
APE_Behaviour APE_Data APE_Performance APE_Requirements
1 Evaluate Phasing techniques 3 APEDataModel 1 ClosedL oopAnalysis 3 System requirements
1 PhaseMaskAnalysis 7 Stakeholder requirements
3 FluxAnalysis 1 Objectives
1 CaptureRangeAnalysis
T 7 7 a
| ! - -~ |
J s =
I ! s - e ;
! p P = s erification Aspects
sttucture Aspects / P - APE_Verification
APE Structure © P - £ Example
CI1ASM - 1 Integration
CIZEUS .
CI1PYPS
1 DIPSI -
£1SHAPS - '
£3 OptoMechanicalBench L - - - |
£ ImagingCamera -
£ GuidingCamera Aotz AERERD I
£ ControlSystem APE Context "
1 Actors

1 InternalMetrology N
£ Constraints 1 ExternalSystems
3 InterfaceSpecifications

saystem contexts
% aristion points
APEContext
ahvariation points
hindingTime = CperationPhase
variation = CJAPEContext

zsystems
APE
{focalRatio==F 5} | SPE

i

|

|

" = |

waystem Viewss zModel Traceability: e

st Azpect
APE Views APE_Traceability s L
| Objectives vs. Stakeholder Requirements 1 APEContext

" Stakeholder Requirements vs. System Requirements n A R
.: Stakeholder Requirements vs. System Design 01 Behavior_CompensationTechniques
‘A APE Behavior to Structure

|A Setup test beam to APE structure

APE_Project_Content

Figure 11 Top level diagram showing the system aspects

Each aspect contains different engineering perspectives, in particular the structural model, serving a
specific engineering perspective, like optical, mechanical, or electrical. Each domain has its specific
set of perspectives; e.g. for the telescope domain these are optical, mechanical, and electrical
perspective. The APE concentrates on the physical perspectives.

SE2

Cookbook for MBSE with SysML

Issue 1
19/01/2011
Page 25 of 120

wizontertDiagrarm:s

class ObservatoryCortesxt | Ohservatary(:antext_cn:rrtent

]J 8/231101:48

Modification date

ObservatoryContext_Optical
w

S
N
-
"

Pt

ObservatoryContextinterface_Constraint
)

-
e
e
v

gaystem contexds
ObservatoryContext

constaits
: MasmythinstrumentSpecification

ObservatoryContext_Electrical

ObservatoryContext_Information |
| wiZomments

Here & separate Content diagram
iz uzed to display all available
viewws of this block. The problem
in WD is that you have to do it

Ob=servatoryContext_Mechanical manuslly .

=T=]
Observatory_Context_ProductTree

Figure 12 Content Diagram of Engineering Views of the ObservatoryContext Block

Remark: The dependency relationships between the system context and the diagrams of the views
are not strict conform to SysML, but we think they improve understanding.

A <<block>> owns one or more IBDs for the relevant engineering perspective. For navigational
reasons, it can contain also a content diagram which is hyperlinked to the block and serves as an
entry point (Figure 12).

A split of the engineering views into different IBDs makes sense for blocks with multiple connectors for
each engineering view. If there are only few connectors, a single IBD, which combines all views, can
be sufficient.

Which engineering views should the model contain?

e The system context and any structure require different views and definitions. They are
represented by different IBDs and BDDs. The recommended suffixes are:
0 _Mechanical, _Optical, _Electrical, _Information, _Thermal for IBDs
o0 _Example, Content, ProductTree for BDDs
e Use the respective stereotypes for the connectors in IBDs:
0 <<optical>>, <<mechanical>>, <<electrical>>, <<information>>

The IBDs of each discipline are stereotyped the same way as their connectors, i.e. <<optical>>,
<<mechanical>>, <<electrical>>, <<information>>. The IBDs are nested within the Block of which the
engineering views show the internal connections of that Block.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 26 of 120

6.1.1 Mechanical Perspective

The mechanical perspecive shows how system elements are connected mechanically or how they
interact mechanically. This happens at a fairly abstract level to give an overview of the system. Each
part of the system will have a corresponding part in a mechanical CAD drawing.

The properties, like mass, size, color should be synchronized between the system model tool (e.g.
MagicDraw) and the CAD tool (e.g. SolidWorks). This allows an integration and analysis of the
mechanical properties with other system properties; e.g. how much electrical power is required to
move a mechanical piece.

The mechanical perspecive of the ZEUS substructure in Figure 13 shows some mechanical elements
in the model and the real system. You can identify for example two filter wheels and a translation
stage.

Flows between the parts can be mechanical forces.

smechanicals
ibd [physical] ZEUS [Egj ZEUS _Mechanical]

amechanical:

: Breadboard 4‘ : Cover #mechanicals shut : Compur
; smechanicals
Arctiores W{ : CCOMount cdzeus : CCD57-10
oLt

" _ .
[] i [it smechanica, cfw : ZEUS ColorFilterWheel ‘

. Vi
smechanical

) 7/
wedual> M{ ndf : ZEyg Heutral Density Flter J¥heel ‘
beaniical / /
M{ t% PhaseMaskTransla‘ti}‘S‘tage , ‘

| Modification date | 52110 6:21 P

Figure 13 Mechanical View of the ZEUS substructure

SE2

Issue 1
Cookbook for MBSE with SysML 19/01/2011

Page 27 of 120

Filter wheel

Mask exchange
mechanism

Detector assembly

Collimator

Field stop

Figure 14 ZEUS 3D view of the opto-mechanical concept

6.1.2 Optical Perspective

The optical perspective shows how a light beam propagates through the system. Each of the optical
components has optical properties, like a transmission factor of a filter. Like in the mechanical
perspective the optical components and their properties should have their corresponding parts in an
optical design tool, like ZEMAX. And, like in the mechanical world the optical properties can be
analyzed for trade-off together in the system model. For example, at system level a trade-off analysis
could be made between the sensitivity of a CCD and the transmission of the optical system in order to
get a certain flux at detector level (Figure 16). More on how a system model can support
interdisciplinary analyses can be found in chapter 13.

zopticals

ibd [shysical] ZEUS [[ZEUS_Optical J | Modification date [8121/10 3:19 Pu |

E’] aif shut: Compur : Cover oif1 ﬁf 'w : ZEUS ColorFiterwheel
[
=

EL

==
ZEUS_ProductTree

aif2

| ndf : ZEUS Heutral Density Filter Wheel |

| t=s : PhaseMaskTranslationStage |

| cedzeus : CCD5T-10 |

Figure 15 Optical Perspective of the ZEUS substructure

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 28 of 120

| ac.ape.zeus : ZEUS | ‘ ac.ape.dipsi : DIPSI |
fluz Ot T2
=traints
i = ransmizsionFraction b
ac.ape.omb.cbsdlightTr: =09 I[: LightDivision

{leCut1=0.5*ransmissionFraction*fluxin,
fluxOut2=0 5*ransmissionFractionfluxin}

O

fluxin

Ot
«conztraints

- o pansissionFraction : lightTransmission
RIS — | {fluxut = fluxinttransmissionFraction

B

fluxdn

Figure 16 Part of a Parametric diagram analyzing the flux in the system

6.1.3 Electrical Perspective

The electrical perspective provides insight on all electrical connections in the system, like plugs,
sockets, cables, and wiring. The system level model can be quite high level or very detailed like a
wiring scheme. The Systems Engineer could layout the high level electrical system which is then
detailed by the electrical engineer. This refinement can be done in the same SysML model, in a
specialized tool, or in a combination of the two.

The high level electrical layout of the ZEUS substructure is shown in Figure 17.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 29 of 120

*Emetrcab]J Modification date | 823110 5:50 PM

ibd [phrysical] ZEUS] ZEUS_EIedrical

weaterOut coalingReturn : TCCDCoolingConnectarReturn L ecdzeus ; CCD57-10

weaterin coalingSupply : TCCDCoalingConnectorSupply

tocdH2 left : TCCDHeadoabled
tocdH1 right : TCCDHeadcakle2
» ZESeif
t= : PhaseMaskTranslationStage

sphdzz : ThickRoundPlughd

welectricals h : Pl M-405.CG
fpMzz : MaotorControl_fs I
msy gelectrical: I

ndf zelectricals

I ndf : ZEUS Neftral Density Filter Wheel l

chy «electricals

I cfw : ZEUS CflaniIter\M‘leel |

The Electrical connections to
ZEUS ProductTree the o= are routed through the
= jungtion box. They are in the

AFE electrical view.

APE_Electrical

Figure 17 ZEUS electrical perspective

6.1.4 Information Perspective

The information view is used at system level to avoid software design to creep into system design.

Information IBDs can become software context diagrams in the software design, e.g. UML diagrams
showing the interfaces.

The information view shows which information flows among system parts, independent if they are
propagated as electrical signals or as Ethernet packets. The information in an information IBD

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 30 of 120

correspond almost one to one to the object flows in the activity diagrams but in the IBDs they are
related to system elements and not to behavior as in activity diagrams.

The information view could be considered as a kind of logical view. In fact, it is supposed to model the
information which flows through the system at its highest abstraction level. When data is involved,
typically a protocol stack is involved in the flow (like the ISO/OSI layer model). Because of the many
involved layers the line between logical and physical model can be drawn almost anywhere for flowing
data. Figure 18 shows two Local Control Systems (ZeusLCS and AsmLCS) which control a wave front
sensor and the mirror, IMCS which controls the internal metrology, and the supervisor which
coordinates the LCSs.

ginformation:
ibd [] ControlSystem[CS_InfDrmation 1 Modification date B8/23M0 553
PM

ZeusLCS_Control_if

su : Supervisor zeusl C5: ZeuslL CS5

junctions

pwifs : pwfsControl B [:l

junction:
‘apzws:zeusCumml |_
ASMLCS| Contral_if,
ZeusLCS_Control_if
IMCS_Control_if

asmLCS : AsmLCS ASMLCS_Cdntral_if “ 7 imes:mmcs |
|
I |
:asmServer sjunctions |
imData ginformation: fpimData I
_3 |
junction: |
|

IMCS_Control_if

ot
o
ControlSystem_ProductTree

Figure 18 Information View of the Control System

6.1.5

6.2 Relationship between Model Aspects

The relationships between model aspects are mostly modeled via allocation. Different allocation
strategies are described in chapter 15.

Most of the MBSE methods prescribe a logical/functional and a physical model. Their elements are
typically related via <<allocate>> relationships.

The APE model is simplified to show SysML modeling concepts and methods.

The BehaviorAspect <<view>> describes the functional decomposition of the system, and is mostly
technology independent. It describes the system from a pure functional point of view, using activity
diagrams, interaction diagrams, and state machine diagrams.

The BehaviorAspect <<view>> satisfies requirements. The behavior is then allocated to the physical
structure (the <<StructureAspect>>), which has to implement the functions; be it mechanical,
electrical, or software.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 31 of 120

7 Requirement and Use Case modeling

7.1 Context Modeling

7.1.1 Purpose of context diagrams of a system

The purpose of the context diagram is to determine the system scope. It identifies the parts which
belong to the system and which do not — the system boundaries.

The system context shows the system as a black box and all interacting external elements. All external
elements are shown as actors; they can be systems, persons, etc.

In order to model the context of the system, a special <<system context>> block is created which acts
as a container of the system and all external actors. In Figure 19 it is called APEContext. The system
being modeled is called APE with the stereotype <<system>>. External non-human entities are blocks
stereotyped as <<external>>. Human entities are represented by stick-men <<actor>>.

2110319

«ProductTreeDiagramm:
1
P

bdd [Context Lspect] APE_Corte:xt [@APE_Context_ProdudTree

«Comments Modification date

We specialize the ahatract
context for each concrete
deployment contesxt

saystem contexts
<N ariation poirts
APEContext

«variation points

bindingTime = OperationPhase
variation = FJAPEC ontext

ape

S ICDs which d«(f:nmmmerd:
3 wehich defing interfaces
) : B o et betuveen the system Under
E ; ¢ ; {focalRatio==F15} Environment «hlocks ~ |construction and its context belong
vakies i ItarfaceSpecifications to the context
Scientist Engineer -ambient : “C{unit = DegreeCelsiuz
atm
wexternaly «ICD» ICD»
Atmosphere <hlocks «hlocks

APE_Content VLT-SPE-ES0-10000-006 | | ¥LT-SPE-ESO-10000-0013

g valkes
-zeeing ; arcseciunt = Arcsecond}

Figure 19 "Product Tree" of the System Context
The actors are involved in use cases requesting a service from the system.

When breaking down the system each decomposed system element has a context at decomposition
level. Taking the example of a control system, the actors are the ones which are controlled but still
inside the system’s boundaries. The context diagram should show the concerned system and its
relationship to external entities. That does not mean that one needs a context diagram for each and
every subsystem!

At top level of the model, the real system is shown in its context. The connections of the system with
the outside world are shown in the IBD of the special context block (Figure 20 shows the optical
context). For each engineering discipline a different context IBD can exist. Note that APE can exist in
different contexts. Here it is shown in the observatory context, where LensGroupl of APE (mounted
on the OptoMechnicalBench) is optically connected to the NasmythAdapter of the telescope. The

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 32 of 120

NasmythAdapter provides the opto-mechanicl element which “hands” over the light collected by the
telescope to the instrument, APE in this case.

How different contexts are modeled is shown later.

wopticals
ibd [System Context] ObservatoryConte:xt [Observatorndnte:d_Optical]

22110 3:23

ape : APE_Telescope Modification date PM

omb : OptoMechanicalBench

ut3 : UnitTelescope

— = T in_of object._oi Fa_oif ada : HasmythAdapter
g1 : LensGroup L | ! e

|:_I
j «Dp‘ticam

=[=]

ObzervatoryContext_Conte Observatory Context_ProductTree
nit

Figure 20 IBD of the Optical Context of the APE system at the telescope

To describe for example all internal connections of APE create an IBD of APE, which has the
properties Control System, ZEUS, Bench, etc. Mostly each subsystem is simply used by another
system or subsystem at a higher level. Therefore you do not need repeat the same thing. i.e. create a
context and describe its structure.

Rather, create another IBD in a block for each subsystem as a context because the structure of this
System defines also the context of each of its subsystems.

However, mostly it suffices to simply reuse each block or subsystem in a higher context. Typically
<<external>> means something that is NOT modeled in the entire system. You need to address the
so-called Oth level, which is the (entire) <<system context>>. It provides the top-level context for your
SINGLE <<system>>. The project thus handles ONE <<system>>. That ONE <<system>>may be
subject to <<external>> influences THAT ARE NOT MODELLED precisely. The detailed modeling
starts at the 1st level, the <<system>>.

The mechanical IBD of the APE system (Figure 21) shows the internal, mechanical, connections of
APE but at the same time is the context diagram of its parts, like ZEUS. The context diagram of ZEUS
is then simply the IBD of its containing higher level, APE.

All the opto-mechanical elements are mounted on an optical bench, therefore there are
<<mechanical>> connectors between the elements and the bench. The connections are modeled at
varying levels of detail. Sometimes a simple connector indicates a mechanical connection, sometimes
a port represents a mechanical interface of an element.

SE2

Cookbook for MBSE with SysML

Issue 1
19/01/2011
Page 33 of 120

«mechanicals

ibd [System] APE[| APE_Mechanical

)

omb.bench : SandwichOpticalBench

«mechanicals

mif

«Comments
The mechanical interface
iz modeled as atyped
standard port and then
connected to the real part.

«parseds
ELT-SPE-ESC-04600-0001, lssue 1,
Irterface Cortral Documert for APE
It is converted into system properties and
interfaces. the ICD s in principle
generated from the model.

) 8i21103:19
Modification date P

wComments
Thiz connector will be described in an IC0. The omb
and dipsi are designed and built in parallel. Therefore
there are two requiremnts specs and one ICD
hetween them.

it

«mechanicals

N
\ omb.parabolica : OffAxisParabolicMirror
: Parabolicatount
amechanicals IS - ParabolicaMount H - ParabolicaMirror
ajunction:
amechanicals [e=ms irror |
|
Smechanicals im : InternalMetrology
| zeus : ZEUS

«mechanicals

smecharical: £ : SupportStructure o o

% omb.TCCDContrZEUS : TCCDController ‘

amechanicals

SHAPS : TCCDCH

I omb.TCCDC

oller |

mechanicals

omb.cover : OMBCover ‘

APE_ProductTree

APE_Content

aComments
The support structure iz

redefined in the variants for
Iakb and ohservatory

Figure 21 Mechanical IBD of the APE system

SE2

Issue 1
Cookbook for MBSE with SysML 19/01/2011
Page 34 of 120
<ContertDisgram:
pkg [Fackage] OptoMechanicalBench | COptotechanicalBench_Content]

Modification date | 9/7/101:22 PM
Last modified by

«Requirements Aspects
OptoMechanicalBench_Requirements

-
-
#Structure Aspects
OptoMechanicalBench_Structure

«Comments
The ProcuctTree is

hryperlinked to the
Structure package

«System Interfacess
OptoMechanicalBench_Interfaces|
El JunctionBox2External_eif
El JunctionBox2Internal_eif

=] JunctionBox1Internal_eif
El Souriau851

JunctionBox1External_eif
OptoMechnicalbench_Interfaces_ProductTree

Parahala

[=T=|
APE_ProductTree

Figure 22 Model of the OMB

Typically, one enters a project and finds a Oth level <<system context>> that provides a context for the
<<external>> and <<system>>.

7.1.2 Modeling the information flow in the context diagram

If information flow to external is modeled to improve understand of the context relations of the system,

model the information flow as flow items on the connections. Pay attention to avoid diagram
cluttering, and achieve completeness.

If necessary create a separate diagram for the information flow to each external system.

7.1.3 Modeling different contexts

The System context is modeled using IBDs. Our main focus is on system interfaces.
Three different possibilities are shown to model an interface

e Combination of mechanical and flow interface at block level (Model physical and logical
properties at border of block without opening it.)

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 35 of 120

e Mechanical and flow interface at part level
e Mechanical and flow interface at block and part level.
e Abstract interface representing and ICD (using standard ports).

A problem is ensuring consistency between ICD document and the model which is used to create the
CD.

APE is deployed in the lab and at the observatory. Each environment has slightly different interfaces
or external actors, i.e. the context is different. The different contexts are modeled as variants, which
are explained in detail in chapter 14.

For each relevant aspect (mechanical, optical, electrical) the context is modeled. To avoid cluttering by
IBDs, for each context a separate block is created which inherits from a common, <<abstract>>,
context block. The common block contains the elements which are shared among the other contexts.
In the APE example the abstract context block is called APEContext, and can be identified by the
slanted characters in the name. For each context, this block is specialized. The blocks are called
ObservatoryContext and LaboratoryContext.

zProductTreeDiagram:
bdd [Context Aspect] Observatory_Contesxt [@ Observatory_Context_ProductTree | Modification date 22110 3:23
PmM
«system contexts
+Warigtion point:s
APECountext

Telescopelnstallation_Picture
=4

«5ystem contexts
ObservatoryContext

wsystems
APE
{focalRatio==F15}

ape |{redefines ape} -‘V ut3
zsystems «externals zexternals
APE_Telescope UnitTelescope SitelnfraStructure
parts
S15-M-C o SCP Part C
wmechanicss aphysicals -15-M-B: SCP Part B
vales
SupportStructure ControlSystem B RO e is=ion = 0,515
«Rationale: E
58 apecs Installation on ESO
fredefines 55} {redefines apecs} telescope because of
9 " knowhowy and
smechanics: sphysicals ziComment: accessibiity
PassiveSupportStructure ControlSystem_Telescope | |The network layout
and the IP addresses

are different. Inthe lab
~ there are nat media
converters necessary.

Context_Content PassiveSupportStructure_Picture

Figure 23 Product Tree of the Observatory Context

In the case of APE, the SupportStructure, the ControlSystem, and other items differ slightly for the
ObservatoryContext, which can be seen as specializations in Figure 23. Again, there exist IBDs for
this particular context, as shown in Figure 24.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 36 of 120

welectricals
. =) i
ibd [System Context] ObservatoryContesxt [ObservatoryComext_Eledrlcal]J Modification date gﬁ1 10323
ape: APE_Telescope
gpecsEontio sy stemSlnlasuaps | scp: VLT-SPEESO-1D000-0013 3CP : YLT-SPEESO-10000-0013
|:_| - . ut3 : UnitTelescope
cSens : ElectronicCabinet oty
zelectricals &COMmments
3pnhase socket | 1he cakinet is connected to
| — B CP Part A which provides a 3-
phaze socket and 4000 AC.
dllocates | werdDDvac _ |&l interface types are modeled
o - - Lo L — = = weith ports.
| ch=mlElectronicCahinet | 4 S0P Part In ane case the flow port and
- a/ A= lthe connector are related with
cMisc : ElectronicCabinet . - allocation in the other case
| | : PowerZ30vAC-URS L~ wiith specialization.
SCP-1-phasze-socket
h5 : §-PortHub SCP-1-phaze-socket
me5 : MediaConverter (I5HBES G HartlH
_ {ﬁ:oolamReturn : SCPSelfsealingFluidFemale
i hart——
zeuslC5: ZeuslCS - .
L 'J_| I pply : SCP lingF I
lapzeu : MUYME2T00 s — Ll_l
valwe 5 (Obmeratony Condesd]
ipacdress = 134 171 207 22 . ——
powerConsumption = S0{unit = Wiatt}) airQutlet : SCPSelfSealingAirFemale
price = 2500 e L
1
L)
Y | sComments
h1: §-PortHub H met : MediaConverter 15-h-C; SCP Part C : e connect
| X] sjunction: LR GLISCREAG directly to the port
y «eguials of & deeply nested
| h2: §-PortHub H mc2 : MediaConverter I structure to avaoid
A cluttering with
I rts.
| h3: §-PortHub H me3 : MediaConverter | 7 S
! | ! Pl FO coupling connector ST bayonet [24]
\ /
‘ : f
| suv.wape : PowerEdge2§50 | -\ .
The type of the port iz the same a= the The netvwarking gnd time reference is
\ ore of the patt property. accessed by the instruments throligh
\ A junction sterectype is used to the SCPs of the telescope.
g i indicate that th rt i identical with
me4 : MediaConverter - anlicirﬂeernal paipo & Inentical welectricals welectricals
\ .
l : SitelnfraStructurg
\ |
\ |trs : TimeReferenceSystem |
N |": Hetworkinfrastructure |
wCommerts |
The ipaddress depends
on the cortext, i.e. either
laboratary or chservatory. | —
ObservatoryContext_Conte Observatory_Context_ProductTree LaboratoryContext_Flectrical
nt

Figure 24 Electrical IBD of the Observatory Context

7.2 Use Case Modeling

7.2.1 Purpose of a Use Case

A use case is a sequences of interactions between the system and the actors to achieve a specific
purpose for the triggering actor. We used use cases for refining high level requirement. Refinement
means elaboration in this context, i.e. add more information about the interaction and provide a better

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 37 of 120

understanding of the requirement. However, Use cases can also used as basis for elaboration of lower
level requirements.

