
http://www.diva-portal.org

This is the published version of a paper published in Requirements Engineering.

Citation for the original published paper (version of record):

Westman, J., Nyberg, M. (2018)
Providing Tool Support for Specifying Safety-Critical Systems by Enforcing Syntactic
Contract Conditions.
Requirements Engineering
https://doi.org/10.1007/s00766-017-0286-6

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192376

Vol.:(0123456789)1 3

Requirements Engineering
https://doi.org/10.1007/s00766-017-0286-6

ORIGINAL ARTICLE

Providing tool support for specifying safety‑critical systems
by enforcing syntactic contract conditions

Jonas Westman1  · Mattias Nyberg1

Received: 22 September 2016 / Accepted: 18 December 2017
© The Author(s) 2017. This article is an open access publication

Abstract
Functional safety standards such as IEC 61508 and ISO 26262 advocate a particularly stringent requirements engineering
where safety requirements must be structured in a hierarchical manner and specified in accordance with the system archi-
tecture. In contrast to the stringent requirements engineering in functional safety standards, according to previous studies,
requirements engineering in industry is in general of poor quality. Contracts theory has been previously shown to be suitable
for supporting such a stringent requirements engineering effort; this support has also been implemented in tools. However,
to use these contract-based tools, requirements must be formalized, which is a major challenge in industry. Therefore, to
support current industrial requirements engineering practice and the stringent requirements engineering in functional safety
standards, it is shown how tool support can be provided even when requirements, and also architectures, are not formalized.
This is achieved by enforcing syntactic, yet formal, conditions in contracts theory. Despite the need for further validation,
initial findings in an industrial case study indicate high potential in realizing the proposed support in an industrial setting.

Keywords  Syntactic · Contracts · Conditions · Requirements engineering · Specification · Structuring · Authoring · Safety ·
FuSa · Architecture · IEC 61508 · ISO 26262 · Elements · Compositional · Tool Support

1  Introduction

Requirements engineering (RE) [12, 35] is a well-established
and recommended practice within the field of systems engi-
neering. RE is particularly emphasized for achieving func-
tional safety (FuSa), i.e., absence of unreasonable risk due
to failures of electrical/electronic (E/E)-systems [37]. In
fact, the general FuSa standard IEC 61508 [36] advocates
that requirements should form the backbone of a structured
argumentation for the FuSa of an overall system. In such
a structured argumentation, each requirement is a safety
requirement, i.e., a requirement with a safety integrity level
(SIL) [22, 36, 37, 54] that specifies the required reliability
[63] of a system or component, in order to achieve a toler-
able level of risk.

In IEC 61508 and its derivative FuSa standards such as
ISO 26262 [37] for the automotive domain, safety require-
ments must be structured in a hierarchical manner in accord-
ance with the system architecture [38]: at each level, safety
requirements must be allocated to architecture elements and
trace links [15] must be established between requirements
on different levels. An intended property characterized by
this manner of structuring requirements is completeness,
i.e., ’the safety requirements at one level fully implement
all safety requirements of the previous level’ [37]. This is a
property that also must be verified, and thus, a high degree
of stringency is required when specifying requirements, their
allocation, and their hierarchical structure.

Despite the demand on highly stringent RE to achieve
FuSa, requirements in industry are in general of poor quality
[2] and are typically incomplete [25], and this is also true
for safety requirements [25, 49]. Considering a typical RE
tool such as IBM Rational DOORS, other than basic impact
analyzes, the tool neither gives feedback nor guides a user
when specifying, allocating, and structuring requirements;
thus, a property such as completeness must be established
without any concrete support from the tool. The view in
[70], which is shared in the present paper, is that RE is a

 *	 Jonas Westman
	 jowestm@kth.se
	 https://www.kth.se/profile/jowestm

	 Mattias Nyberg
	 matny@kth.se

1	 Machine Design, Kungliga Tekniska Högskolan (KTH),
Brinellvägen 83, 100 44 Stockholm, Sweden

http://orcid.org/0000-0002-9655-7326
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-017-0286-6&domain=pdf

	 Requirements Engineering

1 3

complex and error-prone process that can benefit from more
intelligent tool support in general. In fact, in order to comply
with FuSa standards that require a particularly stringent RE,
tool support, which gives feedback to and guides the user
when specifying a system, is crucial.

Therefore, the present paper presents novel ideas on how
such tool support can be provided when authoring specifi-
cations for a system in an industrial setting. This support
is provided by applying the work in [6, 68, 73, 75, 76] that
present a formal and general contracts [53] theory for mod-
eling and specifying systems.

In particular, this contracts theory contains a concept
called a contract structure that captures a hierarchical struc-
turing of requirements based on a formal interpretation of
completeness. Thus, establishing a contract structure sets
a basis for achieving the stringent RE effort advocated by
FuSa standards. Establishing a contract structure with the
intent of achieving completeness consists of the tasks of
specifying:

	 (I)	 allocation of requirements to architecture elements;
	 (II)	 architecture element interfaces consisting of port

variables;
	 (III)	 requirements; and
	 (IV)	 trace links between requirements.

These tasks (I)–(IV) are also described in FuSa standards;
however, the fact is that in contracts theory [6, 68, 73, 75,
76], these tasks are given formal semantics, i.e., interpreta-
tions in formal (mathematical) conditions. The present paper
capitalizes on this fact by considering the support that can
be provided for tasks (I)–(IV) by having a tool that evaluates
these formal contract conditions.

Notably, there already exist approaches such as [13, 14,
16] where formal contract conditions are evaluated in tools.
However, the tool support in these approaches is depend-
ent on that contracts must be formally represented in the
language linear-time temporal logic (LTL) [59]. Despite the
fact that formal representations have several advantages over
non-formal ones, formal languages are difficult to use by
non-experts [23] and in industrial practice, ’overcoming the
burden of formalization is a major challenge’ [10]. There-
fore, instead of focusing on enforcing all of the contract con-
ditions in [6, 68, 73, 75, 76], the present paper instead iden-
tifies necessary conditions of the formal interpretations of
tasks (I)–(IV) where these conditions can be evaluated even
when requirements and architectures are not represented for-
mally; in the following, such necessary conditions will be
called syntactic contract conditions.

The rest of this paper is organized as follows. Section 1.1
provides an overview of the contributions and validation
approach of the paper. Section 2 introduces relevant parts
of the contracts theory in [6, 68, 73, 75, 76]. Section 3

identifies syntactic contract conditions of tasks (I)–(IV) in
this contracts theory, and as the main contribution, shows
how support can be provided for tasks (I)–(IV) by enforcing
these syntactic contract conditions. Section 4 then describes
and draws conclusions from the industrial case study. Sec-
tion 5 discusses related work, and Sect. 6 summarizes the
present paper and draws conclusions.

1.1 � Contributions and validation

As the main contribution, the present paper provides support
for tasks (I)–(IV) by evaluating their syntactic contract con-
ditions. The proposed support is presented in the context of
authoring specifications, containing requirements and inter-
face descriptions, and that are structured in accordance with
the architecture of a system. In the considered context, the
proposed support is shown to provide feedback and guidance
to a user authoring a specification. This sort of support for
tasks (I), (II), and (IV) is shown to be possible to provide
regardless of how requirements are represented in speci-
fications and when architectures are represented formally
or semiformally, as an hierarchy of interfaces consisting of
port variables. For task (III), feedback and guidance can
be provided when architectures are represented formally or
semiformally and when requirements are represented for-
mally or semiformally, i.e., as free text with distinguishable
port variables.

Considering the generality of the underlying contract
theory, the proposed support is applicable to systems in any
domain, e.g., software (SW), hardware (HW), mechanical,
electrical, etc, and also to heterogeneous systems [31, 48,
64], i.e., systems composed of parts from multiple domains.
The applicability of the proposed support is indeed also not
limited to any type of design flow; that is, the support pre-
scribes neither a certain order in which specifications are
authored nor an order in which content is entered within
a specification. This flexibility in design flow caters to the
fact that different developers have dissimilar, yet successful,
approaches for optimizing systems development. For exam-
ple, in some cases, e.g., when development is outsourced,
a top-down design flow might be optimal; in other cases, a
bottom-up flow or a hybrid approach is more suitable.

As an initial form of validation, an industrial case study
was performed where the proposed support was imple-
mented and integrated into the development tool chain of
Scania—a global heavy trucks manufacturer located in
Sweden. Despite the need for further evaluations, especially
long-term empirical studies, the case study did not only indi-
cate a strong potential in realizing the proposed support in
an industrial setting, but also that solutions, needed for real-
izing the support, could by themselves increase the quality
of specifications. For example, a key concept used for real-
izing this support was Linked Data [9], which was used to

Requirements Engineering	

1 3

enable formal referencing in between specifications and to
architecture data. In addition to providing a foundation for
formal referencing, as shown in the present paper, Linked
Data are also able to ensure consistency of data presented in
specifications and can, therefore, be used to increase quality
of specification in general.

2 � Contracts theory

The notion of contracts was first introduced in [53] for for-
mal specification of SW. However, the principles behind
contracts can be traced back to early ideas on compositional
[33, 66] proof-methods [32, 41, 55]. In [6, 68, 76], the use
of contracts is extended from formal specification of SW
to serving as a central systems engineering philosophy to
support the design of systems in general. The work in [73]
incorporates the work in [6, 68, 76] and presents a contracts
theory that introduces new concepts such as architecture.
This contracts theory is extended in [75] to a safety-critical
context with the notion of SILs.

Section 3 will later show how support can be provided
for tasks (I)–(IV) by enforcing conditions from the contracts
theory in [6, 68, 73, 75, 76]. The present section summa-
rizes established conditions and related notions from this
contracts theory. To match the context in the present paper,
these conditions and notions are sometimes presented from
slightly different perspectives than in [6, 68, 73, 75, 76]. Due
to this difference in perspectives, and to make the present
paper self-contained, this section is quite thorough in intro-
ducing these notions and conditions.

2.1 � Assertions, elements, and architectures

The theory [6, 68, 73, 75, 76] relies on a general formal-
ism called assertions for characterizing requirements and

behaviors. Formally, an assertion is a set of runs, i.e., value
sequences, over a universal set of variables �.

Despite their runs being over � , assertions can be syn-
tactically represented by constraints, e.g., by equations,
inequalities, or logical formulas, expressed over a subset of
� . For example, an assertion �′ , represented by equation
u = v , is the set of all runs that are over � and that are solu-
tions to u = v . The necessary and sufficient set of variables
to syntactically represent an assertion � is called the set of
variables constrained by � and is denoted X

�
 , e.g., the set

X
�� = {u, v} is the set of variables constrained by �′.
The concept of elements [73, 75, 76] generalizes Hetero-

geneous Rich Components (HRCs) [8, 18, 42] as described
in [6, 68] and is used to represent any functional, logical, or
technical design entity of a heterogeneous system, e.g., as a
Systems Modeling Language (SysML) block [26]. Formally,
an element � is an ordered pair (X,�) where:

•	 X is a set of variables called the interface of � where each
x ∈ X is called a port variable; and

•	 � is an assertion, called the behavior of � , such that the
set of variables constrained by � is a subset of X.

As an illustrative example of an element, let
�pot =

(

Xpot,�pot

)

 be an element representing a potentiom-
eter. The element and its port variables are shown in Fig. 1a
as a rectangle filled with gray and white boxes on the edges
of the rectangle, respectively. The port variables vref  , vbranch ,
and vgnd represent the reference, branch, and ground volt-
ages, respectively. Furthermore, h represents the position
(0–100%) of the ‘slider’ that moves over the resistor and
branches the circuit. Given a representation where it is
assumed that the branched circuit is connected to a resist-
ance that is significantly larger than the resistance of the
potentiometer, the behavior �pot can be syntactically repre-
sented by equation h =

vbranch−vgnd

vref−vgnd
.

(a) (b)

Fig. 1   In a, an element �pot =
(

Xpot,�pot

)

 , representing a potentiometer, is shown. In b, an architecture, representing a ’Level Meter system’ and
its parts, and a contract lMeter = ({�lMeter},�lMeter ,XlMeter) , are shown

	 Requirements Engineering

1 3

A set of elements can be organized into an architecture
[73, 75, 77], which describes a hierarchical nesting of ele-
ments. This hierarchical nesting can be viewed as a rooted
tree; thus, in the following, terminology from graph theory
[21] will be used to describe positions of elements in an
architecture, relative to each other. The underlying princi-
ple is to combine individual behaviors using intersection
where the sharing of port variables between elements cap-
tures the interaction points between the elements.

Prior to presenting a formal definition of architecture,
the concept is introduced by considering a set of elements
representing the parts of a ’Level Meter system’ (LM-
system) as shown in Fig. 1b. The sharing of a port variable
between elements is shown as either by a line connecting
two or more boxes corresponding to the same port variable
or by the appearance of the same box on edges of several
rectangles.

The LM-system �LMsys consists of a tank �tank and an
electric-system �Esys , which further consists of the potenti-
ometer �pot shown in Fig. 1a, a battery �bat , and a level meter
�lMeter . The slider h of �pot is connected to a ’floater,’ trailing
the level f in the tank. In this way, the potentiometer �pot is
used as a level sensor to estimate the level in the tank. The
estimated level is presented by the level meter �lMeter where
l denotes the presented level.

The behaviors �bat , �lMeter , and �tank of the leaf ele-
ments �bat , �lMeter , and �tank are represented by equations
vref − vgnd = 5V  , l = vbranch−vgnd

5V
 , and h = f  , respectively. The

behavior of a non-leaf element (X,�) is the assertion that is
the projection [73, 75, 78] of the intersection of the behav-
iors of its children

{

(Xi,�i)
}N

i=1
 onto the interface X; syn-

tactically, � is represented by the constraints, representing
⋂N

i=1
�i , limited to be only over X. Formally, this is repre-

sented as � = p̂rojX(
⋂N

i=1
�i) where p̂rojX denotes extended

projection [73, 74]. For example, the behavior of �Esys is
p̂roj{l,h}(�bat ∩ �Lmeter ∩ �pot) , which can be syntactically
represented by equation l = h.

Definition 1  (Architecture) An architecture, denoted � ,
is a set of elements organized into a rooted tree, such that:

(a)	 for any non-leaf node � = (X,�) , with children
{

(Xi,�i)
}N

i=1
 , it holds that

	 (i)	 X ⊆
⋃N

i=1
Xi , and

	 (ii)	 � = p̂rojX(
⋂N

i=1
�i) ; and

(b)	 if there is a child �� = (X�,��) and a non-descendant
�
�� = (X��,���) of � = (X,�) , such that x ∈ X� and

x ∈ X�� , then it holds that x ∈ X.

