
CCSDS Concept Paper: Aligning Messaging Efforts

Scott Burleigh
Stuart Fowell

Amalaye Oyake
June 6, 2005

Introduction
This document is a concept paper for the Consultative Committee for Space Data
Systems (CCSDS). CCSDS concept papers are working documents of the Consultative
Committee for Space Data Systems (CCSDS), its areas, and its working groups. CCSDS
concept papers are valid for a maximum of nine months and may be updated, replaced, or
obsoleted by other documents at any time.

Abstract
This concept paper proposes redirection of several current CCSDS standardization efforts
on application message exchange, with the aim of eliminating duplication of effort.
Specifically, it proposes:

! That those key elements of the SOIS Message Transfer Service (MTS) service
specification that are not already addressed by the SIS Asynchronous Message
Service (AMS) service specification be added to the latter.

! That development of MTS as a distinct product be discontinued.

! That the AMS specification be further augmented, as necessary, to assure that it
satisfies all requirements imposed on the MOIMS System Monitor and Control
Protocol (SMCP) that pertain to general-purpose messaging.

! That SMCP adopt AMS as its standard underlying end-to-end messaging service,
and that the SMCP effort focus on the standardization of SMC application
message syntax and semantics.

Background
The Message Transfer Service (MTS) effort within the CCSDS Spacecraft On-board
Interface Services (SOIS) area is aimed at defining “a standard service for mediating the
transfer of discrete data between on-board software applications in a (potentially)
distributed, on-board system.” It is documented in the “Spacecraft On-board Interface
Services – Message Transfer Service” Red Book, dated April 2005.

The Spacecraft Monitor and Control Protocol (SMCP) effort within the CCSDS Mission
Operations and Information Management Services (MOIMS) area is “an application level
protocol designed to meet the need for standardized spacecraft message syntax and
semantics.” It is documented in the “Spacecraft Monitor and Control Protocol” Red
Book, draft 0.4, dated January 2005. Additional remarks on the design intent of SMCP

 2

are noted in a detailed email from Roger Thompson posted to the [sis-ams] mailing list
on 28 January 2005.

The Asynchronous Message Service (AMS) effort within the CCSDS Space
Internetworking Systems (SIS) area defines “a standard system of communication –
messaging – among mission software modules.” It is documented in the “Asynchronous
Message Service (AMS)” concept paper dated August 2004.

It was observed at a CCSDS cross-area meeting in Athens (11 April 2005) that these
three projects all seem to be directed at standardizing application message exchange in
one way or another and that CCSDS resources might more effectively be allocated if they
were aligned so as to eliminate any duplication of effort. A study of this problem was
commissioned, and the present concept paper is the final report from that study.

Analysis and Discussion

Aligning MTS and AMS
At present, the MTS specification comprises only a detailed service interface definition,
with no definition of a supporting wire protocol. The AMS specification defines both a
service interface and the corresponding wire protocol. The two service interface
definitions overlap significantly, with little apparent conceptual conflict, but each
includes useful elements that the other omits. Nearly all of the MTS service elements
that are not already included in AMS constructively complement the current AMS service
elements.

The best way to align the two specifications, then, appears to be simply to (a) expand the
AMS service interface to encompass the union of the current MTS and AMS service
interfaces and (b) enhance the AMS wire protocol definition accordingly. Specific
elements of this expansion are discussed below; for details, please see Annex 2.

“Connection” awareness
The currently specified AMS Register, Unregister, Assert_subscription, and
Cancel_subscription indications notify the AMS user application of relevant changes in
the configuration of the message exchange continuum. The user application can use this
information to manage whatever concept of functional “connection” between itself and
other user applications it finds valuable.

However, no such indication is currently provided with regard to subjects on which user
applications are willing to accept messages but to which they don’t subscribe. We
propose to add service requests that assert and rescind “invitations” in addition to
subscriptions, and the corresponding Assert_invitation and Cancel_invitation indications
will remedy this omission.

As noted below, both subscriptions and invitations will be characterized by Quality of
Service (QoS) specifications indicating the priority and diligence with which messages
on the indicated subjects are to be transmitted. This enables association of QoS with
connections, somewhat as in MTS Red Book section 3.3.2.3.2, but at message subject
granularity.

 3

Abstract Quality of Service
We propose to provide a QoS specification parameter for the service primitives that
assert subscriptions and invitations. QoS specification indicates:

! The priority at which messages on the indicated subject are to be transmitted to
this user application: Express, Standard, Bulk.

! The “diligence” with which these messages are to be transmitted: Assured
(implying the need for some highly reliable transmission mechanism, such as
ARQ or erasure coding) or Best-effort (implying that no such diligence is
required).

AMS will use locale-specific QoS analysis rules in the Management Information Base
(MIB) to infer from the QoS specification the specific transmission mechanisms to
invoke. For example, in some contexts QoS = (Assured, Express) might imply the use of
the TCP “urgent” feature across a local area network.

Message delivery deadlines, notifications of message delivery
success and failure
We propose to provide a handling instructions parameter for the service primitives that
send original (non-reply) messages. Handling instructions indicate:

! Whether or not the message sender is to be notified when delivery failure is
confirmed.

! Whether or not the message sender is to be notified when delivery success is
confirmed.

! Optionally, the deadline by which delivery must be accomplished in order to be
considered successful.

A new Handling.indication primitive will report on confirmed delivery failure or success
as requested in handling instructions.

Security
Although there is no detailed definition of security services in the MTS Red Book, the
need for security measures in messaging is identified in the Requirements section of that
document. We therefore propose to add the following optional security elements to the
AMS specification:

! Node (user application) authentication

! Node service authorization

! Message confidentiality and integrity

For an overview of the specific mechanisms proposed, see section 2.3.8 in Annex 2.

Aligning SMCP with MTS and AMS
One suggestion as to what may be the right way to align SMCP with MTS (and with
AMS as well, if MTS and AMS are aligned as proposed above) appears in the second

 4

sentence of the SMCP Red Book’s section 6.2, in a discussion of the underlying link
protocols to use in the on-board system environment: “…candidates for an onboard
messaging service (MTS, CORBA, VxWorks Messages, etc).”

That is, SMCP is designed to be an application-level protocol that facilitates
interoperable end-to-end monitor and control of spacecraft subsystem elements – not a
general-purpose messaging service but rather an application capability which requires the
support of those general-purpose messaging services that are appropriate to the various
environments that an SMC message must traverse in its end-to-end path.

AMS as augmented with MTS services as described above can be one such service, and
potentially the only one that is needed. AMS as currently defined supports both the
request/response communication pattern required by SMCP (timeouts would need to be
added – a new Query.request primitive – but this is not difficult) and the
publish/subscribe pattern. SMCP messages would be carried as the payloads of AMS
messages. Since AMS handles the application-level message addressing and dispatching,
and therefore can report on the identity of the sender of each message, the sending
TARGET_NAME and CONTROLLER_NAME could be omitted from SMCP messages.
The AMS publish/subscribe functionality would make the SCMP REGISTER and
DEREGISTER messages unnecessary; the remaining SCMP messages implement core
SCMP functionality and do not overlap with AMS capabilities.

At the same time, there are aspects of the current SMCP specification that would likely
be useful to a wide range of messaging-based application-level services, not just SMCP.
These design elements could be abstracted from SMCP and realized instead in AMS,
yielding a simpler SMCP design and a more powerful and useful general-purpose
messaging service. Some discussion is offered below; for details, please see Annex 2.

Domain-independent transmission

As noted in the second paragraph of the SMCP Red Book section 1.3: “The SMCP will
operate over heterogeneous links using data-link protocols native to those environments.”
This ability to operate over a space network of heterogeneous links is critical to the
success of SMCP as a “common end-to-end monitor and control protocol”1.

However, that ability is potentially useful to protocols beyond SMCP as well. [We note
that CFDP’s extended procedures and store-and-forward overlay service are in part
intended to provide such a capability in the context of end-to-end file transfer.]

