
CCSDS RECOMMENDATION FOR REGISTRY AND REPOSITORY

C
C

SD
S

Page 1-1
O

ctober 2007

Registry Repository

Reference Model

CCSDS 314.0-W-3

DRAFT WHITE BOOK

January 29, 2011

 1-2

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 3 [May 2004]

AUTHORITY

 Issue:

 Date:

 Location:

This document has been approved for publication by the Management Council of the
Consultative Committee for Space Data Systems (CCSDS) and represents the consensus
technical agreement of the participating CCSDS Member Agencies. The procedure for
review and authorization of CCSDS Recommendations is detailed in Procedures Manual
for the Consultative Committee for Space Data Systems, and the record of Agency
participation in the authorization of this document can be obtained from the CCSDS
Secretariat at the address below.

This document is published and maintained by:

CCSDS Secretariat
Office of Space Communication (Code M-3)
National Aeronautics and Space Administration
Washington, DC 20546, USA

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 4 [May 2004]

STATEMENT OF INTENT

The Consultative Committee for Space Data Systems (CCSDS) is an organization
officially established by the management of member space Agencies. The Committee
meets periodically to address data systems problems that are common to all participants,
and to formulate sound technical solutions to these problems. Inasmuch as participation
in the CCSDS is completely voluntary, the results of Committee actions are termed
Recommendations and are not considered binding on any Agency.

This Recommendation is issued by, and represents the consensus of, the CCSDS Plenary
body. Agency endorsement of this Recommendation is entirely voluntary.
Endorsement, however, indicates the following understandings:

– Whenever an Agency establishes a CCSDS-related standard, this standard will be
in accord with the relevant Recommendation. Establishing such a standard does
not preclude other provisions which an Agency may develop.

– Whenever an Agency establishes a CCSDS-related standard, the Agency will provide
other CCSDS member Agencies with the following information:

• The standard itself.

• The anticipated date of initial operational capability.

• The anticipated duration of operational service.

– Specific service arrangements are made via memoranda of agreement. Neither this
Recommendation nor any ensuing standard is a substitute for a memorandum of
agreement.

No later than five years from its date of issuance, this Recommendation will be
reviewed by the CCSDS to determine whether it should: (1) remain in effect without
change; (2) be changed to reflect the impact of new technologies, new requirements, or
new directions; or, (3) be retired or canceled.

In those instances when a new version of a Recommendation is issued, existing CCSDS-
related Agency standards and implementations are not negated or deemed to be non-
CCSDS compatible. It is the responsibility of each Agency to determine when such
standards or implementations are to be modified. Each Agency is, however, strongly
encouraged to direct planning for its new standards and implementations towards the later
version of the Recommendation.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 5 [May 2004]

FOREWORD

Through the process of normal evolution, it is expected that expansion, deletion, or
modification of this document may occur. This Recommendation is therefore subject to
CCSDS document management and change control procedures which are defined in the
Procedures Manual for the Consultative Committee for Space Data Systems. Current
versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the
CCSDS Secretariat.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 6 [May 2004]

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies

– Agenzia Spaziale Italiana (ASI)/Italy.
– British National Space Centre (BNSC)/United Kingdom.
– Canadian Space Agency (CSA)/Canada.
– Centre National d’Etudes Spatiales (CNES)/France.
– Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.
– European Space Agency (ESA)/Europe.
– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
– Japan Aerospace Exploration Agency(JAXA)/Japan.
– National Aeronautics and Space Administration (NASA)/USA.
– Russian Space Agency (RSA)/Russian Federation.

Observer Agencies

– Austrian Space Agency (ASA)/Austria.
– Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
– Centro Tecnico Aeroespacial (CTA)/Brazil.
– Chinese Academy of Space Technology (CAST)/China.
– Commonwealth Scientific and Industrial Research Organization

(CSIRO)/Australia.
– Communications Research Laboratory (CRL)/Japan.
– Danish Space Research Institute (DSRI)/Denmark.
– European Organization for the Exploitation of Meteorological Satellites

(EUMETSAT)/Europe.
– European Telecommunications Satellite Organization (EUTELSAT)/Europe.
– Federal Science Policy Office (FSPO)/Belgium.
– Hellenic National Space Committee (HNSC)/Greece.
– Indian Space Research Organization (ISRO)/India.
– Institute of Space and Astronautical Science (ISAS)/Japan.
– Institute of Space Research (IKI)/Russian Federation.
– KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
– MIKOMTEK: CSIR (CSIR)/Republic of South Africa.
– Korea Aerospace Research Institute (KARI)/Korea.
– Ministry of Communications (MOC)/Israel.
– National Oceanic & Atmospheric Administration (NOAA)/USA.
– National Space Program Office (NSPO)/Taipei.
– Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.
– Swedish Space Corporation (SSC)/Sweden.
– United States Geological Survey (USGS)/USA.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 7 [May 2004]

DOCUMENT CONTROL

Document Title and Issue Date Status
0.1 Registry and Repository

Reference Model
23-Oct-07 Draft

0.2 Registry and Repository
Reference Model

25-Jun-09 Updated to reflect
comments – CCSDS
Spring Meeting ‘09

0.3 Registry and Repository Reference
Model

02-Feb-10 Updated to reflect
comments from CCSDS
Fall Meeting ‘09

0.4 Registry and Repository Reference
Model

20-Oct-10 Added reference model
and move XML schema
extension to annex.

0.5 Registry Reference Model 28-Dec-10 Regenerated API section
and added Intrinsic
Object section.

0.6 Registry Reference Model 29-Jan-11 Moved Use Case
Annexes to separate
book; used ontology for
API descriptions

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 8 [May 2004]

CONTENTS

Section Page

1 INTRODUCTION..11

1.1 PURPOSE AND SCOPE ..11
1.2 BACKGROUND ..11
1.3 STRUCTURE OF THIS DOCUMENT ...11
1.4 DEFINITIONS ...13

1.4.1 ACRONYMS AND ABBREVIATIONS ...13
1.4.2 TERMINOLOGY ...13

1.5 REFERENCES ...15
2 OVERVIEW OF A REGISTRY/REPOSITORY ...16

2.1 ENVIRONMENT CONTEXT FOR A REGISTRY/REPOSITORY16
2.2 FUNCTIONAL VIEWS OF A REGISTRY/REPOSITORY17
2.3 GENERAL FEATURES OF A REGISTRY/REPOSITORY18

3 USE CASES ..20
3.1 ACTORS ...20
3.2 GENERAL USE CASES ..21

3.2.1 PUBLISH ..21
3.2.2 UPDATE ...22
3.2.3 APPROVE ..23
3.2.4 DEPRECATE ...23
3.2.5 UNDEPRECATE..23
3.2.6 DELETE ...24
3.2.7 VALIDATE ..24
3.2.8 CATALOG ...24
3.2.9 VERSION ...25
3.2.10 STORE ..25
3.2.11 NOTIFY ..25
3.2.12 DISCOVER ..26
3.2.13 RETRIEVE ...26

3.3 ADMINISTRATION USE CASES ..26
3.4 SPECIFIC USE CASES ...26

3.4.1 SERVICE REGISTRY/REPOSITORY USE CASES27
4 INFORMATION MODEL ..29

4.1 OVERVIEW OF A REGISTRY/REPOSITORY INFORMATION MODEL.........29
4.2 VIEWS OF THE REGISTRY/REPOSITORY MODEL ...29

5 APPLICATION PROGRAMMING INTERFACE (API) ...33
5.1 OVERVIEW ...33
5.2 CAPABILITY PROFILES ...33
5.3 FAÇADE API DEFINITIONS ...34
5.4 SERVICE ITEM DEFINITIONS ...45

6 FEDERATION ...49
6.1 OVERVIEW ...49

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 9 [May 2004]

6.2 CONCEPT OF FEDERATION ..49
6.3 FEDERATED ARCHITECTURE ..50
6.4 FEDERATED REGISTRY/REPOSITORY SERVICES ...51

6.4.1 FEDERATED REGISTRY/REPOSITORY USE CASES51
6.4.2 REGISTRY/REPOSITORY FEDERATION ...52
6.4.3 QUERIES..53
6.4.4 FEDERATION LIFECYCLE MANAGEMENT PROTOCOLS.................53

7 EXTRINSIC OBJECTS ..55
7.1 OVERVIEW ...55

7.1.1 EXTRINSIC OBJECT SUBCLASSES (CCSDS) ..56
8 INTRINSIC OBJECTS ...62

8.1 OVERVIEW ...62
9 LIFECYCLE MANAGEMENT ...65

9.1 OVERVIEW ...65
9.2 UPDATE OBJECTS PROTOCOL ...65
9.3 APPROVE OBJECTS PROTOCOL ..65
9.4 DEPRECATE OBJECTS PROTOCOL ...66
9.5 UNDEPRECATE OBJECTS PROTOCOL ...66
9.6 REMOVE OBJECTS PROTOCOL..67
9.7 REGISTRY MANAGED VERSION CONTROL ...67

10 REFERENCE IMPLEMENTATION ..69
10.1 SERVICE DESCRIPTION ...69
10.2 USE CASES / REQUIREMENTS ...70
10.3 ARCHITECTURE ..71

10.3.1 EXTERNAL INTERFACE ..71
10.3.2 INTERNAL INTERFACES ...72

10.4 DEPLOYMENT ...75
ANNEX 1 ELECTRONIC BUSINESS USING XML REGISTRY (EBXML

REGISTRY) ..77
ANNEX 2 – XML SCHEMA REGISTRY USE CASES ..81

10.5 XML SCHEMA REGISTRY/REPOSITORY ...81
10.5.1 ACTORS ...81
10.5.2 USE CASES ...81

Table of Figures

FIGURE 1: ENVIRONMENT VIEW OF A REGISTRY/REPOSITORY 17
FIGURE 2: TWO CONCEPTUAL VIEWS OF A REGISTRY/REPOSITORY 18
FIGURE 3: FEATURES OF A FEDERATED REGISTRY/REPOSITORY 19
FIGURE 4: GENERAL REGISTRY/REPOSITORY USES ... 21
FIGURE 5: CCSDS REGISTRY/REPOSITORY CONCEPTUAL MAP - KEY CLASSES 31
FIGURE 6: KEY REGISTRY/REPOSITORY CLASS DEFINITIONS 32
FIGURE 7: THE FEDERATED REFERENCE ARCHITECTURE .. 51
FIGURE 8: FAÇADE API BETWEEN CLIENTS AND REGISTRIES 33
FIGURE 9: REGISTRY SERVICE ARCHITECTURE .. 71

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 10 [May 2004]

FIGURE 10: REGISTRY SERVICE DEPLOYMENT .. 75

Table of Tables

TABLE 1: INFORMATION MODEL RESPONSE TO USE CASESERROR! BOOKMARK NOT
DEFINED.

TABLE 2: CCSDS REGISTRY/REPOSITORY COMPONENTS AND FUNCTIONS 30
TABLE 3: EXAMPLES OF EXTRINSIC OBJECTS ... 56
TABLE 4: REGISTRY SERVICE API MAPPING ... 74

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 11 [May 2004]

1 INTRODUCTION

This concept paper represents the beginning of a series of CCSDS Recommendations and
Reports meant to provide CCSDS registry/repository recommendations to accommodate
the current computing environment and meet evolving requirements.

1.1 PURPOSE AND SCOPE

The main purpose of this document is to define a staged set of CCSDS Recommendations
for registries and repositories that meet current CCSDS agency requirements and can be
implemented to demonstrate practical, near-term results. This specification needs to be
augmented with substantial proof-of-concept and performance prototyping of several
registries and repositories in CCSDS environments.

The scope of application of this document is the entire space informatics domain from
operational messaging to science archives. In recognition of this varied user community,
this document proposes aggressive use of current and emerging standards. In particular, a
significant amount of material has been extracted from the OASIS ebXML Registry
Services and Protocols (ebXML RS) [7] and the ebXML Registry Information Model
(ebXML RIM) [3] specifications.

1.2 BACKGROUND

Registries are pervasive components in most information systems. For example, data
dictionaries, service registries, LDAP directory services, and even databases provide
“registry-like” services. These all include an account of informational items that are used
in large-scale information systems ranging from data values such as names and codes, to
vocabularies, services and software components. The focus of this document is the
registry/repository, “an information system that securely manages any content type and
the standardized metadata that describes it.” [6] In a registry/repository, the repository is
a store for the content. The registry manages the registration of the content.

1.3 STRUCTURE OF THIS DOCUMENT

This document is divided into informative and normative chapters and annexes.

Sections 1- 3 of this document are informative chapters that give a high level view of the
rationale, the conceptual environment, some of the important design issues, an overview
of registry use cases and an introduction to the terminology and concepts.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 12 [May 2004]

• Section 1 gives background to this effort, its purpose and scope, a view of the overall
document structure, and the acronym list, glossary, and reference list for this
document.

• Section 2 provides a high level view of the anticipated computing environment and
the key concepts in the domain of registries and repositories.

• Section 3 provides use case scenarios that convey how actors interact with a
registry/repository in the most general cases. These use cases convey a general
concept of actors and functions that are supported by registries.

Sections 4 –11 of this document are the normative portion of the specification.