The environment of an element � in an architecture � is
denoted Env�(�) and is the set of elements {�j}

M
j=1

 such that

each �j = (Xj,�j) is either a sibling or a sibling of a proper
ancestor of � . Let �Env�(�)

 denote
⋂M

j=1
�j , called the behavior

of the environment Env�(�) . 	� □

As an example of an environment of an element in an
architecture, the set {�tank} is the environment of �Esys in the
architecture shown in Fig. 1b.

2.2 � Contracts

A contract [6, 68, 73, 75, 76] (
{

�i

}N

i=1
,�,X) specifies the

behavior of an element with an interface X to be such that
the guarantee � is fulfilled, given that the assumptions in
{

�i

}N

i=1
 are fulfilled.

Definition 2  (Contract) A contract  is a tuple (�,�,X) ,
where

•	 � is an assertion, called guarantee;
•	 � is a set of assertions

{

�i

}N

i=1
 where each �i is called an

assumption; and
•	 X is a set of variables.	� □

For the sake of readability, let �� =
⋂N

j=1
�i.

An element � = (X�,�) is said to satisfy [6, 8, 68, 73, 75]
a contract (�,�,X) if

Referring to a contract for an element, characterizes the
intent that the element is to satisfy the contract.

As an illustrative example of a contract, let
({�lMeter},�lMeter,XlMeter) be a contract lMeter for the ele-
ment �lMeter where the set of port variables constrained by
�lMeter and �lMeter are shown as dashed lines in Fig. 1b. The
guarantee �lMeter , represented by equation l = f  , expresses
the intent that the indicated level, displayed by the meter,
corresponds to the level in the tank. The assumption �lMeter
is represented by equation f = vbranch−vgnd

5V
 . In accordance with

conditions (1) and (2), contract lMeter is satisfied by the ele-
ment �lMeter.

2.3 � Hierarchical structuring of requirements using
contracts

Consider a scenario where it is infeasible to verify that a
contract  is satisfied by an element � in an architecture � ,
due to the complexity of � . A solution to such an issue is
to establish contracts for proper descendants of � until it is
possible to verify that a descendant �i of � satisfies i with
the intent that:

(1)�� ∩ � ⊆ �, and

(2)X = X� .

Requirements Engineering	

1 3

If an architecture only consists of two hierarchical levels,
then property (3) corresponds to dominance/refinement of
contracts as described in [4, 6, 7, 61, 68], the basic idea of
compositionality [33, 66], and in particular, the notion of
completeness in ISO 26262 [37]. Thus, property (3) is a cen-
tral concept in this paper since completeness characterizes
the particularly stringent RE advocated in FuSa standards
such as IEC 61508 and ISO 26262. Note that there are many
reasons for establishing property (3) other than the one con-
sidered in the scenario, e.g., to enable parallel development
of elements as described in [73].

This section presents concepts originating from [75] that
introduces a graph called a contract structure that organ-
izes contracts with the intent of achieving property (3).
Prior to presenting a formal definition of contract structure
in Sect. 2.3.2, an underlying concept of using a contract
to express a relation between requirements is described in
Sect. 2.3.1. Sufficient conditions on a contract structure to
achieve property (3) are then presented in Sect. 2.3.3.

2.3.1 � Contracts as requirement relations

Consider contract lMeter for the element �lMeter , as shown in
Fig. 1b. In accordance with Sect. 2.2, the intent is that the
behavior of �lMeter is to be such that the guarantee �lMeter is
fulfilled given that the assumption �lMeter is fulfilled. Formu-
lated differently, the guarantee �lMeter is a requirement that
is allocated to �lMeter with the intent that �lMeter is fulfilled
if the assumption �lMeter is fulfilled. This view is in accord-
ance with [78] where guarantees are used to express safety
requirements on elements.

Suppose that there is a scenario where the environment,
which the element �Lmeter is to be deployed in, is unknown,
e.g., when developing �Lmeter ’out-of-context’ [37]. The
assumption �Lmeter of the contract shown in Fig. 1b hence

(3)if each �i satisfies i then � satisfies .
expresses the conditions that the environment of �Lmeter is
to fulfill in an arbitrary architecture containing �Lmeter .
However, in a specific architecture, such as the architecture
shown in Fig. 1b, the assumption �Lmeter can rather be seen
as a requirement that is allocated to the potentiometer �pot .
This was also observed in [72, 78] where, in the context of
an architecture, assumptions are in fact references to other
guarantees.

Therefore, in the definition of a contract structure for a
specific architecture in Sect. 2.3.2, an assumption of a con-
tract for an element � will correspond to a guarantee of a
contract for an element in the environment of � . Formulated
differently, the assumption of a contract for � is a require-
ment allocated to an element in the environment of � , while
the guarantee is a requirement allocated to � . To capture
the cases where the use of explicit assumptions are indeed
needed, e.g., when it is necessary to express that an assump-
tion is to be fulfilled by two or more guarantees, contract
structures can be trivially extended as described in [73].

2.3.2 � Contract structure for architecture

Consider a set of contracts {LMsys,Esys,pot,bat,lMeter}
where the guarantee of each contract i is a requirement
�i allocated to an element �i in the architecture shown in
Fig. 1b. Now consider Fig. 2 where these guarantees are
structured as nodes in an edge-labeled directed graph as an
overlay onto the hierarchical structure of the elements in
this architecture.

A guarantee �i in a contract i is an assumption of another
contract j , if there exists an arc labeled ‘Assumption of’
from �i to �j , visualized as a line with a circle filled with
black at the end. For example, the arc from �pot to �lMeter
represents that �pot is an assumption of contract lMeter.

As also shown in Fig. 2, an incoming arc labeled ‘Ful-
fills,’ visualized as an arrow, to a guarantee �i of a contract

Fig. 2   A contract structure
for the architecture shown in
Fig. 1b

	 Requirements Engineering

1 3

for an element �i from a guarantee �j of a contract for a child
�j of �i , represents the intent of �j ⊆ �i . For example, the
arc from the guarantee �Esys to �LMsys represents the intent
of �Esys ⊆ �LMsys.

Now that the concept of a contract structure for archi-
tecture has been introduced informally, the formal defini-
tion follows. The following definition is a simplification of
a definition in [74], which is in turn based on a definition in
[75] and concepts in [73].

Definition 3   (Contrac t s t ruc ture for archi -
tecture) Given an archi tecture � and a set
⋃N

i=1
{(i,1,�i,1,Xi),… , (i,Ni

,�i,Ni
,Xi)} where each ordered

set (i,j,�i,j,Xi) is a contract for an element �i of � and
where each assumption in each set i,j is either:

(a)	 a guarantee of a contract for a sibling of �i ; or
(b)	 an assumption of a contract for a proper ancestor of �i,

then a contract structure for � is an arc-labeled directed
acyclic graph (DAG), such that:

(i)	 the guarantees �i,j are the nodes in the DAG;
(ii)	 each arc is uniquely labeled either ‘Assumption of’ or

‘Fulfills’;
(iii)	 there is an arc labeled ‘Assumption of’ from a node �k,l

to �i,j , if and only if �k,l is in i,j;
(iv)	 if there is an arc labeled ‘Fulfills’ from �i,j to �k,l , then

�k,l is a guarantee of a contract for a proper ancestor of
�i ; and

(v)	 if a guarantee �i,j is reachable from an assumption � of
a contract for a proper ancestor �m of �i , then � is also
an assumption of any contract (k,l,�k,l,Xk) where �k is
a proper ancestor of �i and a descendant of �m (includ-
ing itself) and where �k,l is reachable from �i,j.	� □

As discussed in Sect. 2.3.1 and as also shown in Fig. 2,
conditions (a) and (b) of Definition 3 express that an assump-
tion of a contract for an element � correspond to a guarantee
of a contract for an element in the environment of � , i.e., an
assumption is either a guarantee of a contract for a sibling of
� , or an assumption of a contract for a proper ancestor of �.

Furthermore, as expressed in conditions (i)–(v) of Defi-
nition 3 and shown in Fig. 2, each node in a contract struc-
ture corresponds to a requirement allocated to an element
in � and each arc either expresses that a requirement is an
assumption of a contract or that the intent is that a require-
ment is to fulfill another requirement.

Consider the contract structure shown in Fig. 3 that is
intended to clarify why the graph would not be a contract
structure if the dashed arc is added to the graph, as expressed
in condition (v) of Definition 3. In Fig. 3, the intent is that
the guarantee �2 is to be fulfilled by the behavior of � ,

regardless of its environment. However, if the dashed arc is
added, then the above-mentioned statement is contradicted
since the graph then specifies that �2 is to be fulfilled by the
behavior of � , given that its environment fulfills �′ . This is
due to the fact that the graph also specifies that �1,1 is to,
together with �1,2 , fulfill �2 , and the behavior of the child �1
of � is to fulfill �1,1 , given that �′ is fulfilled.

For a more detailed explanation of the concept of contract
structures, see [74] and also [75] where this concept is also
applied in a major industrial case study. Contract structures
recast the notion of decomposition structures as presented
in [73] in the context of RE concepts and extends the notion
from two levels to an arbitrary number. A similar concept to
a contract structure is presented in [56, 57] based on Bayes-
ian networks, but with the specific focus to model failure
propagation.

2.3.3 � Sufficient conditions on requirements in contract
structure

This section presents a theorem based on a contract structure
where the theorem expresses sufficient conditions for prop-
erty (3) to hold. This theorem corresponds to a theorem in
[74] and formalizes the stringent RE effort in establishing
completeness as advocated in FuSa standards such as IEC
61508 and ISO 26262.

Theorem 1  Given an architecture � and set of contracts
ℭ organized as a contract structure ℭ for �, it holds that
an element � ∈ � satisfies a contract (,�,X) ∈ ℭ for
� = (X�,�) if:

	 (i)	 for each contract �� = (��,���,X��) ∈ ℭ for a
descendent element �′′ of � where � is reachable
from �′′ and where �′′ does not have any incoming
‘Fulfills’ arcs, it holds that �′′ satisfies ′′;

	 (ii)	 it holds that

(4)X = X�, and

Fig. 3   A contract structure that would not be a contract structure if
the dashed arc is added to the graph

Requirements Engineering	

1 3

 where X′ is the interface of � and where XEnv�(�)

is the union of the interfaces of the elements in the
environment of �; and

	 (iii)	 for each contract �� = (��,���,X��) ∈ ℭ for a
descendent element �′′ of � where � is reachable from
�
′′, it holds that

⋂N

i=1
�i ⊆ �

�� where {�1,… ,�N} is
the set of direct predecessors of �′′ with ‘Fulfills’ arcs
to �′′.

Condition (i) ensures that the antecedent, i.e., the if-part,
of property (3) holds for each contract containing a lowest-
level requirement from where � can be reached. Conditions
(ii) and (iii) of Theorem 1 are sufficient to ensure prop-
erty (3). Condition (iii) ensures that all of the ‘Fulfills’ arcs
in paths from lower-level requirements to � , do in fact hold.

Condition (ii) embeds condition (4), which corresponds
to condition (2) presented in Sect. 2.2, and also condi-
tion (5). Figure 4 shows an example of when condition (5)
is violated with respect to contract ��

Esys = ({���
Esys},

�
��
Esys,XEsys) for the element �Esys in the architecture previ-

ously described in Sect. 2.1. In this example, condition (5)
is violated due to the fact that the guarantee �′′

Esys constrains
a port variable that cannot be constrained by the behavior of
�Esys nor of its environment in the considered architecture,
i.e., it holds X

���
Esys

⊈ Xtank ∪ XEsys.

Now, to illustrate the use of Theorem 1, consider the con-
tract structure shown in Fig. 2. Since X

�LMsys
⊆ XLMsys and

since the relations �lMeter ⊆ �Esys and �Esys ⊆ �LMsys hold, it
can be inferred, through the use of Theorem 1, that if the leaf
elements of the architecture in Fig. 1b satisfy their contracts,
then �LMsys satisfies LMsys.

Remark 1  (Circular reasoning) Since the assumptions and
guarantees of a contract structure are organized into a

(5)X
�
⊆ XEnv�(�)

∪ X� ,

directed acyclic graph, the use of circular argumentation is
avoided. Note that circularity can be resolved in other ways,
e.g., by introducing assumptions about the computational
model [1] or the timing model [52].

2.4 � Extending contracts theory with SILs

As described in Sect. 2.3, a contract structure supports a
hierarchical structuring of requirements and the individual
tracing of lower-level safety requirements to top-level safety
requirements. This individual tracing of requirements is
needed to comply with, e.g., ISO 26262 where the assign-
ment of SILs to lower-level requirements on components is
determined based on their individual tracing to higher-level
requirements.

More specifically, in ISO 26262, SILs are assigned to
top-level safety requirements. Considering that a SIL was in
Sect. 1 described as a measure of the required reliability of
a system or component in order to achieve a tolerable level
of risk, a SIL for a requirement expresses the tolerable level
of risk of violating the requirement. As the safety require-
ments on a system are broken down into safety requirements
on sub-systems, SILs are either inherited from a require-
ment at a higher level to a requirement at a lower level,
or decomposed, where the SIL is lowered, as a result of
introducing redundancy into the system. If the sub-systems
are sufficiently reliable in fulfilling their respective safety
requirements, as specified by the SILs, then it follows that
the system is sufficiently reliable in fulfilling the top-level
safety requirement.

Exploiting the fact that a contract structure formalizes
such a hierarchical structuring of requirements, the work
in [75] presents formal definitions for assigning SILs to
requirements in a contract structure in accordance with FuSa
standards. These definitions of SIL assignment are presented
in Appendix. Section 3 will describe shortly how these defi-
nitions can be used to also support the assignment of SILs to
requirements organized as a contract structure.

3 � Support for authoring specifications
by enforcing syntactic contract conditions

Section 2 presented a general contracts theory for speci-
fying systems. Considering RE in particular, this contracts
theory includes Theorem 1 that can, in combination with
Definition 3, i.e., the definition of a contract structure for an
architecture, be used for achieving completeness between
requirements on different levels in a hierarchy in accordance
with property (3). Thus, this definition and theorem formal-
ize the particularly stringent RE advocated in FuSa standards
such as IEC 61508 and ISO 26262.

Fig. 4   A contract 
��
Esys = ({���

Esys},�
��
Esys,XEsys) where condi-

tion (5) is violated

	 Requirements Engineering

1 3

Theorem 1 and Definition 3 sets the basis for describing
the main contribution, i.e., how formal support can be pro-
vided for tasks (I)–(IV) in the context of authoring specifica-
tions. This section presents the main contribution, but prior
to doing so, the considered context will first be described.