The AMS Concept Paper already provides this domain-independent transmission feature,
implicitly, by offering the Delay-Tolerant Networking architecture’s “Bundling” protocol
as on of its own underlying transport services2. Bundling is expressly designed to convey

1 SMCP Red Book section 1.1.

2 See AMS Concept Paper section 2.3.1, second paragraph, and section 6.

 5

data over an arbitrary series of heterogeneous links, and moreover to do so in a manner
that is unaffected by the long signal propagation delays and frequent lapses in
connectivity that characterize a space network.

Although the design of the Bundling protocol is still somewhat mutable at this writing, a
number of implementations exist and the reference implementation is in use by a rapidly
growing research community. Bundling, and the AMS adaptation enabling its use of
Bundling, will be stable in time to support SMCP development and testing some time in
2006. We therefore propose that SMCP rely on AMS for end-to-end transmission of
messages across the heterogeneous space network.

Content coding

The SMCP Red Book contains a number of allusions to the problem of encoding
spacecraft message data in a manner that is suitable for transmission over heterogeneous
and potentially bandwidth-constrained links. In particular it is noted that “Considerations
must be made for a standard encoding of spacecraft messages.”3

But the problem is arguably even more profound than the efficient encoding of spacecraft
message data: for true interoperability it might be desirable to provide each mission or
program with a standard means of dynamically defining the syntax of its own
application-specific messages – the data parameters of each message – and automatically
assuring that message encoding conforms to that syntax. This capability is one of the
advantages of building mission data systems around a centrally managed “mission
information model” as in the Command, Control, Communications, and Information
architecture that has been proposed for NASA’s Constellation program.

We therefore propose that message content encoding and decoding be part of the message
transmission service provided by AMS: on transmission, message content will be
marshaled from a format that is locally suitable for processing into one that is suitable for
transmission; on message reception, message content will be un-marshaled back into
local format. Message syntax and marshaling procedures will be encoded in the AMS
Management Information Base (MIB), which would supplant (and be much more capable
than) the “subject service” currently included in the AMS design. By adopting this
model we open the door for the definition of a separate mission information model
management and propagation service that, notionally, would populate the MIBs of AMS
nodes. That service would be independent of both AMS and SMCP and would support
not only these protocols but potentially a wide range of others.

3 SMCP Red Book section 2.4. It is also proposed in section 7 of the Red Book that the encoding of a
message might be different on different links of the end-to-end path, depending on the resource constraints
to which each link is subject. However, changing the manner in which message content is encoded
imposes some computational overhead and can complicate network and application troubleshooting. A
better approach might be to select a single efficient standard encoding and use it on all links, even including
those in which bandwidth constraints are not so severe as to make it strictly necessary.

 6

Recommendation
Summing up the analysis presented above, we propose:

! That those key elements of the SOIS Message Transfer Service (MTS) service
specification that are not already addressed by the SIS Asynchronous Message
Service (AMS) service specification be added to the latter: abstract quality of
service, message delivery deadlines, notification of message delivery success
and/or failure, “connection” awareness, and security.

! That development of MTS as a distinct product be discontinued.

! That the AMS specification be further augmented, as necessary, to assure that it
satisfies all requirements imposed on the MOIMS System Monitor and Control
Protocol (SMCP) that pertain to general-purpose messaging: content coding (with
reference to a mission information model that, for now, remains notional) and
domain-independent transmission.

! That SMCP adopt AMS as its standard underlying end-to-end messaging service,
and that the SMCP effort focus on the standardization of SMC application
message syntax and semantics.

References
Asynchronous Message Service (AMS) Concept Paper, August 2004.

Bundle Protocol Specification, draft-irtf-dtnrg-bundle-spec-02.txt, September 2004.

Spacecraft On-board Interface Services – Message Transfer Service Red Book, April
2005.

System Monitor and Control Protocol Red Book, January 2005.

 7

Annex 1: Email from Roger Thompson

From: <Roger.Thompson@scisys.co.uk>
To: "Scott Burleigh" <Scott.Burleigh@jpl.nasa.gov>
Cc: <Sam.Cooper@scisys.co.uk>
Subject: Re: [Sis-ams] AMS deliberations
Date: Thursday, January 27, 2005 8:56 AM

Hello Scott,

Happy New Year!

November does seem a long time ago, so I'm afraid I am having a little difficulty
remembering what the specific issue was that I brought up that was not addressed by your
initial AMS concept. My main recollection is how well the concept fitted with the
MOIMS Mission Operations [MO]service concept.

I will try and summarise our messaging requirements.
The application level MO services would be overlaid on a Common service layer. The
MO Common layer provides support for a [hopefully small] set of interaction patterns.
These in turn would be implemented through [potentially multiple] underlying
communications technologies/protocols. Obviously, it would unify the CCSDS world if
there is a good match between these and the messaging services provided by SIS.

I attach I diagram I put together during the November meeting after your presentation ...

We are in the process of, but have not completed, definition of the MO Common
Services. My preliminary view is that we only need a small set of fundamental
interaction patterns:

 8

- Publish Subscribe
- Request/Response
- Mail?
- File Transfer

The following shows a summary view of our common service pattern for MO services:

It is the red services between service consumer and provider that we see as being the
principle subject for AMS, although the Replay service should have a high degree of
commonality with Observe.

Publish/Subscribe would support the MO Common "observe" service, in which the
service Consumer would register interest in a subset of available objects and the Provider
would respond with asynchronous status update messages. The published objects are
either pre-defined [in the configuration data] and known in advance to both consumer and
provider, or dynamically created by the provider, in which case the consumer can only
subscribe to a specific object if its ID has been obtained in advance [e.g. in a response to
a Control message], otherwise subscription is to a scoped sub-set.

Request/Response would be used for transactional message exchanges, and could be used
to support the MO Common "control" and "manage" services. Two cases have been
identified: 1) a control message from service Consumer to the Provider, with optional
response(s) from the Provider; 2) a request message from service Consumer, with an
associated response message containing the requested data.

By "Mail" I mean an e-mail like service, involving delivery of messages to a mailbox,
that the recipient can retrieve messages from at some later point in time. Useful for
unsolicited messages from Provider to Consumer.

 9

I'm not sure whether or not an e-Mail type interaction is necessary, or even whether it is
significantly different to Request/Response. I suppose we were starting from the position
that the Request/Response interface is based on an open end-to-end connection/session
between consumer and provider, while Mail implied some form of connectionless store-
and-forward. However, this distinction may not be necessary if requests and responses
do not require an open connection, in order to handle discontinuous contact.

File/Transfer would allow for bulk data transfer between service consumer and provider,
in either direction. In a SIS context, we assumed this would be provided by CFDP, not
EMS.

All services would need to exist within a partitioned context. In this sense the world is
partitioned in two dimensions:

"Domain":

This is used to decompose the world into a scoping hierarchy, to ensure uniqueness of
identifiers, etc.: i.e. Mission.Spacecraft.Subsystem.Component.Object

The same service may be instantiated for multiple domains. Its a good idea to make sure
you're connecting to the right spacecraft ...

"Session" or Timeframe or, I believe the term you used was "Continuum":

This is used to separate data that would otherwise be potentially identically keyed - live
operational data, multiple simulated or test data series, and maybe historical replay data
series.

The timeframe can be different for each session: the live session is presumably
synchronised with the present; simulated sessions can be in the past, present or future;
replay sessions can be past or future. Timeframe for simulated and replay is externally
controllable - it may be paused and stepped; or evolve at a real-time rate, faster or slower
than real-time, or at a random rate [e.g. as fast as possible]. Not sure if this has any
impact at all, other than the potential for "continua" to be dynamically created ...Not all
services would be available for replay sessions - you can observe history, but not change
it.

Other issues to be considered:
- User [Consumer] Authentication: access rights may be limited to certain services for
certain domains and certain classes of session
- Security
- Quality of Service

Not sure if that's got close enough to the issue to identify the issue raised in November.
Sorry its a bit of a ramble ...