A use case describes how a functionality/service is offered by the system as description of the
interaction of the system and its actors.
The system is like a "service provider".

A use case has at least one actor, is started by a domain specific trigger and ends with a domain
specific outcome. The sequence between trigger and outcome is coherent in time, i.e. there is no
domain specific interruption.

The use case shall be described with an essential sequence, which is the standard success scenario.
It should not contain any decisions about technology or design. Non-standard sequences (exceptions,
etc.) are described with additional activity diagrams.

Describe use cases only with essential steps (i.e. raise them to a higher level of abstraction and
describe them technology independent). A use case should usually have between 2 and 8 steps.

A use case can be encompassed by preconditions and post conditions for a more precise description,
but there may not be a 1:1 mapping of pre- and post condition to later state machine
implementations.

A trigger is generated OUTSIDE the system and starts the execution of a use case. The result of the
use case is an EXTERNALLY observable consequence. Pre- and post conditions are the state of the
system. They are INTERNAL.

A use case can be restricted by a business rule. They should go to a separate section and the use
case should only refer to them because they might be applicable to several use cases.

A use case can be associated with non-functional requirements (performance, safety, etc.). Since the
performance requirements might apply across use cases or across the system, it is better to reference
them only to avoid duplication and allow better traceability.

There are two types of use cases:

e Primary - Primary use cases are directly connected to actors, they have a trigger, an outcome
and post-conditions. They represent the core value for the actors.

e Secondary - Secondary use cases have no actors, no trigger, no post-conditions and are a
mean to factorize common paths in primary use cases. Use them only when you have more
than three instances of the same path.

A use case should have a name, description, incoming/outgoing data, trigger, result/benefit, pre-/post-
condition. The description elaborates the most important activities (aka scenarios). The steps of the
activities should be described in its essential form, i.e. rather technology independent. For example,
instead of “Enter PIN” the step should be “Authenticate User”. The number of essential steps serves
as a measure for the effort to implement it.

Some of the APE system use cases and the corresponding GUI is shown in Figure 25.

Issue 1

SE2 Cookbook for MBSE with SysML 19/01/2011
Page 38 of 120

ue Package] UseCeses| B APEUseCases [oditication date [ar24110 12:61 Pm]

suseCasaModels
APE

¢ apwisgui - @wxapZa i 10Ol =
LS

APE Phasing Loop Control

ws[] State ONLINE
NT @ SubState IDLE

Current Cycle mirror was flat for last El cycles

Master Sensors: tipfilt[DIPST |piston | ZEUS | focus [SHAPS |
Active Sensors. SHAPSE DIPSIE PYPSm ZEUSE

~ Select a combination of corrections —

% —] “Select Active Sensors |
Scientist ‘H\

—_ X zcontinous:
! Run Measurement Loop

SET MASTER SENSCORS | SET ACTIVE SENSORS |

TipfMit DIPSI —-| W SHAPS W DIP5I
Piston FEUS — |
AFven WaEils

Focus SHAPS —-|
Flat count : |3— SETl

ACQCS\ cwwrA | oMEcoR| sTPwAIT]
= Synchronize\ CYCLAD SEQAC | gycles :

Command Feedback Window Options

13:38:13 SELMWFS > INVOKED
13:36:13 SELMWFS > REPLY/ L OK

4

[g

APE_Requirements_Content

Figure 25 Subset of the APE System Use Cases

7.2.2 Modeling monitoring and control activities
A monitoring or control activity can be started, then it runs, and in the end it is stopped. Here is only

ONE use case required. It would be triggered by the start and run until a message arrives to stop it. It
can be modeled as a <<continous>> use case.

7.2.3 Modeling operations related to subsystems with use cases
For example, a lamp is switched on, then it is on and in the end it is switched off.
The use case would be rather simple and therefore does not add any additional information. You don't

need a Use Case. Model it with a normal requirement that you want to switch on, off the lamp.
However, to model the change of intensity you might refine this requirement with a use case.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 39 of 120

reguirement:s
Injection of calibration beam

ld="8R1.18"

Text="The system shall he
able toinject a calibration
heam into the optical path. "

T
|zrefines
|
" o ——
I/"-liihar_lgﬁ- intensity uf"‘
t\& calibration heam)

e s

Figure 26 Refinement of System Requirements

7.2.4 External element types

The following type of actors can be distinguished:

e interacting actors - involved in use cases
e mechanical systems - interfaces defined but not involved in use cases
e environmental influences - like vibration forces

There should be different diagrams for those categories. Every external element MUST have a defined
interface (interface in sense of System Engineering).

7.2.5 Modeling a system of systems with use cases

Use cases should have only ONE level for a certain system, the <<primary>> use case. Use cases
shall not be deeply nested because it bears the risk of doing structured analysis with use cases. That's
not the intention of use cases, because each use case shall have a measurable benefit for the actor.

Note: use cases can be used at different level. However, we do not recommend using different use
case levels for Telescope domain.

<<secondary>> use cases are a pure organizational aid to avoid duplication of information. Between
<<primary>> and <<secondary>> use cases exists the <<include>> relationship. However, use
<<include>> only if more use cases share the same functionality. Avoid building structured analysis
like <<include>> tree structure!

7.2.6 Use Cases vs. Standard UML Interfaces

e Use interfaces to elaborate Use Cases at lower levels

e The panel (with knobs and gauges) of a subsystem is represented by a set of Use Cases

e From the perspective of another subsystem the same functions are modeled by interfaces, try
to avoid Use Cases among systems

e Always let ports realize an interface. More flexibility

e The connector from a port at system/assembly border acts as delegation

Issue 1
19/01/2011
Page 40 of 120

SE2

Cookbook for MBSE with SysML

7.2.7 Tracing test cases to use cases and requirements

A specification for a subsystem often contains requirements on the necessary tests to be executed,
the test requirements. A client, for example, would specify test requirements if the subsystem is
contracted to a supplier. The supplier has to meet those test requirements. Those requirements are
not the detailed procedures but only requirements for them.

The details of the <<Test Case>> are described by activities, sequence diagrams or state machines.

Furthermore, the model should describe who executes the test. Test cases ccan be directly derived
from use cases, because each scenario of a use case is a test case.

An example verification model is shown in Figure 27 which shows the relations among all the
participating entities. The TestRequirement is derived from a SystemRequirement, and refined a Test
Use Case. The set of <<Use Case>>s corresponds to a traditional test plan.

ue [Package] Yerificationbodel [@MAPSTes‘tSys‘tem_Tes‘tCaseModel]J

Modification date
Last modified by

1219110 10:42 AM
rkarban

reguirements
| MAPS Spectrum Variance
MAPS Test System Use Cases DerivedFrom = 4%
Turbulence generator
MAPS Test System ld=""
o Text="Foreach phase
T S | P screen 50 HASO
Tester T " PerformHAS0 n— — — — — srefines measurements within 45
'-\\ measurement) arcsec FoV shall be taken
— - with the phase screen at
W d a «requirements different positions.”
& T N S MAPS Spectrum Mean T |
Vs b -
= T S RN DerivedFrom = &% / \
y; =Turbulence generator / \
| \ 4—[ld=""
s " J'I
o D | \ J— Text="Foreach phase) |
) | \ |a single use cass can refine screen 50HASO ! |
horjeschiusElcass) \ |mutiple test requirements in & measurements within 45 !
there is one or mare | ' |=zimilar weay that & typical arcsec FoV shall be taken / :
test cases which realize \|operational uze caze refines i
the use case. | uttiple system requirements. If W.Ith e pha?‘? scr?en El [«COmMment:
A single use case can I 0, you can syrthesize o test different positions. N there iz the need of specitying
werify multiple system system with fewer] e requirements on test procedures
requirsments that are | nupmbertype of tests ta verify [in order to accept the product.
reslized by multiple test | the system requirements and | ; Those requirements are not the
B0 redyce your testing cost | ! detailed procedures but only
| ! requirsments for them
| l !
A \ \ s
| 'I ! -
\ i / Va
\ gTest Cases | / s
| Test phase screen position B | | s
!
| aderiveRedts
W W
glsiCasca il «SystemRequirements
«COMMment: Test phase screen posttion A | Turbulence generator
the test case stereatype - hi = - = "
is applied to an activity \ avetifys Id=
disgram. The use case is

Text="The atmospheric turbulences
shall be generated and simulated in
the lab."

N i

asatiafys

reslized directly by the
activity diagram with

the test case stereotype
applied

\
- |

Owned Diagram .
zdiagram=Test phase screen position A —
W ariant elements
«exdernals
MAPS

Figure 27 Example model of Test Cases and System Requirements

Each Use Case is realized by one or more <<testCase>>s, which in turn <<verify>> the
SystemRequirement. The <<testCase>> can be described by activity diagrams. In fact, a single use

case can verify multiple system requirements that are realized by multiple test cases. The actors
represent the roles involved in the test.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 41 of 120

Refer to [RD1] for realization relationship. Actually, the test case stereotype is applied to an activity
diagram. The use case is realized directly by the activity diagram with the test case stereotype
applied. One way in which this approach would add value is if a single use case can refine multiple
test requirements in a similar way that a typical operational use case refines multiple system
requirements. If so, you can synthesize a test system with fewer number/type of tests to verify the
system requirements and reduce your testing cost. This needs to be assessed.

7.2.8 Naming of Use Cases

e Create a first set of use case with only their name in the form: "verb + [qualified] object". You
can do that by creating actors and use case bubbles.

e Use active (not passive) verbs. Avoid vague verbs like "Do" or "Process". Avoid low-level
verbs such as create, read, update, delete.

e Each object name in the use case name should be defined in the glossary.

e Here are some verbs for informative Use Cases: Analyze, Discover, Find, ldentify, Inform.,
Monitor, Notify, Query, Request, Search, Select, State, View

e And for performative: Achieve, Allow, Change, Arrange, Classify, Define, Deliver, Design,
Ensure, Establish, Evaluate, Issue, Make, Perform, Provide, Replenish, Request, Setup,
Specify

e DO NOT put any non-functional requirements into use case.

DO NOT put any business rules in Use Case - only reference them.

7.2.9 Do I need to refine every requirement with a Use Case?

No. You only focus on the main services in the use cases and not on trivial things.

7.3 Guidelines for modeling requirements

The SysML specification defines the <<requirement>> model element, its properties (ID, name, text),
relations among requirements (e.g. <<deriveReqt>>), and relations to other model elements (e.g.
<<satisfy>>. However, the semantic of those relations are not defined in a formal sense and are
subject to interpretation. Therefore it is necessary to define some kind of heuristics, guidelines, and
practices how those relationships should be used in order to have a consistent model.

7.3.1 Requirements Engineering Best Practices
According to Requirements Engineering best practices there are multiple levels of requirements:

1. Stakeholder Requirements are the top level of requirements. They capture the needs of users,
the customer and other sources of requirements like legal regulations and internal company
high level requirements. Stakeholder Requirements making the stakeholder needs "smart"; i.e.
using requirements quality criteria to generate a precise and understandable set of feasible
and verifiable requirements, which is complete and consistent. If we visualize such a
stakeholder requirements in SysML, we use the SysML Requirement Element stereotyped by
<<StakeholderRequirement>>.

2. The next level is system requirements. The aim of system requirements is to set precise
technical requirements for the system development. System requirements are derived from
stakeholder requirements by considering existing technology, components and so on. If we
visualize such a system requirements in SysML, we use the SysML Requirement Element
stereotyped by <<SystemRequirement>>.

3. The next level(s) are subsystem and component requirements. The aim of subsystem and
component requirements is to set precise technical requirements for the development of a
subsystem/component. Subsystem/component requirements are derived from system
requirements by considering existing technology, components, and interfaces and so on. If we
visualize such a subsystem or component requirements in SysML, we use the SysML
Requirement Element stereotyped by <<ComponentRequirement>>,

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 42 of 120

If it seems that you can get a complete and consistent set of stakeholder requirements or that the
customer is very solution-driven it makes sense to capture also the actual objectives of the customer,
why he wants the system; e.g. business goals or desired capabilities. In this case, the objective can
help the engineering to find an optimal solution for achieving the objective not hidden by solution-
constraint requirements. If we visualize such objectives in SysML, we use the SysML Requirement
Element stereotyped by <<Objective>>.

7.3.2 SysML for Requirements Development

Since a long time there are a lot of specialized Requirements Management tools like DOORS, Caliber,
IRQA and so on. These tools are built to efficiently manage requirements information; i.e. handling
attributes filtering information and establishing and analyzing requirements traceability. So, why using
SysML for requirements? Well, SysML has its strength in visualizing system engineering information
and emphasizing specific aspects and relations of system engineering elements. Therefore why not
using the best of both world and synergizing SysML and traditional Requirements Management?

@HOOD

Requirements Traceability

Requirements — ~Operations -~ Management = Tester
a .
2 <verr >
3 et % oo Ssveriy>>
0 - =
@ i
om . A N
Business Process / <<deriveRqt>> | . . Acceptance Tests
Models H | <<Traceability - Link>>
1
: 1 . =
i .
|)
System- P PR S <<verify>> System Test-
Requirements & - v ! <<trace>> ‘ Specification
1
<<satify>> i
£
ot
[) (] (]]
@ <<verify>> Pl T
e enianie ke (| IR SRR R R R e I
= Ja— [—
- -F= "-,,\' al Test-Model
I <<deri
1“0
"'I' 3 = o —
SW/HW s 1 € <<verfy>> . SW/HWTest-
Requirementg v Specification
Copyright © 2010 HOOD Ltd http://iwww.HOOD-Group.com Confidential. Transmission or -14- MBSE+ReqEng: A Strong Team - Version 1.0

reproduction prohibited in any form or by any means without the prior permission of HOOD GmbH.

Modeling and especially SysML are perfect tools for requirements development, because by
abstraction and focusing on specific aspects model are a very good communication tool to achieve a
common understand between the customer, user and supplier. E.g. use case diagrams and activities
can be used to gain a common understand of the underlying business process.

Block (and class) diagrams can be used to capture business objects and their relation. IBDs can be
used to find/set the scope of the system and identify interfaces.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 43 of 120

All these models can be used as basis for requirements specification and the resulting requirements
should be traced to these underlying models.

7.3.3 Modeling for Requirements Specification

Depending on the constraint of the project, modeling can be also used for requirements specification:
e Use Cases can specify the intended usage of a system or application
e Activity diagrams can specify the intended workflow of a business process

e SysML Block diagrams can specify the handled business objects/information and their
relations

e SysML Internal block diagrams can specify the context and interfaces of a system
e SysML ports can specify technical details of a system or SW interface

e Sequence diagrams can specify the message flow and timing of a specific scenario
e Activity diagram can specify the workflow of a use case or an service

e State diagram can specify the system states and modes of the state of a particular business
object

e Block constraints can specify non-functional properties of a system/subsystem; e.g.
system.weight <= 1400kg; system.color = anodized black

e Feature properties can specify quality of service of feature/service; processOrder().availability
= 99.95%

7.3.4 From Requirements to SysML Architecture Models

Based on existing input requirements, the system architects identify their solution “space” and develop
multiple possible solutions. Next these “solution candidates” have to be evaluated and the global
maximum has to be selected. SysML provides brilliant means for developing and documenting

e structural aspects of the solution candidates in terms of IBDs

e and behavioral aspects in terms of activities and sequence diagrams.
However, it should be documented how these solution candidates implements the requirements.
That's were SysML requirements drop in: SysML requirements are perfectly suited to visualize the
impact of requirements on the architecture.

SE2

Cookbook for MBSE with SysML

Issue 1
19/01/2011
Page 44 of 120

<StakefolderRequirements =
Stakeholder Requirements

ld="STKR1"

requirements”

Text="Root requirement for all stakeholder

erequirements

T
| races

System Requirements

«SystemRequirements [=

ld="5R1"

Text="Root requirement for all system requirements.”

erequirements

i

wparseds
ELT-SPEESO-04600-
— — —{oo0t, Issuez, APE
Instrument
Requirements
Specification

Text="The system shall be
able to inject a calibration
beam into the optical path.”

T

arefines |

Text="The segmentation error
hetween the IM command and the
measured ASM signal for the frequency
range of <range= shall be less than
<error= wavefront”

Text="The segmentation error
between the PWFS command and the
measured ASM signal for the frequency
range of =range= shall be less than
<error> wavefront”

welueTyper o
range :Hz [2]- 1,100 |

e

I valeTyper g |

| error:nm =5

sValueTyper g
range :Hz [2]= 1,100 |
T evelueTyper [|
error:nm =30

arequiremments «ClosedLoophavetrontErrorRequirements | | «ClosedLoopWavetrontErrorReguirements | | «WavetrontErrorReuirsments:
Injection of calibration beam 1M Closed Loop PWES Closed Loop PWES Wavefront Error
ld="8R1.18" ld="SR1.15" ld="SR1.16" ld="SR1.14"

Text="The wavefrant error
ofthe output beam
delivered to the PWFS
shall be less than =wfe>
nm RMS over the entire

field of view."

B = |

| wie :nm =55

Teretines

7
7

«Rationales =]
(What is the Rationale?

«Rationales =]
(What is the Rationale?

= «continauss
Qe oop P

[N

reguiremerts
«ariant element:
Lab Mechanical Interface
Id="56"
Text="APE hench shall | N
have an air damped Lak Mechanical Interface
classical support system in Derived From
laboratory. " srequirementsVLT-SPE-ES0-10000-2723
7 T «stakeholderRequirement=APE lab

Derived From #Variant elemerts
arequirementsVLT-SPE-ES0-10000-2723 Telescope Mechanical
«stakeholderRequirementsUT of the VLT Interf:

Id="57"

Text="APE shall have a
specific support system

adapted to the rail fixation
system of the Nasmyth
platformin Paranal.”

riveRedts |

r N " gsatisfys
wsalistys \ ¢deriveReqts \
, / \
- P A
LT L] sreguirements

VLT-SPE-ESO-10000-2723
ld="SR2"
Text="Requirements for
scientific Instruments on
the VLT Unit Telescopes "

<Variant slements
sechanicss
Air Damped Support Structure

e U
«¥ariant elements

«mechanicss T
Passive Support Structure \

AN
This document specifies the requirements for scientific instruments for the
Cassegrain and Nasmyth foci of the ESO Very Large Telescope (VLT) Unit Telescopes
(UT). It lists documents that are applicable to the construction of scienti™ ¢ instruments
and to other instrument related equipment.
http:fwww.e50.0r iliti

iments/VLT-SPE-ESO-10000-2723 isi.pdf

Since graphical SysML requirements are not suited to perform typical Requirements Management
activities like filtering requirements by complex attribute filters and analyzing requirements links
graphs, our suggestion is to use SysML <<Requirement>> to visualize requirements managed in a
traditional Requirements Management tool, which provides a tabular form. However, in the future the
capabilities of the modeling might change and make a separate RM system superfluous.

7.3.5 Guidelines for modeling the system requirements

e SysML requirements are not a replacement of Requirements management (RM) tools but a
visualization aid for architectural important requirements.

e Distinguish Objectives, Stakeholder Requirements, System Requirements and Analysis
elements (e.g. Use Cases)

e The objectives describe the major goals of the project. They are modeled with requirements
elements, stereotyped objective.

e The stakeholder requirements describe the system from the perspective of the stakeholder,
mostly technology independent. They are modeled with requirement elements, stereotyped as
stakeholderRequirements. Stakeholder Requirements are <<traced>> to objectives.

e Requirements shall be decomposed with <<contain>> (i.e. nesting) only on the same
abstraction level as a purely organizational mean until they are verifiable

e Use <<deriveReqgt>> among Stakeholder and System requirements because they are tightly
coupled and cannot change without impact on each other. System requirements restate User
Requirements from a System (Technical) perspective. Usually they assume a design decision
which shall be justified by a <<Rationale>>

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 45 of 120

e Use <<refine>> to elaborate a requirement with another model element, like a use case
refines a requirement, a state machine, an activity, an interaction or a table, text document
and so on represented by a block (in UML you represent such elements by the artifact which
is not part of SysML).

Strive to use <<refine>> within the same level of abstraction.

e Do NOT use a user requirement package if the system is part of another system (system of
systems).

e Use <<deriveReqt>> for (system) requirements that are discovered by some design or
analysis effort, which do not restate a user requirement but rather apply to the next lower
system level or next level of abstraction. They shall be justified by a Rationale (e.g. Technical
report) or <<trace>> to an existing design

e Use <<copy>> to integrate existing requirements, like interface requirements, international
standards, policies etc. Model them with a requirement element where its name is the
document number. The elements belong to the context of the system.

e Use <<trace>> to show explicitly the dependency of a requirement to a design (a block),
justified by a Rationale

e Use <<trace>> to model the relationship between functional and non-functional requirements.

e Use <<trace>> between top-level containers of each level to indicate that there is some kind
of relationship among their nested elements.

o Ifitis difficult to decide if to use refine or derive - choose either. the important thing is that
there is a relationship between them. The semantic difference between refine and deriveReqt
is secondary.

e Use a RM tool like DOORS (if available) to manage the requirements and trace them to model
elements. If some requirements are very important (e.g. security, reliability, performance, ..)
they could be shown using the SysML <<requirement>> elements and the <<satisfy>>
dependency.

7.3.6 Background derived requirements

e The derived requirement depends on the value of the source requirement that is generally
based on a form of analysis.

e The derived requirement is not a member of a 'set' of the supplier requirement in the same
context as the contained relationship. The supplier requirement can be complete and contain
no additional requirements with or without the derived requirement. Derived requirements are
derived from different other requirements and have their own lifeline.

e When all derived requirements are met it does not mean that the others, where they are
derived from, are met. In general, a derived requirement is more specific and directed toward
some sub-element of the project.

e Derived requirements often occur through the process of analysis. They are the technical
choices for each function. Each stage of derivation will involve some assumptions about the
design of the system. A derivation often involves a specific analysis.

e A derived requirement often applies to the next level of the system. For the above example
"the vehicle shall achieve a speed of 30 km/h under the specified conditions in table 1", a
derived requirement may specify the weight, power, coefficient of drag, etc for the components
of the vehicle in order to achieve this value.

e Derived requirements can change as a result of changes in the design, usually without
reference to the customer, so it is very important to keep track of what's derived and what's
not. You don't want some old internal decision constraining your future ability to meet your real
customer requirements.

7.3.7 Stakeholder vs. System requirements

Stakeholder requirements are often part of the contract and define what the stakeholder is expecting
from their (non-technical) point of view. System requirements are requirements that the real system

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 46 of 120

shall meet in order to fulfill the stakeholder requirements. The system requirements refine the
Stakeholder requirement from a technical point of view. You can attach a rationale to the relationship
to show how you arrived at the refinement.