3.1 � Application context: authoring specifications

This section describes the considered context for the pro-
posed support. This context is based on the underlying idea
of structuring specifications for a system in accordance with
the system architecture. This system can be of any domain,
e.g., SW, HW, mechanical, electrical, etc, and also a het-
erogeneous system, i.e., a system composed of parts from
multiple domains. Structuring the specifications for a system
in accordance with its architecture is an established idea
[11, 79] that is also advocated in FuSa standards such as
ISO 26262.

More specifically, in the considered context, specifi-
cations, containing requirements, are to be allocated to a
specific element in the architecture; a link Alloc, specify-
ing what element that a specification S is allocated to, is
assumed to be contained in the specification. The allocation
of a specification has the meaning that its contained require-
ments are allocated to the element to which the specification
is allocated to. A specification, allocated to a specific ele-
ment, also contain a set of variables Xspec that is intended to
specify the interface of that element.

Requirements in different specification can also be linked
with each other in accordance with Sect. 2.3.2, and the infor-
mation regarding the linkage is contained in the specifica-
tions. More precisely, a specification contains two sets Assu
and Full for each contained requirement � in the specifica-
tion. The set Assu contains all incoming ‘Assumption of’
trace links to � and Full contains all outgoing ‘Fulfills’ trace
links from �.

Figure 5 shows an example intended to illustrate the
underlying idea of the context, as explained above. The

example involves three specifications S, S′ , and S′′ , struc-
tured with respect to an architecture containing three ele-
ments � , �′ , and �′′ where �′ is the root element. Speci-
fication S, allocated to element �′ , contains a requirement
� . Requirement � has an outgoing ‘Fulfills’ trace link to a
requirement �′ , contained in specification S′ , and an incom-
ing ‘Assumption of’ trace link from a requirement �′′ , con-
tained in specification S′′ . Specification S also contains a set
Xspec , specifying the interface of element �.

Section 3.1.1, which now follows, will formalize what has
been mentioned so far in this section.

3.1.1 � Specifications

A system is specified by a set of specifications {Si}Ni=1 where
each Si is structured as an ordered set:

•	 Alloci is a variable, called the allocation of Si , that is
either NIL,1 symbolizing that it does not have a value, or
equal to an element representation;

•	 X
spec

i
 is a possibly empty set of variables called the inter-

face-specifying set of Si;
•	 �i,j is a requirement assertion;
•	 each Assui,j is a possibly empty set of incoming

‘Assumption of’ trace links from requirements in
⋃N

i=1
{�i,1,… ,�i,Ni

} to �i,j ; and
•	 each Fulli,j is a possibly empty set of outgoing ‘Fulfills’

trace links from �i,j to requirements in
⋃N

i=1
{�i,1,… ,�i,Ni

}

.

Let i,j denote the set of requirements with outgoing
‘Assumption of’ trace links to �i,j in accordance with
Assui,j . Each specification Si specifies a set of contracts
{(i,1,�i,1,X

spec

i
),… , (i,Ni

,�i,Ni
,X

spec

i
)} intended to be for

the element Alloci . This also means that if the allocation of
a specification is equal to an element, then this means that
each requirement, contained in the specification, is allocated
to this element.

Consider organizing the set of requirements
⋃N

i=1
{�i,1,… ,�i,Ni

} as nodes in a graph in accordance with
each set Assui,j and Fulli,j . Assume, as part of the context,
that the specifications in {Si}Ni=1 are such that this graph is a
DAG; that is, it is assumed that sets Assui,j and Fulli,j do not
contain arcs that result in cyclic dependencies. From this
assumption, it follows that this graph is a contract structure
if conditions (i)–(v) of Definition 3 holds. Notably, three of
these conditions, namely conditions (i)–(iii) already hold

(

Alloci,X
spec

i
, {(Assui,j,Fulli,j,�i,j)}

Ni

j=1

)

, where

Fig. 5   Three specifications S, S′ , and S′′ , structured with respect to a
system architecture containing three elements � , �′ , and �′′

1  Contraction of the Latin term nihil, meaning nothing.

Requirements Engineering	

1 3

for such a graph. That is, the specification structure in itself
enforces these conditions as long as the arcs in Assui,j and
Fulli,j do not result in cyclic dependencies.

Note that there are ways, other than the one described
above, in which trace links between requirements can be
contained in specifications. For example, trace links could
be contained in specifications separate to those containing
requirements, or ‘Fulfills’ trace links could be contained in
the specification containing the requirement to which the
trace links are incoming, instead of outgoing. However, for
the sake of the proposed support it does not matter; another
way of containing trace links could be chosen, as long as the
graph formed from the trace links is the same.

3.1.2 � Formalization of tasks in considered context

Section 3.1.1 formalized a structure for authoring specifi-
cations for a system. This structure will be assumed when
presenting the proposed support for tasks (I)–(IV). As previ-
ously mentioned, the overall aim of completing such tasks
is to achieve property (3), i.e., completeness, in between
requirement levels. This section formalizes these tasks for
the specification structure presented in Sect. 3.1.1.

Given an architecture � and a set of specifications
{Si}

N
i=1

 , consider organizing the set of requirements
⋃N

i=1
{�i,1,… ,�i,Ni

} as nodes in a graph in accordance
with each set Assui,j and Fulli,j . From the previously

considered assumption that this graph is a DAG, it follows
that this graph is in accordance with conditions (i)–(iii) of
Definition 3.

Now consider the effort of achieving property (3), i.e.,
completeness, between each requirement level specified by
{Si}

N
i=1

 using Theorem 1. In accordance with the specification
structure described in Sect. 3.1, Definition 3, and Theorem 1,
this effort consists of tasks (I)–(IV) as described in Table 1.
The content of Table 1 will be described in Sect. 3.2.

3.1.3 � Semiformal representations of requirements
and architecture

In Sect. 1, requirements and architectures were formally
defined based on the notion of an assertion, i.e., set of runs.
However, in an industrial setting, requirements and archi-
tecture would typically not be represented formally, but
rather informally, e.g., as free text, or semiformally, e.g.,
as a model with a defined syntax but without a well-defined
semantics. This section describes and formalizes semiformal
representations of requirements and architectures.

An architecture � is represented semiformally if it can
only be determined that condition (a)–(i) and (b) of Defini-
tion 1 hold and not condition (a)–(ii). This means that it is
possible to distinguish the hierarchical structuring of ele-
ments and their interfaces, but not their behaviors.

A requirement � is represented semiformally if the set of
variables constrained by � can be distinguished, but not its

Table 1   Formalization of tasks in context of authoring specifications

(I) Specifying ’allocation of requirements to architecture elements,’ i.e., specifying each Alloci such that:
 Alloci = (Xi,�) where (Xi,�) ∈ � (6)

(II) Specifying ’interfaces of architecture elements,’ i.e., specifying each Xspec

i
 to be in accordance with condition (4) (of condition (ii) of

Theorem 1):
 Xspec

i
= Xi if Alloci = (Xi,�) (7)

(III) Specifying ’requirements,’ i.e., specifying each requirement �i,j such that:
 condition (5) (of condition (ii) of Theorem 1) holds, i.e.,
 X

�i,j
⊆ XEnv


(�i)

∪ Xi if Alloci = (Xi,�) ; and (8)
 condition (iii) of Theorem 1 holds, i.e.,

Nk
⋂

k=1

�
�
k
⊆ �i,j

(9)

 where {��
1
,… ,��

Nk
} is the set of direct predecessors of �i,j with ‘Fulfills’ arcs to �i,j

(IV) Specifying ’trace links between requirements,’ i.e., specifying each set Assui,j and Fulli,j such that:
 each assumption in each set i,j is in accordance with conditions (a) and (b) of Definition 3, i.e., each assumption is either:
 (a) a guarantee of a contract for a sibling of �i ; or
 (b) an assumption of a contract for a proper ancestor of �i,

 if the set of requirements
⋃N

i=1
{�i,1,… ,�i,Ni

} is organized as nodes in a graph in accordance with each set Assui,j and Fulli,j , then this
graph is in accordance with conditions (iv) and (v) of Definition 3, i.e., the graph is such that:

 (iv) if there is an arc labeled ‘Fulfills’ from �i,j to �k,l , then �k,l is a guarantee of a contract for a proper ancestor of �i ; and
 (v) if a guarantee �i,j is reachable from an assumption � of a contract for a proper ancestor �m of �i , then � is also an assumption of

any contract (k,l,�k,l,Xk) where �k is a proper ancestor of �i and a descendant of �m (including itself) and where �k,l is reachable
from �i,j

	 Requirements Engineering

1 3

set of runs. For example, the requirement �LMsys , shown in
Fig. 2, can be represented semiformally as free text embed-
ding distinguishable port variables l and f:

Level l, presented by the level meter, shall be equal to
actual level f in the tank.

These semiformal representations will, as part of the con-
sidered context, be assumed to be used to describe architec-
tures and requirements in specifications.

3.2 � Feedback‑ and guidance‑driven support
for tasks (I)–(IV)

Consider the context described in Sect. 3.1, or more spe-
cifically, consider a set of specifications, as described in
Sect. 3.1.1, containing only semiformal representations of
requirements for a system described by a semiformal repre-
sentation of an architecture � . Given this context, this sec-
tion describes how formal support can be provided for each
of the tasks (I)–(IV). This is achieved by enforcing contract
conditions associated with these tasks; the conditions that
can be evaluated in the considered context are those that
are syntactic, i.e., those that can be evaluated despite the
requirements and architecture representations being semi-
formal, and not formal.

This support is considered to be of two different types,
feedback and guidance. Feedback is considered to be the
cases where a user, authoring specifications, is notified that
content in a specification violates one of the syntactic con-
tract conditions. Guidance covers the cases where it is dis-
tinguished to the user, prior to inserting content, that certain
content is in accordance with these syntactic contract condi-
tions and some content is not.

Note that the violation of a syntactic contract condition
in a specification S can, in special cases, be identified even
prior to specifying Alloc, i.e., the allocation of specification
S. However, the focus in the rest of this section will be on
describing the support provided for task (II)–(IV) for author-
ing S whenever Alloc has indeed been specified to be equal
to an element. Violations that can be identified whenever
Alloc is NIL will in any case be identified when an element
is eventually specified to be Alloc.

3.2.1 � Task (I): Specifying allocation of requirements
to architecture elements

As shown in Table 1, the formal interpretation of task (I)
is a contract condition (i.e., condition 6) that is violated
whenever the allocation Alloci of a specification Si is NIL
or is equal to an element that is not in architecture � . This
condition can indeed be evaluated despite the fact that � is
represented semiformally, which means that this condition
is a syntactic contract condition. The fact that this condition

is syntactic is shown in Table 2. This table also shows which
of the contract conditions of task (II)–(IV) that are syntactic;
the table will be fully justified in subsequent sections.

This section now proceeds to describe the support that
can be provided by evaluating condition 6 in Table 1.

Let Alloci be specified to be an element (X,�) in archi-
tecture � . Notably, considering the contract conditions that
can be evaluated in Table 1, i.e., those that are syntactic in
accordance with Table 2, it is possible that certain conditions
can be evaluated directly after specifying the allocation, but
not prior. This means that, whenever Alloci is NIL, it is pos-
sible to guide a user in specifying the allocation Alloci by
distinguishing to the user between which elements (in the
architecture) that Alloci can and cannot be equal to without
violating the syntactic contract conditions associated with
tasks (II)–(IV). Consider the following example.

Example 1  Consider a set of specifications containing
requirements and trace links specified in accordance with
the graph shown in Fig. 2 except that the requirement �lMeter
has not yet been allocated. That is, the requirement �lMeter is
in a specification Si where Alloci is NIL. Prior to specifying
Alloci , it is possible to distinguish, to a user authoring Si ,
that if Alloci is equal to, e.g., �Esys instead of �lMeter , then
conditions (a)–(b) in Table 1 will be violated since �Esys is
not in the environment of �lMeter in this architecture.	� □

Example 1 showed how guidance can be provided when
specifying the allocation of a specification by distinguishing
to a user that conditions (a)–(b) in Table 1 would be vio-
lated if the allocation were to be equal to a specific element.
However, more generally, such guidance can be provided
not only by evaluating conditions (a)–(b), but rather all of
the contract conditions that are in Table 1 and are syntactic
in accordance with Table 2.

3.2.2 � Task (II): Specifying architecture element interfaces
consisting of port variables

As shown in Table 1, condition (7) is the only contract
conditions associated with task (II) and this condition is a

Table 2   Identification of the contract conditions in Table 1 to either
be syntactic or not

Task Formal condition(s) Syntactic?

(I) Condition (6) in Table 1 Yes
(II) Condition (7) in Table 1 Yes
(III) Condition (8) in Table 1 Yes

Condition (9) in Table 1 No
(IV) Conditions (a) and (b) and (iv)–(v)

in Table 1
Yes

Requirements Engineering	

1 3

syntactic contract condition in accordance with Table 2. This
condition is syntactic since whenever the allocation Alloci of
a specification Si is equal to an element (Xi,�i) in architec-
ture � , it can be evaluated whether or not the interface Xi is
equal to the interface-specifying set Xspec

i
 in Si without know-

ing the behaviors of the elements in � . As will be shown in
this section, support when authoring Si can be provided by
evaluating this condition. An example now follows.

Example 2  Let SLMsys be a specification containing an inter-
face-specifying set Xspec

LMsys
= {f } and that the allocation of

SLMsys is equal to the element �LMsys , shown in Fig. 1b.
Through evaluation of condition (7) in Table 1, it possible
to give feedback, to a user authoring SLMsys , that the interface
XLMsys = {f , l} of �LMsys and the interface-specifying set
X
spec

LMsys
 are not equal; it is also possible to provide guidance

to the user by distinguishing which port variables that are
not in the interface-specifying set, but only in the interface,
and vice versa.	� □

As shown in Example 2, guidance and feedback for task
(II) can be given by evaluating condition (7) in Table 1. Note
that such support can be provided without acknowledging
neither the interface-specifying set of a specification nor
the interface, of the element to which the allocation of the
specification is equal to in the architecture, to be the source
of correctness. Under development, it is also only natural
that they are not equal and typically there is neither need
nor desire to resolve this immediately. However, at point of
deployment, the interface-specifying set and the interface in
the non-behavioral architecture data should be in accordance
with condition (7).

3.2.3 � Task (III): Specifying requirements

In accordance with Table 1, condition (8) and condition (9)
of Theorem 1 are the contract conditions associated with
task (III), i.e., specifying requirements. While condition (8)
can be evaluated by only knowing which port variables that
the requirements constrain, to evaluate condition (9), the
runs of the requirements must also be known. That is, as
shown in Table 2, condition (9) is not a syntactic condition
and cannot be evaluated in the given context. However, as
also shown in Table 2, condition (8) is indeed syntactic and
the following will describe how feedback and guidance can
be provided by enforcing this condition.