• Section 4 presents a registry reference information model. The information model
defines the classes needed to support the essential functions provided by a registry
that allows an organization to publish and discover services and artifacts.

• Section 5 presents a facade API that performs registry/repository operations over a
diverse set of registries and defines a unified information model for describing
registry/repository contents. Regardless of the registry provider, applications use
common APIs and a common information model.

• Section 6 presents a federated model that includes features for federated query
support, linking of content and metadata across registry boundaries, replication and
synchronization of content and metadata among repositories, moving of content and
metadata from one registry/repository to another, and event notifications.

• Section 7 presents a model for extrinsic objects,. Since the registry/repository can
contain arbitrary content without intrinsic knowledge about that content, the extrinsic
object models allows special metadata attributes to provide some knowledge about
the object.

• Section 8 presents a model for intrinsic objects. The registry has knowledge about
that content of intrinsic registry objects.

• Section 9 defines protocols supported by the Lifecycle Management service interface
of the registry/repository. The Lifecycle Management protocols provide the
functionality required by RegistryClients to manage the lifecycle of
RegistryObjects and RepositoryItems within the registry.

• Section 9 presents the a reference implementation.

Annexes
• Annex 1 describes Electronic Business using XML Registry
• Annex 2 provides the use cases for an XML Schema Registry, an extension of the

generic registry reference model.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 13 [May 2004]

1.4 DEFINITIONS

1.4.1 ACRONYMS AND ABBREVIATIONS

API Application Programming Interface
ASCII American Standard Code for Information Interchange
CCSDS Consultative Committee for Space Data Systems
CIO Content Information Object
CPA Collaboration Protocol Agreement
CPP Collaboration Protocol Profile
CORBA Common Object Request Broker Architecture
DTD Document Type Definition
ebXML Electronic Business using eXtensible Markup Language
EJB Enterprise Java Bean
HTTP Hypertext Transfer Protocol
ISO International Organization for Standardization
JAXR Java API for XML Registries
MIME Multipurpose Internet Mail Extensions
OAIS Open Archival Information System
PDS Planetary Data System
REST Representational State Transfer
RIM Registry Information Model
SFDU Standard Formatted Data Unit
SOAP Simple Object Access Protocol
UDDI Universal Description Discovery & Integration
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Wed Consortium
XFDU XML Formatted Data Unit
XML Extensible Markup Language

1.4.2 TERMINOLOGY

CCSDS Control Authority: An organization under the auspices of the CCSDS that
supports the transfer and usage or SFDUs by providing operational services of
registration, archiving, and dissemination of data descriptions. It is comprised of:

• The CCSDS Secretariat supported by the Control Authority Agent

• Member Agency Control Authority Offices

Choreography: Choreography concerns the interactions of services with their users. Any
user of a Web service, automated or otherwise, is a client of that service.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 14 [May 2004]

Content Data Object: The Data Object, together with the associated Representation
Information, is the original target of preservation.

Content Information: The set of information that is the original target of preservation. It
is an Information Object comprised of its Content Data Object and its Representation
Information. An example of Content Information could be a single table of numbers
representing, and understandable as, temperatures, but excluding the documentation that
would explain its history and origin, how it relates to other observations, etc.

Data: A reinterpretable representation of information in a formalized manner suitable for
communication, interpretation, or processing. Examples of data include a sequence of
bits, a table of numbers, the characters on a page, the recording of sounds made by a
person speaking, or a moon rock specimen.

Data Object: Contains some file content and any data required to allow the information
consumer to reverse any transformations that have been performed on the object and
restore it to the byte stream intended for the original designated community and described
by the Representation metadata in the Content Unit

Designated Community: An identified group of potential Consumers who should be
able to understand a particular set of information. The Designated Community may be
composed of multiple user communities.

Information: Any type of knowledge that can be exchanged. In an exchange, it is
represented by data. An example is a string of bits (the data) accompanied by a
description of how to interpret a string of bits as numbers representing temperature
observations measured in degrees Celsius (the representation information).

Information Object: A Data Object together with its Representation Information.

Metadata Object: Metadata Object in the context of a registry object is a single instance
of Representation Information.

Operation: An operation in the context of a service definition can be compared to a
function in a traditional programming language.

Orchestration: The orchestration of a service defines how the overall functionality of the
service is achieved by the cooperation of other services.

Representation Information: The information that maps a Data Object into more
meaningful concepts. An example is the ASCII definition that describes how a sequence
of bits (i.e., a Data Object) is mapped into a symbol.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 15 [May 2004]

1.5 REFERENCES

[1] Information Architecture Reference Model, CCSDS 312.0-G-1, Draft Green Book,
June 2006.

[2] Reference Model for an Open Archival Information System (OAIS), CCSDS 650.0-
B-1, Blue Book, January 2002.

[3] OASIS/ebXML Registry Information Model Version 3.0.1, Committee Draft,
OASIS/ebXML Registry Technical Committee, February 2007.

[4] Najmi, Farrukh, "Web Content Management Using the OASIS ebXML Registry
Standard", XML Europe 2004,
http://www.idealliance.org/papers/dx_xmle04/papers/04-02-02/04-02-02.html,
April 2004.

[5] Java API for XML Registries (JAXR), JAXR Version 1.0, Sun MicroSystems,
2002.

[6] CCSDS Registry Information Model Specification, Draft White Book, Version
0.080303, September 2008.

[7] ebXML Registry Services and Protocols, Version 3.0, 15 March, 2005

[8] ISO/IEC, " ISO 14721:2003 Open archival information system -- Reference model"
2003, International Organization for Standardization, Geneva, Switzerland.

[9] ISO/IEC, "ISO/IEC 11179:3 Information Technology -- Metadata registries (MDR),
2007-05-27, International Organization for Standardization, Geneva, Switzerland.

[10] CCSDS Registry Use Cases, Draft White Book, Version 0.110129, January, 2011.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 16 [May 2004]

2 OVERVIEW OF A REGISTRY/REPOSITORY

This section provides an overview of some of the key concepts that are incorporated in
the design of the registry/repository recommendation. A registry addresses the following
essential functional requirements:

• Discovery and maintenance of registered content.

• Support for collaborative development, where users can create content and submit
it to the registry for use and potential enhancement by the authorized parties.

• Persistence of registered content and science documents.

• Secure version control of registered content.

• Federation of cooperating registries to provide a single view of registered content
by seamless querying, synchronization, and relocation of registered content.

• Event notification.

A registry implementation complies with the specification if it meets the following
conditions:

• It supports the registry information model.

• It supports the syntax and semantics of the registry interfaces and security.

• It supports the registry schema.

2.1 ENVIRONMENT CONTEXT FOR A REGISTRY/REPOSITORY

Figure 1 illustrates a registry/repository in the context of a generic layered system
environment. The registry/repository foundation in the framework includes features for
query support, linking of content and metadata, replication and synchronization of
content, and event notification. In a federated environment—an environment in which
multiple providers agree upon standard operation in a collective fashion—these features
extend over the federated registries. An Application Programming Interface (API)
supports registry operations over a diverse set of registries and defines a unified
information model for describing registry contents. Finally, access control and data
management modules, tools, and a governance model bridge the functionality gap to
support the enterprise applications.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 17 [May 2004]

Figure 1: Environment View of a Registry/Repository

2.2 FUNCTIONAL VIEWS OF A REGISTRY/REPOSITORY

A registry/repository allows organizations to publish and discover resources. The two
dominate industry standards for registry/repository are Universal Description, Discovery,
and Integration (UDDI) and Electronic Business using eXtensible Markup Language
(ebXML).

There are two major types of registry/repositories, one that functions as a Service
Address Book and the other as an Information Repository. Both are illustrated in Figure
2. As a Service Address Book, the service is first registered. A software element
subsequently looks up the service and then executes the service. As an information
repository, the software element simply requests then receives the resource.

This document focuses on a generic reference model for a registry/repository, where
services and generic information artifacts are managed in the same way, to the greatest
degree possible.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 18 [May 2004]

Figure 2: Two Conceptual Views of a Registry/Repository

2.3 GENERAL FEATURES OF A REGISTRY/REPOSITORY

A registry and repository need to support the registration and discovery of information
artifacts and services by providing interfaces for their submission, approval, and
publishing as well as query capabilities for searching, metadata management capabilities
for classification and association, governance and control authorities for maintaining
integrity, change control processes for management, and effective access by both people
and computer systems. Figure 3 illustrates these features. The API and Information
Model sections of this white book describe the proposed API and model classes that
support the functionalities associated with Content Management, Events, Secure
Architecture, and Services Registry. The Federation section of this document describes
the Federated Architecture.

Software Element Service Provider

Registry as a Service Address Book (Yellow Pages)

Registry as an Information Repository

Software Element

Software Element

Function

Data

register servicelookup service

service description

execute service

information request

information

information request

information

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 19 [May 2004]

Figure 3: Features of a Federated Registry/Repository

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 20 [May 2004]

3 USE CASES

The purpose of this section is to capture use case scenarios1 for registries and
repositories. These use cases have been derived from several sources including the
CCSDS Reference Architecture for Space Data Systems (RASIM) [1], and formally
defined Use Cases for a number of projects, including, for example, the Deep Space
Mission System (DSMS) Information Services Architecture Registry [7], Open
Geographic Information Systems (GIS) Project Registry, ASAR MERIS AATSR
Labeling Facility Inspection (AMALFI) Multi-Missions – Xml Schema Repository, JPL
Deep Space Network (DNS) Information Service Architecture Registry, CCSDS Service
Link Exchange (SLE) Working Group (WG), CCSDS Navigation WG, Common and
Core Spacecraft Monitor & Control (SM&C), Operations Automation and Scheduling,
Remote Software Management, Payload Data Product Management, and Operator
Interaction. The detailed uses cases have been compiled into a separate document. [10]

3.1 ACTORS

The following actors2 are identified for the registry/repository use cases.

Publisher «system or person» - A publisher is a system or person that provides an artifact
to be submitted into the registry/repository.

Artifact Consumer «system or person» - An artifact consumer is a system or person that
receives an artifact from a registry/repository.

Subscriber «system or person» - A subscriber is a person or system that has the right to
receive a notification about a change in status of an artifact in a registry/repository.

System Administrator «person» - A system administrator is a person employed to
maintain, and operate a registry/repository configuration.

Registry/Repository Service «system» - A registry/repository service is a system interface
through which another actor is able to perform registry/repository functions which
include changes to the catalog and/or repository.

1 A use case is a set of scenarios tied together by a common user goal. A scenario is a sequence of steps
describing an interaction between a user and a system [M. Fowler, UML Distilled, Third Ed., Addison-
Wesley, 2004].

2 An actor is a role that a user plays with respect to the system, external to the system, attempting to achieve
a goal. Actors can be human or non-human (e.g., other systems) that carry out or support use cases [Ibid].

CCSD

3.2

This
regist
devel
gener

Figur
regist
funct

3.2.1

Descr
in the

Actor

Actio

DS [number]

GENERAL

section pro
try/repositor
loped by ma
ral concept o

re 4 illustr
try/repositor
tions.

PUBLISH

ription: This
e registry/rep

rs: Publisher

ons:

C

L USE CAS

ovides use
ry in the m
any other tas
of actors and

rates a gen
ry services,

Figure 4:

H

s use case de
pository.

r

CCSDS RECO

SES

case scena
most genera
sks such as t
d functions th

neralized vi
the interfa

General Re

escribes the

OMMENDAT

Page 21

arios that c
al cases. Si
those cited e
hat are suppo

iew of the
ce available

egistry/Repo

actions nece

TION FOR

onvey how
ince genera
earlier, the i
orted by reg

e interaction
e for perfor

ository Use

essary for a u

w actors int
al use cases
intent here is

gistries/repos

ns between
rming regist

Cases

user to publi

[May 2

eract with
s have bee
s to convey
sitories.

n actors an
try/repositor

ish an artifac

2004]

a
en

a

nd
ry

ct

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 22 [May 2004]

1. Publisher publishes a new artifact in the registry which includes descriptive
metadata about the artifact

2. Registry/Repository Service validates the metadata (include Validate use case)

3. Registry/Repository Service assigns a version identifier for the artifact (include
Version use case)

4. Registry/Repository Service updates the catalog with the metadata (include
Catalog use case)

5. Registry/Repository Service stores the artifact in the repository (include Store use
case)

6. Registry/Repository Service returns an identifier and version for the published
artifact

7. Registry/Repository Service sends notification to the subscribers regarding the
published artifact (include Notify use case)

3.2.2 UPDATE

Description: This use case describes the actions necessary to update an artifact in the
registry/repository.

Actors: Publisher

Actions:

1. Publisher requests that an artifact be updated based on an identifier and version
for the artifact

2. Registry/Repository Service replaces the artifact in the repository (include Store
use case)

3. Registry/Repository Service updates the metadata for the artifact in the catalog
(include Catalog use case)

4. Registry/Repository Service sends notification to the subscribers updated artifact
(include Notify use case)

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 23 [May 2004]

3.2.3 APPROVE

Description: This use case describes the actions necessary to approve an artifact in the
registry/repository.