7.3.8 How do | model relationships between requirement and design element?

e If a design element fully satisfies a requirement, use the <<satisfy>> dependency
e If a design element exists due to the requirement (but not fully satisfy the requirement, use the
<<trace>> dependency

7.3.9 How should I structure a requirement hierarchy?

The top-level requirements are ON THE ENTIRE SYSTEM and not packaged near a specific design
solution. Requirements are put in a separate, top-level package, and recursively for each
decomposition level in a separate package, which is stereotyped <<RequirementsAspect>>. Putting
them in a separate packages is also for practical reasons to define the scope of dependency matrices.

In a fully MBSE based approach there is no explicit requirements modeling necessary for each level.
The requirements exist implicitly in the model as operations, constraints, functions, attributes, etc.
because the design information of one level become the requirements of the next deeper level.
However, it might be necessary to create explicit requirements anyhow. They are collected in the
<<RequirementsAspect>> package.

At least, the Stakeholder Requirements, System Requirements, and possibly Objectives shall be
modeled, also in a full MBSE approach. Those three types and their relations are shown for a part of
the hierarchy in Figure 28.

Typically, there should be a specification for each major component that is being developed either
internally or subcontracted.

Each specification will have its own requirements diagram and be contained in its own package. Use a
trace to indicate an abstract relationship between the specifications. The requirements derivation is
directly supported by some type of analysis as indicated in analysis xyx. Use the callout notation to
reduce the clutter.

SE2

Cookbook for MBSE with SysML

Issue 1
19/01/2011
Page 47 of 120

«ContentDiagrars

req [Package] Objectives| Sys‘tem Ohjectives_Contert]J

traced from the objectives

«Comments

[mociication ate | 518 0 7:35 P]

Stakeholder Reguirements are traced to the System Objectives on an abstract
levvel to indicate their dependency. The individual stakehalder requirements are

Double-clicking on the trace relationship shows the traceahbility matrix

Text="Verify and test different phasing
sensors and related phasing control
algorithms"

Text="Determine scalability and
applicability of the developed
phasing algorithms and segmented
telescope active control scheme for

«ohjectives «StakehalderRecuirements &
System Objectives - - — = — Stakeholder
d="01" dracex Requirements
Text="The ohjectives of APE" CEIEIENED
! Id="STKR1"
Text="Root requirement
for all stakeholder
QF requirements”
zohbjectives «objectives <ohjectives #StakeholderReguirement:
TestPhasingSensors ApplicabilityForELT E ionEnvironment CaptureRange
ld="01.1" ld="01.3" Id="015" ld ="STKR1.3"

Text="The evaluation
shall be carried outin the
laboratory and on sky."

Text="Determine the
maximum segment
errorwhich can be
measured and

anELT

corrected hy the
phasing sensors, ie

w0hjectives
Integration

«ohjectives
ImageQuality

ld="01.2"

Text = "Integrate phasing wavefront
SEnsors into a global scheme of
segmented telescope active contral”

Id="01.4"
Text ="Study the effect of phasing on
the telescope image quality”

«draces

its capture range"

draces
e SR

«SystemRequirements i)
System

Requirements

erequiremEnts

ld="SR1"

Text="Root

requirement for all

system requirements "

navefrontErrorReguirement:
PWFS Wavefront Error

ld="3R1.14"

Text="The wavefront error
ofthe output beam
deliverad to the PWFS
shall be less than =wfe=
nm RMS over the entire
field of view."

Figure 28 Relationships among different requirements types

Most relations between Objectives and Stakeholder Requirements are hidden in Figure 28 to avoid
clutter. It is much more convenient to show them in an (automatically) created matrix as in Figure 29.

B[Objectives [APE::APE_Require. ..
i~ &1 System Objectives [4FE...
E-E 01 Syskem Ohjeckives [APE. . z 1
i 013 ApplicabilityFarELT ..
- ©1.5 EvaluationEnviron, ..
-E 1.4 ImageQuality [4PE...

w3 01,1 TestPhasingSensa, ..

o | STER1.6 Atmosph. ..
—|E> STER1.16 Atmasp. ..

&, = |E» sTkR1 Stakehold...

AN

—|@» STER1.3 Capture...
~ | sTKR1.22 Closed...

Slalals|dlale
Z19|5l2%|2|8
Ala|83|2|E|2|E
ol Y| =|Y]|=
==l l=]=]=1=
zl2|2|l2|2|E]E
Ea IR Bl BT R B
ElElElElElIEIE
LEa T B Ca i TSI BTl BRTA N B TAE BNyl
&|8|8|8|8]|&8|8
i1 1 1 2 1 1
i 2 0

v
s

arars e

2l2|8/5|z[E 2|8
= |5 |5 =
Elg|lE|B|a|2|2|E
=0 N T ol O ol Bl =
SlE|w v e |w] =
zlelzle|lz2|l=2|2]=
P BT R TR B R B
FElElElEIElIEIEILE
wmpuwm v v v jomjpu jnm
SlI&|&|n|m|o|o|&
11 1 1 1 1 1
1 1 1
¢ AT ararars
e

HEIEIHE R
32|25 [2[%|£
A EEE
|, |lw|lw| L2 S
BN IRl i B R B !
= = =N = R e
U IR B B BT B R
EIElElElIRELIEILE
[EuT BTN BRI BRTR T BTSN BN Ta I BNy
al8lalala(&]8
1 1 1 1 1 z
(1 T 2
'
¢ ¢

¢

arars

Figure 29 Dependency matrix between Objectives and Stakeholder Requirements

Above a certain number of requirements, they become difficult to visualize graphically. It is better to
use the tabular format as in Figure 30.

1D

Marne

Text

|4

1 |5R1

2 [5R1.1
3 |5R1.13
4 |SR1.14
5 |5R1.15
6 |5R1.16
7 [|5R1.17

System Requirements

ReferenceCoordinateSystem

WLT standard, (RD14),
PWFS Wavefront Errar
IM Closed Loop

PWFS Closed Loop
PWFS Reference Source

Root requirement For all syskem requirements,
APE shall have a reference coordinate system centred on the UT optical Focus on the Masmyth pasition,
The origin of the coordinate system is the Masmyth Focus,

The coordinate system uses the metric system,

The surface of the APE breadboard is defined by the ¥ and ¥ axis,
The ¥-axis is parallel and has the same direction as the optical axis of the Masmyth forus,

APE will be implemented on the WLT, &l the electronics, software, platforms and control system must be

The wavefront error of the output beam delivered to the PWFS shall be less than <wfe= nm RMS over the entire
The segmentation error between the IM command and the measured A5M signal for the frequency range of

The segmentation error between the PWFS command and the measured A5M signal For the Frequency range of
The reference source shall have magnitude v, seeing s, at wavelength lambda

Figure 30 System Requirements in Tabular format

APE has to satisfy certain interface requirements in order to be allowed to be installed on the
telescope. SysML constraints can also be used to define quantifiable system interfaces. Figure 31
shows a parametric description of the physical interface between a VLT Unit Telescope and an
Instrument placed on one of the telescope’s Nasmyth platforms. The system properties of the
telescope (e.g. volume, mass) constrain the properties of the attached instrument; in the example the

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 48 of 120

instrument is APE. The constraints of the «constraint» NasmythinstrumentSpecification (1) evaluate
the properties of APE against the properties of the telescope. On either side, those properties become
in turn requirements of the lower level system hierarchy and determine the properties of its parts. In
the end, a mass roll-up of the complete APE system can be done to verify that it complies with the
constraints given by the specification. On the telescope side, the allowed quantities are propagated
down the system hierarchy to properly reflect the design decisions taken at the highest level.

For example, the telescope has an allowedMass property with a value of 8000kg. The Constraint
specifies that the realMass shall be less or equal than the allowed mass. The real mass of APE is set
to 5000kg. This mass can be used to establish requirements at the lower levels of APE itself, using
constraints again.

«element constraints
par [System Context] ObservatoryContext [Observa{oryCoMeﬁIrﬂerface_Cons{raird]
<]
mass : kg = 5000 |
1
I : Cuboid |
surface: Temperature [insFocus @ mm realMass : kg realvolume : Cuboid
«constraints
: HasmythinstrumentSpecification «parzeds
{ambient-surface == maxTempDiff, ELT-SPE-ESO-D4BDD-
surface-ambient <= minTempDiff, -|0001, issus2, APE
telFocus == inzFocus, Instrument
realMass == allowedMass, Requirements
minTempDitt: Temperature realv'olume == allowedyolume Specification

ambient: Temperature

L1 [] [[| [] [1

maxTempDiff: Tempersture telFocus : mm |allowedMass : ky |allowedValume : Cuboid

ms : MainStructure

HA : HasmythPlatform

_{ il : Cuboid = 4000,6000,4000

l dM: : kg = 8000

| focusAbovePlatform : mm |

TempDiff : °C = 1.5 |

e
=
==
Observatory_Context_ProductTree

TempDiff: °C = -5 |

8/211103:23

Modification date oM

Figure 31 Interface Requirements model as Constraint

Another example of modeling requirements formally with constraints is the following. The original APE
requirements document contains a requirement: “The quality of the input beam shall be the same as
the beam fed into the wavefront sensor”. The APE optical view defines the item properties, called
beamIn and beamToSHAPS which represent the incoming beam and the one delivered to one sensor
as seen in Figure 32

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 49 of 120

opticals J

ibd [System] APE[[APE_Optical | 8/21110 319

Modification date P

omb.cu : CalibrationUnit im.Ism : LightSourcesModule 1]
Tt_oif SL0T : Powver LightSource SDL2: PowverlightSource
l‘ beamin : OpticalBesam
ILI im : InternalMetrology
omb.derot : Derotator
| |
{1] {Z]
out_oif : LightBieam
ombjfoc : FocusingStage
[!
L]]
lg2 : LensGroup2 omb.lg5 : LensGroups
| ry
L i,
Wl
Lt
omb.fm1 : FoldingMirror1
| g
=
J_i‘”” ait omb.apcfw : APE ColorFilterwheel omistsLlhieldselector .
gl *
T]
omb.parabolica : OffAxigParabolicMirror ’J_‘
T =1 14]
i, ¥ " :
im2 omb.smpp : SecondaryMirrorPistonPlateWheel
. | gl
i 1 —m l
asm : ActiveSegmentedMirror
Tl B -
1% omb.apndf : APE Heutral Density Filter Wheel
gl
|
omb.fm2 : FoldingMirror2 i1
P omb.cbs2 : PlateBeamSplitter
L,
1]]
Pl
||
omb.lg3 : LensGroup3
4, L
D omb.lg4.2 : Len=Groupd omb.lg4.1 : LensGroupd
1] 1]
Wl
||
omb.cbs1 : PlateBeamSplitter ILI ILI
P omb.cbs3 : PlateBeamSplitter omb.cbs4 : PlateBeamSplitter
LA
] {1]]
Pl
| it
gcam : GuidingCamera o
L L
pvps : PYPS omb.cbhs5 : PlateBeamSplitter dipsi : DIPSI zeus : ZEUS

| |

heamToSHAPS : OplfealBeam

Eh i i
=]=] icam : ImagingCamera @ : SHAP
APE_ProductTree

Figure 32 APE optical view

The properties of those two beams can be constrained with an appropriate constraint which defines
their relationship as shown in Figure 33.

SE2

Cookbook for MBSE with SysML

Issue 1
19/01/2011
Page 50 of 120

welement constraint:
par [System] APE[APE_Feamuality _Constraint |

beamOK : Boolean |

Modification date | 10/6/10 2:359 AM

Last modified by | rkarban

beamin : OpticalBeam

I pupilPosition : m = -16.8 |

focalRatio = 15

pupilPostionAtErtry | m |[focalRatioAtErtey

beamOk - Boolean

=[=]

APE_ProductTree

L L

«constraints
: CompareOpticalBeam
theamOk = pupilPostionmAtEntry == pupilPostion24Ext,

zparzeds

ELT-SPE-ESC-04600-
— 0001, izsusl, APE

tocalRatindtEntry == focalRatinAtExit} Instrument
|—| |—| Reguiremerts
J Specification
pupilPositionAtExit © m focalRatio&tExit
beamToSHAPS : ShapsOpticalBeam

focalRatio = 15

I pupilPosition : m = -16.8 |

Figure 33 Constraint on optical beams

7.3.10 Requirements quality criteria

There are quality criteria for requirements:

e A requirement must be understandable

e A requirement must be verifiable.

e A requirement should be independent of the technical realization; i.e. do NOT contain any

technical details.

e A requirement must be feasible; i.e. it should be possible to model how the requirement is
satisfied by other model elements.

7.4 Requirements Boilerplates and binding to design

There are many levels of model re-use. The following sections concentrate on requirements, and
system constraints. By applying a model based approach, requirements, and system interfaces
become much more than simple text as they can be automatically validated and re-used. Design
decisions and constraints at abstraction level N determine implicitly system properties at level N+1.
Writing explicit requirements for the lower abstraction levels becomes superfluous as they are
expressed implicitly in the model.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 51 of 120

Generic boilerplates for requirements [RD3] are adapted to fit the telescope domain and form a
domain specific language (DSL) for requirements. They are customized from the standard SysML
requirements by defining and applying stereotypes. The quantifiable parameters of the requirements
are leveraged by a strongly typed customization as shown in Figure 34. The attributes are of type nm
and Hz, as defined in ClosedLoopWavefrontAttributes(l).

package APE_EoierPlates[APEiBUiIerPIalem]J 1

==steretype== o] ==Custamization== 0| 2
Requirement ClosedlLoopWavefront ClosedlLoop! refromtC izati
Attributi
[Class] e Lo _] <<Customizations»
-Text : String [1] = '?;’n‘:"e- ”'['";[25] 4468 customizationTarget= <= ClosedloopWavefrontErrorRequirement
-ld 2 String [1] = ke 2 superTypes = EClosedLoopWavefrontatiributes
7%

| i

==sterectype==
ClosedLoopWavefrontErrorRequirement E
[Cla=s=]
Text: String [1] = The =Errorilame= error between the <reference command= and the <measured signak= for the frequency range of range= shall be less than <errar= wavefront {redefines Text}

Figure 34 Definition of requirement boilerplates as a domain specific language.

Each boilerplate becomes an element of the DSL and can be reused in new systems (the
ClosedLoopWavefrontCustomization (2) is merely a tool artifact to tie the derived stereotype
to a default attribute values set).

7.4.1 Instantiation of Boilerplates

When a boilerplate is instantiated, the default text is copied automatically and the attributes defined in
the DSL become the attributes of the concrete requirement with its own default values. The system
requirements IM Closed Loop (4) and PWFS Closed Loop (5) in Figure 35 are instances of the
boilerplate ClosedLoopWavefrontErrorRequirement(3) in Figure 34.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 52 of 120

req [Package] System recuirements | SvatemRequiremerrtﬂ]J

==husineszRequirement=»
User Requirements

T
| ==traces==

=<requirement== w3
System Requirements

ld="28R1"
Text="Root requirerment for all system reguirements.”

| : |
==ClozedloopvWavefrortErrorReqguirement== | | ==ClozedLoopvavefrontErrorReguirement==

IM Clozed Loop PWFS Closed Loop
ld="8R1.15" ld="8R1.16"

Text="The segmentation error
hetweean the IM command and the
measured ASM signal for the freguency

Text="The segmentation error
hetweaen the PWFS command and the
measured ASM signal for the frequency

range of =range= shall he less than
=error= wavefront."

range of =range= shall he less than
=error= wavefront"

==ValueType== o |

=< alueType==)
| range : Hz [2] = 1,100

range : Hz [2] = 1,100 |

2ValueType== |
error : nm = 30

| ==¥alueType==
| error:nm = 5

Figure 35 Instances of boilerplates

7.4.2 Constrain the Design

The strongly typed parameters® of the requirement enable the modeler to bind them to properties of
the system under design using the SysML «ConstraintBlock» in parametric diagrams. Together with
the properties of the actuator (lag and bandwidth), the parameters of the PWFS Closed Loop
requirement determine the sampling frequency. The model of their relationship is expressed as the
«constraint» ClosedLoopModel (6), as shown in Figure 36. This «constraint» represents in itself a
reusable element and constrains the design at the system level. The sampling frequency is
propagated down the system hierarchy, namely the control system, via another «constraint», the
MaxCorrectionTime (7) which determines system properties further down the hierarchy. For example,
the meanTCCDAcquisitionTime (8) is constrained by a SensorSensitivityModel (9) and associated
requirements of the reference source.

Furthermore, trade-offs among requirements, system properties, and sub-system properties can easily
be evaluated by executing the parametric model of the system. Therefore, requirements can be
automatically verified against the design and vice versa.

* While modeling tools already partially support parameters for requirements, this will be

recommended for future revisions of the SysML specification

SE2

Cookbook for MBSE with SysML

Issue 1

19/01/2011
Page 53 of 120

par [Block] PAFSClozedloopsnalysis [F'lf'\l'FSCIosedLoopAnalysis]J

: PWFS Closed Loop

| error : nm = 30 |

actustorGardwidth - Hz

|—|controllerType - Cortroller Typekind

L, B
= |
Ierror: nm range:Hz[2] actustorlag : s
aconstraints:

: ClosedlLoopModel
{zamplingFrequency=~Analyzelrange error actustorBandywvicth, actustorLag)}

samplingFregquency : Hz .

samplingFrequency | Hz

«constraints
: MaxCorrectionTime
{1 +i2+i53+i4 == 1izamplingFregquency }

pypsLCS : PypsLCS

L]

meanDatafAnalysisTime : s |

meanASMSetPosTime : s |

: PWFS Reference Source

==

W EVEIEN

meanCoordinationTime : 5 |

: CCD57-10

=3

it

rsgnitL

N

=]

carkCurrent

econstraint:
: SensorSensitivityModel

darkCount
photonHoise

acouistionTime: s

4

Figure 36 Constraining the design with requirements

The SysML provides the means to bind those properties to constraint parameters to constrain the
system design. Requirements can be re-used in a formal way and create a consistent requirements
specification across projects.

8 Structure modeling

To model the structure of a system, SysML offers two kinds of diagrams that works together:

Block Definition Diagrams (BDD) show the architecture building blocks of a (sub-)system in form of a
product tree. Furthermore, they define the properties and features of the building blocks.

The Internal Block Diagram (IBD) shows how the building blocks are connected to realize the (sub-

)system.

8.1 Starting to build a design model

For easy navigation you should create always pairs of IBDs and a BDD. From the IBD you should be
able to navigate to the BDD which defines the Block which is the context of the IBD. From the BDD
you should be able to navigate to the corresponding IBDs of a Block.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 54 of 120

You are indeed encouraged to build the (sub-)system by “dragging” blocks from the BDD to become
parts in the IBD like an engineer building assemblies.

Define all the blocks in a BDD (Figure 37) and then use the blocks. This BDD defines the product tree
of APE. APE consists of an ActiveSegmentedMirror, a GuidingCamera, etc.

Figure 37 Product Tree of APE in a BDD

You c%n then GO BACK to the BDD to constitute a composition from the (sub-)system to the building
block.

8.2 Structure Breakdown

8.2.1 Definition of system hierarchies

Hierarchic breakdown of a system into smaller units is a well-known and always-used principle in
systems engineering. Unfortunately the analysis of a system is not an unambiguous process. Several
models can represent the same system in reality. It is therefore necessary to define some guidelines
for the modeling of hierarchies in the SysML model.

In the Product Tree of the ZEUS Local Control System (ZeusLCS, Figure 38) The ZEUS opto-
mechanical system is referenced. The ZeusLCS is assembled from some electronic boards, like a
motor controller (MAC4INC) and an amplifier (VMESAOQ1).

® In MagicDraw you can actually drag and drop blocks from BDDs to IBDs
® In MagicDraw use "create roles” or simply drag a property out of a block and the
composition associations will be created.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 55 of 120

«Product TreeDiagraths
bdd [Package] ZeusLCS[@EeusLCS_PraductTree 1

| Modification date | 825010 11:06 AM |

s ZeusLCs_eif » ZeusLCs_if
_D 1]
L
wayatem groups
ZeuslLCS

: Rack2d4VPs

#electronics: selectronics:

PMC ARC65 | || VME4 SA01 aphysicats

ZEUS

lapzeu

welectronicss #electranicss
The frort view of the Zeus Local
MYMEZTOD MACHHC Corttrol System b}

sportgroups
ginfarmation:s

ZeuslL CS_iif

v

Zeusl CS_Control_if ()

+3etef()
+aetCiw)
+zetPhaseMaszk()
+Hakelmage()

: Ethernet-100Base-T_f=

wportgroups
zelectricals
ZeusLCS_eif

ControlSystem_Content

Figure 38 Product Tree of ZEUS Local Control System

The Information View (IBD) shows how information flows between the parts of the control system and
the sensors and actuators of ZEUS (Figure 39).

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 56 of 120

einformation:
1

ibd [system group] ZeusL CS[[ZeusL.CS _information | Modification date | r25/10 11:06 A |

lapzeu : MUME2TO00

ZeusLCS_Control_if

sinformation: ginformation:
«information:
: PMC ARCES : VYME4 SAN ginformation: - MACHIHNC
» FeusL C5_jif
«informations «informations
T ginformgtion:
ainfgrmation
[- - N |
«Comments i |
The electronics of the ZEUS Local contral P
e et | | cedzeus : CCD57-10 | | ndf : ZEUS Heutral Density Filter Wheel | |
actustors of the ZEUS subsystem. - |
The ZEUS subsystem is a shared
property, i.e. referenced by the control | ts : PhaseMaskTranslationStage |
system. |
|
|
|

|
|
| | cfw : ZEUS ColorFilteriwheel
|
|

o
ControlSystem_ProductTree

Figure 39 ZEUS Information View

The electrical connections can only be shown in the IBD of the APE system, at the next higher level of
the structure because several substructures of APE are involved, like ZEUS, ZeusLCS, and the
JunctionBox (Figure 40). Alternatively, the connections could also be shown in the IBDs of the
substructure, using references, using shared part properties like the dashed ZEUS part in Figure 39
but this maybe end up in a maze of references and potentially creates confusion.