Consider that the allocation of a specification is equal
to an element in the architecture. By evaluating condition
(8) in Table 1, it is possible to give feedback by identify-
ing each distinguishable port variable in requirements con-
tained in the specification where such a port variable violates

condition (8). An example of when condition (8) is violated
is shown in Fig. 4.

Furthermore, when specifying requirements in a speci-
fication where its allocation is equal to an element in the
architecture, it is possible to guide a user by distinguishing
between port variables that a requirement can and cannot be
specified over in order for condition (8) in Table 1 to hold.
An example of this now follows.

Example 3  Consider a user specifying a requirement in a
specification where its allocation is equal to the element �Esys
in the architecture shown in Fig. 1b. It is possible to give
guidance to the user by distinguishing that specifying the
requirement over, e.g., the set {f , vbranch} will violate condi-
tion (8) in Table 1, but over {f , l, h} , it will not. 	� □

3.2.4 � Task (IV): Specifying trace links
between requirements

As expressed in Table 1, conditions (a), (b), (iv)–(v) are
the conditions associated with task (IV). As previously
mentioned in Sect. 3.1.2, given that circular dependencies
are not specified between requirements, conditions (i)–(iii)
of Definition 3 automatically hold for the given context.
Regarding conditions (a), (b), (iv)–(v), all of these can be
evaluated without knowing the runs of neither requirements
nor elements, and thus, as shown in Table 2, these condi-
tions are syntactic. In fact, these conditions can actually
be evaluated regardless of the representation format of the
requirements. Thus, by considering these conditions when
specifying ‘Assumption of’ and ‘Fulfills’ trace links to and
from requirements in a specification Si , i.e., specifying the
sets Assui and Fulli , it is possible to guide the user by dis-
tinguishing between trace links that will and will not vio-
late conditions (a), (b), (iv)–(v) in Table 1. Additionally,
feedback can be provided if already established trace links
violate these conditions. Examples of when these conditions
are violated are presented in Sect. 4.6 in the context of an
industrial example system.

3.2.5 � Applicability of proposed support

Sections 3.2.1–3.2.1 described the feedback- and guidance-
driven support that can be provided for tasks (I)–(IV) by
enforcing the syntactic contract conditions in Table 2. As
previously mentioned, this support was described given the
context in Sect. 3.1. This section discusses the applicability
of the considered context and the proposed support.

Regarding the context, it can be noted that it does not
impose any constraints neither on the order in which specifica-
tions are authored nor on the order in which content is entered
within a specification. That is, a specification for a leaf element
in the specification can be authored prior to a specification for

	 Requirements Engineering

1 3

the root element, and vice versa. Also, the requirements in a
specification can be specified prior to specifying the interface-
specifying set, and the other way around. This means that the
context, and thus also the proposed support, is indeed not
restricted to any type of design flow: top-down, bottom-up,
or anything in between. As previously mentioned in Sect. 1,
such flexibility caters to the fact that different developers have
dissimilar, yet successful, approaches for optimizing systems
development; a top-down design flow might be optimal when,
e.g., development is outsourced, but may be less optimal in
other cases.

Regarding the assumption concerning the use of semi-
formal representations, while much of the proposed support
is indeed available even when informal representations of
requirements are used, semiformal or formal representations
of both requirements and architecture are required to achieve
full support. However, if working toward achieving stringent
RE, then a higher level of stringency in representations might
be needed anyway, and in safety standards such as ISO 26262
and DO-178C for the avionic domain, semiformal or formal
representations are actually required. All in all, the context is
in essence nothing more than a formalized setting for achiev-
ing stringent RE, which means that the proposed support is,
at least in concept, applicable for any company working with
stringent RE, driven, e.g., by FuSa.

3.3 � Additional condition‑enforcing support

This section discusses how to provide additional support by
enforcing conditions, other than the syntactic conditions in
Table 2, from the theory described in Sect. 2. Notably, out
of the conditions in Table 2, condition (9) of Theorem 1 was
the only condition that was not discussed in Sect. 3.2 since
this condition cannot be evaluated unless requirements are
represented formally. However, if requirements are indeed
represented formally, e.g., in the language Temporal Logic
of Actions (TLA)+ [45], then an approach such as [81] can be
used to evaluate condition (9) of Theorem 1.

As previously mentioned in Sect. 2.4, the work in [75] pre-
sents formal definitions of SIL assignment given a contract
structure for an architecture. These definitions can be found
in Appendix. In the same manner that the syntactic contracts
are evaluated to provide support in Sect. 3.2, these definitions
can also be evaluated to provide support for assigning SILs to
requirements; notably, these definitions can also be evaluated
regardless of the representation format of requirements and
behaviors of elements in the architecture. An example will be
presented in Sect. 4.6.

4 � Implementation of specification tool
in an industrial setting

As previously mentioned in Sect. 1, as an initial form
of validation, an industrial case study was performed at
trucks manufacturer Scania where the support presented
in Sect. 3.2 was implemented in a specification tool, which
was also integrated into Scania’s development tool chain.
This section will describe and draw conclusions from this
case study, but first, the overall goal and challenges faced
when implementing this specification tool are presented.

4.1 � Goal and challenges of industrial case study

The main goal of the case study was to evaluate the poten-
tial of realizing the support presented in Sect. 3.2 in an
industrial setting. Since the proposed support assumes
the context described in Sect. 3.1, realizing the support is
dependent on that both the tool support and the context are
implemented. Formulated as queries, the main challenges
faced when implementing the context were:

(A)	 Do architecture data in a semiformal format exist? (Do
machine-readable architecture representations exist
where data on the hierarchical structuring of elements
and their interfaces can be extracted? If such represen-
tations do not exist, can these data be obtained in some
other way?)

(B)	 If architecture data in a semiformal format exist,
potentially in different formats and stored in different
databases and tools, how can the data be extracted and
combined into an overall semiformal architecture rep-
resentation?

(C)	 How to enable and manage links from specifications to
architecture data and between requirements in the same
or different specifications?

Similarly, the main challenge when implementing the pro-
posed tool support was:

(D)	 How to evaluate syntactic contract conditions over
specification and architecture data, possibly distributed
over different databases and tools?

Addressing queries (A)–(D) evaluates whether or not it is
feasible for the proposed support to be technically imple-
mented in an industrial setting and is considered to provide
an initial form of validation of the proposed support.

The validation would be initial since even if a solu-
tion technically addresses the challenges formulated by
queries (A)–(D), the solution may still suffer from having

Requirements Engineering	

1 3

a low degree of usability, which means that such a solu-
tion would still not be viable in an industrial setting. For
example, if the number of actions required to embed a
reference to a port variable in a requirement (to specify it
semiformally) is too high, then engineers will most likely
not specify requirements semiformally, and will thus not
get the full benefits from the proposed support. With
this in mind, usability was considered as a critical aspect
when implementing the specification tool. However,
evaluating usability requires long-term empirical studies
involving engineers working toward achieving stringent
RE, and given that stringent RE is not currently practiced
to a large extent, such studies are currently difficult to
perform. Therefore, the focus of the present paper is on
addressing queries (A)–(D), rather than on evaluating the
aspect of usability. However, despite not being adequately
evaluated, the present paper will still report on and dis-
cuss how the aspect of usability was taken into account in
the implementation of the specification tool.

Now that the overall goal and challenges of the indus-
trial case study have been presented, the present paper
will proceed in describing the case study. This case study
also included working with an industrial example system,
which will first be introduced. This industrial example
will in the following be used instead of the simplistic
LM-system that has been used for illustrating theoretical
concepts. After describing the case study, an evaluation
section follows where queries (A)–(D) are addressed.

4.2 � Fuel level display system

Fuel level display (FLD) is a safety-critical system installed
on all trucks manufactured by Scania, with a functionality
to provide an estimate of the fuel volume in the fuel tank to
the driver. The system is safety-critical since running out of
fuel results in loss of power steering which, in turn, makes a
heavy truck near impossible to steer. FLD will be described
in terms of an architecture and a contracts structure for this
architecture as shown in Fig. 6a, b, respectively.

4.2.1 � FLD architecture

As shown in Fig. 6a, FLD �FLD consists of a fuel tank �Tank
and three electric control unit (ECU)-systems, i.e., an ECU
with sensors and actuators: Engine Management System
(EMS) �EMS ; Instrument Cluster (ICL) �ICL ; and Coordina-
tor (COO) �COO . In turn, �COO is composed of a fuel sensor
�fuelSensor and an ECU �ECU , which consists of an application
SW component �FuelSW and a platform �PLAT , i.e., ECU HW
and infrastructure SW, which �FuelSW executes on. Due to
space restrictions, only a breakdown of one ECU-system is
considered and this breakdown is also limited; see [74] for
a more complete architecture.

The element �COO estimates the fuel volume actualFu-
elVolume in the tank �Tank by a Kalman filter that is imple-
mented by �fuelSW  . The platform �PLAT is to ensure that
the inputs estFuelRateIn and sensFuelLevelIn and output

Fig. 6   An architecture of FLD
and safety requirements in a
contract structure for this archi-
tecture, respectively

(a)

(b)

	 Requirements Engineering

1 3

estFuelVolumeOut to �FuelSW correspond to the inputs est-
FuelRate and sensFuelLevel and output estFuelVolume of
�COO , respectively. The port variable sensFuelLevel repre-
sents the position of a floater in the fuel tank �FuelTank , as
sensed by the fuel sensor �fuelSensor and estFuelRate is an
estimate of the current rate of fuel injected into the engine
and is a controller area network (CAN) signal, transmitted in
CAN message FuelEconomy from �EMS . The estimated fuel
volume is transmitted as the CAN signal estFuelVolume in
CAN message DashDisplay. This CAN message is received
by �ICL where a fuel gauge indicatedFuelVolume in the dis-
play presents the information to the driver.

4.2.2 � Contract structure for FLD architecture

Each requirement shown in Fig. 6b is a safety requirement
where the subscript of each safety requirement denotes
which element the requirement is allocated to, e.g., �FLD
is allocated to �FLD . These safety requirements are, instead
of being represented formally as in the examples of asser-
tions in Sect. 2.1, represented semiformally as free text with
formal references to port variables. As an example of a
requirement, the overall safety requirement �FLD on FLD is
represented semiformally as:

indicatedFuelVolume, shown by the fuel gauge, is less
than or equal to actualFuelVolume.

As another example, the safety requirement �ICL , which is
allocated to �ICL , is represented semiformally as

indicatedFuelVolume corresponds to estFuelVolume.

4.3 � Referencing and dereferencing using linked
data

Now that the FLD system has been described, the design and
implementation of the specification tool follow.

Each specification authored in the specification tool is
structured to contain the data described in Sect. 3.1.1, i.e.,
the allocation of the specification, its interface-specifying
set, requirements, and their trace links. In addition to data
contained in a specification, data from another specification
or even from another tool can be presented when opening
the specification in the specification tool. This is achieved
through referencing this other data in accordance with
Linked Data [9]: inserting a reference means inserting a
Uniform Resource Locator (URL) that is associated with
the data that are to be presented; the URL does not only
contain the data that are to be presented, but rather informa-
tion on how the data should be retrieved. Inserted URLs can
be dereferenced in a standardized manner using Hypertext
Transfer Protocol (HTTP).

Whenever a URL is inserted, the specification tool will
first retrieve the data and then present it accordingly. Note
that dereferencing may be done in several steps since URLs
associated with certain data may also contain URLs associ-
ated with other data. In accordance with the specification
structure, each data object contained in a specification, e.g.,
requirements, their trace links, port variables, is associated
with a URL. Dereferencing of URLs is done automatically
by the specification tool, thus, ensuring that the presented
data are consistent, i.e., updated with the data that are associ-
ated with the URL. Consider the following example.

Example 4  Assume that architecture data in accordance
with Fig. 6a are made available as Linked Data. Con-
sider inserting an URL associated with the port variable
indicatedFuelVolume [%] with the intent of specifying the
requirement �FLD semiformally. Upon insertion, the URL
is dereferenced, which results in that the name of the port
variable is presented in the specification and made to be
distinguishable as a port variable. If the data associated with
this address is modified, e.g., if indicatedFuelVolume [%]
changes name to indFuelLevel[%] , then upon refreshing the
specification containing the requirement �FLD , this change
will be immediately reflected in the specification. 	� □

As shown in Example 4, Linked Data enable data in
specifications to be consistent. This is a crucial property in
an industrial setting. Consider that data in specifications are
manually updated or imported/exported between specifica-
tions rather than being linked in accordance with Linked
Data. In practice, ensuring that all referenced data between
them are continuously updated is unmanageable even for a
relatively small set of specifications.

4.4 � Using RDF for publishing and consuming linked
data

The following terminology will be used throughout the rest
of this paper: a tool is said to publish data if this tool makes
data available to other tools in accordance with Linked Data;
and if a first tool dereferences addresses associated with data
published by a second tool, then the first tool is said to con-
sume data from the second tool.

In practice, in order to publish and consume data, a stand-
ardized underlying data model is needed and this model is
typically Resource Description Framework (RDF) [43].
Accordingly, the specification tool publishes the data con-
tained in specifications as RDF triples, consisting of a sub-
ject (URL), a predicate (URL), and an object (URL or a
literal). Consider that these published data are represented as
a graph with subjects and objects as nodes and predicates as
arcs, which will in the following be referred to as links. The

Requirements Engineering	

1 3

specification tool publishes data such that, for each specifica-
tion, it holds that:

•	 for each contained requirement � in the specification:

•	 each ‘Assumption of’ trace link, from a requirement
�
′ to � , corresponds to a link from �′ to �;

•	 each ‘Fulfills’ trace link, from � to another require-
ment �′ , corresponds to a link from � to �′ ; and

•	 each distinguishable port variable in � corresponds to
a link from � to a port variable in architecture data;

•	 each member in the interface-specifying set where this
member is a reference to a port variable in architecture
data corresponds to a link from the interface-specifying
set to this port variable in architecture data; and

•	 the allocation of the specification, whenever containing a
reference to an element in architecture data, corresponds
to a link from each requirement in the specification to this
element.

Using Linked Data and RDF also enables the language
SPARQL2 [60] for querying data. The specification tool uses
SPARQL for evaluating the syntactic contract conditions in
Table 2. More specifically, these evaluations are done by
traversing and dereferencing links between data, and thus,
the evaluations are over consistent data.

Note that so far, the source of the architecture data has not
been described. This will be done in Sect. 4.5, which follows
after this section. However, the fact is that, when using the
Linked Data approach, the source of the architecture data
is not important; the source could be the specification tool
itself, an external tool, or several external tools, whichever
are used for modeling the system architecture.