Actors: Publisher

Actions:

1. System Administrator queries the registry/repository service for newly published
artifacts which are not already approved

2. System Administrator updates the metadata for an artifact to indicate that it is
approved

3. Registry/Repository Service sends notification to the publisher and subscribers of
the approved artifact (include Notify use case)

3.2.4 DEPRECATE

Description: This use case describes the actions necessary to deprecate an artifact in the
registry/repository. This is normally triggered by the registration of a new artifact with
the logical identifier of an existing artifact but with a new version.

Actors: Publisher

Actions:

1. System Administrator updates the registry/repository to indicate that a specific
artifact and version is deprecated

2. Registry/Repository Service sends notification to the subscribers of the
deprecated artifact (include Notify use case)

3.2.5 UNDEPRECATE

Description:

This use case describes the actions necessary to undeprecate an artifact in the
registry/repository. This use case is not pictured in Figure 4.

Actors: Publisher

Actions:

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 24 [May 2004]

1. System Administrator updates the registry/repository to indicate that a specific
artifact and version is undeprecated

2. Registry/Repository Service sends notification to the subscribers of the
undeprecated artifact (include Notify use case)

3.2.6 DELETE

Description: This use case describes the actions necessary to delete an artifact in the
registry/repository.

Actors: Publisher

Actions:

1. Publisher requests that an artifact be deleted based on an identifier for the artifact

2. Registry/Repository Service deletes the artifact from the repository

3. Registry/Repository Service removes the artifact from the catalog

4. Registry/Repository Service sends notification to the subscribers of the deleted
artifact (include Notify use case)

3.2.7 VALIDATE

Description: This use case describes the actions necessary to validate the metadata
associated with an artifact. This use case is included as part of the Publish use case.

Actors: Registry/Repository Service

Actions:

1. Registry/Repository Service validates the metadata associated with the artifact

3.2.8 CATALOG

Description: This use case describes the actions necessary to catalog a new artifact. This
use case is included as part of the Publish and Update use cases.

Actors: Registry/Repository Service

Actions:

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 25 [May 2004]

1. Registry/Repository Service updates the catalog with the metadata

3.2.9 VERSION

Description: This use case describes the actions necessary to version a new artifact. This
use case is included as part of the Publish use case.

Actors: Registry/Repository Service

Actions:

1. Registry/Repository Service assigns a version identifier to the artifact

3.2.10 STORE

Description: This use case describes the actions necessary to store the artifact. This use
case is included as part of the Publish and Update use cases.

Actors: Registry/Repository Service

Actions:

1. Registry/Repository Service stores the artifact in the repository

3.2.11 NOTIFY

Description: This use case describes the actions necessary to notify subscribers of
registry/repository events. This use case is included as part of the Publish, Update,
Approve and Deprecate use cases.

Actors: Registry/Repository Service, Subscriber

Actions:

1. Registry/Repository Service notifies the subscriber when an event of interest has
occurred

2. Subscriber receives the notification

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 26 [May 2004]

3.2.12 DISCOVER

Description: This use case describes the actions necessary to discover registered artifacts

Actors: Artifact Consumer

Actions:

1. Artifact Consumer enters search criteria

2. Registry/Repository Service searches the catalog and returns metadata, including
location information, describing registered artifacts that meet the search criteria.

3.2.13 RETRIEVE

Description: This use case describes the actions necessary to retrieve registered artifacts.

Actors: Artifact Consumer

Actions:

1. Artifact Consumer enters an identifier for the artifact

2. Registry/Repository Service retrieves the artifact from the repository and returns
the artifact in its original form

3.3 ADMINISTRATION USE CASES

The administration use cases describe the actions necessary to manage the
registry/repository. These use cases include user management, system management and
policy management. Section 8, Lifecycle Management, addresses many of these use
cases.

3.4 SPECIFIC USE CASES

This section provides use case scenarios for specific subclasses of registries.
These are extensions to the general set of registry/repository use cases described
in Section 3.2. They are specific to a Service Registry. They are specific to a
Service Registry. Use cases for an XML Schema registry are in Annex 2.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 27 [May 2004]

3.4.1 SERVICE REGISTRY/REPOSITORY USE CASES

Service registries allow for the registration of services, in particular, for service-oriented
architectures. Service registries inherit several of the functions of a general
registry/repository allowing for registration and discovery of online services.

3.4.1.1 Actors

Service provider - A service provider is a system or person that provides a service
to be submitted into the registry/repository. This actor is equivalent to the
Publisher defined in Section 3.1.

Service consumer - A service consumer is a system or person that discovers and
receives descriptions of services in the registry/repository. This actor is equivalent
to the Artifact Consumer defined in Section 3.1.

3.4.1.2 Service Registration

Description: The service provider adds information about the service to the
registry.

Actors: Service Provider

Scenarios:

1. A Service Provider registers a service through a registry/repository service
using standardized metadata.

2. The registry/repository service adds the metadata describing the service to
the catalog.

3. The registry/repository service allows classification of the registered
service based on namespace.

4. The registry/repository service allows the association of services with
other related resources (URIs, web sites, documentation, etc) located both locally
and externally.

3.4.1.3 Service Discovery

Description: A service consumer requests the service information from the
registry/repository.

Actors: Service Consumer

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 28 [May 2004]

Scenarios

1. A Service Consumer requests information about registered services from
the service registry/repository using query parameters.

2. The registry/repository service returns information that corresponds to
registered services based on the specific attributes passed to the service. This
includes information related to accessing and connecting to the service.

3.4.1.4 Service Removal

Description: A service provider requests the service be removed from the
registry/repository.

Actors: Service Provider

Scenarios

1. A Service Provider requests the service registry/repository to remove the
service.

2. The registry/repository service removes the entry from the catalog.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 29 [May 2004]

4 INFORMATION MODEL

The CCSDS Registry Reference Information Model (RIM) is exactly the ebXML
Registry Information Model (RIM) [3]. This model typically results from
registry/repository design efforts that support the registry/repository use cases presented
above. For example the RIM is the assumed registry/repository model for JAXR (Java
API for XML Registries). The ebXML RIM subsumes the UDDI information model and
so includes modeled components for a service registry.

4.1 OVERVIEW OF A REGISTRY/REPOSITORY INFORMATION MODEL

A registry/repository allows organizations to publish and discover resources. The
registry/repository information model defines the classes and associations that support the
registry/repository features illustrated in Figure 3. The objects acted on by the
registry/repository API are defined in the information model and support the required
functionality such as publishing, discovery and management of registry/repository
objects.

The CCSDS registry/repository information model provides a blueprint or high-level
schema for a CCSDS registry/repository. It provides implementers with information on
the type of metadata that is stored in the registry/repository as well as the relationships
among metadata classes. The registry/repository information model defines what types of
objects are stored and organized in the registry/repository.

Extensions are allowed to the model and should be based on existing standards. For
example, an observational product registry would be based on the Open Archive
Information System (OAIS) [8] and the ISO 11179 [9] Registry/Repository models.

4.2 VIEWS OF THE REGISTRY/REPOSITORY MODEL

The CCSDS Registry/Repository Reference Information Model provides a formal data
engineering definition of the registry/repository information model and is exactly the
ebXML Registry Information Model (RIM) specification. [3] In the following two
sections high-level conceptual and logical views of the information model are provided.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 30 [May 2004]

4.2.1.1 Conceptual

A conceptual model defines the community model from a manager’s point of view and is
concerned with the language of the community, mainly concepts, facts, words, and
symbols. Some key concepts are listed in the following table. These concepts are then
presented in the concept map in Figure 5.

Table 1: CCSDS Registry/Repository Components and Functions

The following Conceptual Map illustrates key information model concepts and their
relationships.

Registry Components Registry Function

Registry, Registry Object, Registry Package,
Classification

Discovery and maintenance of registered content.

Identifiable, Version Information, Auditable Event,
Service

Support for collaborative development, where users
can create content and submit it to the registry for
use and potential enhancement by the authorized
parties..

Registry Package Persistence of registered content and science
documents.

Version Information, Auditable Event Secure version control of registered content.

Federation, External Identifiers, Service,
Classification

Federation of cooperating registries to provide a
single view of registered content by seamless
querying, synchronization, and relocation of
registered content.

Auditable Event Event notification.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 31 [May 2004]

Figure 5: CCSDS Registry/Repository Conceptual Map - Key Classes

4.2.1.2 Logical

The logical model defines the system model of data from a designer’s point of view and
is concerned with entity classes, attributes, and relationships that describe the things of
significance in rigorous terms. Figure 6 illustrates the logical model for the key
registry/repository classes.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 32 [May 2004]

Figure 6: Key Registry/Repository Class Definitions

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 33 [May 2004]

5 APPLICATION PROGRAMMING INTERFACE (API)

5.1 OVERVIEW

This specification defines a façade3 API for a client that assumes an underlying services
model. Service(s) provide an interface to the underlying implementation and hides the
API of the implemented registry, for example, the Java™ API for XML Registries
(JAXR) API for an ebXML registry/repository. This façade API should map to the
registry/repository use cases described in Section 3. The following figure illustrates the
façade API that hides the diverse registry APIs.

Figure 7: Façade API between Clients and Registries

5.2 CAPABILITY PROFILES

Because some diversity exists among registry provider capabilities, a multilayer API
abstraction is offered through capability profiles. Each method of the interface is
assigned a capability level, and those methods with the same capability level define the
provider capability profile.

Currently, two capability profiles are defined: level 0 profile for basic features and level 1
profile for advanced features. Level 0's basic features support so-called business-focused

3 A façade defines a higher level interface that makes the registries easier to use.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 34 [May 2004]

APIs, while level 1's advanced features support generic APIs. At the minimum, all
providers must implement a level 0 profile. A client application using only those methods
of the level 0 profile can access any provider in a portable manner. For example, the
JAXR APIs that support UDDI registries are level 0. The JAXR APIs that support
ebXML registries are level 1. The façade API proposed below, based on the
registry/repository use cases, can be considered level 2.

5.3 FAÇADE API DEFINITIONS

The following table presents each API as an abstract service. Each abstract service is
defined as having a set of operations with pre- and post- conditions. Choreography is the
interaction between a user and one or more service required to accomplish the goal.
Orchestration identifies the services required to accomplish the goals.

Service Description

Publish_Registry_Object The Publish_Registry_Object service performs all
actions necessary to fully register a registry
object in the registry.

 PreCondition Registry_Object_Not_Registered
 Operation Assign_Unique_Identifier
 Assign_User_Logical_Identifier
 Validate_Registry_Object_Metadata
 Add_Catalog_Entry
 Store_Data_Object_To_Repository
 Store_Metadata_Object_To_Repository
 Set_Registry_Object_Status_Pending
 Notify_Subscribers
 Choreography Operation:Get_Metadata_Object_From_User
 Operation:Get_Data_Object_From_User
 Orchestration Service:Publish_Registry_Object
 PostCondition Current_Registry_Object_Available
 Metadata_Object_In_Repository
 Data_Object_In_Repository
 Catalog_Entry_Exists

Publish_Registry_Object
 _No_Data

The Publish_Registry_Object_No_Data service
performs all actions necessary to fully register an
object in the registry. However, no data object is
placed in the repository.

 PreCondition Registry_Object_Not_Registered
 Operation Assign_Unique_Identifier

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 35 [May 2004]

 Assign_User_Logical_Identifier
 Validate_Registry_Object_Metadata
 Add_Catalog_Entry
 Store_Metadata_Object_To_Repository
 Set_Registry_Object_Status_Pending
 Notify_Subscribers
 Choreography Operation:Get_Metadata_Object_From_User
 Service:Publish_Registry_Object_No_Data
 Orchestration Service:Publish_Registry_Object_No_Data
 PostCondition Current_Registry_Object_Available
 Metadata_Object_In_Repository
 Catalog_Entry_Exists

Update_Registry_Object The Update_Registry_Object service replaces a

registry object's metadata and data object in the
repository and updates the registry.

 PreCondition Registry_Object_Registered
 Operation Find_Registry_Object
 Remove_Data_Object_From_Repository
 Remove_Metadata_Object_From_Repository
 Update_Catalog_Entry
 Store_Data_Object_To_Repository
 Store_Metadata_Object_To_Repository
 Set_Registry_Object_Status_Pending
 Notify_Subscribers
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Service:Update_Registry_Object
 Orchestration Service:Update_Registry_Object
 PostCondition Current_Registry_Object_Available
 Metadata_Object_In_Repository
 Data_Object_In_Repository
 Catalog_Entry_Exists

Approve_Registry_Object The Approve_Registry_Object service sets the

registry object status to APPROVED.
 PreCondition Registry_Object_Registered
 Operation Find_Registry_Object
 Set_Registry_Object_Status_Approved
 Notify_Subscribers
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Service:Approve_Registry_Object

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 36 [May 2004]

 Orchestration Service:Approve_Registry_Object
 PostCondition Current_Registry_Object_Available

Deprecate_Registry_Object The Deprecate_Registry_Object service sets the

status of the registry object to DEPRECATED.
 PreCondition Registry_Object_Registered
 Operation Find_Registry_Object
 Notify_Subscribers
 Set_Registry_Object_Status_Deprecated
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Service:Deprecate_Registry_Object
 Orchestration Service:Deprecate_Registry_Object
 PostCondition Current_Registry_Object_Available

Undeprecate_Registry_Object The Undeprecate_Registry_Object service sets

the status of the registry object to
UNDEPRECATED.