Roger Thompson
SciSys Ltd.

 10

Annex 2: Proposed AMS Service Interface

1 Introduction

1.1 Purpose and Scope

1.2 Applicability

1.3 Conventions and Definitions

2 Overview

2.1 General

2.1.1 Architectural character

A data system based on AMS has the following characteristics:

! Any module may be introduced into the system at any time. That is, the order in
which system modules commence operation is immaterial; a module never needs
to establish an explicit a priori communication “connection” or “channel” to any
other module in order to pass messages to it or receive messages from it.

! Any module may be removed from the system at any time without inhibiting the
ability of any other module to continue sending and receiving messages. That is,
the termination of any module, whether planned or unplanned, only causes the
termination of other modules that have been specifically designed to terminate in
this event.

! When a module must be upgraded to an improved version, it may be terminated
and its replacement may be started at any time; there is no need to interrupt
operations of the system as a whole.

! When the system as a whole must terminate, the order in which the system’s
modules cease operation is immaterial.

AMS-based systems are highly robust, lacking any innate single point of failure and
tolerant of unplanned module termination. At the same time, communication within an
AMS-based system can be rapid and efficient:

! Messages are exchanged directly between modules (nodes) rather than through
any central message dispatching nexus.

! Messages are automatically conveyed using the “best” (typically – though not
necessarily – the fastest) underlying transport service to which the sending and

 11

receiving modules both have access. For example, messages between two ground
system modules running in different computers on a common LAN would likely
be conveyed via TCP/IP, while messages between modules running on two flight
processors connected to a common bus memory board might be conveyed via a
shared-memory message queue.

Finally, AMS is designed to be highly scalable: partitioning message spaces into zones
enables an application instance to comprise hundreds or thousands of cooperating
modules without significant impact on application performance.

2.1.2 Message exchange models

AMS message exchange is fundamentally asynchronous. That is, each message is sent in
a “postal” rather than “telephonic” manner: upon sending a message, an AMS node need
not wait for arrival of any message (such as a reply to the message it sent) before
continuing performance of its functions.

Although message exchange among nodes is asynchronous, for some purposes it may be
desirable to apply the information in a reply message (received asynchronously) to the
context in which the antecedent message was published. To this end, AMS enables a
node to include a context number in any original (non-reply) message; AMS procedures
can be used to reply to any original message, whether published or sent privately, and the
reply to a message automatically includes an echo of the context number (if any)
embedded in the original message. This number can be used to retrieve some block of
contextual information, enabling the original message sender to link the information in a
reply message to the application activity which caused the antecedent message to be
issued, so that this activity may be continued in a pseudo-synchronous fashion. The
specific mechanism used to establish this linkage is an implementation matter.

For some purposes true message synchrony may be necessary as well: that is, it may be
desirable for a node that has issued a message to suspend operations altogether until a
reply is received – to query some other node. AMS procedures additionally support this
communication model when it is required.

Most message exchange in an AMS-based data system is conducted on a “publish-
subscribe” model:

! A node uses AMS procedures to announce that it is subscribing to messages on a
specified subject.

! From that time on (until the subscription is canceled), whenever any node in the
message space uses AMS procedures to publish a message on that subject, a copy
of the message is automatically delivered to that subscribing node and to all
others that have announced similar subscriptions.

This model can greatly simplify application development and integration. In effect, each
node plugs itself into a data "grid", much as producers and consumers of electric power –

Deleted: All

Deleted: all

 12

for example, a hydroelectric plant and a kitchen toaster – plug into an electric power grid.
An AMS node can insert into such a data grid whatever data it produces, without having
to know much about the consumer(s) of that data, and draw from the grid whatever data it
requires without having to know much about the producer(s). The design of a node is
largely decoupled from the designs of all other nodes in the same way that the design of a
toaster is largely decoupled from the design of a power plant.

For some purposes, though, it may still be necessary for a node to send a message
privately and explicitly to some specific node, e.g., in reply to a published message.
Again, AMS procedures support this communication model as well when it is required.

2.2 Architectural elements

2.2.1 General

The architectural elements involved in the asynchronous message service protocol are
depicted in Figure 1 and described below.

Figure 1: Architectural Elements of AMS

2.2.2 Communicating entities

All AMS communication is conducted among three types of communicating entities:
nodes (defined earlier), registrars, and configuration servers.

configuration
service

RAMS
gateway

Registrar

Message space for
application Q, authority R

Zone A Zone B

Registrar

Node Z Node X Node Y
(a new node)

application messages

application
messages

application
messages

configuration
MIB

AMS Continuum

registrar
location
query and
response

new zone
specification

zone
registration

reconfig
messages

heartbeat,
ack, reconfig

heartbeat,
ack, reconfig

node
registration

remote AMS
messages

application
messages

Deleted: four

Deleted: subject servers,

 13

A registrar is a communicating entity that catalogues information regarding the nodes
that populate a single zone of a message space. It responds to queries for this
information, and it updates this information as changes are announced.

A configuration server is a communicating entity that manages a database of
configuration information for a single continuum. In particular, it catalogues information
regarding the message spaces that the continuum comprises, notably the locations of all
registrars. It responds to queries for this information, and it updates this information as
changes are announced.

2.3 Overview of interactions

2.3.1 Transport services for application messages

AMS occupies a position in the OSI protocol stack model somewhere between level 4
(Transport) and level 7 (Application); AMS might best be characterized as a messaging
“middleware” protocol. As such, it relies on the capabilities of underlying Transport-
layer protocols to accomplish the actual copying of a message from the memory of the
sending node to the memory of the receiving node. It additionally relies on those
capabilities to accomplish the transmission of meta-AMS (or MAMS) messages to and
from registrars and configuration servers that enables the dynamic self-configuration of
AMS message spaces.

For any given AMS continuum, some common transport service must be utilized for
MAMS traffic by all communicating entities involved in the operations of all message
spaces in the continuum. The transport service selected for this purpose is termed the
continuum’s Primary Transport Service or PTS. Selection of the PTS for a continuum is
an implementation matter; the “Bundling” protocol of the Delay-Tolerant Networking
architecture is a plausible choice, but for some continua an implementation based on
UDP/IP may be more appropriate.

The PTS clearly can also be used for application message exchange among all nodes in a
continuum, as it must be universally available for MAMS message exchange. In some
cases, however, improved application performance can be achieved by using a different
transport service for message exchange between nodes that share access to some
especially convenient communication medium, such as a shared-memory message queue.
These performance-optimizing transport services are termed Supplementary Transport
Services or STSs.

2.3.2 Registrar registration

Every message space always comprises at least one zone, and each node resides within
(is registered in) some zone; in the simplest case all nodes of the message space reside in
the same zone. Each zone is served by a single registrar, which is responsible for
monitoring the health of all nodes in the zone and for propagating six kinds of message
space configuration changes: node registrations and terminations, subscription and
invitation assertions, and subscription and invitation cancellations. On receipt of one of

Deleted: A subject server is a
communicating entity that manages a
database of subject names and
corresponding subject numbers for a
single message space. It responds to
queries for this information, and it
updates this information as changes are
announced.¶

Deleted: subject servers and all

Deleted: , subject servers,

Deleted: four

 14

these reconfiguration messages from a node in its own zone, the registrar immediately
propagates the message to every other node in the same zone and then to the registrars of
all other zones in the message space; on receiving such a message from a remote zone's
registrar, the registrar propagates it to all nodes in its own zone.

The registrars themselves register with the configuration server for the continuum within
which the message space is contained. A list of all possible network locations for the
configuration server, in order of descending preference, must be “well known” – that is,
included in the AMS management information bases (MIBs) exposed to all registrars for
all message spaces in the continuum – and each continuum must have a configuration
server in operation at one of those locations at all times in order to enable registrars and
nodes to register. (The manner in which this latter requirement is satisfied is an
implementation matter. One advantage of selecting the DTN Bundling protocol as the
PTS for a continuum is that the “resilient delivery” features of Bundling may provide a
simple solution for this problem: when a configuration server registers with its bundle
agent, it can supply a script that will reanimate that server automatically in the event that
a bundle carrying a MAMS message arrives following a configuration server crash.)