4.5 � Integration of specification tool into industrial
tool chain

The integration of the specification tool into the tool chain
at Scania is shown in Fig. 7 where arrows represent flow of
data and where tools/aspects preexisting the integration and
new tools/aspects of the tool chain are color-coded with gray
and white, respectively.

Regarding the data flow shown furthest to the left in
Fig. 7, this bidirectional arrow represents the saving and
loading of specifications; each specification is saved as/
loaded from exactly one file, called a specification file. Spec-
ification files are saved and loaded as Extensible Markup
Language (XML)-files in accordance with Darwin Infor-
mation Typing Architecture (DITA) [30]. DITA is an open
standard for authoring specifications and publishing them
as, e.g., PDF-documents.

Specification files are stored in the preexisting version
control system (VCS) along with SW implementation files,
i.e., source code files (e.g., .c-files) and files (e.g., Simulink
[17] .mdl files) that generate source code. Relying on pre-
existing VCS allows versions of specifications and SW to
automatically coevolve since new versions of specifications
are automatically created whenever SW development is
branched/merged.

The arrows other than the one furthest to the left in Fig. 7
capture publishing/consumption of data as described in
Sect. 4.4. In general, any tool can consume/publish data;
for example, test management systems (TMS) can consume
data published by the specification tool and link additional
information to the requirements such as who, where, when,
and how requirements have been or will be tested. As
another example, the specification tool can consume data
from change management (CM) tools and link requirements
to change requests. More importantly, the specification tool
consumes architecture data published by other tools in the
tool chain.

Consider published architecture data. In the following, the
present paper will distinguish between such data that either:
(i) describes the implemented system; or (ii) specifies the
intended architecture of a system. In the following, data of

Fig. 7   Integration of specifica-
tion tool into the industrial tool
chain at Scania

2  A recursive acronym for SPARQL Protocol and RDF Query Lan-
guage.

	 Requirements Engineering

1 3

class (i) and (ii) will be referred to as architecture-describing
data and architecture-specifying data, respectively.

As examples of such distinction between data, data
extracted from a .h-file associated with a .c-file could be
architecture-describing data and architecture-specifying data
could be data in a high-level architecture model, represented
in a language such as SysML, Unified Modeling Language
(UML) [67], or Architecture Analysis and Design Language
(AADL) [24]. However, this architecture model could also
describe an implemented system; thus, this categorization
into architecture-describing and architecture-specifying data
is subjective. The important aspect is that this categorization
is made clear in a specific tool chain. The following will
describe how this categorization was done in the industrial
case study.

Regarding publishing of SW architecture-describing data,
these data are obtained from tools, i.e., publishers, which
automatically analyze and extract data directly from SW
implementation files in VCS using architecture recovery
[62, 82]. For example, SW variables and the functions that
read and write to them are extracted from parsing .h and
.c-code files. Relying on architecture recovery ensures that
the published data are consistent with SW files. In addi-
tion, published architecture-describing data are also linked
to version data.

In a similar manner, HW/physical architecture-describing
data publishers automatically analyze and extract data from
production-based sources containing data that describe the
implemented parts of the system that is not SW. Examples of
these sources are the product data management (PDM) sys-
tem, which lists the elements present in a particular vehicle;
databases, e.g., CAN-DB, which lists CAN messages and
signals; and other sources, e.g., Excel-files describing prop-
erties of sensors and actuators and computer-aided design
(CAD)-systems.

4.6 � Authoring support in specification tool

With respect to authoring specifications, the specification
tool functions similar to a typical text editor, e.g., Microsoft
Word, where sections and tables, and also images and equa-
tions can be removed or embedded in free text simply by
inserting them from the menu. As shown in Fig. 7, the visual
design of the user interface (UI) of the specification tool is
also similar to a typical text editor, only the requirements
appear differently and are distinguishable as rectangles filled
with light gray as shown in Fig. 7.

The rest of this section will describe the support pro-
vided by the specification tool when authoring specifi-
cations; this includes both the feedback- and guidance-
driven support for tasks (I)–(IV) described in Sect. 3.2,
as well as other type of support that increases quality of
specifications. However, prior to presenting this support,

a principle is introduced for how the syntactic contract
conditions in Table 2 are evaluated.

This principle is that the syntactic contract conditions
are evaluated considering architecture-describing data
rather than architecture-specifying data. This principle is
motivated by the fact that at the point of deployment of a
system, requirements and other specification data should
express intended properties of the implemented system and
not properties of models that describe the system as it was
intended to be implemented.

However, during development of a system, it might be
the case that certain architecture-describing data are not
available; in an early design phase in particular, it might
be the case that only architecture-specifying data are avail-
able. Thus, during development, it might be desirable or
even necessary to, e.g., express requirements over port
variables in the architecture-specifying data or to manu-
ally specify interfaces instead of inserting references to
architecture-describing data. This is indeed allowed by
the specification tool; in fact, the specification tool will
generally not restrict the user from entering data into a
specification; the specification tool will simply identify if
syntactic contract conditions are violated with respect to
the architecture-describing data.

In summary, a user is free to refer to or enter data
other than architecture-describing data in, e.g., require-
ments—as needed during system development. However,
these data should eventually be replaced with architecture-
describing data references and the specification tool will
therefore continuously alert the user until this is done.

4.6.1 � Task (I): Specifying allocation of requirements
to architecture elements

As explained in Sect. 3.1, specifying the allocation of a
specification to an element means allocating the require-
ments in the specification to this element. Specifying the
allocation is incorporated into the specification tool by
having an option where the user is prompted to select,
from a list of architecture elements, the architecture ele-
ment that the allocation of the specification is to be equal
to. In accordance with Sect. 3.2.1, when selecting from
this list, the specification tool will guide the user by distin-
guishing between elements (in the architecture data) that
the allocation can and cannot be equal to without violat-
ing the syntactic contract conditions associated with tasks
(II)–(IV).

Specifying the allocation of a specification can be done
at any time after creating the specification. Prior to speci-
fying the allocation, the tool will continuously urge the
user to specify the allocation.

Requirements Engineering	

1 3

4.6.2 � Task (II): Specifying architecture element interfaces
consisting of port variables

Specifying the interface-specifying set of a specifica-
tion is realized by a concept called interface table, which
specifies interface port variables and their properties. In
general, a specification can have several interface tables,
typically one for each port variable type, e.g., CAN sig-
nals, sensor inputs, etc., since their properties and thus the
number of desired columns in the table may differ. The
union of the interface tables is the interface-specifying
set. An example of an interface table is shown in Fig. 8.

When entering data into interface tables, the user can
input references to port variables in the architecture-
describing data using auto-complete functionality. An
example of the auto-complete functionality is shown in
Fig. 9 when entering data into the table also shown in
Fig. 8. Upon entering a reference, the specification tool
will automatically dereference and present, not only the
name of the port variable as given in the architecture-
describing data, but also other relevant properties.

Whenever the allocation of the specification is equal to
an element in the architecture-describing data, in accord-
ance with Sect. 3.2.2, the specification tool will evaluate
condition (7) of Table 1 and give feedback and guidance.
An example is shown in Fig. 8 where the user is provided
with the feedback (table row marked yellow and warning
triangle) that the port variable estFuelRate is not a port
variable of �FLD , as described by the consumed architec-
ture-describing data that are in accordance with Fig. 6a.

Notably, as shown in Fig. 9, the auto-complete func-
tionality also guides the user by distinguishing between
which of the port variables that are and are not in accord-
ance with condition (7) of Table 1. For example, in Fig. 9,
the port variables that are and are not in accordance with
condition (7) are followed by a check-mark and crosses,
respectively. Additionally, there is an option to automati-
cally populate entire interface tables with references to the
interface port variables in architecture-describing data in
accordance with condition (7), thus ensuring consistency
and saving much manual and error-prone work.

Fig. 8   Snapshot (tweaked for enhanced readability) of the main window of the UI of the implemented specification tool

Fig. 9   Entering data into inter-
face table using auto-complete
functionality

	 Requirements Engineering

1 3

4.6.3 � Task (III): Specifying requirements

In the specification tool, as previously indicated, there is an
option to insert requirements into a specification. The user
is free to specify a requirement as seen fit; even images and
equations can be embedded.

Explicit support is given for specifying requirements in
semiformal representation as free text with references to
port variables; two examples of such a representation format
were presented in Sect. 4.2.2. This support for specifying
requirements in semiformal representation is given by hav-
ing auto-complete functionality for entering port variable
references. Figure 10 shows an example where a list of port
variable names appear as possible references when specify-
ing the safety requirement �fuelSW.

Similar to the support provided for task (II) and in accord-
ance with Sect. 3.2.3, whenever the allocation of a speci-
fication is equal to an element, the specification tool will
give feedback on requirements specified prior to their alloca-
tion. That is, the tool will flag port variable references that
violate condition (8) of Table 1. Furthermore, as shown in
Fig. 10, the auto-complete functionality will guide the user
by distinguishing to the user between port variables (listed
by the auto-complete functionality in consumed architec-
ture-describing data) that are and not are in accordance with
condition (8).

4.6.4 � Task (IV): Specifying trace links
between requirements

In the specification tool, for a requirement � in a specifi-
cation, there are options to specify ‘Assumption of’ and
‘Fulfills’ trace links between � and other requirements.
As shown in Fig. 10, this is done by selecting sources for
‘Assumption of’ trace links and targets for ‘Fulfills’ trace
links for � from a fold-down menu with lists for specifying
such trace links; hovering over a specified trace link source
or target and the requirement reference is dereferenced and
its representation is presented, as exemplified in Fig. 10
for the requirement �ICL . As also shown in Fig. 10, there
is an option to view published data on requirements and
their links as a navigable ‘Requirements Graph’ (similar to

Fig. 6b) that shows � in the context of neighboring require-
ments that are traceable from or to � through specified
requirement trace links.

In accordance with Sect. 3.2.4, whenever the allocation
of a specification is equal to an architecture element, the
specification tool will guide the user in specifying trace links
between � and other requirements by distinguishing between
‘Assumption of’ trace link sources and ‘Fulfills’ trace link
targets that are and are not in accordance with conditions
(a), (b), (iv), and (v) in Table 1. As previously mentioned in
Sect. 3.2.4 and as will be exemplified below, each of these
conditions can be evaluated regardless of the representation
format of requirements.

As a first example of how the specification tool can pro-
vide guidance, consider a specification that contains �COO
and where the allocation of the specification is equal to
�COO . Consider also that all the requirements in the graph
shown in Fig. 6b are allocated as described in Sect. 4.2.2.
In accordance with conditions (a) and (b), when selecting
‘Assumption of’ trace link sources for the requirement �COO ,
only the requirements �tank , �ICL , and �EMS from this graph
will appear as sources distinguishable as being in accord-
ance with conditions (a) and (b). The other requirements
in the graph, e.g., �PLAT ,1 , will be distinguished to violate
these conditions since these requirements are not allocated
to an element in the environment of �COO , to which �COO is
allocated.

As a second example, consider specifying ‘Fulfills’ trace
links for the requirement �fuelSW shown in Fig. 10. Given that
each requirement �PLAT ,i has been allocated to �PLAT , each of
these requirements will be distinguished to violate condition
(iv) in Table 1. Condition (iv) is violated since �PLAT is not
a proper ancestor of �fuelSW , to which �fuelSW is allocated.

Similar to condition (v) in Table 1, enforcing condition
(v) also allows distinguishing between the selection of pos-
sible ‘Fulfills’ trace link targets. An example of a case where
adding a ‘Fulfills’ trace link would violate condition (v) was
previously presented in Sect. 2.3.2 and is shown in Fig. 3.

Note that the specification tool will allow any trace
links to be specified as long as these do not result in cyclic
dependencies; even when trace links result in that syntac-
tic contract conditions are violated. However, whenever

Fig. 10   Snapshot (tweaked
for enhanced readability) of a
requirement in the implemented
specification tool

Requirements Engineering	

1 3

specified trace links violate these conditions, the tool will
provide feedback by notifying the user and flagging these
trace links.

4.6.5 � Condition‑enforcing support for specifying SILs

As shown in Fig. 10, SILs can be specified for requirements
in a specification. The specification tool evaluates the defi-
nitions of SIL assignment in Appendix to be able to give
feedback on SILs specified for requirements. Without getting
into specifics, an example of where these definitions would
be violated is if the requirement �COO shown in the contract
structure in Fig. 6b is assigned with a lower SIL than the
requirement �FLD.

4.7 � Evaluation of tool support

This section describes how the implementations solutions
used in the industrial case study addressed queries (A)–(D),
which can, as previously mentioned in Sect. 4.1, be con-
sidered as criteria for evaluating technical implementability
of the support described in Sect. 3.2. This section also dis-
cusses these solutions from a usability perspective.

Regarding query (A) ‘Do architecture data in a semifor-
mal format exist?’, it would have been convenient if semi-
formal architecture representations, together providing an
accurate description of the entire truck, would have been
directly available, e.g., as SysMl models. However, in an
industrial setting such as the development tool chain of Sca-
nia, architecture representations are predominantly informal,
not consistent with system implementations, and containing
errors. However, while not being available directly, semi-
formal architecture-describing data were found to be indi-
rectly available in implementation artifacts, e.g., code, and
in production-based sources such as the PDM-system in the
Scania case.

Consider query (B): ‘If architecture data in a semiformal
format exist, potentially in different formats and stored in
different databases and tools, how can the data be extracted
and combined into an overall semiformal architecture rep-
resentation?’. Since it cannot be assumed that semiformal
architecture-describing data are not available directly in an
industrial setting, these data would have to first be made
available. As described in Sect. 4.5, this was achieved by
the use of adapters that publish architecture data retrieved
through architecture recovery [62, 82], i.e., through pars-
ing and analyzing implementation artifacts and production-
based sources. Considering that an individual adapter only
would typically publish only a part of the architecture of
a system, for the data published by the different adapters
to form an overall architecture, the data need to be linked
together. This can be achieved by relying on a common data
model, e.g., an RDF schema, which enables such linkage

given that each publisher is compliant with the subset of the
data model that concerns its published data.

Regarding queries (C) ‘How to enable and manage links
from specifications to architecture data and between require-
ments in the same or different specifications?’ and (D) ‘How
to evaluate syntactic contract conditions over specification
and architecture data, possibly distributed over different
databases and tools?’, as described in Sects. 4.3 and 4.4, the
proposed solution, which is considered to be general, was
to use Linked Data. As previously mentioned in Sect. 4.4,
evaluation of the syntactic contract conditions can then be
performed by traversing and dereferencing links, and thus,
the evaluation can be performed over consistent data.