 PreCondition Registry_Object_Registered
 Operation Find_Registry_Object
 Set_Registry_Object_Status_Pending
 Notify_Subscribers
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Service:Undeprecate_Registry_Object
 Orchestration Service:Undeprecate_Registry_Object
 PostCondition Current_Registry_Object_Available

Delete_Registry_Object The Delete_Registry_Object service removes the

regisry object's metadata and data object from
the repository and removes the catalog entry.

 PreCondition Registry_Object_Registered
 Operation Find_Registry_Object
 Remove_Data_Object_From_Repository
 Remove_Metadata_Object_From_Repository
 Remove_Catalog_Entry
 Notify_Subscribers
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Service:Delete_Registry_Object
 Orchestration Service:Delete_Registry_Object
 PostCondition Current_Registry_Object_NotAvailable

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 37 [May 2004]

Validate_Registry_Object The Validate_Registry_Object service validates
the registry object's metadata.

 PreCondition Registry_Object_Not_Approved
 Operation Find_Registry_Object
 Validate_Registry_Object_Metadata
 Set_Registry_Object_Status_Validated
 Notify_Subscribers
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Service:Validate_Registry_Object
 Orchestration Service:Validate_Registry_Object
 PostCondition Current_Registry_Object_Available

Catalog_Registry_Object The Catalog_Registry_Object service adds a

catalog entry for the registry object.
 PreCondition Registry_Object_Not_Registered
 Operation Add_Catalog_Entry
 Set_Registry_Object_Status_Pending
 Notify_Subscribers
 Choreography Service:Catalog_Registry_Object
 Operation:Return_Status
 Orchestration Service:Catalog_Registry_Object
 PostCondition Current_Registry_Object_Available

Version_Registry_Object The Version_Registry_Object service publishes a

new version of an existing registry object.
 PreCondition Registry_Object_Verrsion_Pre‐exists
 Operation Find_Last_Registry_Object
 Set_Registry_Object_Status_Pending
 Choreography Operation:Get_Registry_Object_Logical_Id_Fro

m_User
 Service:Version_Registry_Object
 Orchestration Service:Publish_Registry_Object
 PostCondition Current_Registry_Object_Available
 Metadata_Object_In_Repository
 Data_Object_In_Repository
 Catalog_Entry_Exists

Store_Data_Object The Store_Data_Object service places the

registry object's data object in the repository.
 PreCondition Registry_Object_Not_Approved
 Operation Find_Registry_Object
 Store_Data_Object_To_Repository

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 38 [May 2004]

 Set_Registry_Object_Status_Pending
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Operation:Get_Data_Object_From_User
 Orchestration Service:Store_Data_Object
 PostCondition Current_Registry_Object_Available
 Metadata_Object_In_Repository
 Data_Object_In_Repository
 Catalog_Entry_Exists

Notify_Subscribers The Notify_Subscribers service sends a message

to subscribers that have requested to be notified
of the occuring event.

 Operation Find_Event_Subscribers
 Notify_Subscribers
 Choreography Service:Notify_Subscribers
 Operation:Return_Status
 Orchestration Service:Notify_Subscribers

Find_Registry_Object The Find_Registry_Object service locates a

registry object using unique identifiers.
 PreCondition Registry_Object_Registered
 Operation Find_Registry_Object
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Service:Find_Registry_Object
 Orchestration Service:Find_Registry_Object
 PostCondition Current_Registry_Object_Available

Discover_Registry_Object The Discover_Registry_Object service locates a

registry object using search criteria provided by a
user.

 PreCondition Registry_Object_Registered
 Operation Search_Registry_Object
 Choreography Operation:Get_Search_Parameters_From_User
 Service:Discover_Registry_Object
 Orchestration Service:Discover_Registry_Object
 PostCondition PostCondition_Current_Registry_Object_Set_Av

ailable

Retrieve_Data_Object The Retrieve_Data_Object service returns the

registry object's data object from the repository.
 PreCondition Registry_Object_Registered

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 39 [May 2004]

 Operation Find_Current_Registry_Object
 Find_Data_Object_In_Repository
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Service:Retrieve_Data_Object
 Orchestration Service:Retrieve_Data_Object
 PostCondition Current_Registry_Object_Available

Retrieve_Metadata_Object The Retrieve_Metadata_Object service returns

the registry object's descriptive metadata from
the repository.

 PreCondition Registry_Object_Registered
 Operation Find_Current_Registry_Object
 Find_Metadata_Object_In_Repository
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Service:Retrieve_Metadata_Object
 Orchestration Service:Retrieve_Metadata_Object
 PostCondition Current_Registry_Object_Available

Set_Registry_Object_Status The Set_Registry_Object_Status service changes

the status of a registry object.
 PreCondition Registry_Object_Registered
 Operation Set_Registry_Object_Status
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Operation:Get_Registry_Object_Status
 Orchestration Service:Set_Registry_Object_Status

Set_Registry_Object_Status_Pendin
g

The Set_Registry_Object_Status_Pending service
changes the status of a registry object to
pending.

 PreCondition Registry_Object_Registered
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Operation:Get_Registry_Object_Status
 Orchestration Service:Set_Registry_Object_Status

Set_Registry_Object_Status_Validat
ed

The Set_Registry_Object_Status_Validated
service changes the status of a registry object to
validated.

 PreCondition Registry_Object_Registered
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 40 [May 2004]

 Operation:Get_Registry_Object_Status
 Orchestration Service:Set_Registry_Object_Status

Set_Registry_Object_Status_Appro
ved

The Set_Registry_Object_Status_Approved
service changes the status of a registry object to
approved.

 PreCondition Registry_Object_Registered
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Operation:Get_Registry_Object_Status
 Orchestration Service:Set_Registry_Object_Status

Set_Registry_Object_Status_Deprec
ated

The Set_Registry_Object_Status_Deprecated
service changes the status of a registry object to
deprecated.

 PreCondition Registry_Object_Registered
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Operation:Get_Registry_Object_Status
 Orchestration Service:Set_Registry_Object_Status

Find_All_Associated_Object The Find_All_Associated_Object service finds all

objects in an association to a given object.
 PreCondition Registry_Object_Registered
 Operation Find_Current_Registry_Object
 Find_Associated_Registry_Object
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Operation:Get_Association_From_User
 Orchestration Service:Find_All_Associated_Object
 PostCondition Current_Registry_Object_Available

Associate_From_Object The Associate_From_Object service links a

registry object to an association. The registry
object is the "from" object in a one directional
association.

 PreCondition Registry_Object_Registered
 Operation Find_Current_Registry_Object
 Find_Registry_Object(Association)
 Assign_From_Association
 Choreography Operation:Get_Association_From_User
 Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Orchestration Service:Associate_From_Object

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 41 [May 2004]

 PostCondition Current_Registry_Object_Available

Associate_To_Object The Associate_To_Object service links a registry

object to an association. The registry object is the
"to" object in a one directional association.

 PreCondition Registry_Object_Registered
 Operation Find_Current_Registry_Object
 Find_Associationed_Registry_Object(Association

)
 Find_Registry_Object
 Assign_To_Association
 Choreography Operation:Get_Association_From_User
 Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Orchestration Service:Associate_To_Object
 PostCondition Current_Registry_Object_Available

Deassociate_From_Object The Deassociate_From_Object service removes

the link between a registry object and an
association. The registry object is the "from"
object in a one directional association.

 PreCondition Registry_Object_Registered
 Operation Find_Current_Registry_Object
 Delete_From_Association
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Operation:Get_Association_From_User
 Orchestration Service:Deassociate_From_Object
 PostCondition Current_Registry_Object_NotAvailable

Deassociate_To_Object The Deassociate_To_Object service removes the

link between a registry object and an association.
The registry object is the "to" object in a one
directional association.

 PreCondition Registry_Object_Registered
 Operation Find_Current_Registry_Object
 Find_Associationed_Registry_Object(Association

)
 Delete_To_Association
 Choreography Operation:Get_Registry_Object_Identifiers_Fro

m_User
 Operation:Get_Association_From_User
 Orchestration Service:Deassociate_To_Object
 PostCondition Current_Registry_Object_Available

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 42 [May 2004]

Classify_Object The Classify_Registry_Object service associates

registry object with a classification.
 PreCondition Registry_Object_Registered
 Operation Find_Associationed_Registry_Object(Classificati

on)
 Assign_From_Association
 Find_Current_Registry_Object
 Assign_To_Association
 Choreography Operation:Get_Registry_Object_Id_From_User
 Operation:Get_Classification_Node_From_User
 Orchestration Service:Classify_Object
 PostCondition Current_Registry_Object_Available

Publish_Association The Publish_Association service performs all

actions necessary to fully register a Association
in the registry.

 PreCondition Registry_Object_Not_Registered
 Choreography Operation:Get_Metadata_Object_From_User
 Service:Publish_Registry_Object
 Orchestration Service:Publish_Registry_Object
 PostCondition Current_Registry_Object_Available
 Metadata_Object_In_Repository
 Catalog_Entry_Exists

Publish_Classification The Publish_Classification service performs all

actions necessary to fully register a Classification
in the registry.

 PreCondition Registry_Object_Not_Registered
 Choreography Operation:Get_Metadata_Object_From_User
 Service:Publish_Registry_Object
 Orchestration Service:Publish_Registry_Object
 PostCondition Current_Registry_Object_Available
 Metadata_Object_In_Repository
 Catalog_Entry_Exists

Publish_Federation The Publish_Federation service performs all

actions necessary to fully register a Federation in
the registry.

 PreCondition Registry_Object_Not_Registered
 Choreography Operation:Get_Metadata_Object_From_User
 Service:Publish_Registry_Object
 Orchestration Service:Publish_Registry_Object

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 43 [May 2004]

 PostCondition Current_Registry_Object_Available
 Metadata_Object_In_Repository
 Catalog_Entry_Exists

Publish_AuditableEvent The Publish_Auditable_Event service performs

all actions necessary to fully register an
AuditableEvent in the registry.

 PreCondition Registry_Object_Not_Registered
 Choreography Operation:Get_Metadata_Object_From_User
 Service:Publish_Registry_Object
 Orchestration Service:Publish_Registry_Object
 PostCondition Current_Registry_Object_Available
 Metadata_Object_In_Repository
 Catalog_Entry_Exists

Publish_Notification The Publish_Notification service performs all

actions necessary to fully register a Notification
in the registry.

 PreCondition Registry_Object_Not_Registered
 Choreography Operation:Get_Metadata_Object_From_User
 Service:Publish_Registry_Object
 Orchestration Service:Publish_Registry_Object
 PostCondition Current_Registry_Object_Available
 Metadata_Object_In_Repository
 Catalog_Entry_Exists

Publish_Subscriber The Publish_Subscriber service performs all

actions necessary to fully register a Subscriber in
the registry.

 PreCondition Registry_Object_Not_Registered
 Choreography Operation:Get_Metadata_Object_From_User
 Service:Publish_Registry_Object
 Orchestration Service:Publish_Registry_Object
 PostCondition Current_Registry_Object_Available
 Metadata_Object_In_Repository
 Catalog_Entry_Exists

Join_Federation The Join_Federation service creates a

"federation" object in two registry, making a
federation of the two registries.

 PreCondition Registry_Object_Registered
 Choreography Operation:Get_Metadata_Object_From_User
 Service:Join_Federation
 Orchestration Service:Join_Federation

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 44 [May 2004]

 PostCondition Current_Registry_Object_Available

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 45 [May 2004]

5.4 SERVICE ITEM DEFINITIONS

The following table provides definition for the items presented in the services table
above. These items include operations and pre- and post- conditions.

Item Description
Add_Catalog_Entry The Add_Catalog_Entry operation adds an entry

to the registry catalog for a registry object.
Assign_From_Association The Assign_From_Association operation assigns

a named Association to the "from" registry
object.

Assign_To_Association The Assign_To_Association operation assigns a
named Association to a "to" registry object.

Assign_Unique_Identifier The Assign_Unique_Identifer operation
generates and assigns a unique object identifier
and version identier to a regisry object.

Assign_User_Logical_Identifier The Assign_User_Logical_Identifier operation
assignes a user provided logical identifier
(without version)

Catalog_Entry_Exists The Catalog_Entry_Exists post condition
indicates that the a catalog entry has been
made in for the registry object in the registries
catalog.

Current_Registry_Object_Available The Current_Registry_Object_Available post
condition indicates that a registry object has
been located and its metadata object and data
object are available.

Current_Registry_Object_NotAvailab
le

The Current_Registry_Object_NotAvailable post
condition indicates that no registry object has
been located. No further operations are
allowed.

Data_Object_In_Repository The Data_Object_In_Repository post condition
indicates the registry object's data object has
been successfully stored in the repository.

Delete_From_Association The Delete_From_Association operation
removes a named Association from the "from"
registry object.

Delete_To_Association The Delete_To_Association operation removes
a named Association from a "to" registry object.

Find_Associated_Registry_Object The Find_Associated_Registry_Object operation
locates a registry object using a named
association and the current registry object.