All registrars and nodes of the same message space must register through the same
configuration server. The registrars and nodes for any number of different message
spaces may register with the same configuration server.

2.3.3 Node registration

Each node has a name, an application-specific ASCII string containing no whitespace,
which generally connotes its function within the application but need not uniquely
identify it within its message space. Each node also has a single associated meta-AMS
access point (MAAP) at which the node is prepared to receive MAMS messages.

A new node joins a message space by registering itself within some zone of the message
space, i.e., by announcing its name and its MAAP to the zone's registrar. However,
knowledge of how to communicate with that registrar can't be hard-coded into the node
because the relevant registrar might be running at different network locations at different
times.

For this reason, the first step in registering a new node is to contact the configuration
server at one of its well-known possible network locations; as with the registrars, a list of
all possible network locations for the configuration server, in order of descending
preference, must be included in the AMS MIBs exposed to all application nodes. The
configuration server tells the new node how to contact its registrar. The node obtains a
unique numeric node ID from the registrar and thereby registers. The registrar ensures
that all other nodes in the message space learn the new node's name, node ID, and
MAAP. Those nodes in turn announce their own names, node IDs, and MAAPs to the
new node.

Deleted: to the

Deleted: ,

Deleted: one or more "network
identities", one for each underlying
transport service on

Deleted: network identities

Deleted: its well-known network
location

Deleted: network identities

Deleted: network identities

 15

2.3.4 Monitoring node health

In order to acquire and maintain accurate knowledge of the configuration of a message
space (for application purposes, and also to avoid wasting resources on attempts to send
messages to nonexistent nodes or per concluded subscriptions), it is important for each
registrar always to detect the terminations of nodes in its zone. When a node terminates
under application control it automatically notifies its registrar that it is stopping.
However, if a node crashes – or the host on which a node resides is simply powered off
or rebooted – no such notification is transmitted to the registrar. For this reason, every
node automatically sends a "heartbeat" message to its registrar every twenty seconds.
The registrar interprets three successive missing heartbeats as an indication that the node
has terminated.

Whenever it detects the termination of a node (either an overt termination or a
termination imputed from heartbeat failure), the registrar informs all other nodes in the
zone – and, via other registrars, all other nodes in the message space – of the node's
demise.

When the termination is imputed from a heartbeat failure, the registrar also tries to send a
message to the terminated node telling it that it has been presumed dead; if this node is in
fact still running (perhaps it had merely hung trying to write on a blocked file descriptor),
it terminates immediately on receipt of this message. This minimizes system confusion
due to other application behavior that may have been triggered by the imputed
termination.

2.3.5 Monitoring registrar health

In addition to monitoring the heartbeats of all nodes in its zone, each registrar issues its
own heartbeats to those nodes on the same cycle. Each node interprets three successive
missing registrar heartbeats as an indication that the registrar itself has crashed. On
detecting a registrar crash, the node presumes that the registrar has been restarted since it
crashed; it re-queries the configuration server to determine the new network location of
the registrar and resumes exchanging heartbeats.

This presumption is reasonable because the reciprocal heartbeat monitoring relationship
between a registrar and its nodes is replicated in the relationship between the
configuration server and all registrars, but on a slightly shorter cycle. The configuration
server interprets three successive missing registrar heartbeats as an indication that the
registrar has crashed; on detecting such a crash it automatically restarts the registrar,
possibly on a different host, so by the time the registrar's nodes detect its demise it should
already be running again.

Since the node heartbeat interval is twenty seconds, within the first sixty seconds after
restart the registrar will have received heartbeat messages from every node that is still
running in the zone and will therefore know accurately the configuration of the zone.
This accurate configuration information must be delivered to new nodes at the time they
start up (so that they in turn are qualified to orient a newly-restarted registrar to the zone's

Deleted: (The same is true of subject
servers, as discussed later.)

 16

configuration in the event that the registrar crashes). For this reason, during the first sixty
seconds after the registrar starts it accepts only MAMS messages from nodes that are
already registered in the zone (i.e., have been assigned node IDs); if it accepted and
processed a registration message from a new node before being certain of the status of all
old ones, it would run the risk of delivering incorrect information to the new node.

2.3.6 Configuration service fail-over

It's of course also possible for a configuration server to be killed (or for its host to be
rebooted, etc.). Each registrar interprets three successive missing configuration server
heartbeats as an indication that the configuration server has crashed. On detecting such a
crash, the registrar begins cycling through all of the well-known possible network
locations for the continuum’s configuration server, trying to re-establish communication
after the server’s restart, possibly at an alternate network location. While it is doing so it
is not issuing heartbeats or responding to other messages, so eventually all nodes may
infer that their registrars have crashed and therefore begin re-querying the now-dead
configuration server to re-establish communication with their registrars; when the
configuration server fails to respond, the nodes too will begin cycling through network
locations seeking a restarted configuration server. While they are doing so, they too will
not be responding to messages, so all message space activity will eventually come to a
halt.

When the configuration server is restarted at one of its well-known possible network
locations, however, all registrars will eventually find it and re-announce themselves to it,
so that when application nodes finally find it they can re-establish communication with
their registrars; all application processing will thereupon resume.

It is possible, in this sort of failure scenario, that multiple configuration servers may be
operating concurrently for a brief time; for example, the perceived failure of a
configuration server might have been caused by a transient network connectivity failure
rather than an actual server crash. To resolve this sort of situation, each running
configuration server periodically sends an “I am running” MAMS message to every
lower-ranking configuration server network location in the well-known list of
configuration server locations. When a configuration server receives such a message, it
immediately terminates; all registrars and nodes that were communicating with it will
detect its disappearance and search again for the highest-ranking reachable configuration
server, eventually bringing the continuum back to orderly operations.

2.3.7 Configuration resync

Finally, every registrar can optionally be configured to re-advertise to the entire message
space the detailed configuration of its zone (all active nodes, all subscriptions and
invitations) at some user-specified frequency, e.g., once per minute. This capability is
referred to as configuration resync. Configuration resync of course generates additional
message traffic, and it may be unnecessary in extremely simple or extremely stable
operating environments. But it does ensure that every change in application message
space configuration will eventually be propagated to every node in the message space,

 17

even if some MAMS messages are lost and even if an arbitrary number of registrars had
crashed at the time the change occurred.

Taken together, these measures make AMS applications relatively fault tolerant:

! When a node crashes, its registrar detects the loss of heartbeat within three
heartbeat intervals and notifies the rest of the message space. Message
transmission everywhere is unaffected.

! When a registrar crashes, its configuration server detects the loss of heartbeat
within three heartbeat intervals and restarts the registrar. During the time that the
zone has no registrar, transmission of application messages among nodes of the
message space is unaffected, but the heartbeat failures of crashed nodes are not
detected and reconfiguration messages originating in the zone (registrations,
terminations, subscription and invitation assertions, and subscription and
invitation cancellations) are not propagated to any nodes. However, after the
registrar is restarted it will eventually detect the losses of heartbeat from all
crashed nodes and will issue obituaries to the message space, and if configuration
resync is enabled it will eventually re-propagate the lost reconfiguration
messages.

! When a configuration server crashes, all activity may eventually come to a
standstill. But no application nodes fail (at least, not because of communication
failure), and on restart of the configuration server all activity eventually resumes.

2.3.8 Security

AMS can be configured to confine service access to application modules that can prove
they are authorized to participate. For this purpose, asymmetric MAMS encryption may
be used within a given message space as follows:

! The AMS MIB exposed to the configuration server contains a list of all zones in
which registration service may be offered within the message space, identified by
registrar name – the concatenation of application name, authority name, and zone
name. Associated with each registrar name is the AMS public encryption key for
that zone’s registrar.