Regarding performing evaluations over consistent data,
this requires that each reference is dereferenced every time
an evaluation is made. Since traversal can sometimes by
extensive and the number of dereferences high for the evalu-
ation of a single contract condition, making sure that the
evaluation is over consistent data was observed to sometimes
come at the cost of slower performance of the specifica-
tion tool. Fast performance is however a critical factor for
ensuring the usability of the feedback- and guidance-driven
support described in Sect. 4.6. That is, it is considered criti-
cal that a user gets immediate feedback when violating a
contract condition such that it is clear what action caused
the violation, and for guidance, that the choices are distin-
guishable almost directly to avoid slowing down the user. To
enhance performance, the specification tool was therefore
implemented such that it sometimes caches dereferenced
data locally and re-uses these data when doing evaluations.
Due to this re-use of old data, there is a slight possibility
that the specification tool exhibits unsound behavior, e.g.,
providing a warning when there is no violation of a contract
condition. Thus, a general observation is that there seems to
be a trade-off between performance and performing evalua-
tions over the most consistent data—investigations are cur-
rently ongoing for trying to find the right balance.

Usability was, as previously mentioned in Sect. 4.1, con-
sidered as a critical factor when implementing the specifica-
tion tool. One aspect of usability has already been discussed
above, namely performance. Other usability aspects concern
features implemented in the specification tool. One such fea-
ture is auto-complete functionality, which supports specify-
ing semiformal requirements with little additional effort than
specifying informal requirements. Another usability-related
feature is the hovering functionality, which allows a user to
quickly get a description of referenced data without tracing
the reference back to its source.

In summary, the case study indicated that the proposed
support is indeed possible to technically implement, even
when semiformal architecture data are not available directly.
Thus, despite the need for further validation, especially long-
term evaluation of usability, the case study showed high

	 Requirements Engineering

1 3

potential in realizing the proposed support in an industrial
setting.

5 � Related work

As mentioned in Sect. 1, there already exist approaches
where contract theory is used to provide tool support. For
example, contracts theory is used to provide tool support for
safety analyzes in [19], safety certification in [69], model-
based design in [5], and failure propagation modeling in [56,
57]. More similar to the present paper, the work [13, 14] pre-
sents tool support for verifying contracts refinement, which
in essence corresponds to verifying completeness. Even
more similar to the present paper, the work [16] describes
tool support for verifying a hierarchical organization of con-
tracts related to a system architecture model. Despite the
similarities between [13, 14, 16] and the present paper, as
previously mentioned in Sect. 1, while the tool support in
[13, 14, 16] requires that contracts must be formally rep-
resented in the language linear-time temporal logic (LTL)
[59], the tool support described in the present paper does not
require that contracts are specified in formal representation;
in fact, the present paper describes how explicit support can
be provided when requirements are specified in semiformal
representation.

There are also other works [23, 27, 44] that focus on pro-
viding feedback- and/or guidance-driven tool support for
specification, albeit with a fundamentally different approach
from the present paper. That is, in contrast to the present
paper where support is provided by enforcing formal condi-
tions, the works in [23, 27, 44] rely on natural language (NL)
processing to provide feedback and guidance on require-
ments represented in NL considering, e.g., text length and
terms usage with respect to a domain ontology/dictionary.
Hence, while the approach in [23, 27, 44] improves read-
ability of requirements, the approach in the present paper
enforces their correctness, and thus, the approaches comple-
ment each other. NL processing is also used in [50, 51] to
automatically cluster and create trace links between require-
ments. One main difference between support relying on NL
processing and the support proposed in the present paper is
that while the former cannot in general be guaranteed to be
sound, the support in the present paper only enforces neces-
sary conditions and will, thus, never generate false-positives.

In contrast to [23, 27, 44, 50, 51], but in accordance
with the present paper, the works [2, 3, 28, 29] describe
formally founded support for RE. Similar to the present
paper, the works [3, 28] both focus on establishing trace
links between requirements and design/architecture. How-
ever, while the approach in the present paper is applicable
for any type design flow, i.e., top-down, bottom-up, or any-
thing in between, the approach in [3] requires using model

transformations for driving development and is therefore
only applicable for a top-down design flow. In contrast to
the present paper, but similar to the previously mentioned
contract-based approaches [13, 14, 16], the support in [3,
28] relies on formal representations of architectures and
requirements. The work in [2] describes a formal model-
based development methodology using requirements refine-
ment. However, analogous to [3], this methodology is only
applicable to a top-down design flow and also prescribes the
use of formal models and requirements. In comparison, the
support in the present paper is applicable in a greater con-
text and this is to cater to needs in current state of industrial
practice where requirements and architectures are typically
not represented formally and where design flows vary, some-
times even within the same company.

Regarding the relation between the present paper and
the work in [29], while both providing support for author-
ing specifications, the present paper and [29] have differ-
ent focuses and complement each other; the present paper
focuses on tool support for tasks (I)–(IV) while [29] focuses
on transformation between requirements specified in NL,
the formal representation format Object Constraint Lan-
guage (OCL) [71], and a semiformal representation format
in between these.

There also exist tool support [20, 65] for Goal-Oriented
Requirements Engineering (GORE), see, e.g., I* [80] or
Knowledge Acquisition in Automated Specification (KAOS)
[46] or [34, 47] for literature reviews, where [46, 80] draw
on ideas presented in [39, 40, 58]. While such tool support is
indeed similar to the support proposed in the present paper,
one main difference lies in the flexibility of how require-
ments can be hierarchically structured. More specifically, in
GORE models, the use of assumptions, also called expecta-
tions, cannot be used at lower requirement levels and are
strictly limited to constrain the environment of a SW system.
This is in contrast to the present paper where the proposed
support builds on a contract structure, which can be used to
structure requirements for a system in any domain and where
assumptions can be used at all requirement levels.

6 � Conclusion

This paper has presented tool support applicable when work-
ing with stringent RE, e.g., as advocated by FuSa standards
such as IEC 61508 and ISO 26262. Despite the need for
further evaluations, especially long-term empirical studies,
an industrial case study showed high potential in realizing
the proposed support in an industrial setting.

More specifically, as the main contribution, by evaluating
syntactic conditions from established contracts theory, it has
been shown how feedback- and guidance-driven support can
be given for tasks (I)–(IV) when authoring specifications in

Requirements Engineering	

1 3

accordance with a system architecture. It has been shown
that such support can be given for structuring requirements,
regardless of their representation format. In particular, if
requirements are expressed with references to port variables
in an architecture describing the implemented system, then
feedback- and guidance-driven can be provided for both
specifying and structuring requirements. Furthermore, with
the use of the proposed guided auto-complete functional-
ity for input of references to port variables in architecture-
describing data, transforming requirements specified in NL
to incorporate such references is straightforward. Notably,
this approach caters to needs in current state of industrial
practice where requirements and architectures are typically
not represented formally. Furthermore, moving to specifying
requirements containing such references also allows power-
ful analyzes over data on requirements and architecture to
answer queries such as ‘what requirements are enforced on
my CAN signal or SW-variable?’.

A proposed concept for enabling such analyzes in practice
is Linked Data, which supports formal referencing and deref-
erencing of data in between specifications and architecture
data. In accordance with the Linked Data approach, it has
been shown that input of references to architecture-describ-
ing data, not just in requirements, but also in, e.g., interface
tables, allows to enforce specifications to be consistent with
these data. Moreover, if architecture-describing data are
obtained through architecture recovery, as in the industrial
case study, this actually means enforcing specifications to
be consistent with the SW implementation. Notably, such
consistency is not only a mandatory property when attempt-
ing to achieve FuSa, but rather a highly desirable property
of specifications in general.

Hence, not only has this paper described how to provide
tool support for the stringent RE effort advocated by FuSa
standards, but also how to increase quality of specifications
in general.

Funding  Funding was provided by VINNOVA (Grant No.
2011-04446).

Open Access  This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http​://crea​tive​comm​
ons.org/lice​nses​/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix: Extending contracts theory
with safety integrity levels

This section presents an extension of contracts theory, as
described in Sect. 2, with the notion of SILs. The contained
material can be considered as a compressed and polished
version of the work in [75].

Definition of SIL

In Sects. 1 and 2.4, a SIL was described as a measure of
the required reliability of a system or component, in order
to achieve a tolerable level of risk, i.e., the combination of
the probability of harm and the severity of such a harm.
Formulated differently in the context of specifying a SIL
for a requirement, the SIL specifies the tolerable level of
risk of violating the requirement. Thus, prior to presenting a
formal definition of a SIL in the context of contracts theory,
it is necessary to define what it means for a requirement to
be violated.

Given an architecture {(Xi,�i)}
N
i=1

 and a contract (,�,X)
for an element in the architecture, the guarantee � is violated
if a run � of

⋂N

i=1
�i is executed where {𝜔} ⊈ �.

Definition 4  (Safety integrity level for guarantee) Given
an architecture � and a contract (,�,X) for an element in
� , a SIL for the guarantee � , denoted SIL

�
 , is a uniquely

specified discrete level that corresponds to a target range of
the probability that the guarantee � is violated, during an
arbitrary time interval of a predefined length.	� □

Definition 4 is in accordance with the definitions in ISO
26262 and IEC 61508, given that a ‘safety function’ in IEC
61508 is, or can at least correspond to, a top-level require-
ment and that an automotive SIL (ASIL) for a requirement
in ISO 26262 can be mapped to a range of the probability
that the requirement is violated. SILs range from 1 to 4 in
IEC 61508 and ASILs from A–D in ISO 26262.

(a) (b)

Fig. 11   Two representative examples of SIL inheritance are shown in
context of contract structures

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 Requirements Engineering

1 3

Consider that a SIL is assigned to the requirement �LMsys ,
as shown in Fig 2, as a result of assessing the risk of �LMsys
in the context of a specific architecture. Following a certain
standard, this would imply that the specific instructions of
that standard would have to be followed with the aim of
achieving a failure probability of �LMsys within the target
range as specified by the SIL for �LMsys.

SIL inheritance in contract structure

As described in Sect. 1, in ISO 26262, safety requirements
are to be structured at different hierarchical levels with the
intent that safety requirements at one level are to fulfill all
safety requirements at the higher level. Consider that two
lower-level safety requirements are to fulfill a higher-level
safety requirement. If the higher-level safety requirement
has been specified with a SIL D, for example, then the
two lower-level safety requirements will inherit SIL D. If
one of the lower-level safety requirements is also derived
from another higher-level safety requirement, then that the
lower-level safety requirement will inherit the highest SIL
of the higher-level safety requirement.

In this section, the concept of SIL inheritance will be
formally defined in terms of a contract structure. Prior to
presenting such a formal definition, the concept is intro-
duced informally by the use of the following representative
examples (a) and (b), as shown in Fig. 11.

(a)	 In Fig. 11a, the intent is that the behavior of �′ is to
fulfill �1 and �2 , given that the behavior of � fulfills � .
Therefore, the highest SIL for �1 and �2 , i.e., 2, is speci-
fied for �.

(b)	 In Fig. 11b, the intent is that the requirement � , allo-
cated to the child � of an element �′ , is to fulfill both
requirements �1 and �2 , allocated to � . Hence, the high-
est SIL for �1 and �2 , i.e., 2, is specified for � . The
requirement R′′ allocated to �′′ is intended to fulfill only
R3 and is thus specified with the SIL 1.

As expressed in examples (a) and (b), if the intent is
to rely on that a requirement � is not violated in order
to ensure that a requirement �i is not violated, then the
requirement � should inherit the SIL of �i . For example,
the behavior of �Esys cannot fulfill the requirement �Esys
unless the potentiometer is installed correctly in the tank,
as expressed by �tank and shown in Fig. 2. Thus, the SIL
for �tank is inherited from �Esys.

A formal definition of SIL inheritance will now follow.
Note that to fully understand the formal definition, SIL
inheritance needs to be explained simultaneously with SIL
decomposition. Hence, a detailed explanation will follow
in ’Appendix: SIL decomposition in contract structure’
section.

Definition 5  (SIL inheritance in contract structure) Given
an architecture � and a set of contracts ℭ organized as con-
tract structure for � , SIL inheritance is the specification of
a SIL to a guarantee � in a contract  ∈ ℭ for an element
� ∈ � such that SIL

�
= max(SIL

�1
,… , SIL

�N
) where each

�i is either:

(a)	 a guarantee without any incoming arcs labeled ‘Fulfills’
and � is a direct predecessor of �i and an assumption in
a contract where �i is the guarantee; or

(b)	 a guarantee in a contract for an ancestor of � and a
direct successor of �.	� □

Part (a) and (b) of Definition 5 corresponds to examples
(a) and (b), respectively.

SIL decomposition in contract structure

Consider a case where either one of two safety requirements
can, in fact, fulfill another higher-level safety requirement
alone and that the safety requirements are allocated to two
elements that are ‘sufficiently independent,’ i.e.,

absence of failures whose probability of simultane-
ous or successive occurrence cannot be expressed as
the simple product of the unconditional probabilities
of each of them, between two or more elements that
could lead to the violation of a safety requirement, or
organizational separation of the parties performing an
action [37].

Given such a case, it is possible to assign lower SILs to the
safety requirements than to the higher-level safety require-
ment by applying ‘SIL decomposition,’ i.e.,

apportioning of safety requirements redundantly to
sufficiently independent elements, with the objective
of reducing the ASIL of the redundant safety require-
ments that are allocated to the corresponding elements
[37].

In this section, the concept of SIL decomposition in the
context of a contract structure is presented. As previously
described, SIL decomposition can only be performed if
redundancy is present in a system. In order to capture the
intent of achieving redundancy, the definition of a contract
structure, i.e., Definition 3, is extended with an ‘ OR⊥ ’ node.
Two representative examples follow immediately after the
definition to explain the extension.