Find_Associationed_Registry_Object
(Association)

The
Find_Associationed_Registry_Object(Associatio
n) operation finds an Association registry object

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 46 [May 2004]

using a names association and the current
registry object.

Find_Associationed_Registry_Object
(Classification)

The
Find_Associationed_Registry_Object(Classificati
on) operation finds an Classification registry
object using a names association and the
current registry object.

Find_Current_Registry_Object The Find_Current_Registry_Object operation
makes the current registry object available for
further operations.

Find_Data_Object_In_Repository The Find_Data_Object_In_Repository operation
locats a data object in the repository.

Find_Event_Subscribers The Find_Event_Subscribers operation finds the
subscribers to an event.

Find_Last_Registry_Object The Find_Last_Registry_Object operation
locates the last version of a registry object using
its logical identifier.

Find_Metadata_Object_In_Repositor
y

The Find_Metadata_Object_In_Repository
operation locates a metadata object in the
repository.

Find_Registry_Object The Find_Registry_Object operation finds a
registry object using its unique identifier.

Find_Registry_Object(Association) The Find_Registry_Object(Association)
operation finds a Association registry object.

Get_Association_From_User The Get_Association_From_User operation gets
an association (registry object) identifier from
the user or system

Get_Classification_Node_From_User The Get_Classification_Node_From_User
operation gets a classification node (registry
object) identifier from the user or system

Get_Data_Object_From_User The Get_Data_Object_From_User operation
gets the registry object's data object from the
user.

Get_Metadata_Object_From_User The Get_Metadata_Object_From_User
operation gets the registry object's metadata
from the user, including registry object
identifers.

Get_Registry_Object_Id_From_User The
Get_Registry_Object_Unique_Id_From_User
operation gets a registry object's unique
identifer from the user.

Get_Registry_Object_Identifiers_Fro
m_User

The
Get_Registry_Object_Identifiers_From_User
operation gets a registry object's identifiers
from the user. These could be the unique
identifier, the logical identifier, or the logical
identifier and version identifier.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 47 [May 2004]

Get_Registry_Object_Logical_Id_Fro
m_User

The
Get_Registry_Object_Logical_Id_From_User
operation gets a registry object's logical
identifer from the user.

Get_Registry_Object_Status The Get_Registry_Object_Status operation gets
a registry object status from the user or system.

Get_Search_Parameters_From_User The Get_Search_Parameters_From_User
operation gets the registry catalog search
parameters from the user. These parameters
could include identifier, slots, classifications,
and associations.

Metadata_Object_In_Repository The Metadata_Object_In_Repository post
condition indicates the registry object's
metadata object has been successfully stored in
the repository.

Notify_Subscribers The Notify_Subscribers operation sends a
notification message to the publisher and
subscribers

PostCondition_Current_Registry_Obj
ect_Set_Available

The
PostCondition_Current_Registry_Object_Set_A
vailable post condition indicates that a set of
registry objects has been located and their
metadata objects and data objects are
available.

Registry_Object_Not_Approved The Registry_Object_Not_Approved
precondition indicates that the registry object
has been registered and has a catalog entry but
is not approved..

Registry_Object_Not_Registered The Registry_Object_Not_Registered
precondition indicates that the registry object
has not been registered and does not have a
catalog entry.

Registry_Object_Registered The Registry_Object_Registered precondition
indicates that the registry object has been
registered, has a catalog entry, and has been
approved.

Registry_Object_Verrsion_Pre‐exists The Registry_Object_Verrsion_Pre‐exists
precondition indicates that a registry object
with an identical logical_identifier has been
previously registered.

Remove_Catalog_Entry The Remove_Catalog_Entry operation removes
the entry for a registry object from the registry
catalog.

Remove_Data_Object_From_Reposit
ory

The Remove_Data_Object_From_Repository
operation deletes the data object from the
repository.

Remove_Metadata_Object_From_Re The

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 48 [May 2004]

pository Remove_Metadata_Object_From_Repository
operation deletes the metadata object from the
repository.

Return_Status The Return_Status operation returns the status
to the user.

Search_Registry_Object The Search_Registry_Object operation uses
user provided search parameters to locate a
registry object.

Set_Registry_Object_Status The Set_Registry_Object_Status operation sets
the status of a registry object.

Set_Registry_Object_Status_Approv
ed

The Set_Registry_Object_Status_Approved
operation sets the registry object status to
Approved.

Set_Registry_Object_Status_Depreca
ted

The Set_Registry_Object_Status_Deprecated
operation sets the registry object status to
Deprecated

Set_Registry_Object_Status_Pending The
Operation:Set_Registry_Object_Status_Pending
operation sets the registry object status to
Pending.

Set_Registry_Object_Status_Validat
ed

The Set_Registry_Object_Status_Validated
operation sets the registry object status to
Validated indicating that the metadata object
has been validated.

Store_Data_Object_To_Repository The Store_Data_Object_To_Repository
operation places a data object into the
repository

Store_Metadata_Object_To_Reposit
ory

The Store_Metadata_Object_To_Repository
operation places a metadata object in the
repository.

Update_Catalog_Entry The Update_Catalog_Entry operation updates
the registry catalog entry for a registry object.

Validate_Registry_Object_Metadata The validate_Registry_Object_Metadata
operation validates the metadata object.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 49 [May 2004]

6 FEDERATION

6.1 OVERVIEW

A federated registry/repository provides services for sharing content and metadata
between cooperating registries in a federated environment; and allows cooperating
registries to be federated together to appear and act as a single virtual registry/repository
within the federated model. The benefits of which are evident in seamless information
integration and sharing while preserving local autonomy over data (e.g., federated search
seamlessly returns results from multiple stores).

The federated model includes features for federated query support, linking of content and
metadata across registry boundaries, replication/synchronization of content and metadata
among repositories, moving of content and metadata from one registry/repository to
another, and event notifications. These capabilities enable the tying together of internal
applications and the systems of the participating organizations in a federated architecture.

• Query – search registered content and metadata in any cooperating
registry/repository (i.e., provide a seamless service across different registries in
different domains).

• Linking – linking content and the associated metadata in any cooperating
registry/repository (i.e., provide a seamless service across different registries in
different domains).

• Replication/Synchronization – replication/synchronization of registered content
and metadata between all cooperating registries (i.e., provide a seamless service
across different registries in different domains).

• Relocation – relocation of registered content and metadata from one cooperating
registry/repository to another (i.e., provide a seamless service across different
registries in different domains).

• Notification – content-based event notification to registered client
applications/systems to become aware of the latest information (i.e., provide a
seamless service across different registries in different domains).

6.2 CONCEPT OF FEDERATION

A federation implies a loosely coupled system distributed across the Internet or an
intranet, where the participants can join in and leave the federation without breaking the
federation. It also implies that participants are autonomous independent entities that can
function on their own when they are not a part of a federation. Each participant can
support different schemas and their implementations can also be different. All
participants do need to understand a common subset, which is represented by various
federated models. That level of common understanding should suffice to create a
federated architecture. An entity can participate in many federations at the same time and
membership in a federation is not static. Each science organization typically maintains

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 50 [May 2004]

its own software systems (e.g., workflow, etc.) that cannot be dependent on systems of
other organizations. These features make the federated architecture scalable and practical
for science organizations.

A federation consists of more than one registry/repository that is self-governing but
abides by a common set of rules to enable interoperability. The federation operates at a
level where the participants within the federation are in agreement as to how to cooperate
with respect to interoperability. Federation is expressed as a gradient of minimal
interoperability to fully federated interoperability. Examples of various levels of
federation; include:

• Minimally federated – entities share a minimal common subset (e.g., minimal
rules and metadata; minimal access controls, etc.) where the federation operates
as a loosely coupled system.

• Partially federated – entities share a larger common subset (e.g., half-measured set
of rules and metadata; partial definition/enforcement over access controls, etc.)
where the federation is represented by a semi-autonomous architecture.

• Fully federated – entities share a full common architecture where the federation
operates using various federated models.

6.3 FEDERATED ARCHITECTURE

A federated architecture enables the individual cooperating organizations to function as a
single federated system as illustrated in Figure 7. The federated architecture supports
both large science organizations; as well as, small science organizations having limited
resources.

The Federation class in the information model allows the creation of a Federation. A
Federation is a registry/repository object and is registered and managed as any other
registry/repository object.

The goal of a federated architecture is to create the appearance of a single “corporate”
registry/repository while allowing individual organizations regional control over their
individual realms. (“sub”-registries). One of the main requirements in achieving this goal
is the ability to link and share information securely among sub-registries.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 51 [May 2004]

Figure 8: The Federated Reference Architecture

6.4 FEDERATED REGISTRY/REPOSITORY SERVICES

This section describes the capabilities and protocols that federated registries require in
order to cooperate with each other for the following use cases. The use cases, capabilities,
and protocols have been extracted from [7].

6.4.1 FEDERATED REGISTRY/REPOSITORY USE CASES

1. Inter-registry Object References - A submitter wishes to submit a
RegistryObject such that the submitted object references a
RegistryObject in another registry/repository.

2. Federated Queries - A client wishes to issue a single query against multiple
registries and get back a single response that contains results based on all the data
contained in all the registries. From the client’s perspective it is issuing its query
against a single logical registry/repository that has the union of all data within all
the physical registries.

3. Local Caching of Data from Another Registry/Repository - A destination
registry/repository wishes to cache some or all the data of another source
registry/repository that is willing to share its data. The shared dataset is copied
from the source registry/repository to the destination registry/repository and is
visible to queries on the destination registry/repository even when the source

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 52 [May 2004]

registry/repository is not available. Local caching of data may be desirable in
order to improve performance and availability of accessing that object. An
example might be where a RegistryObject in one registry/repository is
associated with a RegistryObject in another registry/repository, and the first
registry/repository caches the second RegistryObject locally.

4. Object Relocation - A Submitting Organization wishes to relocate its
RegistryObjects and/or repository items from the registry/repository where
it was submitted to another registry/repository.

6.4.2 REGISTRY/REPOSITORY FEDERATION

A registry/repository federation4 is a group of registries that have voluntarily agreed to
form a loosely coupled union. Such a federation may be based on common business
interests and specialties that the registries may share. Registry/repository federations
appear as a single logical registry/repository to registry clients.

Registry/repository federations are based on a peer-to-peer (P2P) model where all
participating registries are equal. Each participating registry/repository is called a
registry/repository peer. There is no distinction between the registry/repository operator
that created a federation and those registry/repository operators that joined that
Federation later. Any registry/repository operator MAY form a registry/repository
federation at any time. When a federation is created it MUST have exactly one
registry/repository peer which is the registry/repository operated by the
registry/repository operator that created the federation.

Any registry/repository MAY choose to voluntarily join or leave a federation at any time.

The Federation information model is summarized here as follows:

• A Federation instance represents a registry/repository federation.
• A Registry/Repository instance represents a registry/repository that is a member

of the Federation.
• An Association instance with associationType of HasFederationMember

represents membership of the registry/repository in the federation. This
Association links the Registry/Repository instance and the Federation instance.

4 Significant amounts of material have been extracted from the OASIS ebXML Registry Services and
Protocols (ebXML RS) [7] specification for this section.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 53 [May 2004]

6.4.3 QUERIES

A federation appears to registry/repository clients as a single unified logical
registry/repository. A query, encoded into an instance of the class AdhocQueryRequest,
is sent by a client to a federation member. The query may be local or federated as
indicated by the boolean attribute “federated” in the instance of AdhocQueryRequest.

Local Queries - When the federated attribute of the query has the value of false then the
query is a local query. A local AdhocQueryRequest is only processed by the
registry/repository that receives the request. A local AdhocQueryRequest does not
operate on data that belongs to other registries.

Federated Queries - When the federated attribute of AdhocQueryRequest has the value of
true then the query is a federated query. A federation member MUST route a federated
query received by it to all other federation member registries on a best attempt basis.
When a registry/repository routes a federated query to other federation members it MUST
set the federated attribute value to false and the federation attribute value to null to avoid
infinite loops.

Membership in Multiple Federations - A registry/repository MAY be a member of
multiple federations. In such cases if the federated attribute of AdhocQueryRequest has
the value of true then the registry/repository MUST route the federated query to all
federations that it is a member of.

6.4.4 FEDERATION LIFECYCLE MANAGEMENT PROTOCOLS

This section describes the various operations that manage the lifecycle of a federation and
its membership. Federation lifecycle operations are done using the standard
LifeCycleManager interface of the registry/repository in a stylized manner. Federation
lifecycle operations are privileged operations. A registry/repository SHOULD Restrict
Federation lifecycle operations to registry/repository User’s that have the
RegistryAdministrator role.

Joining a Federation - The following rules govern how a registry/repository joins a
federation:

• Each registry/repository SHOULD have exactly one Registry/Repository instance
within that registry/repository for which it is a home. The Registry/Repository
instance is owned by the RegistryOperator and may be placed in the
registry/repository using any operator specific means. The Registry/Repository
instance SHOULD never change its home registry/repository.

• A registry/repository MAY request to join an existing federation by submitting an
instance of an Extramural Association that associates the Federation instance as
sourceObject, to its Registry/Repository instance as targetObject, using an

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 54 [May 2004]

associationType of HasFederationMember. The home registry/repository for the
Association and the Federation objects MUST be the same.