SE2

Issue 1
Cookbook for MBSE with SysML 19/01/2011

Page 57 of 120

«electricaly
ibd [System] APE[[APE_Flectricel | Modification date | 6126110 250
M

: InternalMetrology
camd

im.imes : IMCS

camerad : CCDImage

=
The junction hox refays the

electrical connector from | optoMechnicalbench_Interfac
apecs.coens : icCabinet outside the bench o the es_ProductTree

camera3 : CCDImage
Intefnaetrology_eit

camera2 : CCDImage

7 [7 [

cameral | CCDImage

diEnc : RJ45F
ditfotor ; RJ4SF

Zeus : ZEUS\

* JunctionBio2Irternal _e

- JunctionBox2Exter nal_eif

ZEUS_git

codzeus : CCO57-10

=

apges.zeusLCS : ZeushCs

lett
SouriauEst JB2Teus_git

: UME4 SA01 \ dlfor

conlingSupply

coolingReturn

msy

i

N—

omb.jb_left : JunctionBox1

devices

omb. TCCDContr ZEUS
: TCCDController

ohead2 | TCCODEST

apecs.cMisc : ElectronicCabinet apecs.auxl C5: Auxl CS

apecs.cAsm : ElectronicCabinet apecs.asmLCS : AsmLCS omb.foctransTable :
T ionTable
: Rack24VPS

y . This represents
183 cables which
APE_Content APE_ProductTree

asm : ActiveSegmentedMirror

welectricals eif : LEMO 4 pole BO m

\

60 to the piezos of
{the ASh

Figure 40 APE Electrical View

The modeling of hierarchies in the SysML model is very closely related with the question, at what
system level interfaces (represented by SysML ports) shall be attached to a block. Examples for these
issues are:

Differentiation between functionally grouped (sub) systems with abstract interfaces vs
concrete components with real interfaces:

EXAMPLE: The entertainment system in a car consists of many components: speaker, radio,
TV, cables, etc. These components are modeled as parts of the entertainment system, which
is modeled as a subsystem of the complete car. The components are distributed all over the
car (geographically), e.g. the loudspeaker is built into the door. It is very difficult, or even
impossible, to model the entertainment system as black box without modeling the components
of it, because the entertainment system is just an artificial grouping of "real" blocks. If one
wants to model the interfaces of the entertainment system, this is not possible at the
subsystem level directly, because only (concrete) components have real interfaces. Therefore
the components must be modeled and the ports then attached to these blocks. Use the
stereotype <<system group>> for those types of systems. The other parts of the car can
reference (shared property) the components of the entertainment system to indicate their
physical location.

Modeling of connectors crossing several levels of a system hierarchy:

EXAMPLE: If one wants to model the connection between one component of the
entertainment system (e.g. radio) with one component of the power supply system (e.g.
battery), this can only be done with a connector directly from the radio port to the battery port.
This looks simple at the moment. However, the connector between both components crosses

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 58 of 120

two levels of hierarchy on its way: If one would just take a look at the subsystems,
entertainment system and power supply system, you would also see the connection, because
radio and battery are parts of these subsystems. Junction ports can be used in this situation.

The Local Control System (which is responsible for a substructure, like the ZEUS wave front sensor)
of the APE Control System can be considered as a <<system group>> because it interfaces with
sensors and actuators of the opto-mechanical system.

The Local Control System “creeps” into the opto-mechanical system and has interfaces with deeply
nested parts of the system under control. Nevertheless, the Local Control System can be tested
standalone (using simulation) and can therefore be considered as a subsystem of its own right. From
the point of view of the supervisory part of the Control System it appears like a black box with a well
defined interface that hides the internals and delegates the requests coming from the supervisory part.

8.2.1.1 SysML elements to model connected nested structures
The basic elements to model connected nested structures are ports and connectors.

Usually, an interface is seen as a part of a subsystem. e.g. the Nasmyth platform is part of the main
structure, the SCPs are part of the telescope, electrical sockets in a building are interface at the
outmost layer but are hierarchically very deep.

)
»
-
bt

'!-

:-.'*. .

Figure 41 SCP at a Nasmyth Platform

Depending on what needs to be shown there are three different approaches:

SE2

Issue 1
Cookbook for MBSE with SysML 19/01/2011

Page 59 of 120

A block is used to type a standard port and represents at the same time the part property
without explicitly modeling as separate property. In the case it is not important to show it as
part property and to have a physical property (like a plug) visible at the border of a block.
Complex (nested) ports are used (15-N-A:SCP Part A in Figure 42). It's a simple approach,
but the element is not listed as a part in the product tree.

Connect directly to the part property or the part property’s port (15-N-B:SCP Part B in Figure
42). Also a simple approach, but the connection is hidden when the inner parts of the
enclosing part are hidden.

Relay through the port at the border to a part property in case the part property is important
and needs additional modeling. In this case stereotype the port as <<junction>>. The
stereotype classifies the outer border port simply as representation of an inner port but not as
a part of its own right. Junction ports do not delegate connectors, they are rather a window
into the part and simply relay the connection (15-N-C:SCP Part C in Figure 42). The modeling
of this approach is more complex, but the elements are listed in the product tree and there is a
connection between the enclosing elements even when the inner parts are hidden.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 60 of 120

82110 3:23

ibd [System Context] ObservatoryContext [ObservatoryCorﬁe)d_Electrical
P

welectricals
! Modification date

ape : APE_Telescope

apecs : ControlSystem_Telescope

scp @ WLT-SPE-ES0-10000-0013 590 : YLT-SPE-ES0-10000-0013
I utl : UnitTelescope

L]

¢Sens : ElectronicCabinet it
welectricals sCOmments
- The cabinet is connected to
| — Sehzsglanchat SCP Part A which provides a 3-
phaze socket and 4004 AC,
eallocater | werddiyac Al interface types are modeled
. 5 3 _ = wyith ports.
| CAsmElectionicCahinet | - & SCP Part In one case the flow port and
- i_ A lthe connector ars related with
| cMizc : FlectronicCabinet | - PovwarZ30vACLPS — allocation in the other case

e with specialization.
SCP-1-phase-socket

SCP-1-phasze-socket

h5 : §-PortHub

mch : MediaConverter

(15-H-B:SCPPartB_)

{#‘:oolammﬂurn : SCPSelfsealingFluidFemale

i e

zeusLC5: ZeuslLCS

'J_| coolantSupply : SCPSelfSealingFluidMale
ke
lapzeu : MYME2700 o o Ll_l
vale s (Observatony CGontes]
ipaddress = "134.171.207.22"
powerConsumption = SO{unit = att}
price = 2500 oot

{j airQutlet : SCPSelfSealingAirFemale

1
1)

Y =Comments

h1: §-PortHub H meA,: MediaConverter | 15-N-C : SCP Part © B e connect
| \ J sjunctiares U LR O o e o e

v _ weguals of & deeply nested
| h2 : 8-PortHub H mc2 ; l‘rledla(:onverter I atructure to avoid

cluttering with
I rts.
| h3: §-PortHub H mc3 : MediaConverter | s Sl
xS J ! Pl FO coupling connector ST bayonet [24]
: /
‘ : f
| suv.wape : PowerEdge2§50 | -\ .
The type of the port iz the same as the The netvarking gnd time reference is
\ one of the part property. accessed by the instruments throligh
\ A junction sterectype is used to the SCPs of the telescope.
a i indicate that th rt is identical with
me4: MediaGonverter . Qnécirdeernal pa?tpo & Inentical welectticals welectticals
1 .
! 8 SiFelnfraStructur(
\ |
\ |trs : TimeReferenceSystem |
N I : Het kinfrastructure |
«Comments
The ipaddress depends
on the context, ie. either
laboratory or ohservatory. | —
"~ N
N
ObservatoryContext_Conte Observatory_Context_ProductTree LaboratoryContext_Flectrical
nt

Figure 42 electrical view of APE and the telescope

8.2.2 How do | distinguish a sub system and an assembly?
It is sometimes difficult to define what a subsystem or merely an assembly is.

Follow this definition:

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 61 of 120

A subsystem is a set of interdependent elements constituted to achieve a given objective by
performing a specified function, but which does not, on its own, satisfy the customer’s need.

Following this definition they are either a package (like the ASM in Figure 43) on their own or simply a
part of a package (like LensGroupl in Figure 44).

Do NOT use the stereotypes <<system>> or <<subsystem>> unless it is well defined. The definitions
differ from one environment to another. In APE we use only plain block and the stereotype
<<external>> to indicate blocks that do not belong to the system under design.

/2110 318

wCortentDisgtams:
1
]

pkg [Package] ASM| [45M_Cortent Modification date

«Behavior Sspects «Performance Aspects
ASM_Behaviour ASM_Performance
Ei K

\ /

| / «Requirements Aspects
- ASM_Requirements

«Structure Aspects 7 0 ASM

ASM_Structure s

= ActiveSegmentedMirror -7

El Segment L - -

= PositionActuator
= Mount

The ASM and it=
183 hexagonal
mirrors on the
mount and
mounted on the
optical bench.

==
APE_ProductTree

Figure 43 The ASM subsystem

In the Organization Ontology we stereotype to those elements either as
<<DecomposedSystemElement>> (a separate recursive package structure is created) or as
<<physical>>, <<electronics>>, <<mechanics>>, <<optics>>, <<software>>. <<electronics>>,
<<mechanics>>, <<optics>>, and <<software>> form the leaves of the product tree which are not
further decomposed at system model level.

A Block stereotyped as <<physical>> has a special meaning. It serves as a (modeling) container for
leaf elements. Typically, leaf elements are reusable things, out of a catalog. When the system is
assembled those parts are connected. The <<physical>> container serves as the context where those
parts are connected. For example, the ZeusLCS (Figure 38), consists of a VME crate, a backplane, a
CPU, 10 boards etc. The Block ZeusLCS does not exist as a tangible item in the real world but its
parts do. It serves as a container to show how the crate is connected to the CPU, how the CPU is
connected to the 10 boards, etc.

SE2

Cookbook for MBSE with SysML

Issue 1
19/01/2011
Page 62 of 120

T e —

ek [Sinacturs Aspect) O
M phriceh.

i
APE_Proguet Tron

 Snuchre [5 PRI |
ey ASM —’>"

" _sgTieror - TeTabirer

jeend | FreldSelControler
L akar
gt iranamizsion = 0,05

[«physicah.
ampe | SecondaryMins s PistonPLat el

ey s ey |

|llml|n(ation dane |:.Iﬁ‘ ot I

seerw | s

sphysicats

TCCDCoNrSHAPS [e ——

TCCDCork® 7S | TCCHCunkrvller
|cumw3 T
TCEDCurtr 2 |
TecoCunertaM |
TECbCOntiGeAM |

“wansTatte | Trarsision ot
: oupZTakcatEoF o » |

Sandwichiptsaliorel

)
APE_Content

Figure 44 Product Tree of the Opto-mechanical Bench

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 63 of 120

8.2.3 Where do | put systems which are part of the project and needed in different contexts but not
part of the system itself?

It depends what they are used for.

e Are they used for operation? Then they ARE part of the system.
e Are they truly external? Then they appear only in the context diagram.
¢ Are they specifically built to verify or test the system? Then they go in the Verification Aspect.

In the APE case, a specific Star Simulator was built to simulate stars in the lab. It is called MAPS.
MAPS is not part of the operational system but built for the APE experiment. MAPS appears as
external in the context variant of the lab.

«ProductTreeDiagrams I
bdd [Context Aspect] Laborstory_Context[@ Lakoratory_Context_ProductT qﬁc]y!iﬂcatmn date §1;1I1 03:23
«gystem contexts
e ariation poirts
APECoutext
«system contexts
LaboratoryContext
«systems
APE
{focalRatio==FM5}
ape |fredefines ape} T witcm Loz27 lan : RJ4SF [10] maps
I
;Sl;j'?im; «externals L;‘dernalx aexternals
- VLTControlModel MAPS
Laboratory
pats
tcs : TelescopeContralSystem paits
o #physical: wasm : Sitebonitor (Bl
+mechanicss Contr ac .
¥ vales
SupportStrurctire alloved'olume | Cuboid = 4000,6000,3000
apecs j L D
53 {redefines ss} fredefines gpecs} «physicals pa: SelfSeslingair fl: SelfSealingFluid
«mechanics: sphysicals TimeReferenceSystem ’
AirDampedSupportStructure ControlSystem_Lab y
~
-~ «Commerits
™~ ~ ELT-SPE-ES0Q-04B00-0001, issue2,
~ APE Instrument Recuiremerts
~ Specification «blocks
~ amechanicals
~ APE lab: APE shall have a MAPS_APE_mif
~ dedicated labaratory.
=~ ~
. - |Intext based processes itis a -
rgouiremert. In MBSE it iz system <
design -
- -
=
Context_Content LabSpecific_Picture

Figure 45 The Product Tree of the Laboratory Context Variant

8.2.4 Usage of <<external>>, <<system>>, <<subsystem>>
Let only your domains (top-level contexts) own the <<external>>s.

A BDD should definitely not mix up <<external>>s like dataflow into an internal system. If anything, the
system to be built should be THE <<system>> or a <<subsystem>>, and anything that is a part of it
should not be <<external>>. That is a job for a <<system context>> or a domain.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 64 of 120

8.3 Structure Relations

8.3.1 Whatis the relationship between part, property and block?

If Ais a block and you drop it on an IBD of block B, A does NOT become a property of block B. A is a
block; it gemains a block. The association implies the creation of a block property of B that is typed by
block A.

Blocks dropped into an IBD with its frame on become parts properties (of the context block for the IBD)
typed by the dropped Block. This is a very useful feature and a natural way of building progressively
hierarchical systems.

The fact that a given block is used in another structure is anathema. You can have any number of
different contexts for the block of interest. A block is NEVER a part of a structure; a part typed by a
block is.

8.4 Structure Properties

8.4.1 Representation of entities flowing in the system

Blocks or value types can be used to represent entities which flow in the system. They are the
type of a Pin, an Activity parameter, a Flow Property, or an Atomic Port.

e Use blocks to model structures, like systems or discrete entities (e.g. parcels on a conveyor
belt).

e Use value types to define types for quantitative characteristics (e.g. weight, speed, vector).
These are typically things on which one has to operate. Value properties are always typed by
a value type.

¢ Model things flowing through the system, like (non-quantifiable) physical entities as <<ltem>>;
e.g compressed air with pressure, water, light beam, magnetic field, or electric current (Figure
46). <<item>> is a stereotype of block .

® Drag and drop of an block on an IBD is conceptually meant, even if it is possible in MagicDraw.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 65 of 120

#ProductTreeliagrams
bdd [Structure Aspect] SCP_Structure [[SCP_ProductTree | | Modification date [8/25/10 2:58 P |
zhem:
Power230VAC

-
-~
| Ponwer 2300 A

P —{ #1: 3-phase socket }—FE;S-UPS: SCP-1-phaze-so

SCP shlocks
SCP Part A

Lmﬂ-UPS 1 SCP-1-phase-zocket

T Powver 230 AC

shlocks
SCP Part B

parts
coolantSupply | SCPSelfSealingFluichiale
coolartReturn ;: SCPSelfzealingFluidFemales

airOutlet
amechanicss E*]C: Compressedair lems
ANGRETEUEE T T — — _ _ _|CompressedAir

SCPSelfSealingAirFemale P

pressure = 7-5

—I p1 : FO coupling connector ST hayonet [24] |

zhlocks
SCPPart C

=I=|
APE_Context_ProductTree

Figure 46 Product Tree of Service Connection Point (SCP)

8.4.2 If | have blocks of the same type (like 10 FPGAS) in the BDD how do | properly use them on
the IBD as different properties?

If you define a property with a multiplicity, like an array of FPGA you will not be able to distinguish
them in the IBD. They are considered as a single property. This is fine if the system can treat them all
the same way.

If you want to treat them differently, e.g. there are different algorithm allocated to each of the FPGA or
they have different electrical connections then you need to create for each of them a separate property
or association with a role. The same block can serve to type different parts in an IBD. Each can have a
different role name on the association end in the BDD.

8.4.3 Usage of public and private

Although SysML does not explicitly define visibility, most implementation do have a visibility tag for
properties because they are built on top of UML.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 66 of 120

Private means that those elements are only relevant internally to a block. They are not of any concern
externally. Public means that everybody has access to them.

In SysML connectors can only cross the parts border and connect to nested parts if the
isEncapsulated property of a Block is set to false. For an ICD only features accessible through a port
are relevant.

8.5 Reuse of model structural elements

First it is important to realize, that parts are not reused, just types of parts are reused, i.e. a <<block>>.
A part is the role of a block in a certain context.

If a catalog of re-usable elements (like CPUs, Motors, Cables, IO boards, etc.) is created, those
elements are typically read-only and cannot be changed.

Abstract types are used as placeholder for specific building blocks. They are classified in different
packages.

sCortertDisgrarm:
pkag [Profilz] APE_PartsCatalogus [Par‘tsCatangue Cortent |
<hlocks
Part
vales
supplier © String = undefined
applicakleStandard | String = undefined
price : Real =0
description : String
«hlocks «electronicss «s0ftwares
Reterface Type ElectronicPart SoftwarePart
values values values
gender : Genderkind = none povverConsumption : W = Dfunit = VWatt} release ; String
Electronics Software Mechanics
Optics InterfaceTypes FlowSpecs
PhysicalMedia

Figure 47 Top Level Organization of Parts Catalog

In order to assemble a system out of those re-usable elements a context or container is required. The
product tree of this system is composed of all its (re-usable) elements, its parts. The engineering view
(IBD) of this system shows how those parts are connected.

This container is not a real, existing, physical part. It is used to model how the real parts are
connected.

For example, if you want to create a new VME computing node you need a VME crate, a CPU, and an
10 board. All of them are re-usable elements, better the definition of those elements.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 67 of 120

In the real world you would plug the CPU and IO board into the crate in order to assemble it. This does
not work in the model. If you create a new part of type CPU within the crate it would change the
definition of the crate. All crates would suddenly have a CPU board as a part property.

Therefore, a modeling container is used which is typed <<physical>>.

They are a container for grouping of physical elements and their connectors, for reuse purpose.
“Plugging” the CPU into the crate means in modeling term to create a connector between the CPU
and the crate in the IBD of the containing block.

Each of these containers contains one or more IBDs for different view (electrical, information,
mechanical, optical).

The real physical elements are stereotyped <<mechanics>>, <<optics>>, <<electronics>>,
<<software>>.

The following example shows a technical CCD (TCCD) system which consists of a PMC board which
is mounted on a VME CPU board, a TCCD Controller box, a TCCD head, cables, and a higher level
control system.

SE2

Issue 1
Cookbook for MBSE with SysML 19/01/2011
Page 68 of 120

bdd [Package] TCCDCortraller | @TCCDCDrftroller_Catalngue]J

| Modification date | 8125110 5:55 Pu |

selectronics:
ElactroricPart

vales
powwerConsumption W = 0{unit = Watt}

The TCCDCantraller haz also
two cooling connectors

/
/
T /
!
/
dataln | dataOut R toHead2 : TCCODB3T
1
T i1]
Ie ctron» selectronicss
PMC ARCES TCCDController r].,_mount
e e = ~ «COMmment:
¥a 5 i . A t = —
. i povyerConsumption ;W= 150{unit = Watt} ~{The mourt port
(il - (REE) =SSR price : Real = 5000 belongs
represents the
m _m |T| mechanical
interface.
bus - PCL_fs dataln “dataOut QLEHIEES
.
<Camment: h ~
The bus pott "
belongs to the
electrical interface.
woamment:
3 The data potts belong to
the infarmation interface.
TCCD_Content PartsCatalogue_Content

CFLAYREZSCS or MYEZTOD

P

Figure 48 Catalog Definition of TCCD equipment

Issue 1
19/01/2011
Page 69 of 120

SE2 Cookbook for MBSE with SysML

bdd [Package] TCCDHeadTypes [@TCCDHeadTypes_Catalogue]J

[odification date 225110 5:56 Pu]

«electronicss
ElactronicPart

valkes
povverConsumption : W = {unit = Wiatt}

toCortroller : ITT Cannon 2043 S toController : TCCD TT Cannon 2DAIP
toLeftPCE : TCCDLgRPCE

toRightPCE - TCCORIghtPCE

[l | ecomments
- lett : TCCDHeadcaklet right : TCCDHeadeable2— + — — |For the connector

“COMmMMmEnts
For the connection to the

IEftPCE we model the - 2
kil o defi t: N to the rightPCE we
e TCCOHeadeable! EelcEtionic model only the
CCDHead physical interface
e hut nat the cakle
housing : mmiunit = Millimeter }
housing : mmunit = Millimeter
housingZ @ mm{unt = Milimeter
chipX : pix = 0{unit = Pixel}
chife' - i = Dfurit = Pl meunt
pixelSize : nm = 0{unt = Nanometer [:l
o : Coolant coolingSupply : TCCDCoalingConnectorSupgly
o Coolant coolingReturn : TCCDCooling ConnectorReturn
selectronicss «electronicss
CCD57-10 CCD47-20
) moperties vales
phictontoise chipi : pix = 1024{unit = Pixel}
R R n"_ﬂ’;*:s | chip'f : pix = 1024{untt = Pixel}
Ehiﬁv : ?alii _ 51 zmn b Pliieeﬁ} p'XEIS'Z.CE Sl S{U'Qf‘;: h;agnm;te{e\:\}faﬂ
o [FIES = = oyvErConsumEtion | W = S0{unit =
Eixilgizer& nim = 1:34unit = Manometer } Erice : Real = Qgtgu .)
arkCou
povverConsumption | W= S0{unit = Vyatt}
price : Real = 2500
guasrtumEfficiency
readouthloise
hinning

TCCD_Content PartsCatalogue_Content

Figure 49 Catalog Definition of TCCD heads

The electronic cables are soldered to the PCB of the TCCD head. They have a plug at their end which
is connected to intermediate cables, which are in turn connected to the TCCD controller.

The cables soldered to the PCB are modeled as ports of the CCDhead, typed by a block which
represents the soldered cable and its plugs going to the controller.

The intermediate cables are modeled once as a simple block and once as an association block.

SE2

Cookbook for MBSE with SysML

Issue 1

19/01/2011
Page 70 of 120

«Exampleliagrams J
1

bdd [Package] TCCDExample [@TCCDSyS‘tEm_Example

[Modification date [ar25110 5:45 Pu |

price : Real = 5000

toHead2 : TCCDDEST

TCCD_Content

=

PartsCatalogue_Content

«hlocks
TCCDSystem_E
parts
: TCCODDBE3T
lapzeu -coozeus
«electronics: «electronicas «electronics:
MYMEZ2T00 TCCDArcCable1 CCD57-10
lectrani parts values properties
:T\:c :;:g:; - 28030 length © m = 2{unit = Meter} photontioise
: nzl 6550 vales
valkwes valwes chipi : pix = 512{unit = Pixel}
price : Real = 350 price : Real = 2500 chip’ : pix = 512{unit = Pixel}
powverConsumption ;WY = S0{unit = Vyatt} pixelSize : nm = 13{unt = Manometer }
ipaddress : String clarkCount
povverConsumption ;W= S0{unit = Vyatt}
price : Real = 2500
quantumEf_ficiency
«electronics: Lgad_outNolse
TCCDController nning tight : TCCOHeadcakle2
values 1
powverConsumption : Wy = 150{unit = Wit} =T

Figure 50 The Product Tree of the Example System

Cables can be modeled as simple Connectors, as Blocks, or as Association blocks, as shown in

Figure 51.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 71 of 120

bdd [Package] TCCDCables [@TCCDCabIeS_Catalogue]J

[Modification date | a/26/10 4:56 Pu |

cirl; TCCDContral_fs dats TCCDDats_fs posver | TCCDPower_fs
toController : TCCDVITT Cannon 2DAZP
Iy *
] }_m {oRighPCE - TCCDRGPCE E"’—
«electronices
TCCDHeadcable2
vales
length : m = 0.5{unit = Meter }
toCaortroller - ITT Cannon 20431 S cooling : TCCDPeltier_fs data : TCCOData_fs
— | il]
| | 1 toLeftPCE : TCCOLeftPCE l—
selectronicss
TCCDHeadcabled
vales
length : m = 0.5{unit = Meter }

toCortraller : DE3T toHead : ITT Cannon 2DAZ1P

T B

«Electronics:
TCCDArcCablet

selectronics: B
GeneralCable

wEtliEe «COmments
length : m = 2{unit = Meter} This iz an azsocistion class sterectyped
hiock to make it an association block .