Definition 6  (Extension of contract structure for
architecture) Given an architecture � and a set
⋃N

i=1
{(i,1,�i,1,Xi),… , (i,Ni

,�i,Ni
,Xi)} w h e r e e a c h

Requirements Engineering	

1 3

(i,j,�i,j,Xi) is a contract for an element �i of � and where
each assumption in each set i,j is either:

(a)	 a guarantee of a contract for a sibling of �i ; or
(b)	 an assumption of a contract for a proper ancestor of �i,

then a contract structure for � is an arc-labeled DAG, such
that:

	 (i)	 each node is either a guarantee �i,j or an ‘ OR⊥ ’ node
and each guarantee �i,j is a node;

	 (ii)	 each arc is uniquely labeled either ’Assumption of”
or “Fulfills’;

	 (iii)	 if and only if �k,l is in i,j , then there exists an arc
labeled ’Assumption of’ from a node �k,l to either:

(a)	 �i,j ; or
(b)	 an ‘ OR⊥ ’ node that has exactly one outgoing arc

to �i,j , labeled ’assumption of’;

	 (iv)	 if there is an arc labeled ’Fulfills’ from �i,j to �k,l , then
�k,l is a guarantee of a contract for a proper ancestor
of �i ; and

	 (v)	 if a guarantee �i,j is reachable from an assumption �
of a contract for a proper ancestor �m of �i , then �
is also an assumption of any contract (k,l,�k,l,Xk)
where �k is a proper ancestor of �i and a descendant
of �m (including itself) and where �k,l is reachable
from �i,j;

	 (vi)	 if an ‘ OR⊥ ’ node has an incoming arc labeled ’Ful-
fills’ from �i,j , then the ‘ OR⊥ ’ node has exactly one
outgoing arc to a guarantee �k,l of a contract for a
proper ancestor of �i ; and

	(vii)	 each ‘ OR⊥ ’ node has at least two incoming arcs and
where any two incoming arcs to the ‘ OR⊥ ’ node, are
guarantees of contracts for two different elements.	
� □

The two following representative examples (a) and (b),
also shown in Fig. 12a, b, capture two scenarios with the
intent to achieve redundancy.

(a)	 As expressed in Fig. 12a, the intent is that it is suffi-
cient that either one of the behaviors of two ’sufficiently
independent’ [37] elements �′ and �′′ in the environ-
ment to an element � fulfills the respective require-
ments �′ and �′′ , in order for the behavior of � to fulfill
� , i.e., that (�� ∪ �

��) ∩ � ⊆ �.
(b)	 As expressed in Fig. 12b, the intent is that either one

of two requirements �1 and �2 on two sufficiently inde-
pendent children �1 and �2 of an element � is able to
fulfill a requirement � of a contract for � , i.e., that
(�1 ∪ �2) ⊆ �.

Considering examples (a) and (b), it is hence possible to
assign a potentially lower SIL to �′ and �′′ , and also to �1 and
�2 , than the SIL for � , by performing SIL decomposition.

Definition 7  (SIL decomposition in contract structure)
Given an architecture � and a set of contracts ℭ organized
as contract structure for � , SIL Decomposition is the speci-
fication of a SIL to a guarantee � in a contract  ∈ ℭ for an
element � ∈ � such that � ≤ SIL

�
≤ max(SIL

�1
,… , SIL

�N
) ,

where each �i is either:

(a)	 a guarantee without any incoming arcs labeled ‘Fulfills’
and a direct successor of an OR⊥ node where OR⊥ node
has an incoming ‘Assumption of’ arc from � ; or

(b)	 a direct successor of an OR⊥ where OR⊥ node has an
incoming ’Fulfills’ arc from �,

and where � is determined by the context and in accordance
with a given safety standard.	� □

(a) (b)

Fig. 12   Two representative examples are shown where the intent is to
achieve redundancy

Fig. 13   Examples are shown
where both SIL inheritance and
decomposition are applied

(a) (b)

	 Requirements Engineering

1 3

Consider Fig. 13a that is intended to clarify why inherit-
ance of SILs, through the use of assumptions, only apply to
guarantees without any incoming ‘Fulfills’ arcs, as expressed
in part (a) of Definition 5. If SIL C has been assigned to � ,
for example, then SIL B and A can be assigned to �1 and
�2 , respectively, according to part (b) of Definition 7 and
ISO 26262. According to part (a) of Definition 5, �′ should
inherit SIL B from the requirement �1 without any incom-
ing ‘Fulfills’ arcs, rather than the SIL for � , since redun-
dancy has been introduced into � . The same reasoning can
be applied to decomposition of SILs, through the use of
assumptions, as shown in Fig. 13b and expressed in part (a)
of Definition 7.

Remark 2  Although not explicitly mentioned in either ISO
26262 nor IEC 61508, if both SIL decomposition and inher-
itance can be applied to a requirement � , then the maximum
SIL should be assigned to � . 	� □

References

	 1.	 Abadi M, Lamport L (1993) Composing specifications. ACM
Trans Program Lang Syst 15(1):73–132. http​s://doi.org/10.1145​
/1516​46.1516​49

	 2.	 Abrial JR, Butler M, Hallerstede S, Hoang TS, Mehta F, Voisin
L (2010) Rodin: an open toolset for modelling and reasoning in
Event-B. Int J Softw Tools Technol Transf 12(6):447–466

	 3.	 Almeida JPA, Iacob ME, Van Eck P (2007) Requirements trace-
ability in model-driven development: applying model and trans-
formation conformance. Inf Syst Frontiers 9(4):327–342

	 4.	 Bauer S, David A, Hennicker R, Guldstrand Larsen K, Legay A,
Nyman U, Wąsowski A (2012) Moving from specifications to
contracts in component-based design. In: Lara J, Zisman A (eds)
Fundamental approaches to software engineering. Lecture notes
in computer science, vol 7212. Springer, Berlin, pp 43–58. http​
s://doi.org/10.1007​/978-3-642-2887​2-2_3

	 5.	 Baumgart A, Reinkemeier P, Rettberg A, Stierand I, Thaden
E, Weber R (2011) A model-based design methodology with
contracts to enhance the development process of safety-critical
systems. In: Min SL, Pettit R, Ungerer T (eds) Software tech-
nologies for embedded and ubiquitous systems. Lecture notes in
computer science, vol 6399. Springer, Berlin, pp 59–70. http​s://
doi.org/10.1007​/978-3-642-1625​6-5_8

	 6.	 Benveniste A, Caillaud B, Ferrari A, Mangeruca L, Passerone R,
Sofronis C (2008) Multiple viewpoint contract-based specification
and design. In: de Boer F, Bonsangue M, Graf S, de Roever WP
(eds) Formal methods for components and objects. Lecture notes
in computer science, vol 5382. Springer, Berlin, pp 200–225. http​
s://doi.org/10.1007​/978-3-540-9218​8-2_9

	 7.	 Benveniste A, Caillaud B, Nickovic D, Passerone R, Raclet JB,
Reinkemeier P, Sangiovanni-Vincentelli A, Damm W, Henzinger
T, Larsen KG (2012) Contracts for system design. Rapport de
recherche RR-8147, INRIA. http​://hal.inri​a.fr/hal-0075​7488​

	 8.	 Benveniste A, Caillaud B, Passerone R (2009) Multi-viewpoint
state machines for rich component models. In: Nicolescu G,
Mosterman P (eds) Model-based design for embedded sys-
tems. Taylor & Francis, pp 487–518 http​://www.goog​le.se/book​
s?id=8Cjg​2mM-m1MC​

	 9.	 Bizer C, Heath T, Berners-Lee T (2009) Linked data-the story so
far. In: Semantic services, interoperability and web applications:
emerging concepts, pp 205–227

	10.	 Böschen M, Bogusch R, Fraga A, Rudat C (2016) Bridging the
gap between natural language requirements and formal specifica-
tions. In: Joint proceedings of REFSQ–2016 workshops, doctoral
symposium, research method track, and poster track (REFSQ–JP
2016), CEUR workshop proceedings, pp 1–11. CEUR–WS. http​
://ceur​--ws.org/Vol--1564​/pape​r20.pdf

	11.	 Broy M (2017) A logical approach to systems engineering arti-
facts: semantic relationships and dependencies beyond traceabil-
ity-from requirements to functional and architectural views. Softw
Syst Model. http​s://doi.org/10.1007​/s102​70-017-0619​-4

	12.	 Cheng BHC, Atlee JM (2007) Research directions in requirements
engineering. In: Future of software engineering, 2007. FOSE ’07,
pp 285–303. http​s://doi.org/10.1109​/FOSE​.2007​.17

	13.	 Cimatti A, Dorigatti M, Tonetta S (2013) Ocra: A tool for check-
ing the refinement of temporal contracts. In: 2013 IEEE/ACM
28th international conference on automated software engineering
(ASE), pp 702–705. http​s://doi.org/10.1109​/ASE.2013​.6693​137

	14.	 Cimatti A, Tonetta S (2015) Contracts-refinement proof system
for component-based embedded systems. Sci Comput Program
97(Part 3):333–348. http​s://doi.org/10.1016​/j.scic​o.2014​.06.011

	15.	 Cleland-Huang J, Gotel O, Zisman A (2012) Software and systems
traceability. Springer, Berlin

	16.	 Cofer D, Gacek A, Miller S, Whalen MW, LaValley B, Sha L
(2012) Compositional verification of architectural models. In:
Proceedings of the 4th international conference on NASA for-
mal methods, NFM’12. Springer, Berlin, pp 126–140. http​s://doi.
org/10.1007​/978-3-642-2889​1-3_13

	17.	 Dabney JB, Harman TL (2004) Mastering simulink. Pearson/Pren-
tice Hall, Upper Saddle River

	18.	 Damm W (2005) Controlling speculative design processes using
rich component models. In: Fifth international conference on
application of concurrency to system design, 2005. ACSD 2005,
pp 118–119. http​s://doi.org/10.1109​/ACSD​.2005​.35

	19.	 Damm W, Josko B, Peinkamp T (2009) Contract based ISO CD
26262 safety analysis. In: Safety-critical systems, 2009. SAE. http​
s://doi.org/10.4271​/2009​-01-0754​

	20.	 Darimont R, Delor E, Massonet P, van Lamsweerde A (1997)
GRAIL/KAOS: an environment for goal-driven requirements
engineering. In: Proceedings of the (19th) international confer-
ence on software engineering, pp 612–613. http​s://doi.org/10.1145​
/2532​28.2534​99

	21.	 Diestel R (2012) Graph theory. Graduate texts in mathematics, vol
173, 4th edn. Springer, Berlin

	22.	 EN 50128: Railway applications—communication, signalling and
processing systems—software for railway control and protection
systems (2011)

	23.	 Farfeleder S, Moser T, Krall A, Stålhane T, Zojer H, Panis C
(2011) DODT: increasing requirements formalism using domain
ontologies for improved embedded systems development. In: 2011
IEEE 14th international symposium on design and diagnostics
of electronic circuits systems (DDECS), pp 271–274. http​s://doi.
org/10.1109​/DDEC​S.2011​.5783​092

	24.	 Feiler PH, Gluch DP (2012) Model-based engineering with
AADL: an introduction to the SAE architecture analysis & design
language, 1st edn. Addison-Wesley Professional, Boston

	25.	 Firesmith D (2004) Engineering safety requirements, safety
constraints, and safety-critical requirements. J Object Technol
3(3):27–42

	26.	 Friedenthal S, Moore A, Steiner R (2008) A practical guide to
SysML: systems modeling language. Morgan Kaufmann Inc., San
Francisco

	27.	 Génova G, Fuentes JM, Llorens J, Hurtado O, Moreno V (2013)
A framework to measure and improve the quality of textual

https://doi.org/10.1145/151646.151649
https://doi.org/10.1145/151646.151649
https://doi.org/10.1007/978-3-642-28872-2_3
https://doi.org/10.1007/978-3-642-28872-2_3
https://doi.org/10.1007/978-3-642-16256-5_8
https://doi.org/10.1007/978-3-642-16256-5_8
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9
http://hal.inria.fr/hal-00757488
http://www.google.se/books?id=8Cjg2mM-m1MC
http://www.google.se/books?id=8Cjg2mM-m1MC
http://ceur--ws.org/Vol--1564/paper20.pdf
http://ceur--ws.org/Vol--1564/paper20.pdf
https://doi.org/10.1007/s10270-017-0619-4
https://doi.org/10.1109/FOSE.2007.17
https://doi.org/10.1109/ASE.2013.6693137
https://doi.org/10.1016/j.scico.2014.06.011
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1109/ACSD.2005.35
https://doi.org/10.4271/2009-01-0754
https://doi.org/10.4271/2009-01-0754
https://doi.org/10.1145/253228.253499
https://doi.org/10.1145/253228.253499
https://doi.org/10.1109/DDECS.2011.5783092
https://doi.org/10.1109/DDECS.2011.5783092

Requirements Engineering	

1 3

requirements. Requir Eng 18(1):25–41. http​s://doi.org/10.1007​/
s007​66-011-0134​-z

	28.	 Goknil A, Kurtev I, Van Den Berg K (2014) Generation and vali-
dation of traces between requirements and architecture based on
formal trace semantics. J Syst Softw 88(C):112–137. http​s://doi.
org/10.1016​/j.jss.2013​.10.006

	29.	 Hähnle R, Johannisson K, Ranta A (2002) An authoring tool for
informal and formal requirements specifications. In: Proceedings
of the 5th international conference on fundamental approaches to
software engineering, FASE ’02, pp 233–248. Springer, London.
http​://dl.acm.org/cita​tion​.cfm?id=6453​70.6512​89

	30.	 Harrison N (2005) The Darwin information typing architecture
(DITA): applications for globalization. In: Proceedings of the
international professional communication conference, 2005, IPCC
2005. IEEE, pp 115–121

	31.	 Henzinger T, Sifakis J (2007) The discipline of embedded systems
design. Computer 40(10):32–40. http​s://doi.org/10.1109​/MC.2007​
.364

	32.	 Hoare CAR (1969) An axiomatic basis for computer program-
ming. Commun ACM 12(10):576–580. http​s://doi.org/10.1145​
/3632​35.3632​59

	33.	 Hooman J, de Roever WP (1986) The quest goes on: a survey of
proofsystems for partial correctness of CSP. In: de Bakker JW, de
Roever W-P, Rozenberg G (eds) Current trends in concurrency,
overviews and tutorials. Springer, Berlin, pp 343–395. http​s://doi.
org/10.1007​/BFb0​0270​44

	34.	 Horkoff J, Aydemir FB, Cardoso E, Li T, Maté A, Paja E, Sal-
nitri M, Piras L, Mylopoulos J, Giorgini P (2017) Goal-oriented
requirements engineering: an extended systematic mapping study.
Requir Eng. http​s://doi.org/10.1007​/s007​66-017-0280​-z

	35.	 Hull MEC, Jackson K, Dick J (eds) (2011) Requirements engi-
neering, 3rd edn. Springer, Berlin

	36.	 International Electrotechnical Commission: IEC 61508—func-
tional safety of electrical/electronic/programmable electronic
safety-related systems (2010)

	37.	 International Organization for Standardization: ISO 26262—
“Road vehicles-Functional safety” (2011)

	38.	 International Organization for Standardization, International Elec-
trotechnical Commission, Institute of Electrical and Electronics
Engineers: ISO/IEC/IEEE 42010—system and software engineer-
ing—Architecture description (2011)

	39.	 Jackson M (1995) Software requirements & specifications: a lexi-
con of practice, principles and prejudices. ACM Press/Addison-
Wesley Publishing Co., New York

	40.	 Jackson M (1995) The world and the machine. In: Proceedings of
the 17th international conference on software engineering, ICSE
’95. ACM, New York, pp 283–292. http​s://doi.org/10.1145​/2250​
14.2250​41

	41.	 Jones CB (1983) Specification and design of (parallel) programs.
In: Mason REA (ed) Information processing 83, IFIP congress
series, vol 9. IFIP, North-Holland, Paris, pp 321–332

	42.	 Josko B, Ma Q, Metzner A (2008) Designing embedded systems
using heterogeneous rich components. In: Proceedings of the
INCOSE international symposium

	43.	 Klyne G, Carroll JJ (2014) Resource description framework
(RDF): concepts and abstract syntax. W3C. http​://www.w3.org/
TR/rdf-conc​epts​/

	44.	 Knauss E, Lubke D, Meyer S (2009) Feedback-driven require-
ments engineering: the heuristic requirements assistant. In: 2009
IEEE 31st international conference on software engineering, pp
587–590. http​s://doi.org/10.1109​/ICSE​.2009​.5070​562

	45.	 Lamport L (2002) Specifying systems: the TLA+ language and
tools for hardware and software engineers. Addison-Wesley Long-
man Publishing Co., Inc., Chicago

	46.	 van Lamsweerde A, Letier E (2004) From object orientation to
goal orientation: a paradigm shift for requirements engineering.