Creating a Federation - The following rules govern how a federation is created:

• A Federation is created by submitting a Federation instance to a
registry/repository using SubmitObjectsRequest.

• The registry/repository where the Federation is submitted is referred to as the
federation home.

• The federation home may or may not be a member of that Federation.
• A federation home MAY contain multiple Federation instances.

Leaving a Federation - The following rules govern how a registry/repository leaves a
federation:

• A registry/repository MAY leave a federation at any time by removing its
HasFederationMember Association instance that links it with the Federation
instance. This is done using the standard RemoveObjectsRequest.

Dissolving a Federation - The following rules govern how a federation is dissolved:

• A federation is dissolved by sending a RemoveObjectsRequest to its home
registry/repository and removing its Federation instance.

• The removal of a Federation instance is controlled by the same Access Control
Policies that govern any RegistryObject.

• The removal of a Federation instance is controlled by the same lifecycle
management rules that govern any RegistryObject. Typically, this means
that a federation MUST NOT be dissolved while it has federation members. It
MAY however be deprecated at any time. Once a Federation is deprecated no new
members can join it.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 55 [May 2004]

7 EXTRINSIC OBJECTS

7.1 OVERVIEW

 An Extrinsic Object5 is a type of registry/repository object that catalogues content whose
type is unspecified or unknown. Extrinsic Objects provide metadata that describes
submitted content whose type is not intrinsically known to the registry/repository and
therefore must be described by means of additional attributes. Since the
registry/repository can contain arbitrary content without intrinsic knowledge about that
content, Extrinsic Objects require special metadata attributes to provide some knowledge
about the object (e.g., MIME type).

The super class for Extrinsic Object is RegistryObject. As a subclass it inherits all
registered object attributes. Attributes defined specifically for the Extrinsic Object are “Is
Opaque” and “mime Type”. The “Is Opaque” attribute determines whether the content
catalogued by this Extrinsic Object is opaque to (not readable by) the
Registry/Repository. In some situations, a Submitting Organization may submit content
that is encrypted and not even readable by the registry/repository. The “mime Type”
attribute provides information about the type of object since the object Type is user
defined and not predefined in the registry/repository.

The following table lists pre-defined object types, for example schemas. Note that for an
Extrinsic Object there are many types defined based on the type of repository item the
Extrinsic Object catalogs. In addition there are object types defined for all leaf sub-
classes of RegistryObject.

5 Significant amounts of material have been extracted from the OASIS ebXML Registry Services and
Protocols (ebXML RS) [7] specification for this section.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 56 [May 2004]

Table 2: Examples of Extrinsic Objects

7.1.1 EXTRINSIC OBJECT SUBCLASSES (CCSDS)

The following Extrinsic Object subclasses can be defined within the CCSDS and are
provided as examples.

7.1.1.1 XML Schema

XML Schema is an extension of the ExtrinsicObject class. XML Schema is a
W3C Recommendation and specifies the XML Schema definition language, which offers
facilities for describing the structure and constraining the contents of XML documents.
The XML Schema extension allows an organization to address XML Schema
management functions, including registration, versioning, administer, store, and access
using a CCSDS Registry/Repository.

An ExtrinsicObject has a boolean flag that indicates whether the content
catalogued by the ExtrinsicObject is opaque to (not readable by) the
registry/repository. See opaque attribute below.

The XML Schema extrinsic object is not opaque, and therefore allows the
registry/repository to read and process the content. Content processing, such as
decomposing the XML Schema and registering each component requires an
augmentation to the registry/repository’s generic capabilities.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 57 [May 2004]

Registering XML Schema components after decomposition will require that each
component be defined as an extrinsic object. For example the XML Schema Element
component will have to be defined.

The following required Event Types allow the tracking of XML Schemas.

• Approved - An Event that approves a RegistryObject.
• Created - An Event that created a RegistryObject.
• Deleted - An Event that deleted a RegistryObject.
• Deprecated - An Event that deprecated a RegistryObject.
• Downloaded - An Event that downloaded a RegistryObject.
• Relocated - An Event that relocated a RegistryObject.
• Undeprecated - An Event that undeprecated a RegistryObject.
• Updated - An Event that updated the state of a RegistryObject.
• Versioned - An Event that versioned a RegistryObject

In addition, each RegistryEntry instance must have a life cycle status indicator, assigned
by the registry/repository. The following lists the pre-defined choices for
RegistryObject status attribute.

• Submitted - Status of a RegistryObject that catalogues content that has been
submitted to the Registry/Repository.

• Approved - Status of a RegistryObject that catalogues content that has been
submitted to the Registry/Repository and has been subsequently approved.

• Deprecated - Status of a RegistryObject that catalogues content that has
been submitted to the Registry/Repository and has been subsequently deprecated.

• Withdrawn - Status of a RegistryObject that catalogues content that has
been withdrawn from the Registry/Repository.

Since ExtrinsicObject is a subclass of RegistryObject, the XML Schema
class inherits the following RegistryObject attributes and is managed according to
the registry/repository life-cycle protocols. In the following list the attributes are defined
and restricted for use as a XML Schema.

isOpaque - This attribute determines whether the content catalogued by this
ExtrinsicObject is opaque to (not readable by) the registry/repository. – For all
XML Schemas, the value will be true. This implies that the registry/repository be able to
read and process the content of the XML Schema.

mimeType - The mimeType provides information on the type of repository item
catalogued by the ExtrinsicObject instance. – For all XML Schema the mimeType
will be the XML Schema MimeType.

home - The home attribute, if present, MUST contain the base URL to the home
registry/repository for the RegistryObject instance. No specific restriction.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 58 [May 2004]

Id - Each Identifiable instance MUST have a unique identifier that is used to refer to that
object. No specific restriction.

Description - Each RegistryObject instance MAY have textual description in a
human readable and user-friendly form. No specific restriction.

Lid - Each RegistryObject instance MUST have a lid (Logical Id) attribute. The lid
is used to refer to a logical RegistryObject in a version independent manner. No
specific restriction.

Name - Each RegistryObject instance MAY have a human readable name. The
name does not need to be unique with respect to other RegistryObject instances. No
specific restriction.

VersionInfo.Comment - Each VersionInfo instance MAY have a comment. This attribute
defines the comment associated with the VersionInfo for a specific RegistryObject
version. No specific restriction.

VersionInfoversion.Name - Each VersionInfo instance MUST have a versionName. This
attribute defines the version name identifying the VersionInfo for a specific
RegistryObject version. No specific restriction.

Slot.name - Each Slot instance MUST have a name. The name is the primary means for
identifying a Slot instance within a RegistryObject. The Slot class is used to
provide additional metadata for the ExtrinsicObject, beyond that defined for a
standard RegistryObject. For the XML Schema extension, the Slot is used to
indicate the query model attributes for finding the XML Schema.

Slot.slotType - Each Slot instance MAY have a slotType that allows different slots to be
grouped together. The slotType attribute MAY also be used to indicate the data type or
value domain for the slot value(s). See Slot.Name for XML Schema restrictions in
general.

Slot.values - A Slot instance MUST have a Sequence of values. See Slot.Name for XML
Schema restrictions in general.

ExternalIdentifier.value - Each ExternalIdentifier instance MUST have a value attribute
that provides the identifier value for this ExternalIdentifier. No specific restriction. For an
information system this could be a URI.

7.1.1.2 Content Information

The Content Information Object (CIO) is an extension of the ExtrinsicObject class.
The CIO is defined within the OAIS [2] as “The set of information that is the original
target of preservation.” It consists of a content data object together with its representation

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 59 [May 2004]

data. The CIO extension allows science data information systems to address many of
their archive ingest, administration, data management, archival storage, preservation, and
access functional requirements using a CCSDS Registry/Repository.

For example, the archive tracking requirements can be met using Auditable Event Types.
The following Event Types must be supported in a CCSDS Registry/Repository.

• Approved - An Event that approves a RegistryObject.
• Created - An Event that created a RegistryObject.
• Deleted - An Event that deleted a RegistryObject.
• Deprecated - An Event that deprecated a RegistryObject.
• Downloaded - An Event that downloaded a RegistryObject.
• Relocated - An Event that relocated a RegistryObject.
• Undeprecated - An Event that undeprecated a RegistryObject.
• Updated - An Event that updated the state of a RegistryObject.
• Versioned - An Event that versioned a RegistryObject

In addition, each RegistryEntry instance must have a life cycle status indicator, assigned
by the registry/repository. The following lists the pre-defined choices for
RegistryObject status attribute.

• Submitted - Status of a RegistryObject that catalogues content that has been
submitted to the Registry.

• Approved - Status of a RegistryObject that catalogues content that has been
submitted to the Registry and has been subsequently approved.

• Deprecated - Status of a RegistryObject that catalogues content that has
been submitted to the Registry/Repository and has been subsequently deprecated.

• Withdrawn - Status of a RegistryObject that catalogues content that has
been withdrawn from the Registry.

Since ExtrinsicObject is a subclass of RegistryObject, the CIO class inherits
the following RegistryObject attributes and is managed according to the
registry/repository life-cycle protocols. In the following list the attributes are defined and
restricted for use as a CIO.

isOpaque - This attribute determines whether the content catalogued by this
ExtrinsicObject is opaque to (not readable by) the registry/repository. – For all
CIOs, the value will be false. This implies that the registry/repository will not care about
the content of the CIO and the information system will be required to retrieve a CIO from
the registry/repository for further processing.

mimeType - The mimeType provides information on the type of repository item
catalogued by the ExtrinsicObject instance. – For all CIO’s the mimeType will
indicate parent information system and possible a CIO subclass. For example, within the

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 60 [May 2004]

PDS, the mimeType will indicate that the CIO is a PDS data product and its subtype,
such as an Image.

home - The home attribute, if present, MUST contain the base URL to the home
registry/repository for the RegistryObject instance. No specific restriction.

Id - Each Identifiable instance MUST have a unique identifier that is used to refer to that
object. No specific restriction.

Description - Each RegistryObject instance MAY have textual description in a
human readable and user-friendly form. No specific restriction.

Lid - Each RegistryObject instance MUST have a lid (Logical Id) attribute. The lid
is used to refer to a logical RegistryObject in a version independent manner. No
specific restriction.

Name - Each RegistryObject instance MAY have a human readable name. The
name does not need to be unique with respect to other RegistryObject instances. No
specific restriction.

VersionInfo.Comment - Each VersionInfo instance MAY have a comment. This attribute
defines the comment associated with the VersionInfo for a specific RegistryObject
version. No specific restriction.

VersionInfoversion.Name - Each VersionInfo instance MUST have a versionName. This
attribute defines the version name identifying the VersionInfo for a specific
RegistryObject version. No specific restriction.

Slot.name - Each Slot instance MUST have a name. The name is the primary means for
identifying a Slot instance within a RegistryObject. The Slot class is used to
provide additional metadata for the ExtrinsicObject, beyond that defined for a
standard RegistryObject. For the CIO extension, the Slot is used to indicate query
model attributes for the information system. For example, within the PDS, the common
data elements used for finding data products would be encoded into Slot, such as Time,
Mission, Instrument, and Node. Discipline specific slot such as the imaging disciplines
Latitude and Longitude could also be considered.

Slot.slotType - Each Slot instance MAY have a slotType that allows different slots to be
grouped together. The slotType attribute MAY also be used to indicate the data type or
value domain for the slot value(s). See Slot.Name for CIO restrictions in general.
Slot.slotType would be used to differentiate between science disciplines specific queries
such Imaging Latitude and Longitude and PPI regions.

Slot.values - A Slot instance MUST have a Sequence of values. See Slot.Name for CIO
restrictions in general.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 61 [May 2004]

ExternalIdentifier.value - Each ExternalIdentifier instance MUST have a value attribute
that provides the identifier value for this ExternalIdentifier. No specific restriction. For an
information system this could be a URI.

7.1.1.3 Service

Since Services and Service Binding are first-class RegistryObjects, defined in the
Registry Information Model, there is no need for a Registry Extension.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 62 [May 2004]

8 INTRINSIC OBJECTS

8.1 OVERVIEW

 An Intrisic Object6 is a type of registry/repository object that catalogues content whose
type is specified and known. Intrinsic Objects have been defined in the registry schema
and so their type is known to the registry/repository.

The super class for Intrinsic Object is RegistryObject. As a subclass it inherits all
registered object attributes. Each Intrinsic object is then specifically defined.

The following table lists the defined intrinsic objects.

Intrinsic Object Description
AdhocQuery The AdhocQuery class is a container for an ad hoc query

expressed in a query syntax that is supported
Association Association instances are used to define many‐to‐many

associations among RegistryObjects in the information
model. An instance of the Association class represents
an association between two RegistryObjects.

AuditableEvent AuditableEvent instances provide a long‐term record of
events that effected a change in a RegistryObject. A
RegistryObject is associated with an ordered Set of
AuditableEvent instances that provide a complete audit
trail for that RegistryObject. AuditableEvents are usually
a result of a client‐initiated request. AuditableEvent
instances are generated by the Registry Service to log
such Events. Often such events effect a change in the life
cycle of a RegistryObject. For example a client request
could Create, Update, Deprecate or Delete a
RegistryObject. An AuditableEvent is typically created
when a request creates or alters the content or
ownership of a RegistryObject. Read‐only requests
typically do not generate an AuditableEvent.