! The AMS MIB exposed to every registrar in the message space contains a list of
all node names under which modules may register in that message space.
Associated with each node name is the AMS public encryption key for the
application node(s) that may register under that name.

! The AMS MIBs exposed to all registrars and application nodes in the message
space contain the AMS public encryption key of the configuration server.

Formatted: Bullets and Numbering

 18

! The AMS MIBs exposed to the configuration server and to all registrars and
application nodes in the message space contain those entities’ own AMS private
encryption keys.

As described later, this information is used to authenticate registrar registration and
exclude spurious registrars from the message space, to authenticate node registration
attempts and deny registration to unauthorized application modules, and to assure the
authenticity, confidentiality, and integrity of MAMS traffic exchanged between nodes
and their registrars.

In addition, the confidentiality and integrity of AMS message exchange may be protected
at subject granularity. The AMS MIB exposed to each node of a given message space
may contain, for any subset of the message subjects (identified by name and number)
used in the message space:

! a list of the names of all nodes that are authorized senders of messages on this
subject;

! a list of the names of all nodes that are authorized receivers of messages on this
subject;

! encryption parameters, including a symmetric encryption key, enabling
encryption of messages on this subject.

This information may be used to support secure transmission of messages on selected
subjects.

The structure of security information elements and the manner in which MIBs are
populated with these elements are implementation matters.

2.3.9 Subject catalog

The structure of the content of messages on a given subject is application-specific;
message content structure is not defined by the AMS protocol. However, the AMS MIB
exposed to all nodes of a given message space will contain, for each message subject
(identified by name and number) used in the message space:

! a description of this message subject, discussing the semantics of this type of
message;

! a detailed specification of the structure of the content of messages on this subject;

! optionally, a specification of the manner in which a correctly assembled message
is marshaled for network transmission in a platform-neutral manner and, on
reception, un-marshaled into a format that is suitable for processing by the
application.

Formatted: Bullets and Numbering

Deleted: service

 19

When AMS is requested to send a message on a given subject, the message content that is
presented for transmission is always in a format that is suitable for processing by the
application. In the event that this format is not suitable for network transmission in a
platform-neutral manner, as indicated by the presence in the MIB of a marshaling
specification for this subject, AMS will marshal the message content as required before
transmitting the message.

When AMS receives a message on a subject for which a marshaling specification is
present in the MIB, AMS will un-marshal the message content into a format that is
suitable for processing by the application before delivering the message.

The structure of subject catalog information elements, the manner in which MIBs are
populated with these elements (e.g., by linkage to an external information model), and the
manner in which message contents are marshaled and un-marshaled are implementation
matters.

Message subjects, as noted earlier, are integers with application-defined semantics. This
minimizes the cost of including subject information (in effect, message type) in every
message, and it can make processing in an AMS implementation simpler and faster:
subscription and invitation information may be recorded in dynamically allocated and
possibly sparse arrays that are indexed by subject number.

This implementation choice, however, would require that message management control
arrays be large enough to accommodate the largest subject numbers used in the
application. The use of extremely large subject numbers would therefore cause these
arrays to consume huge amounts of memory. In general, it is best for an AMS
application to use the smallest subject numbers possible, starting with 1. AMS MIB
developers should bear this in mind.

2.3.10 Remote AMS message exchange

Because issuance of an asynchronous message need not suspend the operation of the
issuing node until a response is received, AMS’s message exchange model enables a high
degree of concurrency in the operations of data system modules; it also largely insulates
applications from variations in signal propagation time between points in the AMS
continuum.

However, some critical MAMS communication is unavoidably synchronous in nature: in
particular, a newly registering node must wait for responses from the configuration
server, the registrar, and the other nodes in its message space before proceeding with
application activity. For this reason, the core AMS protocol is most suitable for use in
operational contexts characterized by generally uninterrupted network connectivity and
relatively small and predictable signal propagation times, such as the Internet or a stand-
alone local area network. It is usually advantageous for all entities of any single AMS
continuum to be running within one such “low-latency” network.

Formatted: Bullets and Numbering

Deleted: message handling

Deleted: One way to ensure this is to
require that applications cite message
subjects by symbolic name, rather than
cite the subject numbers themselves, and
let the AMS infrastructure automatically
assign the smallest unused subject
numbers to subjects as their names are
declared. To support the mapping of
subject names to numbers, and vice versa,
subject definition services are provided
by the message space’s subject server.¶
The subject server manages a private
database of subject definitions for the
message space. Each subject definition
pairs a subject name (an application-
specific ASCII string containing no
whitespace) with a subject number and,
optionally, a message content format
string. The subject server itself assigns
numbers sequentially (starting at 1) to
subject names, in the order in which the
subject names are declared to it by
application nodes. It responds to subject
number queries by returning the
corresponding subject names and to
subject name queries by returning the
previously assigned subject numbers.¶
Subject names are also the basis for
Remote AMS communication, described
below. Since subject names might be
declared in different sequences within
different message spaces – for the same
application instance, but in different
continua – they may be mapped to
different numbers. But so long as subject
naming consistency is maintained when
applications are developed, the inter-
continuum Remote AMS communication
between subject servers will accurately
replicate subscription and publication in
all message spaces.¶
The AMS heartbeat discipline monitors
the health of subject servers just as it
monitors the health of registrars: the
configuration server interprets three
successive registrar heartbeat delivery
failures as an indication that the subject
server has crashed. On detecting such a
crash it automatically restarts the subject
server, possibly on a different host.
Subject servers, again like registrars, also
expect heartbeats from the configuration
server and respond to a configuration
server failure in the same way that
registrars do.¶

 20

AMS application messages may readily be exchanged between nodes in different AMS
continua, however, by means of the auxiliary Remote AMS (RAMS) protocol. RAMS
procedures are executed by special-purpose application nodes called RAMS gateways:

! Each RAMS gateway opens persistent, private RAMS communication channels to
the RAMS gateways of other message spaces for the same application instance, in
other continua.

! The interconnected RAMS gateways use these channels to forward subscription
assertions and cancellations among themselves. Each RAMS gateway subscribes
locally to all subjects that are of interest in any of the linked message spaces.

! On receiving its copy of a message on any of these subjects, the RAMS gateway
node uses RAMS to forward the message to every other RAMS gateway to which
it’s linked whose message space contains at least one other node that has
subscribed to messages on that subject.

! On receiving a message via RAMS from some other RAMS gateway, the RAMS
gateway node simply publishes the message in its own message space.

In this way the RAMS protocol enables the free flow of application messages across
arbitrarily long deep space links while protecting efficient utilization of those links: only
a single copy of any message is ever transmitted on any RAMS channel, no matter how
many subscribers will receive copies when the message reaches its destination
continuum.

Again, this extension of the publish/subscribe model to interplanetary communications is
invisible to application nodes. Application functionality is unaffected by these details of
network configuration, and the only effects on behavior are those that are intrinsic to
variability in message propagation latency.

3 Service descriptions

3.1 Services provided to the application

3.1.1 Summary of primitives

The AMS service shall consume the following request primitives:

a) Register.request;

b) Unregister.request;

c) Assert_invitation.request;

d) Cancel_invitation.request;

e) Assert_subscription.request;

Formatted: Bullets and Numbering

Deleted: the subject servers of message
spaces

Deleted: subject server

Deleted: subject servers

Deleted: subject servers

Deleted: subject server, acting as a
node,

Deleted: subject server

Deleted: subject server

Deleted: subject server

Deleted: subject server

 21

f) Cancel_subscription.request;

g) Publish.request;

h) Send.request;

i) Query.request;

j) Reply.request;

The AMS service shall deliver the following indication primitives:

a) Message.indication;

b) Handling.indication;

c) Reply.indication;

d) Fault.indication;

e) Register.indication;

f) Unregister.indication;

g) Assert_invitation.indication;

h) Cancel_invitation.indication;

i) Assert_subscription.indication;

j) Cancel_subscription.indication.