In the model it appears as a Relation in
the Cables packages in "Relations".

This association block is an association

electronicss _ {between these two block types. |
TCCDArcCable2 I~ canfOT be reused for another
o= azsociation.
rER e = 2{un\;= hieter} Only the association and its hlocks can
he re-used.
T
«electronice: | P
TCCDDB3T
I TCCDArCCable? TCCDITT Cannon 2DA31P
|

«electronlicsx
N '

Base Classifier= E]JDB37

«COmments

An association block is a
specific azzociation between
two types. £ canMOT be reused.
cables modeled with association
blocks cannat be reused.

Reuse can only be achieved by
inhertance

TCCD_Content PartsCatalogue_Content

Figure 51 Models of Cables

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 72 of 120

" =
ibd [Block] TCCDSystem_Example [TCCDSystem_Example]J Modification date | 2251 0 608 PM

cooling=upply © TCCDCoolingConnectorSupply coolingReturn : TCCDCoolingZonnectorReturn

Ic: Coalant
Iz Coalant
ih Lin
ccdzeus : CCOST-10
| chipY : pix = 512 ‘ ‘ chipX : pix = 512 | L1 mourt
toLeftPCE : TCCOLeftPCE toRightPCE ; TCCDRIigHtPCE
_Ll__' left - TCCOHeadcakle D'|_|'D right : TCCDHeadcablezl__IJ.
= =
toContraller : ITT Jannon 2043 S toController : TSSO T Cannon 20A31F
selectricals
taHead : ITT Cannon 20A31F zelectricals
= headCakleZ : TCCDArCCable2
L_| — 7
: TCCDArcCabled I e
These are atternative
T modeling schemes.
Cne model the cable
explicitly, the ather uses
— an azsociation block.
tacContraller : DE3T .
«electrical taHead? : TCCODES?
toHesd1 : DE [F
: TCCDController
oLt
il ot 'T' ,Tpataln
zinformation: sinformation:

dataln datalt

| L1
: PMC ARC65

bus: PLl fs)
¥

welectricals

lapzeu : MUYME2TD0

hackPlane2 : DINd2nnn 96 pin MYME male p2

ol DIMNd2nnn 96 pin MYWE male pl

conzole : RE232_fs

Figure 52 Assembling the parts to a system

8.5.1 Shared parts

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 73 of 120

Create a package, stereotyped <<modeling library>> for a standard parts catalogue (like motors,
CPUs, etc.) to have them separate from the real project model.

Add attributes (as value properties) to further specify a part.

e references to standards, gender for sockets (male, female - with enum type), supplier id
become value properties and are not defined through inheritance

e add an attribute (as a placeholder) for a rule on how to connect InterfaceTypes. e.g. only male
and female of same type can be connected. This could be interpreted and verified by an
engine.

In subtypes you can override properties e.g. we want to have the gender of a connector or a standard
as value properties but we need different or extended standards in sub-types. In addition we need
different gender of the same connector in IBDs (when taking something from a catalogue).

e use "redefine property"
to override property default values by creating a property in the sub-type of the same name as
the super-type and setting its property redefinesProperty. This is used in BDDs to create
application specific types.

e use context-specific values to set values for certain attributes in IBDs.

8.6 Modeling Physical Aspects

8.6.1 Modeling physical distance between parts

Actuators and sensors might be geographically significantly apart which impacts the rest of the design.
For example, the choice of network technology is driven by the physical distance.

Those locations usually come from some CAD model (the mechanical design), but they constrain the
choice of technology to connect actuator and sensor, e.g. choosing GigaBit Ethernet over a serial line.

For example a <<mechanical>> connector shall have a length property.

8.6.2 Model of a magnetic field which exists between two physical entities

Since the magnetic field will have some properties, the simplest is to model the field itself.

ibd [Block] System[MagneticField

H MngnellcFleld:‘/J

Figure 53 Model of a magnetic field

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 74 of 120

9 Interface modeling

Interfaces of all kinds are a major architectural element at system level. The goal of this chapter is to
show which SysML elements are available and how they can be used to model interfaces in abstract
terms and in terms of an engineering discipline as mechanical, electrical, optical, or software.

The elements available to model interfaces are:
e Ports (Standard UML Ports, Flow Ports)
e Service Interfaces (UML Interface)
e Blocks

The following chapters present different use cases for interface modeling, their goals, solutions, and
problems.

9.1 Port and Flow Basics
Two types of Ports exist:

e Standard Port (aka Service Port)
e Flow Port

9.1.1 Standard Ports

A standard port is equivalent to a service port where different kinds of services are offered with
defined operations and parameters, or signals.

It originates from IT/SW usage. The interfaces are defined in a BDD. Standard ports can be perceived
like a service port, with provided/required interfaces (services with operations), like defined in UML 2.

They correspond to some programming model, like IDL or a class interface. They describe the logical
level of communication.

They are mainly used for command and control systems, and/or client/server situations. The interfaces
(lollipops) specify the services that they provide/require. This clearly identifies the relationship between
the parts/blocks as active and resulting in control, rather than simple data transfer. Typing directly an
interface gives you only a limited form of service orientation.

It is useful as long as: you only need to use a block/class as a contract with ports, not specify the
implementation (you can however delegate from a port typed by an Interface to an internal part)

Standard ports can be typed by a block, an interface, a data or value type. If a standard port realizes
an interface, it must be typed by a block, which realizes the interfaces. This offers more flexibility than
directly typing with an interface because you can transparently add another interface.

An interface can have a State Machine Protocol associated with it to define the method call protocol.

Having the port typed directly by an interface is only useful if you only need the port to be typed by one
interface (you can't do multiple provide/require without a Block/Class type).

To promote reuse of your blocks you should:

e Define the ports and their required/provided interfaces in a BDD first, FOR EACH AND
EVERY BLOCK, completely independent of any reuse context. That is a good place to
document the block (alone) with comments, as well as document any interfaces specific to
that block. Show operations/attributes etc. for that block.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 75 of 120

e For a given higher level system using the defined blocks as parts with ports, "plan” your
connections first in a matching BDD, ensuring that the ports to be connected do provide and
require the correct interfaces. Use "display paths" to ensure that each interface is required and
provided. DO NOT use associations yet to create the compositions for the top context block.

9.1.2 Flow Ports

A Flow Port specifies the input and output items that may flow between a block and its environment.
Flow ports are interaction points through which data, material or energy (like current, oil, water, liquid)
"CAN" enter or leave the owning block. Material, information, signals, even rats, can concurrently and
bi-directionally flow between Flow Ports.

Flow ports model a continuous flow of an item.

It cannot only be of physical characteristic but also data, in case one wants to model a continuous
data flow like in high performance computing. Input and output of data: a block performing a
calculation may have an input and output flow port representing the input given to the calculation and
the output results. Service port with getters and setters do not represent input and output - they
represent provided and required services (operations). Examples are data processed with FPGAs or
image processing pipelines where recipes to reduce images are used

A flow port is NOT a property of a block; therefore it cannot represent a part of a block. It always
needs to be related to a part property, which uses the things that flow over the port. Distinction is
made between atomic flow port and non-atomic flow ports:

Atomic flow ports relay a single usage of a block, value-type, data-type or signal. Atomic flows are
one-way only where some item flows. Example: a pump may have an “in” flow port where it pumps the
water into the pump and “out” flow port where the pump ejects the water out.

A non-atomic flow port relays items of several types as specified by a flow specification. Flow ports
have a direction: in, out and in-out. A flow specification consists of flow properties, which are typed.
Flow properties also have a direction: in, out and in-out. The direction of the flow port and its
specification must be consistent. Examples are serial lines, USB, CAN-bus, Ethernet.

The distinction is made according to the flow port's type.

A flow specification with a single flow property is equivalent to an atomic flow port. The atomic flow
port is a simple short-hand. It does not mean that the type of the atomic flow port flows over the port.

A non-atomic flow port can be conjugated. If it is, then all directions of the flow properties specified by
the flow specification that types the flow port are relayed in the opposite direction (i.e., in flow property
is treated as an out flow property by the flow port and vice-versa).

If a structured flow port is connected to another port and the ports are on the same level, one port
must be conjugated where the in become out and the out become in, like the famous 2 and 3 pins of a
serial line - you need a null modem.

Atomic flow ports can by definition never have a flow specification and therefore are never conjugated.
If a structured flow port of a block is used in an IBD (delegation) and connected to a port of a block
property the direction must be the same and not conjugated. The item flow gives the exact detail of
WHAT is flowing between two ports. For example the port defines that liquid flows, whereas the item
flow specifies that oil flows. Like that you can reuse the same block and ports and connect them with
different connectors depending on the context. An item flow is itself again a normal block or value type
with all its features like properties, operations and constraints.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 76 of 120

9.1.3 Data flows

Data structures are created on a BDD using value types to both create message hierarchies and to
then type the flow port on the IBD. Usually, this takes the form of an inheritance hierarchy with the
highest level Value Type in the hierarchy typing the port. Modeling in this way means you can easily
add new messages and you do not have to change any flow specification when a new message is
added. This is particularly useful when modeling a system at the level of neediness and where the
item flows model the information exchanges. These ports can later be allocated to the
communications ports typed as Ethernet, RS-232, etc.

9.1.3.1 Sensor/actuator data

In monitor and control the system, we need to look at additional characteristics of the system, for
example temperature, flow rate and so on. The systems engineer can then type this information as Sl
Value Types to communicate with both the software and hardware engineers, also specifying the level
of precision that is needed for the telemetry used to measure the system. The telemetry can then be
specified as analog, digital, pulse counters and so on, and the appropriate telemetry can be acquired
that meets the job.

9.1.3.2 Input and output of events

An occurrence can be transmitted from an (out) flow port to another (in) flow port of another block.
This is completely equivalent description to standard port with an interface having an event reception
where one port has this interface as required and the other has this interface as provided. However
using flow ports for this purpose instead of standard ports might be more intuitive since it is not relying
on the complexity of standard ports, required\provided interfaces and event receptions.

Ports can be connected directly with a Connector if you do not need to specify constraints, attributes,
etc. You still can use a stereotype qualify the type of connector, like mechanical, optical, etc.

If you need to describe more properties of the connection use another block to define them. For
example a cluster of computers connected to the same Ethernet subnet, devices connected to a CAN-
bus or a sewer where several sinks are connected require to model the medium as block where you
connect. One also needs to be aware for example, of whether the different parts will be reused. Take
the valve for example; typing the ports on the valve by residue or H20 means that only one type can
flow through them. Creating an inheritance hierarchy of fluid, sub-typed by H20 and residue, and
typing the ports by fluid means the either H20O or residue can flow through them.

9.1.4 What's the relation port and standard UML interface?

A port can realize different interfaces. It combines several interfaces; e.qg. If the port is Ethernet it
represents the sum of all its protocols. E.g. it realizes UDP, TCP, etc.

9.2 Combining ports and flows to represent interfaces

9.2.1 Modeling a structural interface like a socket, screw, hole etc.

Use a standard port typed by a block that specifies the structure. We do not need yet necessarily
another part property "inside" the system. The structural information is contained in the interface
description. The practical advantage is that we do not need to open the box to know the structural
properties.

See Figure 24 Electrical IBD of the Observatory Context

SE2

Issue 1
Cookbook for MBSE with SysML 19/01/2011
Page 77 of 120

9.2.2

Modeling standards like RS232, CAN bus etc

You have several parts in the model:

The (mechanical) interface type, like DB-25, DB-9

The electrical signals, like Receive(tr), Transmit(tx) and Ground(gr)
The hand-shaking, error detection protocol, etc.

The cable

The data which flows

Depending on the required level of detail there exist different options:

9.221

9.2.2.2

See Fig
Context

9.2.3

Model "everything"

Model the mechanical connector with a block, named DB-25, DB-9

Model the electrical signals with a flow specification, where each signal is represented by a
flow property.

Where the meaning of the flow specification is in the sense that anything that supports this
interface can flow through this port.

Create a flow port as part of your DB-25 block. This actually represents the assignment of the
mechanics to signals, which may differ from one supplier to another. You need to create an
application specific sub-type of your DB-25 to do the assignment. Or, you create another
special interface block which owns a standard port typed by DB-25 and a flow port typed by
RS-232. In any case, stereotype the interface block as <<portgroup>>.

The actual interface driver is a component within the receiving block. If it was a computer, for
example, there would be an RS-232 port on the computer which would connect to an internal
part that is an RS-232 interface driver with its respective ports on it. Its ports may include the
individual pins or still be abstracted as a single port. You specify what flows by the physical
interface specification.

Its behavior, e.g. the handshaking, is modeled by a state machine attached to the part
property which uses the flow port.

In the simplest version is using a connector.

The data (or any other flowing entity) is represented by item flows. The item flows are of type
value.

Modeling ONLY A FLOW of entities.

Represent the data with flow specifications (if you have more than one property) or a value
type (semantically equivalent to a flow spec with one flow property) and type the flow port with
the flow spec. For example, if you want to define the packages which flow over a CANbus

ure 49 Catalog Definition of TCCD heads, Figure 24 Electrical IBD of the Observatory

How do | model a cable?

The cable can be modeled in various ways, depending on the detail you need:

a simple connector

a block if you are interested in the properties of the cable and you want to re-use it. N.B. That
the cable can also have ports to represent plugs and sockets.

an association block

in this case you can type the connector with the association block and you get a very compact
representation in the IBD.

NOTE: it must be an association between types, e.g. the types of the ports you want to

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 78 of 120

connect. The re-usable element consists of the two types and their association - NOT the
block itself.

See Figure 51 Models of Cables.

9.2.4 Combining physical connector type and flow

In APE there are a so-called Junction Boxes (JB1 and JB2) which connects the Control System
Electronics to the Field Electronics. The Junction box has two interface plates. One where the cables
coming from the control system are connected (the “external” interface plate) and one where the
cables to the actuators on the opto-mechanical bench are connected (the internal interface plate).

Each interface plate has a group of plugs for each subsystem located on the bench, e.g. ZEUS, DIPSI,
IM.

The two interface plates are modeled as nested ports and each group belonging to a subsystem is
again modeled as nested port. In this case we have a double nested port as shown in Figure 54.

The Interfaces are represented by standard ports, typed by a block which is stereotyped
<<portgroup>>. It serves as the specification of the port and groups together several interfaces. The
Block can itself have ports and therefore several levels of nesting can be achieved.

<<portgroup>> itself is generic. There are different stereotypes to be specific about the kind of
interface:

e <<eportgroup>> ... electrical interfaces

e <<oportgroup>> ... optical interfaces

e <<mportgroup>> .,. mechanical interfaces
e <<pportgroup>> ... protocol interfaces

e <<iportgroup>> ... information interfaces

The aim of grouping the interfaces is to define physical connector and flow at border of part and hide
internals of a block. The main benefit is that a single type is needed to define physical connector and
flow and that the interface type can be re-used. Traditionally, several unrelated ports are needed.

Different flows over a connector (e.g. pin assignment) can only be assigned via specialization of the
block which types the port

Issue 1
19/01/2011

SE2 Cookbook for MBSE with SysML
Page 79 of 120
+ProductTreeliagram:
bdd [Package] OptoMechanicalBench_nterfaces[@OptoMechnicalbench_lnterfaces_ProductTree 1/ || Modification date | 97110 1:12 PM
| ast modified b

\\;“‘“

N
—

«physicals sphysicals
JunctionBox1 JunctionBox2

: JunctionBox2E:xternal_eit
: JunctionBoxZInternal_eif

/7 S
/ i
s ~
K
*Eporgroup: = seportgroup:s =
JunctionBox2External_eif JunctionBox2internal _
elf
D JB27eus_eif : JE2IM_eit
civy anW MEY msz Souriauds!
mator - enc
|'L]
seportgroup:s = TGRS =
JB2Zeus_eif JB2IM eif

[— —

ncifyy msy msZ . Souriauds caml cdm2 cam3 camd: IM_Camd_f=s

Figure 54 Grouped Interfaces of Junction Box 2

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 80 of 120

The Junction Box has an internal wiring which connects the interface plates plugs, which is shown in
Figure 55. The connection between Control System, Junction Box, and Subsystem are shown in
Figure 40.

gelectricals
ibd [physical] JunctionSox2 [JunctianEIDxZ_ElectricaI 1 Modification date 8126010 2:37
PM

miotar zelectricals

enc selectricals

JunctionBox 2internal _eit

L B2 _eif

JunctionBox 2External _eif

nicl

M=z Sauriaugst welectricals

mEy zelectricals

cfw welectticals

. JB2Zeus _eif

Figure 55 Internal wiring of Junction Box 2

APE uses special technical CCD heads which provide and require different interfaces. The head
needs to be cooled; therefore there are interfaces to integrate it into a cooling circuit (coolingSupply,
coolingReturn). The type TCCDCoolingConnectorSupply is a block, and owns a flow port Ic, typed by
an <<Item>> Coolant. The type TCCDCoolingConnectorSupply inherits from block
“SelfSealingFluidFemale” which is a standard catalog connector for fluids. By specializing, the specific
flow port for the Coolant can be added and allows combined modeling of physical structure and
flowing items (Figure 56, Figure 57).

An alternative is shown for the coolingReturn interface, where a <<portgroup>> is used. The
<<portgroup>> owns a flow port and a standard port for the Coolant and the physical connector.
<<allocation>> is used to indicate over which physical connector the Coolant flows.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 81 of 120

taCartroller : TCOCD ITT Cannon 20A351P

taCantraller : ITT Cannon 2DA31S toRightPCE - TCCDRIghtPCE
tolLeftPCE - TCCDLeftPCE ctrl: TCCDControl_fs poweer © TCCDPoweer _f=

left : TCCDHeadcaklel tight : TCCDHeadcable?

zelectronics:
CCDOHead

valwe s

hauszingy - mmiunit = Millimeter
haouzingy” : mm{unit = Milimeter}
houzingZ © mmiunit = Millimeter
chipX : pix = 0{unit = Pixel}
chip™' : pix = O{unit = Pixel}
pixelSize : nm = Munit = Nanometer } [:l

mourit

Ic: Coolant coolingSupply © TCCDCoolingConnectorSupply

: SelfSealingFluidhsle I_ .

.

coolingReturn : TCCDCoolingConnectorReturn
Ic: Coolant

zallocates

Figure 56 Interfaces of TCCD head

This example shows a CCD Head where the cables are directly soldered on the PCB. Using nested
ports gives a compact representation of the block and its interfaces, which can be easily re-used.

smechanicss
SelfSealingFluidFemale
Y

Ic : Coalant I : Coolant

l

: SelfZealingFluidhiale

hlocks
gmechanicss:

TCCDCoolingConnector Supply

spoHgroup:
TCCDCoolingConnectorReturn

Figure 57 Definition of TCCD interface

9.3 Layered Command and Data Interfaces

9.3.1 Example

The Local Control System of the Active Segmented Mirror provides and requires command and data
interfaces which run over different LAN interfaces, and use different protocols.

9.3.2 Context

Different information interfaces can use different physical interfaces, e.g. data on different LAN port,
using different protocols, e.g. CORBA. Allocation of structural elements across multiple abstraction
layers is needed.

9.3.3 Problem

Traditional SysML modeling way would use several unrelated flow and standard ports which make re-
use more difficult and creates cluttered structures.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 82 of 120

9.3.4 Solution

Define Command and Data interfaces in one Block which enables grouping of interfaces which have a
high coupling, re-use, extendibility, and consistency.

e Aggregated information, electrical, and protocol specifications for ports
e <<Allocate>> information ports to physical ports and protocol ports
e Profile with stereotypes for interfaces types

e Special port types for better readability (cluttered diagram by stereotypes)

zProductTreeDiadgram:s
bdd [Package] AsmLCS[@AsmLCS_PraductTree] Modification date BI2EM0 4:24
P
IMCS_Control_if ASMLCS_Control_if
=]
CAsmLCS_pit o AsmLCS_eif ™, A aamLCs_if
1
L =— -
sphysicals
AsmLCS
lapame
zelectronics: | | «softvwares zelectronicss

LCUCrate | AsmServer MVYMEG100

| allocate:

asmServer

iZomimerts

fauthor="RKA || 7pe front view of
A Syshl software block iz allocated the ASM Local
to a UML package, which serves as control System
the starting point for SW design.

==

ControlSystem_ProductTree

Figure 58 Product Tree of ASM Local Control System

Figure 58 shows the data and command interface. It is specified by an <<information>>
<<portgroup>> which <<uses>> and <<realizes>> standard UML interfaces. The Data interface is
modeled with a flow port which is typed by a <<ValueType>>, representing the data which flows.

The required command interface and the data interface run over a TCP/IP protocol and a Ethernet
100 base T network. The provided command interface runs over a proprietary protocol which is
based on TCP/IP, and another LAN port.

Add ports for protocols or use properties.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 83 of 120

Defining a property of the logical interface defines the protocol for the whole interface. This is not what
we intend here. The proper way is to add protocol ports for each protocol (a DDS port, a CORBA port).
The logical ports are then allocated to both, the protocol ports AND the physical ports. Multiple
allocation is possible. Which protocol is used on which port, can be derived from the two allocations.
The implementer of the control system and/or control software has to take care of the proper
allocation.

Since the diagram gets cluttered, not all allocations should appear in the diagram but a dependency
matrix should be created.

Why not define the protocol stack by tags, like in WSDL?

Before a value can be assigned to a tag the port would have to stereotyped. The properties of the
stereotype become the tags. There is a stereotype <<protocol>>.

However:
e you need more clicks
e you cannot create a dependency matrix which shows the allocation

e you could not show it in the diagram because there would be too many stereotypes. Would be
useful only in a document generator.

e which port should get the tag? the logical? the physical? We would lose a clear separation.