Classification A Classification instance classifies a RegistryObject
instance by referencing a node defined within a
particular ClassificationScheme. An internal Classification
will always reference the node directly, by its id, while an
external Classification will reference the node indirectly
by specifying a representation of its value that is unique
within the external classification scheme. The attributes

6 Significant amounts of material have been extracted from the OASIS ebXML Registry Services and
Protocols (ebXML RS) [7] specification for this section.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 63 [May 2004]

for the Classification class are intended to allow for
representation of both internal and external
classifications in order to minimize the need for a
submission or a query to distinguish between internal
and external classifications.

ClassificationNode ClassificationNode instances are used to define tree
structures where each node in the tree is a
ClassificationNode. Such ClassificationScheme trees are
constructed with ClassificationNode instances under a
ClassificationScheme instance, and are used to define
Classification schemes or ontologies.

ClassificationScheme A ClassificationScheme instance describes a taxonomy.
The taxonomy hierarchy may be defined internally to the
registry by instances of ClassificationNode, or it may be
defined externally to the Registry, in which case the
structure and values of the taxonomy elements are not
known to the Registry. In the first case the classification
scheme is said to be internal and in the second case the
classification scheme is said to be external.

ExternalIdentifier ExternalIdentifier instances provide the additional
identifier information to RegistryObject such as DUNS
number, Social Security Number, or an alias name of the
organization. The attribute identificationScheme is used
to reference the identification scheme (e.g., "DUNS",
"Social Security #"), and the attribute value contains the
actual information (e.g., the DUNS number, the social
security number). Each RegistryObject MAY contain 0 or
more ExternalIdentifier instances.

ExternalLink ExternalLinks use URIs to associate content in the
registry with content that MAY reside outside the
registry. For example, an organization submitting an XML
Schema could use an ExternalLink to associate the XML
Schema with the organization's home page.

ExtrinsicObject The ExtrinsicObject class is the primary metadata class
for a RepositoryItem.

Federation Federation instances are used to represent a registry
federation.

Notification The Notification class represents a Notification from the
registry regarding an event that matches a Subscription.
A registry may uses a Notification instance to notify a
client of an event that matches a Subscription they have
registered. This is a push model of notification. A client
may also pull events from the registry using the
AdhocQuery protocol defined by [ebRS].

Organization Organization instances provide information on
organizations such as a Submitting Organization. Each
Organization instance MAY have a reference to a parent

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 64 [May 2004]

Organization.

Person Person instances represent persons or humans.

Registry Registry instances are used to represent a single physical
OASIS ebXML Registry.

RegistryPackage RegistryPackage instances allow for grouping of logically
related RegistryObject instances even if individual
member objects belong to different Submitting
Organizations.

Service Service instances describe services, such as web services.

ServiceBinding ServiceBinding instances are RegistryObjects that
represent technical information on a specific way to
access a Service instance. An example is where a
ServiceBinding is defined for each protocol that may be
used to access the service.

SpecificationLink A SpecificationLink provides the linkage between a
ServiceBinding and one of its technical specifications
that describes how to use the service using the
ServiceBinding. For example, a ServiceBinding MAY have
SpecificationLink instances that describe how to access
the service using a technical specification such as a
WSDL document or a CORBA IDL document.

Subscription Subscription instances are RegistryObjects that define a
User's interest in certain types of AuditableEvents. A
User MAY create a subscription with a registry if he or
she wishes to receive notification for a specific type of
event.

Table 3: Defined Intrinsic Objects

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 65 [May 2004]

9 LIFECYCLE MANAGEMENT

9.1 OVERVIEW

This section7 defines the protocols supported by the Lifecycle Management service
interface of the registry. The Lifecycle Management protocols provide the functionality
required by RegistryClients to manage the lifecycle of RegistryObjects and
RepositoryItems within the registry. These lifecycle protocols have been extracted
from [7].

9.2 UPDATE OBJECTS PROTOCOL

The UpdateObjectsRequest protocol allows a Registry Client to update one or more
existing RegistryObjects and/or repository items in the registry.

UpdateObjectsRequest - The UpdateObjectsRequest is used by a client to update
RegistryObjects and/or repository items that already exist within the registry.

RegistryObjectList: This parameter specifies a collection of RegistryObject
instances that are being updated within the registry.

9.3 APPROVE OBJECTS PROTOCOL

The Approve Objects protocol allows a client to approve one or more previously
submitted RegistryObject objects using the LifeCycleManager service interface.

ApproveObjectsRequest - The ApproveObjectsRequest is used by a client to approve one
or more existing RegistryObject instances in the registry.

Parameters:

• AdhocQuery: This parameter specifies a query. A registry MUST approve
all objects that match the specified query in addition to any other objects
identified by other parameters.

• ObjectRefList: This parameter specifies a collection of references to
existing RegistryObject instances in the registry. A registry MUST

7 Significant amounts of material have been extracted from the OASIS ebXML Registry Services and
Protocols (ebXML RS) [7] and the ebXML Registry Information Model (ebXML RIM) [3] specifications
for this section.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 66 [May 2004]

approve all objects that are referenced by this parameter in addition to any
other objects identified by other parameters.

9.4 DEPRECATE OBJECTS PROTOCOL

The Deprecate Object protocol allows a client to deprecate one or more previously
submitted RegistryObject instances using the LifeCycleManager service interface.
Once a RegistryObject is deprecated, no new references (e.g. new Associations,
Classifications and ExternalLinks) to that object can be submitted. However, existing
references to a deprecated object continue to function normally.

DeprecateObjectsRequest - The DeprecateObjectsRequest is used by a client to deprecate
one or more existing RegistryObject instances in the registry.

Parameters:

• AdhocQuery: This parameter specifies a query. A registry MUST deprecate all
objects that match the specified query in addition to any other objects identified
by other parameters.

• ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST deprecate all
objects that are referenced by this parameter in addition to any other objects
identified by other parameters.

9.5 UNDEPRECATE OBJECTS PROTOCOL

The Undeprecate Objects protocol of the LifeCycleManager service interface allows a
client to undo the deprecation of one or more previously deprecated RegistryObject
instances. When a RegistryObject is undeprecated, it goes back to the Submitted
status and new references (e.g. new Associations, Classifications and ExternalLinks) to
that object can now again be submitted.

UndeprecateObjectsRequest - The UndeprecateObjectsRequest is used by a client to
undeprecate one or more existing RegistryObject instances in the registry. The
registry MUST silently ignore any attempts to undeprecate a RegistryObject that is
not deprecated.

Parameters:

• AdhocQuery: This parameter specifies a query. A registry MUST undeprecate all
objects that match the specified query in addition to any other objects identified
by other parameters.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 67 [May 2004]

• ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST undeprecate all
objects that are referenced by this parameter in addition to any other objects
identified by other parameters.

9.6 REMOVE OBJECTS PROTOCOL

The Remove Objects protocol allows a client to remove one or more
RegistryObject instances and/or repository items using the LifeCycleManager
service interface.

RemoveObjectsRequest - The RemoveObjectsRequest is used by a client to remove one
or more existing RegistryObject and/or repository items from the registry.

Parameters:

• deletionScope: This parameter indicates the scope of impact of the
• RemoveObjectsRequest. The value of the deletionScope attribute MUST be a

reference to a ClassificationNode within the canonical DeletionScopeType
ClassificationScheme.

• AdhocQuery: This parameter specifies a query. A registry MUST remove all
objects that match the specified query in addition to any other objects identified
by other parameters.

• ObjectRefList: This parameter specifies a collection of references to existing
RegistryObject instances in the registry. A registry MUST remove all
objects that are referenced by this parameter in addition to any other objects
identified by other parameters.

9.7 REGISTRY MANAGED VERSION CONTROL

This section describes the version control features of the registry.

Version Controlled Resources - All repository items in a registry are implicitly version-
controlled resources. No explicit action is required to make them a version-controlled
resource.

Versioning and Object Identification - Each version of a RegistryObject is a unique
object and as such has its own unique value for its id attribute as defined by the
information model.

Logical ID - All versions of a RegistryObject are logically the same object and are
referred to as the logical RegistryObject. A logical RegistryObject is a tree
structure where nodes are specific versions of the RegistryObject.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 68 [May 2004]

A specific version of a logical RegistryObject is referred to as a
RegistryObject instance. A RegistryObject instance MUST have a Logical ID
(LID) to identify its membership in a particular logical RegistryObject. Note that
this is in contrast with the id attribute that MUST be unique for each version of the same
logical RegistryObject. A client may refer to the logical RegistryObject in a
version independent manner using its LID.

Version Identification - A registry supports independent versioning of both
RegistryObject metadata as well as repository item content. It is therefore necessary
to keep distinct version information for a RegistryObject instance and its repository
item if it happens to be an ExtrinsicObject instance.

Version Identification for a RegistryObject - A RegistryObject MUST have a
versionInfo attribute whose type is the VersionInfo class defined by information model.
The versionInfo attributes identifies the version information for that RegistryObject
instance. A registry MUST not allow two versions of the same RegistryObject to
have the same versionInfo.versionName attribute value.

Versioning of ExtrinsicObject and Repository Items - An ExtrinsicObject
and its associated repository item may be updated independently and therefore versioned
independently.

Version Creation - The registry manages creation of new version of a
RegistryObject or a repository item automatically. A registry that supports
versioning MUST implicitly create a new version for a repository item if the repository
item is updated via a SubmitObjectsRequest or UpdateObjectsRequest. In such cases it
MUST also create a new version of its ExtrinsicObject.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 69 [May 2004]

10 REFERENCE IMPLEMENTATION

The Planetary Data System (PDS) has undertaken an effort to overhaul the PDS data
architecture (e.g., data model, data structures, data dictionary, etc.) and deploy a software
system (online data services, distributed data catalog, etc.) that fully embraces the PDS
federation as an integrated system while leveraging modern information technology. The
effort has been dubbed “PDS 2010”.

A core component of this new system is the Registry Service that will provide
functionality for tracking, auditing, locating, and maintaining artifacts within the system.
These artifacts can range from data files and label files, schemas, dictionary definitions
for objects and elements, services, etc. The design of this service attempts to follow the
reference model captured in this document.

10.1 SERVICE DESCRIPTION

The Registry Service provides a generalized track and locate function for registered
artifacts within the system. Services and individual actors within the system interact with
the registry to inform the service about new managed artifacts or to lookup/update basic
information about existing registered artifacts. The registry will maintain three types of
registrations:

Metadata Entry

This type of entry will simply capture metadata describing a non-digital object
within the system. This type of entry is akin to descriptions captured for missions,
instruments, data sets, targets, people, etc.

Digital Object Entry

This type of entry tracks back to a physical set of bits. This would be items such
as science data products consisting of a label and data files. It also includes any
item of interest (e.g., documents, schemas, etc.).

Relationship Entry

This type of entry will serve as a means to tie registered artifacts together. Such
support is necessary for example to correlate collections to a set of products
contained within. These relationships may span registries and thus the need for
coordination amongst registries exists. Example science data product relationships
include associations with an investigation product, an instrument product and a
target product.

Although the service follows the reference model captured in this document, it does
deviate from the model in four areas:

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 70 [May 2004]

Repository Support

Each Node within the PDS federation manages their science archive (e.g., the
digital objects) utilizing their own mechanism. Because of this, the need for a
common or generalized repository capability has been downplayed. As a result,
the design of the Registry Service focuses on registration of metadata for digital
objects that are managed in an external repository.

Search Support

The design of the PDS 2010 system includes a Search Service where search
indices are built from harvested metadata supporting the different science
disciplines and search applications. Although the Registry Service facilitates
search and retrieval, the focus is on facilitating the harvest of metadata from the
registry in order to build these search indices.

Security Support

The design of the PDS 2010 system includes a Security Service where user
accounts and groups are maintained for controlling access to the Registry Service.
In addition, this service works with the Application Server hosting the Registry
Service to restrict access and require authentication to specific URLs (i.e., any
interface that modifies the contents of the registry).

Subscription Support

The design of the PDS 2010 system includes a Subscription Service that manages
user subscriptions and the mechanisms for notification. The Registry Service
tracks auditable events and provides an interface for retrieving these events in
order to facilitate subscription.

The Registry Service offers a single implementation of registry capabilities for use by the
other services and applications within a system. This service is tailor-able depending on
the type of registry and types of artifacts to be registered with a given instance.

10.2 USE CASES / REQUIREMENTS

The use cases for the Registry Service follow the general use cases defined in Section 3.2
very closely. In fact they are virtually identical except for the Store and Retrieve use
cases found in this document that pertain to repository-related capabilities. In addition,
the requirements for the registry also map to the actions associated with those general use
cases. Because of this very close mapping to the use cases and associated actions found in
Section 3.2, the use cases and requirements for the Registry Service will not be detailed
in this document.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 71 [May 2004]

10.3 ARCHITECTURE

The architecture of the Registry Service focuses mainly on the interfaces offered by the
service.

Figure 9: Registry Service Architecture

The interfaces depicted in the figure above are described in the following sections.