3.1.2 Service primitive parameters

NOTE – The availability and use of parameters for each primitive are indicated in the
definitions of primitives below, where parameters that are optional are
identified with square brackets [thus]. The following parameter definitions
apply.

3.1.2.1 The application name parameter shall identify the application served by a
message space’s application instance.

3.1.2.2 The authority name parameter shall identify the organizational unit that is
responsible for a message space’s application instance. The combination of
application name and authority name shall uniquely identify a message space.

3.1.2.3 The zone name parameter shall identify, within a given message space, some
administrative subset of nodes.

3.1.2.4 The node name parameter shall indicate the functional nature of a node.

Formatted: Bullets and Numbering

Deleted: <#>Declare_subject.re
quest;¶
<#>Look_up_subject.request.¶

Deleted: ;

Deleted: <#>Subject.indication.¶

 22

3.1.2.5 The Meta-AMS access point (MAAP) specification parameter shall be a
transport service endpoint specification characterizing the manner in which a
node is prepared to receive MAMS messages. The MAAP specification shall
identify a functional endpoint of the AMS continuum’s primary transport
service. The syntax in which a transport service endpoint specification is
represented is transport service-specific; definitions of valid endpoint
specification syntax for all recognized transport services are given in Annex C.

3.1.2.6 The node ID parameter shall uniquely identify a node within the message space
in which it is registered.

3.1.2.7 The subject name parameter shall indicate the general nature of the application
data in a message.

3.1.2.8 The delivery specification parameter shall characterize the manner in which a
node is prepared to receive AMS messages on a given subject. The delivery
specification shall comprise a Quality of Service (QoS) specification and
optionally a list of one or more explicit delivery point specifications. The QoS
specification shall indicate (a) the priority at which messages on this subject
must be issued (Express, Standard, Bulk) and (b) the diligence with which
delivery of messages on this subject must be attempted (Assured – nominally
implying acknowledgement and retransmission as necessary – or Best-effort).
In the absence of an explicit delivery point specification list, an implied
delivery point specification list shall be inferred, based on the QoS specification
together with the standard delivery preferences noted in the node’s AMS MIB.
If noted explicitly, delivery point specifications shall be listed in declining order
of preference; that is, the delivery point on which the node most prefers to
receive messages shall be specified first, followed by the next-most-preferred
delivery point, and so on. Each delivery point specification shall associate a
transport service name with a transport service endpoint specification as
described earlier. The transport service name shall be the name of the AMS
continuum’s primary transport service or the name of one of the continuum’s
supplementary transport services.

3.1.2.9 The context parameter shall be a number that identifies the application context in
which a message was sent, if any. The significance and interpretation of this
number are implementation matters. Conceptually, the context parameter
functions within AMS as a message identifier. The context in which a reply is
sent must be the additive inverse of the context in which the reply’s antecedent
message was sent; the context in which any non-reply message is sent must be
non-negative.

3.1.2.10 The content length parameter shall indicate the length (in octets) of the content
parameter.

Formatted: Bullets and Numbering

Deleted: <#>The node specifiction
parameter shall be an ASCII text string
that characterizes the manner in which a
node is prepared to receive AMS
messages. The node specification shall
comprise a comma-separated list of one
or more port specifications in declining
order of preference; that is, the port on
which the node most prefers to receive
messages is specified first, followed by
the next-most-preferred port, and so on.
Each port specification shall be the
concatenation of a transport service
name, an “equals” (=) symbol, and a
transport service endpoint specification,
in that order. The transport service name
shall be the name of the AMS
continuum’s primary transport service or
the name of one of the continuum’s
supplementary transport services. The
syntax in which the transport service
endpoint specification is represented shall
be specific to the indicated transport
service. Definitions of valid endpoint
specification syntax for all recognized
transport services are given in Annex C.¶

Deleted: The subject format parameter
shall provide information enabling an
application to parse the application data
in any message of a given subject

Deleted: an original (non-reply)

 23

3.1.2.11 The content parameter shall be an array of zero or more octets comprising the
application data in a message, in a format that is suitable for processing by the
application.

3.1.2.12 The handling instructions parameter shall indicate the manner in which delivery
of a message is to be regulated. Handling instructions shall indicate (a) whether
or not the message sender is to be notified when delivery failure is confirmed,
(b) whether or not the message sender is to be notified when delivery success is
confirmed, and (c) optionally the deadline by which delivery must be
accomplished in order to be considered successful.

3.1.2.13 The term parameter shall indicate the length of time following message
transmission within which a reply message should be received. If the term
expires before the reply is received, the query has “timed out”.

3.1.2.14 The fault expression parameter shall indicate the nature of an operational fault
encountered by AMS. The syntax of fault expressions is an implementation
matter.

3.1.2.15 The inferred QoS specification parameter shall indicate the QoS (priority and
diligence) with which the node has requested that messages on this subject be
issued to it.

3.1.3 Register.request

3.1.3.1 Function

The Register.request primitive shall be used by the node to commence its participation
in a message space.

3.1.3.2 Semantics

Register.request shall provide parameters as follows:

Register.request (application name,
authority name,
zone name,
node name,
[MAAP specification])

3.1.3.3 When Generated

Register.request is generated by the node at any time while the node is not currently
participating in its message space.

Formatted: Bullets and Numbering

Deleted: node

 24

3.1.3.4 Effect on Receipt

Receipt of Register.request shall, if approved, cause AMS to add the node to the
indicated message space zone.

3.1.3.5 Additional Comments

If MAAP specification is omitted, a default MAAP specification based on preferences
noted in the AMS MIB shall be computed.

3.1.4 Unregister.request

3.1.4.1 Function

The Unregister.request primitive shall be used by the node to terminate its
participation in a message space.

3.1.4.2 Semantics

Unregister.request shall provide parameters as follows:

Unregister.request (node ID)

3.1.4.3 When Generated

Unregister.request is generated by the node at any time while the node is participating
in its message space.

3.1.4.4 Effect on Receipt

Receipt of Unregister.request shall cause AMS to remove the node from the indicated
message space zone.

3.1.4.5 Additional Comments

The node ID provided in the Unregister.request primitive must be the one that was
provided in the Register.indication primitive that notified the node of its own
successful registration4.

4 The manner in which AMS service indications are linked to the AMS service requests to which they are
directly responsive, where applicable, is an implementation matter.

Deleted: None

 25

3.1.5 Assert_invitation.request

3.1.5.1 Function

The Assert_invitation.request primitive shall be used by the node to indicate the
manner in which private messages on a specific subject may be delivered to the node.

3.1.5.2 Semantics

Assert_invitation.request shall provide parameters as follows:

Assert_invitation.request (subject name,
delivery specification)

3.1.5.3 When Generated

Assert_invitation.request is generated by the node at any time while the node is
participating in its message space.

3.1.5.4 Effect on Receipt

Receipt of Assert_invitation.request shall, if approved, cause AMS to notify all
nodes in the message space of the node’s willingness to accept private messages on the
indicated subject.

3.1.5.5 Additional Comments

Note that invitations are distinct from subscriptions: they enable private transmission of
messages (send, reply, query) on the indicated subject and do not mandate delivery of a
copy of each published message on this subject.

3.1.6 Cancel_invitation.request

3.1.6.1 Function

The Cancel_invitation.request primitive shall be used by the node to indicate that
private messages on a specific subject may no longer be delivered to the node.

3.1.6.2 Semantics

Cancel_invitation.request shall provide parameters as follows:

Cancel_invitation.request (subject name)

3.1.6.3 When Generated

Cancel_invitation.request is generated by the node at any time while the node is
participating in its message space.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 26

3.1.6.4 Effect on Receipt

Receipt of Cancel_invitation.request shall cause AMS to notify all nodes in the
message space that the node is no longer willing to accept private messages on the
indicated subject.