Allocation constraints can be defined to constraint the supplier and client of the allocation
relationship

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 84 of 120

zProductTreeliagrams
bdd [Package] AsmLCS[@AsMLcs_|merfaces_|=-rnducﬂree] Modification date | 8/26/10 4:.22 PM
wallocates:
[— = — — -_—_———— — — = = = = = =
I | |
imData . IMData fpimcslan | Ethernet-100Base-T_fs
| 1)
| zportgroupes zportgraups
I «informatian: zelectrical:
AsmLCS_iif AsmLCS_eif
' — FL
| i _
W 4 fpictriLan : Bthernet-100Baze-T_f=
| wollocates IMCS_Control_if (| [ASMLCS_Control_if () «allocalte»
| +setposl) +setpos() F— — -
I +ztapi) +getismPos)
+ztart) T
| +calibl) I
| +detectzpotsl])
T |
| | I«allgcate» AsmLCSPortAllocationMatrix
! | zallocates I
' | |
| | '_'-.E‘CS - AShiProtocolStack &
I L MalueTypes
o t_ fi . Ta:‘.ﬂF‘ :::Eéﬂsuj;f e
SRARS piezoPos | Real [183]
zhlock:s
shilocks sprotocols
O5lstack QS5iProtacol
parts
layer! : O=SIProtocal T
layer? : O=IProtocal
layverd : OSIProtocal
layerd : O=IProtocal
:232:3 ; 8§:Eﬂggg: sblocks «blacks eblocks
layerT OSIPratacol zprotocals zprotacals zprotocals
TCPAP Ethernet CCS
‘T‘ Y
hlocks '
ASMProtocolStacka COS iz the YLT s
paits proprigtory
layer! : Ethernet{redefines layer! } idldlesyvare
layer? : TCPAP{redefines layver2}
layerT . CCS{redefines layer?}

ControlSystem_Content

Figure 59 Command and Data Interface of ASM LCS
The Protocol Stack is modeled according to the ISO/OSI stack model.

The allocation matrix shows how the command and data interfaces are allocated to protocols and LAN
ports.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 85 of 120

» APE: APE_Skro. ..

‘T

r2 |0 ASMLES Conkral_..
—|'0T +fpImcsLan @ &PE..,
ra ' imData ; AFE:A..
— |7 +tcpfip s AFEAP...

=7 AsmlCs [APE: APE_Skructure: . ..
0 BSMLCS Control_jf [APE:: ...
[ag AsmLCS_eif [APE::8PE_Str...
{1 +fpCtrilan : APE_Parts...

. TP tfpImeslan : APE_Parts, .. e

E]E AsmLCS_iif [APEAPE_Stru.., 1 1

i B HimData: APE:APE_Str... A A

EE AsmLCS_pif [APE::APE_Str... 1 1

P k-0 oost APEDAPE Struct. . e

L LT3 +hepfip : APE:APE_Stru... d
EE AsmLCS [APE: &PE_Strucku, ..

Sy =l +FpChrlLan : AFE..
gy =0 4cos: APELAPE L.

—

R =

Figure 60 Port Allocation matrix

The <<software>> block AsmServer provides/requires the information interface and the IBD shows
how it is connected. It could be different software blocks for each information interface.

ginformation:s
ibd [] AsmLCS [[AsmLCS_information | | Modincation date | 8iz6/1 0 4:33 P |

ASMLCS_Control_if
ASWMLCS_Control_if

i O
/ —

B ,
imDats : IMData t AsmServer
. s agmLos_it
D AsmLCE_jif
N P
™, =

Y /
b IMGS_Control_if
IMCS_Contraol_if

==
ControlSystem_ProductTree

Figure 61 LCS internal information interface connection to Software Block AsmServer

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 86 of 120

- 8/26M0 4:29
Modification date P

selectricals
ibd [] AsmLCS[AsmLCS_EIedric:aI]

fpimcsLlan : Ethernet-100Base-T_fs

: AsmLCS_eif

fpctriLan : Ethernet-100Baze-T_fz

IE)smc : MYMEG100

: LCUCrate

=T=|

ControlSystem_ProductTree

Figure 62 Internal electrical view of ASM LCS

9.3.5 SysML status

There are no plans to support discipline specific interfaces types. That would be contradictory to the
unified approach of SysML. It is a task for the stereotypes mechanism.

Allocation is a stereotype of UML abstraction and the semantics (i.e. the exact mapping) of allocate
are not defined in SysML. The mapping is to be defined. For practical reasons use a Note.

9.3.6 Allocation of a nested block

Allocation is a stereotype of UML abstraction and the semantics (i.e. the exact mapping) of allocate
are not defined in SysML. Therefore allocation of the top most port does not necessarily mean that all
nested ports are also allocated.

This makes it possible to allocate d1, d2 to lanl, lan2 and the port which realizes the control

commands to yet another physical port. The interface itself cannot be allocated because it might be
realized by different ports.

9.4 Flow Properties vs. Flow Ports

9.4.1 Example

A video camera provides analog and digital video streams which are models as flow ports.

9.4.2 Context

The flows which are the visible interface of a block (the camera) are delegated to nested flows,
internal to block.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 87 of 120

9.4.3 Problem

bdd [Package] Camera_Structure [@Cameraj‘mducﬂrem]J

==hlock==
==physical==
Camera

paits
: ProtectiveHousing
ma : Mount&ssembly
. ElectroniceAssembly
- Camerabodule «=| : Cameralrterface_fs
: MechanicalPower Subsystem
: DistributionHarness

: Cameralrterface

: Problematic_fs

==FlowSpecification== H alilae
Cameralnterface _fs ==portgroups==
LB wlmpeiys= Cameralnterface

analoghideo : Compostelideo{direction = out} — — - -
control : CortrolDatareadOnly direction = in} ==FlowPort==dig'idead : MPEG4direction = out, isAtamic }

digicens, | MPEG4{direction = out} ==FlowPort==digvideoB : MPEGa{direction = out, izAtomic}

dig¥idecs | MPEG4{direction = out} ==FlowPort== . ControlData{direction = in, izAtomic

==FlowPort== : CompositeVideo{direction = out, izAtomic}

==FlowwPort== : Problemsatic_fs{direction = inout, is&tomic = false, izConjugated

Figure 63 Definition Block and its Interfaces

When connecting the ports to the internal ports the flow port typed by the flow specification has some
disadvantages. Its flow properties are not visible, therefore it is unknown how the flow properties
digVideoA and digVideoB are connected to the internal ports a and b.

Flow specs the diagram doesn't tell you what's inside the port on the diagram.

9.4.4 Solution

Using a nested port with nested flow ports (which correspond one to one to the flow properties of the
flow spec), the individual ports can be connected.

The example describes a camera block with two interfaces. One modeled with a flow port which is
typed by the flow specification. Another is modeled with a <<portgroup>>, using nested ports.

SE2

Cookbook for MBSE with SysML

Issue 1
19/01/2011

Page 88 of 120

ibd [Block] Camera[g Camera_nformation]J

-

lightIn : Light : Light
o

==hlock==
==physical==
: CameraModule

==hlock=:=
==physical==
: ElectronicsAssembly

Iy |
I

==optical==

Camera_Content

|l

e |

==hlock==
==physical==
: OpticalAssembly

==hlock==

: ImagingAssembly

==hlock==
: MPEGConverter

: Widen

==optical== ILI

i:_:, : Image
4

==hlock==
: ImageProcessor

o MPEGH
L

. Cameralnterface

: Compositetiden

digfideos : MPEG4

dif/ideoB : MPEG4

Camera_ProductTree

: ControlData

 Cameralrterface_fs

Figure 64 Internal Block Diagram of the Camera Block

9.5 Modeling interfaces which are represented by a document (e.g. ICD
- Interface Control Document)

If an interface is already specified in an ICD document it makes no sense to complete model it again,
but reference it..

The documents are represented by value types, stereotyped <<icd>>. They are value types because

they represent a uniform type of information. Its name is the document number or title.

The connector between them is stereotyped <<icd>>. Depending on the level of detail you require you
can simply use ICDs or model parts of it using ports and flows.

Issue 1

SE2 Cookbook for MBSE with SysML 19/01/2011
Page 89 of 120

emechanical: 2/76M0 530
ibd [Svstem Contexd] ObservatoryConted [ObservatoryContext_Mechanical 1 Modification date PN ’
ape : APE_Telescope
apecs : ControlSystem_Telescope
: SitelnfraStructure
zmechanicals
| suv.wape : PowerEdge2850 I chb : ControlBuilding
|cSens:Elec1rnnicCahinet | emedhanicals

rrechanics|

: Engineer -
| cAsm : ElectronicCabinet

| cMisc : ElectronicCabinet

| 55 ! PassiveSupportStructure wanm

nien
e

3
zComment:s

The cabinet iz

mechanically installed

on the Nasmyth

platform, which is the -

interface for any = -

instrumert. - -

MA : NasmythPlatform— —

i gunction:s

ut3 : UnitTelescope

wecjual:

ms : MajnStructure

HA : HasmythPlatform

Telescopelnstallation_Picture

HEB : HasmythPlatform

ObservatoryContext_Content Observatory_Context_ProductTree

Figure 65 Mechnical Context Diagram with ICD

9.6 Relations between Interfaces

9.6.1 How can | type a connector between ports?

Connectors are typed by associations, although they are often left untyped. It should be an association
between PORT TYPES.®

Stereotypes and types are different things. A stereotype introduces a new model element by
specializing an existing model element, e.g. physical connectors.

° In MagicDraw you should drop these two types into a BDD diagram and draw an
association. Or you could open the specification of one port, navigate to specification of
type, go to Relations and create new Association directly in the model.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 90 of 120

9.6.2 How/When do | use realize with Ports?

Realize is only used with standard interfaces, i.e. when something provides a service. As a
consequence only standard ports can be used with a realize relationship. Only blocks can realize
and/or use more than one interface. Therefore a port must be typed with a block before it can
realize/use an interface.

You can either type the port directly with the interface or go through realization. The latter is more
flexible because you can later on easily add more interfaces and realize them without changing the
type of the port.

N.B.: Realize relationships exist also between Use Cases and Test Cases or other Use Case
realizations.

9.7 Flows

9.7.1 Model that something flows in or out

Use a flow port (atomic, conjugated, simple, etc.). The flow port is typed by a flow spec or a
Block/Signal/ValueType (atomic) to specify what flows.

e To model that the block provides or requires some services, e.g. a software APl = use
standard port with interfaces.

e To model a combination like structure plus flow specification =» use a complex port: standard
port typed by a block that specifies the structure and owns a flow port. The flow port is typed
by a flow spec or a block/signal/valuetype (atomic) to specify what flows.

See 9.2, Combining ports and flows to represent interfaces

e Telescope SCP: the CEE plugs or the coolant supply/return connectors are described by the
standard port typed by a block. The description of what flows is described in the flow spec.
The coolant is defined by a block and the properties of the coolant (temp, pressure, glycol,
etc.) as value types. This block is used either as a type of the flow property (in case we have
one flow port with two flow properties) or as the type of the flow port (in case we have a flow
port for each connector and therefore an atomic flow port).

9.7.2 Should I use direction on flow ports?

"Trust the port direction” rather than indicate like thingln and thingOut: also DO type ports. Although
throughout nearly every previous systems engineering model you will see the direction (in/out/inout_
kind of flow ports indicated in the (contrived) flow port name, this is no longer necessary.

For atomic flow ports DO instead trust the flow port direction indicator.(And for complex port DO trust
the indication of conjugation.)

The directional information CAN be gleaned from the SysML model. You will avoid errors, can change
port directions WITHOUT changing names, and your diagrams will be easier to read.

9.7.3 Is the flow specification describing the physical layout of a medium or the items which flow?

The flow specification defines the kinds of things that can flow through this interaction point on a part
or block. If a more logical layer is allocated to a physical layer, appropriate flow specifications on both
layers are valid, e.g. describing data structures on the logical layer and current on the physical layer.

Issue 1

SE2 Cookbook for MBSE with SysML 19/01/2011
Page 91 of 120
9.7.4 Do | put the specification for an image flow on the port or as item on the connector?

The type of the port can define the image format such as Digital Video, where as the thing that flows
may define the content of the image, such as "target image". This would indicate that any Digital Video
can flow through this port, but this connector conveys a Target Image. This is only one way to
characterize the port and the item flow, but there are others.

9.7.5 What's the difference between item flow and information flow?

9.8 Overview of Interfaces modeled with Flows and Ports

A ltemFlow offers the possibility to specify concrete rates or flow properties by itemProperty. The
following table (Table 2) list a number of interface elements for different interaction media, connectors,

isolators, and converters and the interacting elements.

Table 2 Interface Elements and their SysML representation

Type Electrical Mechanical, Human-Machine Data
Hydraulic, Optical,
Thermal

Interaction | <<connector>> <<connector>> <<connector>> <<connector>>

Medium tem Flow =]Item Flow = << |Item Flow = << Item | Item Flow =
<<Item>> Current | Iltem >> Force, | >>information (e.g. audio, | <<value type>>

i Fluid, Photons, | visual, finger print, iris),
Flow defined by Heat mechanical force
<<flow spec>>
and <<flow | Flow defined by | Flow defined by <<flow
port>>, <<flow spec>> [spec>> and <<flow
- and <<flow port>> | port>>
<<association
block>> for | <<association
cables (in | block>> for pipes,
connection with | fibers,
their connectors)

Connector | <<standard <<standard <<standard port>> typed | <<standard port>>
port>> typed by a | port>> typed by a | by a block typed by a block,
block. block e.g. Display realizing

. e interfaces or

eg.DB25 RJ4S | eg. . Joint or a separate <<block>> | <<flow port>> for

coupling, flange,

;) data flows.

Valve, fiber optic

connectors, e.g. e.g. data I/O

metallic foll items

bundle

Isolator <<block>> , | <<block>>, <<block>>,<<standard n/a
<<standard <<standard port>> typed by a block
port>> typed by a | port>> typed by a .
block block e.g. cover window
e.g. RF shield | e.g. Shock mount
insulator bearing,

Seal, Shutter, air

Converter | <<block>> <<block>> <<block>> <<block>>
e.g. Antenna A/D | e.g. Gear Train | e.g. Keyboard, lever, | e.g. FPGA
converter Piston, Reducing | loudspeaker, steering

valve Pump, Lens

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 92 of 120

group, Peltier wheel, touch screen
Protocol <<flow port>> | n/a n/a <<standard
and <<Flow port>>, typed by a
Spec>> block
E.g. RS232, e.g. CORBA,
USB, CAN, DDS, TCP/IP,
Ethernet OSilStack

10 Behavior modeling

Many projects model only the system structure and interfaces. However, missing to specify the system
behavior, using behavior modeling, typically results in serious integration problems.

Therefore we highly recommend capturing the system behavior in the system model using SysML
activities, state charts and sequence diagrams.

10.1 Modeling Activities

Activities define the workflow of actions to perform, the input and output of the actions and the
decisions/condition-dependent sequence of the actions.

The model shows at the same time the physical effect of a system (like distortion of wave front) as well
as sensing, actuating actions and control flows.

We need to describe the wave front control scheme of APE, the relationships among internal/external
disturbances, opto-mechanical effects, and control decisions, to understand the context of those
decisions and to refine the control use cases. The wave front control schemes are derived by
analyzing the system requirements and the opto-mechanical system architecture. From this fairly static
view of dependencies, a wealth of information can be derived, like interfaces among components,
communication network dimensions, synchronization requirements and required sensors and
actuators.

Figure 69 shows the top level behavior of APE; i.e. the evaluation of the phasing techniques.

The model of the Wave front control becomes the central piece for further activities. The modeling
element of choice is an activity diagram, using the SysML specific add-ons for systems modeling (rate,
continuous flows, etc.). This prescriptive model maps the relevant information to activity elements (e.g.
disturbances to object nodes, opto-mechanical effects to actions) and all the relevant information is
kept in one diagram, thus enabling proper effects and relationship analysis.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 93 of 120

<cortinuouss <cortinuouss
- — - - - ~ wavefront — Temperature
| act [Activity] Evaluate Phasing technigques | @Evalua{e Phasing technig tatream} tatream} - .
J [modification date04.02.10 1551 |
wi [
" stream I:
«continuouss at { = ! {Strt:am}
Atmospheric {stream} : Distort Wavefront r|1 alssuss
turbulence | - In the lab the wave
{stream} front is generated
artificially
wiout wiut The action has to be
[else] | {stream} {slream} . gimulate VLT |aclded by the
R optics = - specialized activity in
T [=imulste wavetrort] th the variant package
Laborstory _Cortesxt.
wavefront Howvever the tool
wfFieldOut {stream} doesn't suppart
{stream} temera{u}re activity
«Variation points - rea: m generalization very : Convert Zernike
g ocLE offa E
g :Setup test beam I‘I'I {stream} el farces coefficients to differential
focus forces
wdatastores I‘I'I
segment postions T [open loogp] gElEence
{stream} T Termikes
test beam [closed loop]
{stream}
{zlocked = false, /
St:;gm} jitter="001", |«G0Zs vef can be /
lateney ="0.1"} |&smhiovement provided manually /
. or from sensor /
«\ariation poirt: : Convert ptt to segment i
: Detect segment and shape errnrrl.ala movements h /
| S <lssues
| Those actions are at a
different level of
wefl Zernkes [WaveFrUrrtDaia T pit abstraction. They should
{stream} be nested in ancther
2 activity to have & proper
3 Dﬁl_;tl:ilof:leld allocation to structure
|+| L d
N p— 7 lelsE]
{rate 9"30H21 | yopream 7
£
\ zernikes : Convert Zernike
\ A coefficients to M2 forces[Correct WLT] S.end to
| differential forces i
Send to M3
Telescope
M2
: Convert Zernike farces
zernikes coefficients to [Correct WLT] EEnto
differential forces T M

Figure 69 Top Level Behavior of APE

10.1.1 What is the relationship of Activity, Activity diagram, Action, CallBehaviorAction?

An action is never actually defined through an activity diagram. If an action is a usage of an Activity
(within another activity) then the Activity that types the action is defined through an activity diagram.

Issue 1
19/01/2011
Page 94 of 120

SE2 Cookbook for MBSE with SysML

10.1.2 How can | model a decision in an activity which is taken asynchronously (like an operator
decision)?

("act [Activity] Super Activity | 55| SuperAcitivity]J Diagram name | SuperAcitivity

Author rkarban

Creation date 11807 5:30PM

Modification date | 5249708 12:52 PM

N

By simply having
pins without edge
their input is
alwarys available.

; o The input can be
_ - “|created by
- another activity

- < |wehich is not

il decizion - zhowen here
— -
-

- -~
iz : Activity

I‘|1 calibrationCats

]
-

SE2

Cookbook for MBSE with SysML

Issue 1
19/01/2011
Page 95 of 120

("act [Activity] Activity [[Activity]J

Diagram name | Activity

‘ Author rkarban

11018707 9:33 Pl

‘ Creation date

Modification date | 5/25/08 12:53 PM

Depending on the
decision either 11

ar calibrationData
iz combined wyith i2

-

(act [Activity] FlexibleDecision | 5 Decision]J Diagram name

Decision

Authar
®

tkarban

Creation date

1101807 4:16 Pht

Madification date

6111/08 7:30 AM

| Make Decision |

==comment==

TIMake Decizion
crestes an object
wehich drives the
— | flovy depending on
itz value

10.1.3 When should | use <<discrete>> or <<continuous>> in activity diagrams?

On a philosophical basis, we would expect things that are defined by their <<rate>> to be continuous,

while items which have discrete properties have sudden steps in rate.

For example, when modeling some infra-red detectors one needs to consider (count) photons. They
arrive randomly and have a distribution (typically Poisson). However light, as mentioned below is often

thought of as continuous.

The choice between <<continuous>> / <<discrete>> is a critical modeling assumption and is an
important contextual decision. To get it 'wrong' constrains the modeling.

Additionally this include the decision about <<continuous>> or <<discrete>> time, that is, can we

resolve the (potential) step changes in rate.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 96 of 120

You should treat air, light, liquid as <<continuous>> object flows, where the object is e.g. photons, etc.

Information is a normal object flow. You can define an interruptible region with a timeout to create
"timed" flows. In this region you could define an action which creates a <<continuous>> flow you
process later on. Or, you use a control operator with the control value enable/disable which
enables/disables the action which produces light. In Model-based Systems Engineering, CRC Press,
1995, A. Wayne Wymore described quite rigorously the transformation from discrete to continuous
and back.

10.1.4 How do I represent control loops?

Use <<clocked>> activity diagrams with streaming and non streaming activities. The following shows
an integrator.

s o
==clocked==
act [Activity] Cortrolloog [@cmmu_mp 1

AN

The diagram is stereotyped
==clocked== too keep all

: Generate u(t) actionz in sync.

For the first trip round the Add
action needs a default value
— |wwhich iz uzed only once, due

u
,—l l —) to the ==clocked== sterectype.
—
.

x

5 Murti|l::ﬁl 3 DispI#Il
Diagram name | Controlloop

-2 J‘ ALthor rkarban
\—J i Creation date 111807 4:23 P

Modification date | 5/25/08 12:50 PM

Figure 70 A simple, integrating control loop

11 Guidelines for Modeling Non-Functional Aspects

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 97 of 120

11.1Quality of Service

11.1.1 How do I define Quality of Service?

SysML activity diagrams offer only a rate to define details of a pin. Often more QoS are needed, like
latency, jitter, clocked.

The solution is to define a stereotype Qos with the properties clocked, jitter, latency, which can have
different values for every Pin. If the QoS is valid for both ends of the edge, the edge itself is
stereotyped, as suggested already by C.Bock.

swareefrant
wefFigld Ot {stream}
iztreamt temperature
| W aristion points {stream}
. focus offset
: Setup test beam r|1 (stream?
4 zegment postions T
tstream}
t{esﬁtrgae;? [clozed loag]
{elocked = false,
el jitter="o0qe, | «G0S:
stream} latency = "0.1"7 |&smblovement
aaristion point:: (": Convert ptt to segment |
: Detect segment and shape errurrl.:li movements r|1
I !
Zernikes WWaveFrontData it
Figure 71 Quality of Service modeled in the Behavioral View
act
{clocked = false,
C. = jitter="0.01", c rtpttt =
: Corre) 1at =ng.qm :Conve 0 segme
a | gsegment rigid g [closeloop] oY £ movements L
" | bo ositions | L
__| bodyp n_l | Asm ment
= o) <<Q0S
<<Allocate>>
==stereotype=>
QoS
[Pin]
| : 1
-jitter : Second m
-latency : Second e e
-clocked : Boolean s
| Sup sor

allocatedFrom = € Convert ptt to segment movements

Figure 72 Allocation Scheme Pin to Port

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 98 of 120

The main point of discussion is, if the pin of the action or the parameter of the activity shall be
stereotyped. The correct approach seems to stereotype the parameter and the tool shall propagate it
to the associated pin -.