10.3.1 EXTERNAL INTERFACE

The Registry Service offers a REST-based external interface that is accessible via the
Hypertext Transfer Protocol (HTTP). A REST-based interface exhibits the following
characteristics:

• A URL assigned to every resource
• Formulate URLs in a predictable manner
• Use HTTP methods for actions on a resource (GET, POST and DELETE)
• Leverage HTTP protocol headers and response codes where applicable

The goals for the interface are as follows:

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 72 [May 2004]

• Keep the service simple and refrain from adding too much functionality
• Allow messaging in the form of XML or JavaScript Object Notation (JSON)
• Allow for extensibility as new artifact types are defined

In addition, each interface should adhere to the following:

• Be self documenting
• Have a defined standard response including passed parameters
• Provide a schema for the defined response
• Provide a command-line method of execution

Any interface that modifies the contents of the registry will incorporate security. This
means that any interface specified below as an HTTP POST will first require interaction
with a Security service. Integration with the Security service is accomplished through the
Application Server and does not require any specific coding within the Registry Service.
The only change to these interfaces will be in terms of a required HTTP header or cookie
being set that will provide the means to verify the validity of the request. These requests
should require secure HTTP (HTTPS).

The following are some examples detailing the functionality of the REST-based interface
using HTTP methods. This interface delegates all functions involving a product:

http://pds.nasa.gov/services/registry/products/
o GET: Retrieves a paged list of products from the registry.
o POST: Publishes a product to the registry.

This interface acts on a specific product (lid stands for logical identifier):

http://pds.nasa.gov/services/registry/products/{lid}/{version}/
o GET: Retrieves the product from the registry.
o POST: Updates the product in the registry.
o DELETE: Removes the product from the registry.

10.3.2 INTERNAL INTERFACES

The Registry Service defines two internal interfaces. The first interface exposes the core
functionality of the service via a Java API. This API is utilized by the REST-based
interface detailed in the previous section. The following table maps this Java API to the
façade API defined in Section 5.3:

Façade API Registry Service API

Publish_Registry_Object RegistryService.publishRegistryObje
ct()

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 73 [May 2004]

Façade API Registry Service API

Publish_Registry_Object_No_Data RegistryService.publishRegistryObje
ct()

Update_Registry_Object RegistryService.updateRegistryObjec
t()

Approve_Registry_Object

Deprecate_Registry_Object

Undeprecate_Registry_Object

RegistryService.changeRegistryObjec
tStatus()

Delete_Registry_Object RegistryService.deleteRegistryObject
()

Validate_Registry_Object RegistryService.publishRegistryObje
ct()

Catalog_Registry_Object RegistryService.publishRegistryObje
ct()

Version_Registry_Object RegistryService.versionProduct()

Store_Data_Object Not Supported

Notify_Subscribers Not Supported. Facilitated by an
external Subscription Service via a
call to:
RegistryService.getAuditableEvents()

Find_Registry_Object RegistryService.getProduct()

Discover_Registry_Object RegistryService.getProducts()

Retrieve_Data_Object Not Supported

Retrieve_Metadata_Object RegistryService.getRegistryObject()

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 74 [May 2004]

Façade API Registry Service API

Set_Registry_Object_Status

Set_Registry_Object_Status_Pending

Set_Registry_Object_Status_Validated

Set_Registry_Object_Status_Approved

Set_Registry_Object_Status_Deprecated

RegistryService.changeRegistryObjec
tStatus()

Find_All_Associated_Object RegistryService.getAssociation()

Associate_From_Object

Associate_To_Object

RegistryService.publishRegistryObje
ct()

Deassociate_From_Object

Deassociate_To_Object

RegistryService.deleteRegistryObject
()

Classify_Object Not Yet Supported

Publish_Association RegistryService.publishRegistryObje
ct()

Publish_Classification RegistryService.publishRegistryObje
ct()

Publish_Federation Not Yet Supported

Publish_AuditableEvent RegistryService.publishRegistryObje
ct()

Publish_Notification Not Supported

Publish_Subscriber Not Supported

Join_Federation Not Yet Supported

Table 4: Registry Service API Mapping

The second internal interface involves communication with the underlying metadata
store. This interface will follow a generic design with the intent of supporting multiple
backend implementations for the metadata store. The layered design for the backend
implementation allows for technology refresh and multiple deployment scenarios. The
metadata store interface will support the data model detailed in Section 4.2.1.2.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 75 [May 2004]

10.4 DEPLOYMENT

The implementation platform for the Registry Service is the Java 2 Platform Standard
Edition 6.0. Implementation of the REST-based interface utilizes Jersey, which is a
reference implementation of the Java API for RESTful Web Services (JAX-RS)
framework. The Graphical User Interface (GUI) that interfaces with the Registry Service
was also developed using Java and the Google Web Toolkit. In addition, development
utilizes publicly available libraries for interface development, message handling and file
system access. The service and the GUI are packaged as Web Application Archives
(WARs), which require an Application Server (e.g., Apache Tomcat) installed on the
target machine to host the applications. The following diagram depicts this deployment
scenario:

Figure 10: Registry Service Deployment

Communication with the Registry Service is accomplished using REST-based API over
the Hypertext Transfer Protocol (HTTP).

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 76 [May 2004]

ANNEX Sections

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 77 [May 2004]

Annex 1 Electronic Business using XML Registry (ebXML Registry) 8

1.5 Electronic Business using XML Registry (ebXML Registry)

The ebXML Registry specification was created as part of the 18-month ebXML initiative
that ended in May 2001. Sponsored by the United Nations Centre for Trade Facilitation
and 345 Electronic Business (UN/CEFACT) and OASIS, ebXML is a modular suite of
specifications that enables enterprises of any size and in any geographical location to
conduct business over the Internet. ebXML provides companies with a standard method
to exchange business messages, conduct trading relationships, communicate data in
common terms, and define and register business processes. An ebXML registry provides
a mechanism by which XML artifacts can be stored, maintained, and automatically
discovered, thereby increasing efficiency in XML-related development efforts [7]. The
OASIS/ebXML Registry Technical Committee was created in May 2001 to build on the
ebXML initiative efforts. The current ebXML Registry standard is ebXML Registry v3.0.
It was ratified by OASIS in May 2005, superseding the previous standard, ebXML
Registry v2.0. The ebXML Registry specification is actually comprised of two
specifications—ebXML Registry Information Model (RIM) and ebXML Registry
Services (RS). These specifications are referred to collectively here as the “ebXML
Registry specification.”

Although ebXML Registry may be used as a general-purpose registry, the stated goal in
the specification is to facilitate ebXML-based B2B partnerships and transactions.
Unfortunately, very few SOA infrastructure products or tools provide any support for
ebXML-compliant registry services [7]. The tool vendors have instead favored
supporting UDDI standard for managing metadata associated with services assets.

1.5.1 ebXML Registry Information Model and APIs & Protocols

Unlike UDDI whose primary focus is business information, the main focus of the ebXML
Registry Information Model (RIM) is more general to encompass XML and non-XML
artifacts. Therefore, the ebXML RIM is more abstract in nature than that of UDDI. The
ebXML RIM consists of two “core” data structures, or classes:

• RegistryObject
• RegistryEntry

A RegistryObject provides metadata for a stored RepositoryItem (the term used to
refer to that actual object that is stored) – such as name, object type, identifier,
description, etc. A RegistryObject can represent many different types of
RepositoryItems, from XML schemas, to classification schemes, to Web service

8 Extracted from “Registry & Repository Standards Introduction,”, Jeff Estefan, Division 31 Chief
Technologist, Jet Propulsion Laboratory.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 78 [May 2004]

definitions [7]. In contrast, a RegistryEntry is used to represent “catalog-type” metadata
about RepositoryItems—that is, metadata about the current state of a
RepositoryItem in the registry (e.g. version, status, stability). Consequently, the metadata
associated with a RegistryEntry is (in general) more “fluid” than that associated with a
RegistryObject. The RegistryEntry class inherits from the RegistryObject
class. An ebXML Registry service must support Simple Object Access Protocol (SOAP)
and HTTP protocol bindings. The ebXML Registry v3.0 specification defines the
following APIs [7]:

• Query Management (to browse and search the registry)
• Lifecycle Management (to publish information to the registry, manage content in

the repository, and manage versions)
• Event Notification (to subscribe to changes in the registry or repository)
• Content Management (to validate and catalog content in the repository)

The ebXML Registry specification defines two levels of compliance, Registry Full and
Registry Lite. A Registry Fullcompliant product must implement all features defined in
the specification. The Registry Lite compliance level defines version control, event
notification, and content management as optional features.

1.5.2 ebXML Registry withing ebXML Technical Architecture

The ebXML Registry is a central component of the ebXML Technical Architecture, as it
serves as a storage facility and discovery mechanism for the various artifacts that are
necessary for engaging in electronic business using the ebXML framework. This is
illustrated in Error! Reference source not found.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 79 [May 2004]

Figure 1 - ebXML Technical Architecture

An ebXML registry interacts with both a local repository and a remote ebXML registry.
Requests are sent to the registry and responses are received from the registry through a
Registry Service Interface. The Registry Service Interface may interact with other
Registry Service Interfaces, such as UDDI, and open interface standards such as
Common Object Request Broker Architecture (CORBA).

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 80 [May 2004]

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 81 [May 2004]

Annex 2 – XML Schema Registry Use Cases

10.5 XML SCHEMA REGISTRY/REPOSITORY

This section provides use cases and actors for an XML Schema registry/repository. An
XML Schema registry/repository allows for the registration, discovery and management
of XML Schemas. The XML Schema registry/repository inherits several of functions of
the general registry/repository described earlier.

10.5.1 ACTORS

XML Schema Provider - An XML schema provider is a system or person that
provides a schema to be submitted into the registry/repository. This actor is
equivalent to the Publisher defined in Section 3.1.

XML Schema Consumer - An XML schema consumer is a system or person that
discovers and receives descriptions and schemas from the registry/repository. This
actor is equivalent to the Artifact Consumer defined in Section 3.1.

10.5.2 USE CASES

The following are use case defined for a XML Schema Registry.

10.5.2.1 XML Schema Registration

Description: An XML Schema Provider registers an XML schema through a
registry/repository service.

Actors/Users: XML Schema Provider

Scenarios

1. An XML Schema Provider registers an XML schema file through a
registry/repository service using standardized metadata.

2. The registry/repository service associates the metadata to the XML
schema in the catalog

3. The registry/repository service allows classification of the registered XML
schema in the catalog based on classification schemes in the registry (including
namespace)

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 82 [May 2004]

4. The registry/repository service assigns a version identifier for the XML
schema in the catalog

5. The registry/repository service stores the XML schema in the repository

6. The registry/repository service returns a unique identifier for accessing the
schema

10.5.2.2 XML Schema Search

Description: An XML Schema Consumer searches for existing XML schemas
through a registry/repository service.

Actors/Users: XML Schema Consumer

Scenarios

1. An XML Schema Consumer searches the XML schema registry/repository
based on a set of criteria.

2. The registry/repository service returns metadata results describing
registered XML schemas.

10.5.2.3 XML Schema Access

Description: An XML Schema Consumer accesses a schema based on a unique
identifier

Actors/Users: XML Schema Consumer

Scenarios

1. An XML Schema Consumer retrieves an XML schema file through a
registry/repository service using a unique identifier for the schema and version
(e.g., URL)

2. The registry/repository service retrieves the XML schema from the
repository and returns it to the consumer

10.5.2.4 XML Schema Validation

Description: A XML Schema Consumer validates an XML document against a
schema in the registry/repository

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 83 [May 2004]

Actors/Users: XML Schema Consumer

Scenarios

1. An XML Schema Consumer provides an XML document to the XML Schema
registry/repository service requesting that it be validated against a registered XML
schema based on the unique identifier

2. The registry/repository service performs the validation and returns the results
to the consumer

10.5.2.5 XML Schema Update

Description: A XML Schema Provider updates the metadata for a XML schema in
the registry/repository

Actors: XML Schema Provider

Scenarios

1. An XML Schema Provider provides updates to the metadata for a registered
XML schema

2. The registry/repository service updates the metadata for the XML schema in
the catalog

10.5.2.6 XML Schema New Version

Description: An XML Schema Provider registers a new version of a schema

Actors: XML Schema Provider

Scenarios

1. An XML Schema Provider registers a new version of an XML schema file
through a registry/repository service using standardized metadata.

2. The registry/repository service associates the metadata to the XML
schema in the catalog

3. The registry/repository service allows classification of the registered XML
schema in the catalog based on classification schemes in the
registry/repository (including namespace)

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 84 [May 2004]

4. The registry/repository service increments a version identifier for the
XML schema in the catalog

5. The registry/repository service stores the XML schema in the repository

6. The registry/repository service returns a unique identifier for accessing the
schema

10.5.2.7 XML Schema Removal

Description: An XML Schema Provider requests the XML schema be
removed from the registry/repository

Actors: XML Schema Provider

Scenarios

1. An XML Schema Provider requests the XML Schema registry/repository
to remove the schema based on a unique identifier

2. The registry/repository service removes the schema from the repository

3. The registry/repository service removes the description from the catalog