3.1.6.5 Additional Comments

None.

3.1.7 Assert_subscription.request

3.1.7.1 Function

The Assert_subscription.request primitive shall be used by the node to subscribe to
published messages on a specific subject.

3.1.7.2 Semantics

Assert_subscription.request shall provide parameters as follows:

Assert_subscription.request (subject name,
delivery specification)

3.1.7.3 When Generated

Assert_subscription.request is generated by the node at any time while the node is
participating in its message space.

3.1.7.4 Effect on Receipt

Receipt of Assert_subscription.request shall, if approved, cause AMS to notify all
nodes in the message space of the node’s subscription to the indicated message subject.

3.1.7.5 Additional Comments

None.

3.1.8 Cancel_subscription.request

3.1.8.1 Function

The Cancel_subscription.request primitive shall be used by the node to terminate its
subscription to published messages on a specific subject.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Deleted: Assert_subscription.r
equest (subject name)¶

 27

3.1.8.2 Semantics

Cancel_subscription.request shall provide parameters as follows:

Cancel_subscription.request (subject name)

3.1.8.3 When Generated

Cancel_subscription.request is generated by the node at any time while the node is
participating in its message space.

3.1.8.4 Effect on Receipt

Receipt of Cancel_subscription.request shall cause AMS to notify all nodes in the
message space that the node is no longer subscribed to the indicated message subject.

3.1.8.5 Additional Comments

None.

3.1.9 Publish.request

3.1.9.1 Function

The Publish.request primitive shall be used by the node to publish a message.

3.1.9.2 Semantics

Publish.request shall provide parameters as follows:

Publish.request (subject name,
content length,
[content],
[handling instructions],
[context])

3.1.9.3 When Generated

Publish.request is generated by the node at any time while the node is participating in
its message space.

3.1.9.4 Effect on Receipt

Receipt of Publish.request shall, if approved, cause AMS to construct a message as
indicated (marshaling the content as necessary) and send one copy of that message to
every node in the message space that is currently subscribed to the indicated message
subject.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 28

3.1.9.5 Additional Comments

Context, if specified, identifies context information that is meaningful to the publishing
node.

3.1.10 Send.request

3.1.10.1 Function

The Send.request primitive shall be used by the node to send a message privately to a
single node.

3.1.10.2 Semantics

Send.request shall provide parameters as follows:

Send.request (node ID,
subject name,
content length,
[content],
[handling instructions],
[context])

3.1.10.3 When Generated

Send.request is generated by the node at any time while the node is participating in its
message space.

3.1.10.4 Effect on Receipt

Receipt of Send.request shall, if approved, cause AMS to construct a message as
indicated (marshaling the content as necessary) and send it to the specified node.

3.1.10.5 Additional Comments

Node ID identifies the node to which the message is to be sent. Context, if specified,
identifies context information that is meaningful to the sending node.

3.1.11 Query.request

3.1.11.1 Function

The Query.request primitive shall be used by the node to send a message privately to a
single node in a synchronous fashion.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 29

3.1.11.2 Semantics

Query.request shall provide parameters as follows:

Query.request (node ID,
subject name,
content length,
[content],
[handling instructions],
[term],
[context])

3.1.11.3 When Generated

Query.request is generated by the node at any time while the node is participating in its
message space.

3.1.11.4 Effect on Receipt

Receipt of Query.request shall, if approved, cause AMS to construct a message as
indicated (marshaling the content as necessary), send it to the specified node, and
suspend the operation of the querying node until either a reply to this message is
received, a notice of delivery failure for this message is received, or – if term is specified
– the indicated term has expired.

3.1.11.5 Additional Comments

Node ID identifies the node to which the message is to be sent. Context, if specified,
identifies context information that is meaningful to the querying node. If term is omitted,
only reception of a reply or of a notice of delivery failure will cause the operation of the
querying node to be resumed.

3.1.12 Reply.request

3.1.12.1 Function

The Reply.request primitive shall be used by the node to reply to a message sent by
some node.

3.1.12.2 Semantics

Reply.request shall provide parameters as follows:

Reply.request (node ID,
subject name,
content length,

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 30

[content],
context)

3.1.12.3 When Generated

Reply.request is generated by the node at any time while the node is participating in its
message space.

3.1.12.4 Effect on Receipt

Receipt of Reply.request shall, if approved, cause AMS to construct a message as
indicated (marshaling the content as necessary) and send it to the specified node.

3.1.12.5 Additional Comments

Node ID must identify the node that sent some previously received message, and context
must be the context provided with that message (which will be meaningful only to that
node).

3.1.13 Message.indication

3.1.13.1 Function

The Message.indication primitive shall be used to deliver AMS original (non-reply)
message information to the node.

3.1.13.2 Semantics

Message.indication shall provide parameters as follows:

Message.indication (node ID,
subject name,
content length,
[content],
[context])

3.1.13.3 When Generated

Message.indication is generated upon reception of an original (non-reply) message
from a node.

3.1.13.4 Effect on Receipt

The effect on reception of Message.indication by a node is undefined.

3.1.13.5 Additional Comments

Node ID identifies the node that sent or published the message.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Deleted: <#>Declare_subject.requ
est¶
<#>Function¶
The Declare_subject.request
primitive shall be used by the node to
declare the validity of a specified
message subject.¶
<#>Semantics¶
Declare_subject.request shall
provide parameters as follows:¶
Declare_subject.request
(subject name,
 [subject format])¶
<#>When Generated¶
Declare_subject.request is
generated by the node at any time while
the node is participating in its message
space.¶
<#>Effect on Receipt¶
Receipt of
Declare_subject.request shall
cause AMS to recognize the validity of
the indicated subject and to note the
format in which the content of every
message of this subject is represented (if
specified). If the subject was previously
declared, the new subject format (if
specified) supersedes the subject’s
current format.¶
<#>Additional Comments¶
AMS message content formats are
expected to be generally static. The AMS
protocol does not include provisions for
actively propagating revised formats to
nodes that might previously have cached
older formats, so cache coherency
failures are possible. Future upgrades to
AMS to redress this deficiency may
eventually prove necessary.¶
<#>Look_up_subject.request¶
<#>Function¶
The Look_up_subject.request
primitive shall be used by the node to
determine the validity of a specified
message subject and the format in which
the content of every message of this
subject is represented (if defined).¶
<#>Semantics¶
Look_up_subject.request shall
provide parameters as follows:¶
Loop_up_subject.request
(subject name)¶
<#>When Generated¶
Look_up_subject.request is
generated by the node at any time while
the node is participating in its message ... [1]

 31

3.1.14 Handling.indication

3.1.14.1 Function

The Handling.indication primitive shall be used to notify the node of message delivery
success or failure per handling instructions specified when the message was issued.

3.1.14.2 Semantics

Handling.indication shall provide parameters as follows:

Handling.indication (context,
[fault expression])

3.1.14.3 When Generated

Handling.indication is generated upon confirmation that:

! delivery has failed for a message for which the sending node’s handling
instructions stipulated that the sender is to be notified when delivery failure is
confirmed, or

! delivery has succeeded for a message for which the sending node’s handling
instructions stipulated that the sender is to be notified when delivery success is
confirmed.

3.1.14.4 Effect on Receipt

The effect on reception of Handling.indication by a node is undefined.

3.1.14.5 Additional Comments

The context parameter in the Handling.indication primitive implicitly identifies the
affected message; if negative, the affected message was a reply. The absence of a fault
expression in the primitive indicates delivery success; if a fault expression is present, that
expression indicates the nature of the delivery failure (e.g., delivery deadline expired
prior to delivery).

3.1.15 Reply.indication

3.1.15.1 Function

The Reply.indication primitive shall be used to deliver AMS reply message
information to the node.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 32

3.1.15.2 Semantics

Reply.indication shall provide parameters as follows:

Reply.indication (node ID,
subject name,
content length,
[content],
context)

3.1.15.3 When Generated

Reply.indication is generated upon reception of a reply message from a node.