SysML status

e SysML only provides only <<rate>> stereotype which extends Activity Edge and
Parameter.

e Allocation of Ports to Pins not addressed in SysML standard 1.1*°
e Synchronization of Parameter and Pin is tool-dependent.

e UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms

11.1.2 How does it relate to Parts and Ports?

Activities are as usual allocated to parts or blocks. Each pin can be allocated to a flow port. In case
pins are bundled on a port they are allocated to the same port. The allocation of pins to ports is
optional. If there is a one to one mapping the data type of the flow port and the object node have to be
the same.

Allocation ObjectFlow to ItemFlow

The ObjectFlow (Edge) describes that in the context of an Activity the output of one Action is bound to
the input of another action. In the context of a block a item flow describes the flow of an object from
one part or port to the connected part or port. The allocation of the ObjectFlow to an ItemFlow defines
which ObjectFlow corresponds to which ItemFlow in a given context. Supplier and producer and
context need always be defined.

Allocation Pin to Port (not addressed in SysML standard 1.1)

The pin defines which objects flows in/out of an action from a functional point of view. The port defines
which object flows in/out of a block from a structural point of view. The allocation of pin to port defines
the mapping of functional to structural view, independent of a context. The supplier and producer need
to be known, e.g. when certain data flows over an Ethernet port but it is irrelevant who is connected to
it.

e Activities are allocated to blocks if the allocation is true for all parts of this block
e Actions are allocated to parts if the activity is only relevant for a particular part.

e Block operations to parts
This is particularly the case when sequence diagrams are used to describe behavior
rather than activity diagrams. Operations of a block (the whole) in a sequence diagram
can be allocated to its parts, it is composed of.

12 Ontologies

When creating a model it is of utmost important that the semantics of the model elements and their
relationships is properly defined. A correct definition of the semantics allows validating models and
forces the modelers to model similar things in similar ways, called conceptual integrity. In large multi-
user projects a consistent model structure and organization is the foundation on which modeling can
take place. Apart from the model structure and organization also the modeling patterns must be
defined, e.g. how interfaces are modeled. All this is required to guarantee readability, navigability, and
consistent representation of information.

An ontology defines formally terms, concepts, and their relationships.

19 MagicDraw extends these stereotypes to ObjectNode for applications like this

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 99 of 120

There can be general purpose Ontologies to define something like model structure and very domain
specific Ontologies like the conceptual elements of a telescope or space craft.

The most formal way is to define an Ontology in an ontology language like OWL (Web Ontology
Language) and apply model transformation to create a profile with SysML stereotypes, representing
those concepts and extend UML meta classes or specialize SysML stereotypes.

Most recipes and patterns in this Cookbook are based on Ontologies, e.g. Project Ontology, Variant
Ontology, Interface Ontology, Product Tree Ontology, etc.

They are defined as a Class model in the SE2Profile. The Classes are allocated to a stereotype
model. This is a less rigorous, yet worthwhile exercise to formalize modeling.

Knowing the Ontology, its allocation to stereotypes, and the mapping to SysML model elements allows
in principle to validate the model against the Ontology and check it for consistency; i.e. determine,
whether the representation of the model is consistent with the ontology.

Eventually, every model element must have a stereotype applied and its meaning properly defined in
an Ontology.

In the following some examples are shown. The complete ontology and mapping is defined in the APE
model.

«DefintionDiagrams:
package Project| PrujeclOrrtqugy’_DeﬁniliDn 1

Madification date | 911610 5:01 PM

Last modified by

Project
{allocatedTa = Project}

name = =SystemOfinterest=_Project

1 0.* 1 0.*

Project Views Parts Catalogue System Model Profile
{allocatedTo = Project \fiews} {allocatedTo = partscatalogue} {allocatedTo = System Model}
name = =Systemofinterest=_Projectyiews name = =SystemOiinerest=_PartsCatalogue name = «SystemOfinterests

MHl

| eganizational Unit |

L

| ContentDiagram |

= . SysML Package

Figure 73 Project Ontology

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 100 of 120

«DefintiorDisgrams Modification date | 11/28/10 8:02 PM
package Systsmbodel[SystemMudEIOntu\ugy_Deﬂnmun]
System Model
{allocatedTo = System Model}
name = <SystemOfinterest=
Organizational Unit
ContertDiagram [1]
N
System Model
Content Context Aspect | | Product Tree Diagram
Rationales [1] 0.1 '|nama = =ContainingNameSpace=_Cortesxt " 1 name = =ContainingNameSpace=_ProductTree
Problems [1]
Comments [1] =
Errors [1] Requirements Aspect
* Pictures [1] 1 {allacatedTe = Requirements Aspect}
< lzsues [1] neme = =ContaininghlameSpace=_Reguirements
Drawings [1] 3 &l FEEE= NEY
Parsed [1]
External [1] | Behavior Aspect
1]name = «ContaininghlameSpace=_Behavior ‘
ETOL TS [Product Tree Diagram
] {allosated To = Sttucture Aspect: ._,Iname = =ContainingNameSpace»_ProductTree
name = <CantaininghameSpace=_Structure
Data Aspect
T name = «C: . Data
Performance Aspect
1 |name = <ContaininghameSpaces_Performance
Verification Aspect
1 {allocatedTo = Verification Aspect}
neme = <ContaininghlameSpace=_Verification
1 {allocatedTo = Vaiiations Aspect}
Iname = <CantaininghameSpace=_varistions
J System Views]
1 |name = cCantaningMameSpace-_Vigws ‘
3| Model Traceability |
1 |name = «ContaininghlameSpace=_Traceahilty ‘
] System Constraints | Sen [package
1 ‘|nama - _Constreirt i
[System Kems]
N
name = _tems: |
1 |
System Interfaces |
" [name - <CortaitnghaneSpace-_rterfaces |
SysML package Auxiiary packages
s
Errors Issues Pictures [i [l Com
-name = _sCortainngNameSpace=_Frrors | | |-name = _sCortaninghameSpace>_lssues -name = _=ContainingNameSpace=_Fictures nams = _sContaininghlameSpace=_Rationales ‘name = _=CortainingMameSpace=_Comments ‘
External | Parsed Drawings [Problems
_name = _=CortainingMameSpace-_External _name = _=CortainingMameSpace-_Parsed _name = _=ContainingMameSpace=_Drawings ‘name = _=ContaininghameSpace=_Problems |

Figure 74 System Model Ontology

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 101 of 120

class [Package] OntologyProfileiapping [Mapplng_Deflnrtlon]J Madification date |1 0/24/10 9:27 PM
Last modified by | rkarban
Project callocates «stere_ut'fpe»
-name = =SystemOfinterest=_Project | — — — — — — — — — — = Project
[Model]
e Madel wallocates «stereotypes
-name = =SystemOfinterest- | — — — — — — — — — — — — = System Model
[Model]
Project Views callocates ST
-name = ==vstemOfinterest=_ProjectViews | — — — — — — — — = Project Views
[Package]
Parts Catalogue sallocates T
-name = =SystemOfinterest=_PatsCatalogue | — — — — — — — — = partscatalogue
[Package]
e ssterectypes zsterectypes wsterectypes SRl
mportgroup 3 pportgroup
eportgroup iportgroup oportgroup
[Class] [Clazz]
T [Clazs] [Clazs] [Clazs] T
wallocates Teallocste:s Teallocates Teallocate: wallocates
I | | | I
Mechanical Electrical PortGroup | Information PortGroup | Optical PortGroup Protocol Portgroup
HOntGIoup: -name = =aiame=_gif ||name = =aMame=_iif -name = =akame=_oif | |name = =aMame>=_pif
-niatme = =atlame:=_mif
SE2Profile_Content

Figure 75 Mapping of Ontology Classes to Stereotypes

13 Integration with other disciplines

This chapter describes the integration of system engineering modeling with other disciplines.

13.1 Transition to UML for software
How can a system model be used to seamlessly start software engineering?
Notion

e Seamless transitions from SysML <<system>> and <<software>> blocks to UML classes,
mapping also ports and interfaces

How to

e <<allocate>> block to package

e Alternative I|: <<allocate>> SysML ports to UML ports and <<realize>> the same
interfaces. Use interfaces for information access to map flow ports.

e Alternative Il: create a UML ,part class” representing the SysML block and create
connectors for SysML ports to UML ports in IBD and class diagram

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 102 of 120

SysML status

e <<allocation>> implies dependency of System to SW or vice versa.

e Classes are excluded from SysML

The main problem is how to trace SysML ports/interfaces to UML ports/interfaces. Interfaces are easy,
they are simply realized by some classes.

We present two options to do the transition:
Define a "part-class" of the SW block which represents the SW in the SysML model

The UML class is then referenced in the UML SW package and has associations with the other
classes of the SW

e Pro

0 The ports and interfaces can be seamlessly connected from the top (control system)
to the class

0 strong coupling of SysML and UML
e Con
o0 Classes are excluded from SysML (add to SysML status)
0 strong coupling of SysML and UML
0 Flow ports do not exist in UML
o0 depends on development process
0 depends if tool supports having UML and SysML at the same time available
Allocate class ports to ports
* Pro

e Only the SW block appears in the SysML model. The cut between the models is done
at SW block level.

e System service ports are connected to the SW block ports (there can be more than
one software block) -> strong coupling

e The SW developer defines how UML elements are allocated to the SysML elements
by allocating them.

e usage of allocation requires anyway a mixed language approach like in option one
because allocate has to be used.

e If you want to show how SysML interfaces are implemented in SW you need allocate.

Only those flow ports are interesting to SW, which are not physical; i.e. information flow ports
(DDS like). Define one SW interface for information access. All flow items of the flow spec of the
flow port can be mapped to subclasses of the abstract data class; i.e. each concrete data class
has a dependency to the flow item.

Issue 1

SE2 Cookbook for MBSE with SysML 19/01/2011
Page 103 of 120

BI26/M0 4:24

zProductTreeDiadgram:s
]
P

bdd [Package] AsmLCS[@AsmLCS_PraductTree Modification date

IMCS_Control_if ASMLCS_Control_if
5. O
CAsmLCS_pit o AsmLCS_eif A aamLCs_if

1

L -

sphysicals

AsmLCS

lapame
zelectronics: | | «softvwares zelectronicss

LCUCrate | AsmServer MVYMEG100

| allocate:

asmServer

AN
iZomimerts

fauthor="RKA || 7pe front view of
A Syshl software block iz allocated the ASM Local
to a UML package, which serves as control System
the starting point for SW design.

==

ControlSystem_ProductTree

Figure 76 Product Tree of ASM Local Control System

In general a software block shall be allocated to ONE package and there shall be no detailed SW
design, like creating different blocks for interfaces, control or entity as suggested by other authors. We
think the detailed design should be left to the SW developer. The developer gets a block with defined
logical data and command interfaces, available (allocated) physical interfaces (like LAN ports),
possibly defined protocols, and allocated functions.

This allocation is the minimum step necessary. If further detail is needed a mixed language approach
is needed.

The logical interface at a higher abstraction level, like control system or system, shall be replicated on
SW block level, to have a proper tracing.

In the IBD of the next higher abstraction level the ports of the higher level are connected to the ports of
the SW block(s). Here starts the cut between System and Software (Figure 77).

SE2

Cookbook for MBSE with SysML

Issue 1
19/01/2011
Page 104 of 120

winformation:
ibd [] AsmLCS| [4=mLCS_Information]| | Modification date [8/26/10 4:33 P

ASMLCS_Contral_if

ASMLCS_Gontrol_if

/ (®]

i’ sl

r N,
imCiata : IMData

= —

: AsmServer

. D AsmLCS_if
D BemLCS_if

u ,

", —y{
“,

. IMCS_Control_if
IMCS_Control_if

ot
|=[=|
ControlSystem_ProductTree

Figure 77 Information View of ASM Local Control System

package ssmServer| asmServer_Sﬂ.-“alT-.du:udel]J

Modification date | 2/26/10 4:35

PM
ws0ftwares
AsmServer
imData : IMData
i 4
i ! \\
=~ | Y | 4]
IMCS_Contral_if } \ ASMLCS_Control_if
f !
sallocates | \sallocstes
! !
/ i
/ \ ASMLCS_Control_if
' \ |)
U’ J e
ImData Main T 7 intertaces are
realized and
1 allocated
!
|
[Flowy ports are
| mapped to
kvl interfaces which

+readDatal imData)

=]=|

AsmLCS_ProductTree

ImDataAccess_if ()~

allowys infarmation
access

Figure 78 Relating SysML to UML for <<software>> Blocks

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 105 of 120

The SysML model does not include the discipline specific models like UML. The UML model uses
information from SysML, i.e. the SysML SW block with it's interfaces is the system class in the UML
model. The correct way would be to transform the SysML block to the UML class. The pragmatic way
is to use the same model element, i.e. the SysML SW block is the same as the UML system class.

But it is not necessary a one-to-one mapping. A SysML software block could be mapped to one or
more classes. Also several SysML <<software>> blocks could be mapped to one single UML class.
Important is the direction: the SysML model doesn't include the UML model, but the UML model uses
information from the SysML model. There should be no UML elements in the SysML model. In theory
a generator/mapping creates elements in the UML model from the SysML model. In practice we have
no big gap between both models, since we could stay in the same model.

13.2Interdisciplinary analyses and trade off

It is useful to note that while a parametric expression can be evaluated, it is not a behavior. A behavior
describes a computational algorithm that evaluates in a specific sequence. A parametric equation is
different in that binding any n-1 parameters of a parametric relation allows use to define the remaining
one. Thus, parametric relations are not behaviors; they are statements of the relationship of
quantifiable properties of a set of items.

A parametric relationship states how the value of one property impacts the value of other properties

e Used for Engineering analysis

e Mechanism to integrate engineering analysis (performance, reliability models) with SysML
assemblies

e Let user create network of constraints among properties of a system, built using basic
mathematical operators.

e Can be used to support tradeoff analysis by representing evaluation function, can be used
jointly to probability modeling available from the Auxiliary Chapter

¢ Not defined to be executable/simulatable Time

The following example shows a parametric diagram, describing relations between environment
properties, optical system properties, and electrical system properties.

The environmental property is the flux of the star in photons/s/m2. The optical properties are light
transmissions, and the electrical properties are quantum efficiency.

Each element in an optical system will not transmit 100% of the light passing through it, e.g. a fraction
of the light will be absorbed by the mirrors, lenses, filters, etc. It is important to quantify the amount of
light lost in an optical system and, in general, to minimize the loss.

If there is too little light, one can then evaluate the CCD characteristics: integration time, binning, etc.
and also determine the specifications of the CCD like the readout noise, the dark noise, etc.

It can also happen that a star is too bright, and it is then important to know the amount of light on the
detector in order to not saturate it.

The original photon flux is influenced by the optical elements in the light path, whereas the final flux
arriving at the detector (ZEUS), is influencing together with the detector’s quantum efficiency the
signal to noise ratio.

SE2

Issue 1
Cookbook for MBSE with SysML 19/01/2011
Page 106 of 120

a7 s e
o e g i
e
B L [—— i —
3]
e e
. s
e ——— i s e | VT o 1 Ul i e
e e arnd = R
i
e b
] Sopkwr Irwecart b
] i e CREEE
(ST . i o B i
= b b T
e i e g |
A et v
b

Figure 79 Complete parametric diagram for Flux Analysis

Lnalysis [FLuxAnalvsis]J

fluxin : Real
=l : Starlight i |_| |
. ral
/photonFlux : photonsis/m2 = 300 - AcorElELL [
: LightTransmission

1fluxCut = fluxin*transmissionFraction

|ecut : Resi
Figure 80 Flux received from Environment - the star itself

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 107 of 120

fluxin : Real

[]

ac.ape.omb.cbs1.lightTransmission : R%ﬁs'?n%#ionﬂaction - Resl «constrairt:

: LightDivigion
1Ot =0 S*ransmissionFraction®*fluxin,
fluxCut2=0.5*ransmissionFraction*fluxin}

fluxCut1 : photons/=m2

B

fluzCut2 - Real

Figure 81 FLux is reduced by beam splitters and transmmission factor fo optical elements

ac.ape.zeus : ZEUS

ccdzeus : CCOST-10

quantumEfficiency : Real = 0.9 darkCount : e-1/pixelis =1

readoutHoize :e-1=9

] dit:s=1
STl photonflux : photons/s/m2 gMoEs
] =nr : Real
— ac.ape.sl
ph | qe olit =NF
zCconstraint:
: SHREquation
1znr = (ph*ge*dit) f (=qiiph*ge*dit]]}
ac.ape.pyp=s : PYPS
ac.ape.dip=i : DIPSI fluxin : Real _l
fluxOut] © photonsf=im2 fluxOut2 : Real fluxiCutt © photons e
=l goonstraint: sconstraint:
—:| : LightDivision : LightDivigion
{flueCut! =0 2% ransmizsionFraction*fluxin, HluxOut! =0 S%ransmizsic
fluxOut2=0 5*ransmissionFraction®fluxing flout2=0 S%ransmis=ic
fluxin : Real ‘ fluxin : R

Figure 82 Signal to noise ratio at ZEUS detector

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 108 of 120

14 Variant modeling
The modeling of system variants is a core technique for model based systems engineering. You need
to model variants

o for analysing design alternatives,

o for evaluating variants via trade-offs,

o for modeling of product families,

and for the separation of a logical and a physical architecture.The challenge is to separate the variant
from the common part and to manage the dependencies.

14.1 Definitions

A variation contains a set of variants that have a common discriminator.

A variant is a complete set of variant elements that varies the system according to the variation
discriminator.

A variation point marks a core element as a docking point for a variant element.
A variant element is an element in a variant package.

A core element is an element that is valid for all variants.

zDefintionDiagram:
package ‘ariant[VariationsOrﬁoIogy_Defin'rtion] 12M6M0 417

Modification date Y

Last modified by

Variations Aspect
{allocated To = Variations Aspect}

Organizational Unit

-name = =ContaininghlameSpace=_\/ariations

Contains all variants of a
system element. i has the

_ |same name as the system
element which is a variation
paint

o.*
Variation

{allocatedTo = Wariation}

1.4
Variation Point

{allocatedTo = Wariation point}
Contains all

7 system elements

belqnging to one
The system element which is variant

N * -
varied 0.

Variant
allozatedTo = Wariant}

p.* _|The (new) varied
Variant Element — system elements

fallocatedTo = Wariant element}

Figure 83 Variant ontology

SE2 Cookbook for MBSE with SysML

Issue 1
19/01/2011
Page 109 of 120

pkg [view] Webinar Variant Modeling [All \ariation elements]J

«System Model= A
APE

«Structure Aspects ‘

«\arigtions Aspects
APE Variations

APE Structure I 121510
Modification date | 9:13
x;y_sternx_ Pl
«\/ariation points Last modified by | TimWw
APE
[AY

«\ariations ‘

System Context

«Variants eVariants
Laboratory Observatory

«Variant elements
«systems
APE_Lab

«\ariant elements
asystems

APE_Telescope

Figure 84 Example for variant terms

=] APE «System Models
7 Relations

3 _APE_Comments «Commentss

3 _APE_Drawings sDrawingss

3 _APE_Errars

3 _APE_External «Externals

[_APE_Issues «Issuess

3 _APE_Parsed «Parseds

B3 _APE_Pictures «Picturess

[_APE_Problems «Problems:

3 _APE_Rationales «Rationales:

{571 APE_Behaviour «Behavior Aspects

] APE_Context «Conkext Aspects

51 APE_Data «Data Aspects

F9 APE_Items «System Ikemss

1 APE_Performance «Performance Aspects
51 APE_Requirements «Requirements Aspects
8] APE_Struckure «Struchure Aspects

{5 APE_Traceability «Model Traceability:
El-F1 APE_Variations «Variations Aspects

< Relations

B APEConkext «Variations

7 Relations

1 Laboratory «Variants

51 Ohservatory «Variants

A Conkext_Conkent «ConkentCiagram:s:
[The Yarian... «Camments:

B3 Behavior_CompensationTechniques «Variations
APE_Mariations_Conkent «ConkentDiagranms:
B APE_Verification «verification Aspects
B0 APE_Wiews «System Views:

APE_Conkent «ContentDiagrarn:s:
PE_Project_Content «ConkentDiagram:

Figure 85 Separation of concerns: core and variations

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 110 of 120

phkg [view] Wehinar Yariant Modeling[[5) Variant Relations |
) Modification date | 12/16/10
9:28 AM
sreguirements Last modified by | TimW
VLT-SPE-ESO-10000-2723
ld="5R2"
Text="Requiremeants for =\/ariation poirt=
AR ; . esystems
scientific Instruments on Evaluate Phasing techniques £\arigtion points
the WLT Unit Telescopes " fhinding Time = DesignPhase, APE
wariation = Behavior_CompensationTechnigques} Fiy
T Fay

| ederiveReqts
|

ereguirements
W ariant element=

Lab Mechanical Interface

Id="56" :
Text="APE hench shall gl R erers
have an air damped BHEE zsystems

) s Phasin
classical support system in techniquf'es APE_Lab
laboratory. "

Figure 86 Relationship between core and variant elements

14.2 SYSMOD Variant Profile

package SYSMOD ‘ariants [“ariant Sterectypes]J

N 1214110
Modification date 7:30 PM
: Lxmetalc-laffx A ametaclasss Last modified by | TimW

xs‘_ter_eotypef; zenumerations
Variation point BindingTimeKind
[PackageahleElement] H
. i DesignPhase
{allocatedFrom = Variation Point} ManufacturingPhase
+hindingTime : BindingTimeKind = DesignPhase | [OperationPhase

AT zsterectypes zsterectypes
Variant eli?nent +variation Variation Variant
[PackageableElement] 1.+ [Package] [Package]
B {allocatedFrom = Wariation} {allocatedFrom = Wariant}
{ordered} = —
+max/ariants : UnlimitedMatural = 1
+minY/ariarts : Unlimitedhatural = 1

zsterectype= zsterectypes =
Variation Block
parameter [[Class]

[Class] -isEncapsulated : Boolean [0..1]

Figure 87 SYSMOD variant profile

Issue 1

SE2 Cookbook for MBSE with SysML 19/01/2011
Page 111 of 120

14.3 Variant configurations

The Featured Oriented Domain Analysis (FODA) is a modeling method, which allows to describe
features (variants) of a specific product. In Figure 88 an FODA example feature tree of a car is

provided.

mandatory features must optional features may be

Car
be present in every present, or not, in a
product line instance product line instance
Transmission Horsepower Airconditioning

Manual Automatic

alternative features define
the scope for an exclusiveor
choice of features

Figure 88 FODA example(Source: Myra Cohen, Matthew Dwyer: Software Product Line Testing Part II
: Variability Modeling)

The above example could also expressed with SysML and the different variant stereotypes:

shlocks
h" Car
N
«hlocks
Yariation point:
Transmission
shlocks
Wariations M rc‘l Wariations
TransmissionType AirCanditioningOption
{madariants =1, {mavariants =1,
minYariants =1} minvariants = 0}
«Variants & » ariarts
Manual Autpmatic WithAirCon
[
<blocks blocks . .“Er'tﬂﬂl*‘* A
«Wariant elements Variant elements " - e
Manual Transmission Automatic Transmission /AirConditioning

Configuration Rule
{Comfort: (Automatic transmizsion AND ArConditioning) }

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 112 of 120

Figure 89 Car variants

Rules formulated in a textual DSL and embedded in UML constraints are defining the variation
possibilities. In Figure 89 Car variants, the “Comfort” option of a car is defined by the rule, that the car
has automatic transmission and air conditioning on board. The TransmissionType variation is
AirConditioningOption is optional, so the stereotype tag minVariant is zero.