In: Wirsing M, Knapp A, Balsamo S (eds) Radical innovations of
software and systems engineering in the future. Lecture notes in
computer science, vol 2941. Springer, Berlin, pp 325–340. http​
s://doi.org/10.1007​/978-3-540-2462​6-8_23

	47.	 Lapouchnian A (2005) Goal-oriented requirements engineering: an
overview of the current research. University of Toronto, Toronto

	48.	 Lee E (2008) Cyber physical systems: design challenges. In: 11th
IEEE international symposium on object oriented real-time dis-
tributed computing (ISORC), pp 363–369. http​s://doi.org/10.1109​
/ISOR​C.2008​.25

	49.	 Leveson NG (1995) Safeware: system safety and computers.
ACM, New York

	50.	 Mahmoud A, Niu N, Xu S (2012) A semantic relatedness approach
for traceability link recovery. In: 2012 20th IEEE international
conference on program comprehension (ICPC), pp 183–192. http​
s://doi.org/10.1109​/ICPC​.2012​.6240​487

	51.	 Mahmoud A, Williams G (2016) Detecting, classifying, and trac-
ing non-functional software requirements. Requir Eng 21(3):357–
381. http​s://doi.org/10.1007​/s007​66-016-0252​-8

	52.	 Mcmillan KL (1999) Circular compositional reasoning about
liveness. In: Advances in hardware design and verification: IFIP
WG10.5 international conference on correct hardware design and
verification methods (CHARME ’99), volume 1703 of Lecture
notes in computer science. Springer, pp 342–345

	53.	 Meyer B (1992) Applying “design by contract”. Computer
25(10):40–51. http​s://doi.org/10.1109​/2.1612​79

	54.	 Ministry of Defence: Def Stan 00-56—safety management
requirements for defence systems (2007)

	55.	 Misra J, Chandy K (1981) Proofs of networks of processes. IEEE
Trans Softw Eng SE–7(4):417–426. http​s://doi.org/10.1109​/
TSE.1981​.2308​44

	56.	 Nyberg M (2013) Failure propagation modeling for safety analy-
sis using causal Bayesian networks. In: 2013 conference on con-
trol and fault-tolerant systems (SysTol), pp 91–97. http​s://doi.
org/10.1109​/SysT​ol.2013​.6693​936

	57.	 Nyberg M, Westman J (2015) Failure propagation modeling based
on contracts theory. In: 2015 Eleventh European dependable com-
puting conference (EDCC), pp 108–119. http​s://doi.org/10.1109​
/EDCC​.2015​.21

	58.	 Parnas DL (1995) Functional documents for computer systems.
Sci Comput Program 25:41–61

	59.	 Pnueli A (1977) The temporal logic of programs. In: 18th annual
symposium on foundations of computer science, 1977, pp 46–57.
http​s://doi.org/10.1109​/SFCS​.1977​.32

	60.	 Quilitz B, Leser U (2008) Querying distributed RDF data sources
with SPARQL. In: European semantic web conference. Springer,
pp 524–538

	61.	 Quinton S, Graf S (2008) Contract-based verification of hierarchi-
cal systems of components. In: Sixth IEEE international confer-
ence on software engineering and formal methods, 2008. SEFM
’08, pp 377 –381. http​s://doi.org/10.1109​/SEFM​.2008​.28

	62.	 Rasool G, Asif N (2007) Software architecture recovery. Int J
Comput Elec Automation Control Inf Eng 1(4):939–944

	63.	 Rausand M, Høyland A (2004) System reliability theory: models,
statistical methods, and applications. Wiley series in probability
and statistics—applied probability and statistics section. Wiley,
Hoboken. http​s://book​s.goog​le.se/book​s?id=gkUW​z9AA​-QEC

	64.	 Rawat DB, Rodrigues JJ, Stojmenovic I (2015) Cyber-physical
systems: from theory to practice. CRC Press, Boca Raton

	65.	 Rifaut A, Massonet P, Molderez JF, Ponsard C, Stadnik P, van
Lamsweerde A, Hung TV (2003) FAUST: formal analysis using
specification tools. In: Proceedings of the 11th IEEE international
requirements engineering conference, 2003, p 350. http​s://doi.
org/10.1109​/ICRE​.2003​.1232​781

	66.	 de Roever W, Langmaack H, Pnueli A (1998) Compositionality:
the significant difference. Springer, Berlin

https://doi.org/10.1007/s00766-011-0134-z
https://doi.org/10.1007/s00766-011-0134-z
https://doi.org/10.1016/j.jss.2013.10.006
https://doi.org/10.1016/j.jss.2013.10.006
http://dl.acm.org/citation.cfm?id=645370.651289
https://doi.org/10.1109/MC.2007.364
https://doi.org/10.1109/MC.2007.364
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/BFb0027044
https://doi.org/10.1007/BFb0027044
https://doi.org/10.1007/s00766-017-0280-z
https://doi.org/10.1145/225014.225041
https://doi.org/10.1145/225014.225041
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
https://doi.org/10.1109/ICSE.2009.5070562
https://doi.org/10.1007/978-3-540-24626-8_23
https://doi.org/10.1007/978-3-540-24626-8_23
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1109/ICPC.2012.6240487
https://doi.org/10.1109/ICPC.2012.6240487
https://doi.org/10.1007/s00766-016-0252-8
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/TSE.1981.230844
https://doi.org/10.1109/TSE.1981.230844
https://doi.org/10.1109/SysTol.2013.6693936
https://doi.org/10.1109/SysTol.2013.6693936
https://doi.org/10.1109/EDCC.2015.21
https://doi.org/10.1109/EDCC.2015.21
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SEFM.2008.28
https://books.google.se/books?id=gkUWz9AA-QEC
https://doi.org/10.1109/ICRE.2003.1232781
https://doi.org/10.1109/ICRE.2003.1232781

	 Requirements Engineering

1 3

	67.	 Rumbaugh J, Jacobson I, Booch G (2004) Unified modeling lan-
guage reference manual, the (2nd edition). Pearson Higher Educa-
tion, London

	68.	 Sangiovanni-Vincentelli AL, Damm W, Passerone R (2012) Tam-
ing Dr. Frankenstein: contract-based design for cyber-physical
systems. Eur J Control 18(3):217–238

	69.	 Soderberg A, Vedder B (2012) Composable safety-critical sys-
tems based on pre-certified software components. In: 2012 IEEE
23rd international symposium on software reliability engineering
workshops (ISSREW), pp 343–348. http​s://doi.org/10.1109​/ISSR​
EW.2012​.83

	70.	 Sutcliffe A, Maiden N (1998) The domain theory for requirements
engineering. IEEE Trans Softw Eng 24(3):174–196. http​s://doi.
org/10.1109​/32.6678​78

	71.	 Warmer J, Kleppe A (1999) The object constraint language: pre-
cise modeling with UML. Addison-Wesley Longman Publishing
Co., Inc, Boston

	72.	 Westman J, Nyberg M (2013) A reference example on the speci-
fication of safety requirements using ISO 26262. In: Roy M (ed)
Proceedings of workshop DECS (ERCIM/EWICS workshop on
dependable embedded and cyber-physical Systems) of the 32nd
international conference on computer safety, reliability and secu-
rity, p NA. France. http​://hal.arch​ives​-ouve​rtes​.fr/hal-0084​8610​

	73.	 Westman J, Nyberg M (2014) Environment-centric contracts
for design of cyber-physical systems. In: Dingel J, Schulte W,
Ramos I, Abrahao S, Insfran E (eds) Model-driven engineering
languages and systems. Lecture notes in computer science, vol
8767. Springer, Berlin, pp 218–234. http​s://doi.org/10.1007​/978-
3-319-1165​3-2_14

	74.	 Westman J, Nyberg M (2015) Contracts for specifying and struc-
turing requirements on cyber-physical systems. In: Rawat DB,
Rodriques J, Stojmenovic I (eds) Cyber physical systems: from
theory to practice. Taylor & Francis, Boca Raton

	75.	 Westman J, Nyberg M (2015) Extending contract theory with
safety integrity levels. In: 2015 IEEE 16th international sympo-
sium on HASE, pp 85–92. http​s://doi.org/10.1109​/HASE​.2015​.21

	76.	 Westman J, Nyberg M (2017) Conditions of contracts for separat-
ing responsibilities in heterogeneous systems. Form Methods Syst
Des. http​s://doi.org/10.1007​/s107​03-017-0294​-7

	77.	 Westman J, Nyberg M, Gustavsson J, Gurov D (2017) Formal
architecture modeling of sequential non-recursive C programs.
Sci Comput Program 146(Supplement C):2–27. http​s://doi.
org/10.1016​/j.scic​o.2017​.03.007

	78.	 Westman J, Nyberg M, Törngren M (2013) Structuring safety
requirements in ISO 26262 using contract theory. In: Proceed-
ings of the 32nd international conference on computer safety,
reliability, and security—volume 8153, SAFECOMP 2013, pp
166–177. Springer, New York. http​s://doi.org/10.1007​/978-3-642-
4079​3-2_16

	79.	 Whalen MW, Gacek A, Cofer D, Murugesan A, Heimdahl MP,
Rayadurgam S (2013) Your what is my how: iteration and hier-
archy in system design. IEEE Softw 30(2):54–60. http​s://doi.
org/10.1109​/MS.2012​.173

	80.	 Yu E (1997) Towards modelling and reasoning support for early-
phase requirements engineering. In: Proceedings of the third IEEE
international symposium on requirements engineering, 1997, pp
226–235. http​s://doi.org/10.1109​/ISRE​.1997​.5668​73

	81.	 Yu Y, Manolios P, Lamport L (1999) Model checking TLA+
specifications. In: Pierre L, Kropf T (eds) Correct hardware design
and verification methods: 10th IFIP WG10.5 advanced research
working conference, CHARME’99 BadHerrenalb, Germany, Sep-
tember 27–29, 1999 proceedings, Springer, Berlin, pp 54–66. http​
s://doi.org/10.1007​/3-540-4815​3-2_6

	82.	 Zhang X, Persson M, Nyberg M, Mokhtari B, Einarson A,
Linder H, Westman J, Chen D, Törngren M (2014) Experience
on applying software architecture recovery to automotive embed-
ded systems. In: 2014 software evolution week-IEEE conference
on software maintenance, reengineering and reverse engineering
(CSMR-WCRE). IEEE, pp 379–382

https://doi.org/10.1109/ISSREW.2012.83
https://doi.org/10.1109/ISSREW.2012.83
https://doi.org/10.1109/32.667878
https://doi.org/10.1109/32.667878
http://hal.archives-ouvertes.fr/hal-00848610
https://doi.org/10.1007/978-3-319-11653-2_14
https://doi.org/10.1007/978-3-319-11653-2_14
https://doi.org/10.1109/HASE.2015.21
https://doi.org/10.1007/s10703-017-0294-7
https://doi.org/10.1016/j.scico.2017.03.007
https://doi.org/10.1016/j.scico.2017.03.007
https://doi.org/10.1007/978-3-642-40793-2_16
https://doi.org/10.1007/978-3-642-40793-2_16
https://doi.org/10.1109/MS.2012.173
https://doi.org/10.1109/MS.2012.173
https://doi.org/10.1109/ISRE.1997.566873
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1007/3-540-48153-2_6

	Providing tool support for specifying safety-critical systems by enforcing syntactic contract conditions
	Abstract
	1 Introduction
	1.1 Contributions and validation

	2 Contracts theory
	2.1 Assertions, elements, and architectures
	2.2 Contracts
	2.3 Hierarchical structuring of requirements using contracts
	2.3.1 Contracts as requirement relations
	2.3.2 Contract structure for architecture
	2.3.3 Sufficient conditions on requirements in contract structure

	2.4 Extending contracts theory with SILs

	3 Support for authoring specifications by enforcing syntactic contract conditions
	3.1 Application context: authoring specifications
	3.1.1 Specifications
	3.1.2 Formalization of tasks in considered context
	3.1.3 Semiformal representations of requirements and architecture

	3.2 Feedback- and guidance-driven support for tasks (I)–(IV)
	3.2.1 Task (I): Specifying allocation of requirements to architecture elements
	3.2.2 Task (II): Specifying architecture element interfaces consisting of port variables
	3.2.3 Task (III): Specifying requirements
	3.2.4 Task (IV): Specifying trace links between requirements
	3.2.5 Applicability of proposed support

	3.3 Additional condition-enforcing support

	4 Implementation of specification tool in an industrial setting
	4.1 Goal and challenges of industrial case study
	4.2 Fuel level display system
	4.2.1 FLD architecture
	4.2.2 Contract structure for FLD architecture

	4.3 Referencing and dereferencing using linked data
	4.4 Using RDF for publishing and consuming linked data
	4.5 Integration of specification tool into industrial tool chain
	4.6 Authoring support in specification tool
	4.6.1 Task (I): Specifying allocation of requirements to architecture elements
	4.6.2 Task (II): Specifying architecture element interfaces consisting of port variables
	4.6.3 Task (III): Specifying requirements
	4.6.4 Task (IV): Specifying trace links between requirements
	4.6.5 Condition-enforcing support for specifying SILs

	4.7 Evaluation of tool support

	5 Related work
	6 Conclusion
	References