3.1.15.4 Effect on Receipt

The effect on reception of Reply.indication by a node is undefined.

3.1.15.5 Additional Comments

Node ID identifies the node that sent the reply message. Context is the additive inverse
of the context in which the antecedent message (the message to which the reply message
is a response) was sent.

3.1.16 Fault.indication

3.1.16.1 Function

The Fault.indication primitive shall be used to indicate an AMS fault condition to the
node.

3.1.16.2 Semantics

Fault.indication shall provide parameters as follows:

Fault.indication (fault expression)

3.1.16.3 When Generated

Fault.indication is generated when AMS encounters a fault condition.

3.1.16.4 Effect on Receipt

The effect on reception of Fault.indication by a node is undefined.

3.1.16.5 Additional Comments

None.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Deleted: identifies

 33

3.1.17 Register.indication

3.1.17.1 Function

The Register.indication primitive shall be used to notify the node of the insertion of
some node (including itself) into the message space.

3.1.17.2 Semantics

Register.indication shall provide parameters as follows:

Register.indication (node ID,
node name)

3.1.17.3 When Generated

Register.indication is always generated upon insertion of the node into its message
space. Register.indication may optionally also be generated upon insertion of any
other node into the message space.

3.1.17.4 Effect on Receipt

The effect on reception of Register.indication by a node is undefined.

3.1.17.5 Additional Comments

The node ID in the Register.indication primitive that notifies the node of its own
successful registration is the one that the node must provide in the Unregister.request
primitive.

3.1.18 Unregister.indication

3.1.18.1 Function

The Unregister.indication primitive shall be used to notify the node of the removal of
some node (including itself) from the message space.

3.1.18.2 Semantics

Unregister.indication shall provide parameters as follows:

Unregister.indication (node ID)

3.1.18.3 When Generated

Unregister.indication is optionally generated upon removal of any node from the
message space.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Deleted: always generated upon
removal of the node from its message
space. Unregister.indication may
optionally also be

Deleted: other

 34

3.1.18.4 Effect on Receipt

The effect on reception of Unregister.indication by a node is undefined.

3.1.18.5 Additional Comments

None.

3.1.19 Assert_invitation.indication

3.1.19.1 Function

The Assert_invitation.indication primitive shall be used to notify the node of a newly
asserted message invitation in the message space.

3.1.19.2 Semantics

Assert_invitation.indication shall provide parameters as follows:

Assert_invitation.indication (node ID,
node name,
subject name,
inferred QoS specification)

3.1.19.3 When Generated

Assert_invitation.indication is optionally generated upon assertion of an invitation by
some node in the message space.

3.1.19.4 Effect on Receipt

The effect on reception of Assert_invitation.indication by a node is undefined.

3.1.19.5 Additional Comments

This indication is provided solely to facilitate message space configuration monitoring.
Compliance with QoS specifications upon message transmission is the responsibility of
AMS itself, not the node, so generation of this indication is strictly optional. The
information provided in the indication may be used to help manage the node’s
understanding of the functional “connections” between itself and other nodes.

3.1.20 Cancel_invitation.indication

3.1.20.1 Function

The Cancel_invitation.indication primitive shall be used to notify the node of a
newly canceled message invitation in the message space.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 35

3.1.20.2 Semantics

Cancel_invitation.indication shall provide parameters as follows:

Cancel_invitation.indication (node ID,
node name,
 subject name)

3.1.20.3 When Generated

Cancel_invitation.indication is optionally generated upon cancellation of a message
invitation by some node in the message space.

3.1.20.4 Effect on Receipt

The effect on reception of Cancel_invitation.indication by a node is undefined.

3.1.20.5 Additional Comments

This indication is provided solely to facilitate message space configuration monitoring.
The information provided in the indication may be used to help manage the node’s
understanding of the functional “connections” between itself and other nodes.

3.1.21 Assert_subscription.indication

3.1.21.1 Function

The Assert_subscription.indication primitive shall be used to notify the node of a
newly asserted subscription in the message space.

3.1.21.2 Semantics

Assert_subscription.indication shall provide parameters as follows:

Assert_subscription.indication (node ID,
node name,
subject name,
inferred QoS specification)

3.1.21.3 When Generated

Assert_subscription.indication is optionally generated upon assertion of a
subscription by some node in the message space.

3.1.21.4 Effect on Receipt

The effect on reception of Assert_subscription.indication by a node is undefined.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 36

3.1.21.5 Additional Comments

This indication is provided solely to facilitate message space configuration monitoring.
Message publication is accomplished by AMS itself, not by the node, so generation of
this indication is strictly optional. The information provided in the indication may be
used to help manage the node’s understanding of the functional “connections” between
itself and other nodes.

3.1.22 Cancel_subscription.indication

3.1.22.1 Function

The Cancel_subscription.indication primitive shall be used to notify the node of a
newly canceled subscription in the message space.

3.1.22.2 Semantics

Cancel_subscription.indication shall provide parameters as follows:

Cancel_subscription.indication (node ID,
node name,
 subject name)

3.1.22.3 When Generated

Cancel_subscription.indication is optionally generated upon cancellation of a
subscription by some node in the message space.

3.1.22.4 Effect on Receipt

The effect on reception of Cancel_subscription.indication by a node is undefined.

3.1.22.5 Additional Comments

This indication is provided solely to facilitate message space configuration monitoring.
Message publication is accomplished by AMS itself, not by the node, so generation of
this indication is strictly optional. The information provided in the indication may be
used to help manage the node’s understanding of the functional “connections” between
itself and other nodes.

3.2 Services required of the transport system

TBD.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Deleted: <#>Subject.indication¶
<#>Function¶
The Subject.indication primitive
shall be used to report on the validity and
(if specified) defined message format of a
subject.¶
<#>Semantics¶
Subject.indication shall provide
parameters as follows:¶
Subject.indication (subject name,
[subject format])¶
<#>When Generated¶
Subject.indication is generated
upon reception of a subject report
message from the subject server of the
message space, which in turn is produced
in response to a
Declare_subject.request or
Look_up_subject.request
primitive.¶
<#>Effect on Receipt¶
The effect on reception of
Subject.indication by a node is
undefined.¶
<#>Additional Comments¶
None.¶

Page 30: [1] Deleted Scott Burleigh 5/15/2005 8:38 AM

3.1.10Declare_subject.request

3.1.10.1Function
The Declare_subject.request primitive shall be used by the node to declare the
validity of a specified message subject.

3.1.10.2Semantics
Declare_subject.request shall provide parameters as follows:
Declare_subject.request (subject name,

 [subject format])

3.1.10.3When Generated
Declare_subject.request is generated by the node at any time while the node is
participating in its message space.

3.1.10.4Effect on Receipt
Receipt of Declare_subject.request shall cause AMS to recognize the validity of
the indicated subject and to note the format in which the content of every message of this
subject is represented (if specified). If the subject was previously declared, the new
subject format (if specified) supersedes the subject’s current format.

3.1.10.5Additional Comments
AMS message content formats are expected to be generally static. The AMS protocol
does not include provisions for actively propagating revised formats to nodes that might
previously have cached older formats, so cache coherency failures are possible. Future
upgrades to AMS to redress this deficiency may eventually prove necessary.

3.1.11Look_up_subject.request

3.1.11.1Function
The Look_up_subject.request primitive shall be used by the node to determine the
validity of a specified message subject and the format in which the content of every
message of this subject is represented (if defined).

3.1.11.2Semantics
Look_up_subject.request shall provide parameters as follows:
Loop_up_subject.request (subject name)

3.1.11.3When Generated
Look_up_subject.request is generated by the node at any time while the node is
participating in its message space.

3.1.11.4Effect on Receipt
Receipt of Look_up_subject.request shall cause AMS to validate the indicated
subject and report on the format in which the content of every message of this subject is
represented (if defined).

3.1.11.5Additional Comments
None.