14.4 Model transformations

Even simple variations are resulting into complex configuration spaces. It is necessary to have a
simple view for a selected configuration. This view could be produced by a M2M-Transformation
(M2M=Model to Model).

Three variations are spanning a three-dimensional configuration space (see Figure 90 3D
configuration space) and eventually many more possible configurations. A configuration is one point in
the configuration space.

gt

Figure 90 3D confiuration space
The aims of the model transformation are:
e Face-out of irrelevant details.
e Creation of a product model out of a product family model.

e Elimination of non-existing variants and closure of variants because of superfluous
abstractions.

The following categories of M2M transformation exist:
e View- vs. Copy-Strategy:

o View: The transformation creates a view in the source model.
-> Advantage: Seperation of Product Line Engineering and Product Engineering

o0 Copy: The transformation creates a new model
-> Effect: Discard of variants during the development phase.

e Filter vs. Refactoring-Strategy:

o Filter: No more required model elements will be deleted (from the view or the copy))
by the transformation
-> Easy to apply, but some ,ballast* remains

Issue 1

SE2 Cookbook for MBSE with SysML 19/01/2011
Page 113 of 120

0 Model-Refactoring: There exists not ,the one and only” transformation, but a set of
adequate refactorings, with a corresponding non-trivial transformation
-> Efect: best possible reduction of complexity, but hard to implement

An example of the simple filtering M2M approach is shown in Figure 91Filter approach:

«Structure Aspects

APE_Structure «Structure Aspects |

! APE_Structure |)

| esystems | 2

|« arigtion points wEystems |

| APE | & «\Varlation points |

: T ; h, APE |

«Variants = Filfar var /
Wariant: L=l g -
Laboratory [}I;enra ;; ’ «Variants
_ Ty / Laboratory|
[eVariant elements | «Variant elemerts |

5y ElEm «EyEiems 1
APE_Lab APE_Telescope | ¢Va:|;?s{e;:=:em » |

APE Lab |

Figure 91Filter approach

The elements of the laboratory variant are presented. All other elements of the observatory variant are
filtered out. But inheritance superclasses, used to derive variations, are still available in the model.

An example of the refactoring M2M approach is shown in Figure 92Refactoring approach:

«Struchure Aspects
APE_Structure

provee——
«Variation points |
APE eStructure Aspects
T f‘ﬂ 2 }'W APE_Structure |
ariants o Fefactor. APE_Lab
Laboratory Observatory
[eVarlart elemerts Y ariant elemernts
wsystems «systems
APE_Lab APE_Telescope

Figure 92Refactoring approach

Here the resulting model after the transformation, only contains the elements of the laboratory variant,
the inheritance superclasses for deriving the variants, are also refactored out of the model.

14.4.1 Open issues
There are open issues concerning M2M transformations:

e Until now model transformations are only manually applied in the telescope model.

e Simple approach could be easily implemented:
E.g. MagicDraw offers the Module concept. This could be used to hide all other variants and

present only the elements belonging to that module/variant.

e Automatic model transformation shall be evaluated by using transformation frameworks like
OpenArchitectureWare, which is now part of the Eclipse Modeling Project
http://www.eclipse.org/modeling/

http://www.eclipse.org/modeling/

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 114 of 120

14.5 Trade-Off analysis

Different alternatives/variants could be evaluated/weighted by applying trade-off studies. In Figure 93
Trade-Off Analysis shows the trade-off analysis process for three different variants. The performance
indicators cost, reliability and performance are calculated and weighted by a effectiveness function
defined as a parametric constraint. The “most effective” variant is the result of the trade-off.

System Arc hitecture Vart

Performance

Feedback U
results Components Varl Var? Var3 par [Block] Objective [2% Effectivness Calculation]
Sensar Sensorl Sensor2 Sensor2
Actuator Actuator] Actuator? Actuator2 Effectivness
Software - Standard OpenSource R
«constraints
— : Objective
Criteria Weight __ Varl Varl Var3 {E=w M)+ w2'g(R)+wIh(C)}
Performance 03 5 10 20
Reliability 05 9% 98% 99% <:| |—Pef JR -y JC -
Cost 0,2 1000000 € 20.000,00 € 20.000,00 € riormance Sl °
Effectivness 2001975 4003 49 4008 495

Figure 93 Trade-Off Analysis (Source: Sanford Friedenthal:, Advancing Systems Engineering Practice
Using Model Based Systems Development)

15 Cross-cutting the model and traceability

15.1 Guidelines for allocations

15.1.1 Can the same element be allocated to different blocks?

In principle yes. The spec says: a single «allocate» dependency shall have only one supplier (from),
but may have one or many clients (to). (15.3.2.1 Allocate (from Allocations) — constraints).

Allocations of activities are a bit different. There an allocation is always a 100% allocation. If you have
to allocate an action to more than one component you miss some information and you need more
granularity in the activity diagram. Multiple allocation of activities is effectively a copy to different
blocks, like executing the same action in parallel.

15.1.2 Should I allocate to part properties or to blocks?

Consistent allocation at same abstraction level is often not possible. Allocate at same level and then
refine model by allocating functions to next lower level of structure.

If a part is owned by one block and referenced by another <<allocate>> has to be used to indicate that
they are effectively the same part in the system.

15.1.3 How do | map an information port/connector to a physical one?

For a control system you need (at least) 2 perspectives:

SE2

Issue 1
Cookbook for MBSE with SysML 19/01/2011
Page 115 of 120

the information one, where | define standard ports realizing interfaces, resp. flow ports
defining data flows. They are connected by <<information>> connectors

the physical one, meaning the transport layer. i.e. the information (commands, data, etc) is
transported over CANbus, ethernet, rs232, etc.

Start with a information perspective where you simply specify components and their ports. At
that point you do not know yet how they are physically connected. You might only know that
one port runs over a low speed connection, another over a very high speed one, etc.

Later on, they are allocated to some hardware.

The information view defines what information is flowing; the electrical view defines how it is
physically flowing.

<<allocate>> the information port to the physical and/or information connector to physical.

This scheme can be used to model data which flow in one IBD and allocate those information flow
ports to a CANbus port in another I1BD.

16 Domain Specific Model Extensions

16.1 Additional stereotypes

Blocks which are used as a context for parametrics are stereotypes analysis context to
distinguish them properly from normal blocks. otherwise there is always <<analysis context>>
in the name of the block

blocks which are used to type standard ports in order to realize interfaces and group ports,
and represent a collection of interfaces are stereotyped <<portgroup>>

blocks which act as a grouping mechanism of a system which is distributed within another
system (e.g. an entertainment system in a car) but has its own lifecycle and product tree, yet
is not necessarily co-located is stereotyped <<system group>>.

16.1.1 Where do | put (new) domain specific model elements, like stereotypes?

Create a Profile package.

SE2 Cookbook for MBSE with SysML

Issue 1
19/01/2011
Page 116 of 120

E-Eg SE2Profile [SE2Profile #52]

E-F3 _SE2Prafile_Comments

BB Behavior

BB Claims Argument Evidence - CAE
E-E7 Document the Madel

BB Essential Logic Madel - ELM
BB MD Customization For SE2Profile
E-E7 Modeling Documents

L——_IE ModelStruckure

L——_}E'j InterfaceCntology

G- Relations

E Hyperlinks

- Interface_Definition «DefinitionDiagrans
-#% gqual [Conneckar]

-#% jod [Conneckar]

- &% junckion [Part]

rokocol [Class]
-5 PerformanceCntology
H-57 Product TreeCntology
-5 ProjectOntology
H-57 StructuredspectOntology
-5 SystemModelontalogy
E-51 WariationsCnkalogy
B-51 Requiremeants Onkalogy
1] SEZProfile_Content

+1...I+1...[%1...[+1..-[F1

Figure 94 Containment tree of SE2 profile

zDefintionDisgrams
package StructurefspectOntalogy | StrudureAsped_Defin’rtion] " Modification date | 8/27/10 9:27 AM "
zsterectypes i |
Block «Comment:
[Class] Electronics is a special type of
B 5 Block.
scqcanstiatedHBoclean] (0Tl Electrical iz used to indicate
electrical connections or
electrical interfaces, specified by
& portgroup.
It weould be nice to uze the same
storeatypes sterectype for both but | don't
LeafSystom Eloment ko b
[Claszs] 7
/
/
!
/
/
| [
i
«sterectypes «sterectypes «sterectypes «sterectypes «stereotypes
physical hani: electronics optics software
[Class] [Clazs] [Clazs] [Clazs] [Class]
esterectypes
system group
[Class]
zaterectypes esterectypes zaterectypes
D p dSy lement functi 1 it constraint
[Package] [MamedElement] [Ciscram]
[

Figure 95 Domain specific stereotypes

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 117 of 120

16.2 Modeling domain specific Quantities, Units, and Values Types

Create a package, stereotyped <<modeling library>> for domain specific value types.

If you define your domain specific units based on the QUDV and Sl Value Type ontology and profile,
e.g. Jansky.

You have to use the QUDV, Sl Value Type libraries.

pkyg [Profile] SE2Definitions [SEZDefini‘tionS_Content]J
| Modification date | &/2710 9:34 Am|
|
smodellibrarys
SEZ2Definitions
P | |)))
Units Quantities ValueTypes Enumerations ViewPoints Factors
' [
| | |
l I | sCommert:
| | | It types of other
| L simports libraries are used
zimports | ?hey must be
«imlpor‘t» | | imported.

| | i
| | I
| |

I R . (i

wmodelLibrarys zmodelLibrarys smodelLibrarys
S| ValueType Library SIDefinitions QuDv

Figure 96 Package Structure of Doman Specific Definitions

In the package Factors you find four factors for the quantities and units.

zDefintionDiagram:
bdd [Package] Factors [@Factors_Defin'rtinn 1 " Modification date | 8/27/10 9:31 AM ”
shlocks
hertz*-10KF
: UnitFactor
hlock:s = | zhlocks = | zhlocks =
electromagneticFlux*1QKF : frequency™- power*-
QuantityKindFactor 1QKF : 260KF :
= QuantityKind QuantityKind
exponent="1,1 Factor Factor
guantitykind = electromagneticFlux

Figure 97 Instance Specifications of QUDV factors

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011

Page 118 of 120

In the package Quantities you find w derived quantities.

«DefintionDiagrarm:
bdd [Package] Suantities | @@uarrt'rty_@UDV_Deﬂnﬂion 1 Modification date BI270 9:32
AM
wEEnttyRinds wEENttyRinds
electromagneticFlux : DerivedQuantityKind electroMagneticFluxDensity : DerivedQuantityKind
factor = power™26QKF factor= electromagneticFlux™ QKF, area®1QHKF,
frequency™1QkKF

Figure 98 QuantityKinds according to QUDV

In the package Units you find Jansky as DerivedUnit.

gDefintionDiagram:
bdd [Package] Units [@Unﬂs_@UDV_Deﬂn'rtiDn 1 Modification date BI27M 0533
AM
=l nit:) Uitz
Jansky : DerivedUnit metre : SimpleUnit

{quantityKind = electraMagneticFluxDensity, fquantityKind = length QK}
SRR v name = "metre"
factor = watt™ UF, squareMeter®1LUF, gquantitykind = lengthQk
heriz"1QkF symbol ="m"

Figure 99 Units according to QUDV

17 Challenges of SysML deployment in an organization

e Best practices
0 Mentor and SysML/Tool confident person
o Extend gradually the range, define modeling goals, guidelines, and standards

o “Just use it!” (Do not talk about modeling and SysML too much as it raises fear of
waste of time)

e Observations
0 (no) support/commitment from management but a necessity for engineering

0o How is presented to management? How do they see a gain?
There is no immediate real-life artifact (no LED blinking, no tangible objects)

o0 Under pressure people fall back to techniques they know

0 People are often lazy to learn/apply something new

SE2 Cookbook for MBSE with SysML

Issue 1
19/01/2011

Page 119 of 120

o0 Not modeling means often not understanding and therefore underestimating the

problem.

o0 Modeling reveals complexity and people get scared

o Contractual problems with models — only text is understood by lawyers

18 Tool (MagicDraw) related guidelines

18.1 Style and Layout

18.1.1 Remove stereotype <<block>> of parts in IBDs to increase readability

Parts in IBDs show by default the stereotype <<block>>. This clutters the diagrams and does not add
any useful information. Hide the stereotype (it makes the diagram more compact) unless it adds value.

18.2 Navigation

L -
<<blocks>
OptoMechanicalBench

Usage inDisgrams B GoTo »

5 oM _Cptxdl

5 oMB_Electrical

5 oMB_Control
1 1 i 4 OMB_Mechanical

am name | LaboratoryContest_Views

Tarban

= 3 " w508 211 P
E Cre. ate 08 211 PM

5
Labos storyContest_Contiol
5 LaborstoryConte st Mechanscsl
L abeos stoayContent_Optical

&)

APE_Context_Defistion APE_Propect_Content

Figure 100 Hyper linking a Model for Navigation

e Assoon as you create a new element's symbol, ask yourself: "What can I hyperlink it to ?"**.
e Hyperlink every single model or package to a SysML Package Diagram (or SysML Block

Definition Diagram)

e Hyperlink every assembly Block to its Internal Block Diagram (IBD)"
e Place at least one Block Definition Diagram (BDD) diagram icon on every Internal Block

Diagram (IBD)

™ 1n MagicDraw drag a diagram icon onto it

21t you use MagicDraw SysML's StructuredBlock menu that is done automatically for you.

Issue 1
SE2 Cookbook for MBSE with SysML 19/01/2011
Page 120 of 120

e Drag the Internal Block Diagram (IBD) icon of the Type of a Property onto that Property in an
IBD so that you can open up a part into its matching I1BD.

e Hyperlink your top-level SysML ‘system’ and/or ‘system context’ to their IBD or BDD and place

them on every diagram possible throughout your project. However, be aware that this can
prevent modularization.

Figure 101 Navigation with hyper links
Navigate on elements.

Navigate very little via the browser. You need to make you project completely navigable ON THE
ELEMENTS and also ON THE PACKAGES. It is a basic systems engineering idiom. One needs to be
able to OPEN UP packages and OPEN UP systems and blocks.™

Use hyperlinked packages with contents list and dependencies between packages.

You can also show (possibly stereotyped) dependencies between packages better to reinforce the
sense of systems engineering, You don't have to be too fancy, just reflect the basic sense or process.

You need a clearly stated <<system>> (APE)

Show BOTH a <<system>> and a <<system context>> at the very top level. (You needn't show the
parts and properties, however you might like to.) Also, you should link your Context to a diagram (like
Context Definition).

The hyperlinks to a block lead you to its Content and structure diagrams

A block, representing a complete sub-system, is hyperlinked to its _Content diagram and to its IBDs.

3 In MagicDraw: All you need to do is create package diagrams for your packages and drag the
package diagram icon from the browser onto the package symbol in a diagram.

	1 Introduction
	1.1 Scope
	1.2 Purpose
	1.3 About SE^2 and APE
	1.4 Abbreviations and acronyms
	1.5 Glossary and definitions
	1.6 Document conventions

	2 Related documents
	2.1 Reference documents

	3 Overview of the APE Case Study
	4 Model organization
	4.1 Overall Model organization
	4.2 Structuring the model using packages
	4.3 Levels of Detail
	4.4 Levels of abstraction

	Style, Layout, Naming Conventions
	5.1 Formalizing the model with domain specific stereotypes
	5.2 Naming Conventions
	5.2.2 Naming of diagrams
	5.2.3 Naming of modeling elements
	5.2.3.1 Role Names
	5.2.3.2 Names of classifiers (e.g. <<Block>>, <<ValueType>>), Requirements, Activities, and Packages (Definition of something):
	5.2.3.3 Names of actions, pins, ports, parameters, attributes, operations and all properties (Usage of something):
	5.2.3.4 Indicate type of model element in the name:

	5.3 Style and Layout
	5.3.1 DO NOT use grids in any diagrams.
	5.3.2 Instead of emphasizing the diagram, emphasize the elements that are hyperlinked to diagrams.
	5.3.3 Every time you place a SysML comment consider what editorial stereotype might bring it to life.
	5.3.4 "Definition" BDD diagrams for a context are overrated. Focus on IBDs.
	5.3.5 Span the Whole across its parts

	5.4 Model Documentation
	5.4.1 General
	5.4.2 Documentation about the model
	5.4.3 Documenting the System being modeled

	6 System Views
	6.1 Guidelines for necessary system aspects and perspectives
	6.1.1 Mechanical Perspective
	6.1.2 Optical Perspective
	6.1.3 Electrical Perspective
	6.1.4 Information Perspective

	Relationship between Model Aspects

	7 Requirement and Use Case modeling
	7.1 Context Modeling
	7.1.1 Purpose of context diagrams of a system
	7.1.2 Modeling the information flow in the context diagram
	7.1.3 Modeling different contexts

	7.2 Use Case Modeling
	7.2.1 Purpose of a Use Case
	7.2.2 Modeling monitoring and control activities
	7.2.3 Modeling operations related to subsystems with use cases
	7.2.4 External element types
	7.2.5 Modeling a system of systems with use cases
	7.2.6 Use Cases vs. Standard UML Interfaces
	7.2.7 Tracing test cases to use cases and requirements
	7.2.8 Naming of Use Cases
	7.2.9 Do I need to refine every requirement with a Use Case?

	7.3 Guidelines for modeling requirements
	7.3.1 Requirements Engineering Best Practices
	7.3.2 SysML for Requirements Development
	7.3.3 Modeling for Requirements Specification
	7.3.4 From Requirements to SysML Architecture Models
	7.3.5 Guidelines for modeling the system requirements
	7.3.6 Background derived requirements
	7.3.7 Stakeholder vs. System requirements
	7.3.8 How do I model relationships between requirement and design element?
	7.3.9 How should I structure a requirement hierarchy?
	7.3.10 Requirements quality criteria

	7.4 Requirements Boilerplates and binding to design
	7.4.1 Instantiation of Boilerplates
	7.4.2 Constrain the Design

	8 Structure modeling
	8.1 Starting to build a design model
	8.2 Structure Breakdown
	8.2.1 Definition of system hierarchies
	8.2.1.1 SysML elements to model connected nested structures

	8.2.2 How do I distinguish a sub system and an assembly?
	8.2.3 Where do I put systems which are part of the project and needed in different contexts but not part of the system itself?
	8.2.4 Usage of <<external>>, <<system>>, <<subsystem>>

	8.3 Structure Relations
	8.3.1 What is the relationship between part, property and block?

	8.4 Structure Properties
	8.4.1 Representation of entities flowing in the system
	8.4.2 If I have blocks of the same type (like 10 FPGAs) in the BDD how do I properly use them on the IBD as different properties?
	8.4.3 Usage of public and private

	8.5 Reuse of model structural elements
	8.5.1 Shared parts

	8.6 Modeling Physical Aspects
	8.6.1 Modeling physical distance between parts
	8.6.2 Model of a magnetic field which exists between two physical entities

	9 Interface modeling
	9.1 Port and Flow Basics
	9.1.1 Standard Ports
	9.1.2 Flow Ports
	9.1.3 Data flows
	9.1.3.1 Sensor/actuator data
	9.1.3.2 Input and output of events

	9.1.4 What’s the relation port and standard UML interface?

	9.2 Combining ports and flows to represent interfaces
	9.2.1 Modeling a structural interface like a socket, screw, hole etc.
	9.2.2 Modeling standards like RS232, CAN bus etc
	9.2.2.1 Model "everything"
	9.2.2.2 Modeling ONLY A FLOW of entities.

	9.2.3 How do I model a cable?
	9.2.4 Combining physical connector type and flow

	9.3 Layered Command and Data Interfaces
	9.3.1 Example
	9.3.2 Context
	9.3.3 Problem
	9.3.4 Solution
	9.3.5 SysML status
	9.3.6 Allocation of a nested block

	9.4 Flow Properties vs. Flow Ports
	9.4.1 Example
	9.4.2 Context
	9.4.3 Problem
	9.4.4 Solution

	9.5 Modeling interfaces which are represented by a document (e.g. ICD - Interface Control Document)
	9.6 Relations between Interfaces
	9.6.1 How can I type a connector between ports?
	9.6.2 How/When do I use realize with Ports?

	9.7 Flows
	9.7.1 Model that something flows in or out
	9.7.2 Should I use direction on flow ports?
	9.7.3 Is the flow specification describing the physical layout of a medium or the items which flow?
	9.7.4 Do I put the specification for an image flow on the port or as item on the connector?
	9.7.5 What’s the difference between item flow and information flow?

	Overview of Interfaces modeled with Flows and Ports

	10 Behavior modeling
	10.1 Modeling Activities
	10.1.1 What is the relationship of Activity, Activity diagram, Action, CallBehaviorAction?
	10.1.2 How can I model a decision in an activity which is taken asynchronously (like an operator decision)?
	10.1.3 When should I use <<discrete>> or <<continuous>> in activity diagrams?
	10.1.4 How do I represent control loops?

	11 Guidelines for Modeling Non-Functional Aspects
	11.1 Quality of Service
	11.1.1 How do I define Quality of Service?
	11.1.2 How does it relate to Parts and Ports?

	12 Ontologies
	13 Integration with other disciplines
	13.1 Transition to UML for software
	13.2 Interdisciplinary analyses and trade off

	14 Variant modeling
	14.1 Definitions
	14.2 SYSMOD Variant Profile
	14.3 Variant configurations
	14.4 Model transformations
	14.4.1 Open issues

	14.5 Trade-Off analysis

	15 Cross-cutting the model and traceability
	15.1 Guidelines for allocations
	15.1.1 Can the same element be allocated to different blocks?
	15.1.2 Should I allocate to part properties or to blocks?
	15.1.3 How do I map an information port/connector to a physical one?

	16 Domain Specific Model Extensions
	16.1 Additional stereotypes
	16.1.1 Where do I put (new) domain specific model elements, like stereotypes?

	16.2 Modeling domain specific Quantities, Units, and Values Types

	17 Challenges of SysML deployment in an organization
	18 Tool (MagicDraw) related guidelines
	18.1 Style and Layout
	18.1.1 Remove stereotype <<block>> of parts in IBDs to increase readability

	18.2 Navigation

