
CCSDS RECOMMENDATION FOR REGISTRY AND REPOSITORY

C
C

SD
S

Page 1-1
O

ctober 2007

Registry and Repository

Reference Model

CCSDS [number]

DRAFT WHITE BOOK

April 7, 2009

CCSDS RECOMMENDATION FOR REGISTRY AND REPOSITORY

C
C

SD
S

Page 2
O

ctober 2007

AUTHORITY

 Issue:

 Date:

 Location:

This document has been approved for publication by the Management Council of
the Consultative Committee for Space Data Systems (CCSDS) and represents the
consensus technical agreement of the participating CCSDS Member Agencies.
The procedure for review and authorization of CCSDS Recommendations is
detailed in Procedures Manual for the Consultative Committee for Space Data
Systems, and the record of Agency participation in the authorization of this
document can be obtained from the CCSDS Secretariat at the address below.

This document is published and maintained by:

CCSDS Secretariat
Office of Space Communication (Code M-3)
National Aeronautics and Space Administration
Washington, DC 20546, USA

 3

STATEMENT OF INTENT

The Consultative Committee for Space Data Systems (CCSDS) is an organization
officially established by the management of member space Agencies. The
Committee meets periodically to address data systems problems that are common
to all participants, and to formulate sound technical solutions to these problems.
Inasmuch as participation in the CCSDS is completely voluntary, the results of
Committee actions are termed Recommendations and are not considered binding
on any Agency.

This Recommendation is issued by, and represents the consensus of, the CCSDS
Plenary body. Agency endorsement of this Recommendation is entirely
voluntary. Endorsement, however, indicates the following understandings:

– Whenever an Agency establishes a CCSDS-related standard, this standard
will be in accord with the relevant Recommendation. Establishing such a
standard does not preclude other provisions which an Agency may develop.

– Whenever an Agency establishes a CCSDS-related standard, the Agency will
provide other CCSDS member Agencies with the following information:

• The standard itself.

• The anticipated date of initial operational capability.

• The anticipated duration of operational service.

– Specific service arrangements are made via memoranda of agreement.
Neither this Recommendation nor any ensuing standard is a substitute for a
memorandum of agreement.

No later than five years from its date of issuance, this Recommendation will be
reviewed by the CCSDS to determine whether it should: (1) remain in effect
without change; (2) be changed to reflect the impact of new technologies, new
requirements, or new directions; or, (3) be retired or canceled.

In those instances when a new version of a Recommendation is issued, existing
CCSDS-related Agency standards and implementations are not negated or
deemed to be non-CCSDS compatible. It is the responsibility of each Agency to
determine when such standards or implementations are to be modified. Each
Agency is, however, strongly encouraged to direct planning for its new standards
and implementations towards the later version of the Recommendation.

 4

FOREWORD

Through the process of normal evolution, it is expected that expansion, deletion,
or modification of this document may occur. This Recommendation is therefore
subject to CCSDS document management and change control procedures which
are defined in the Procedures Manual for the Consultative Committee for Space
Data Systems. Current versions of CCSDS documents are maintained at the
CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed
to the CCSDS Secretariat.

 5

At time of publication, the active Member and Observer Agencies of the CCSDS
were:

Member Agencies

– Agenzia Spaziale Italiana (ASI)/Italy.
– British National Space Centre (BNSC)/United Kingdom.
– Canadian Space Agency (CSA)/Canada.
– Centre National d’Etudes Spatiales (CNES)/France.
– Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.
– European Space Agency (ESA)/Europe.
– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
– Japan Aerospace Exploration Agency(JAXA)/Japan.
– National Aeronautics and Space Administration (NASA)/USA.
– Russian Space Agency (RSA)/Russian Federation.

Observer Agencies

– Austrian Space Agency (ASA)/Austria.
– Central Research Institute of Machine Building (TsNIIMash)/Russian

Federation.
– Centro Tecnico Aeroespacial (CTA)/Brazil.
– Chinese Academy of Space Technology (CAST)/China.
– Commonwealth Scientific and Industrial Research Organization

(CSIRO)/Australia.
– Communications Research Laboratory (CRL)/Japan.
– Danish Space Research Institute (DSRI)/Denmark.
– European Organization for the Exploitation of Meteorological Satellites

(EUMETSAT)/Europe.
– European Telecommunications Satellite Organization

(EUTELSAT)/Europe.
– Federal Science Policy Office (FSPO)/Belgium.
– Hellenic National Space Committee (HNSC)/Greece.
– Indian Space Research Organization (ISRO)/India.
– Institute of Space and Astronautical Science (ISAS)/Japan.
– Institute of Space Research (IKI)/Russian Federation.
– KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
– MIKOMTEK: CSIR (CSIR)/Republic of South Africa.
– Korea Aerospace Research Institute (KARI)/Korea.
– Ministry of Communications (MOC)/Israel.
– National Oceanic & Atmospheric Administration (NOAA)/USA.
– National Space Program Office (NSPO)/Taipei.
– Space and Upper Atmosphere Research Commission

(SUPARCO)/Pakistan.
– Swedish Space Corporation (SSC)/Sweden.

 6

– United States Geological Survey (USGS)/USA.

 7

DOCUMENT CONTROL

Document Title and Issue Date Status
0.1 Registry and Repository

Reference Model
23-Oct-07 Draft

 8

CONTENTS

Section Page

1 INTRODUCTION..10

1.1 PURPOSE AND SCOPE..10
1.2 BACKGROUND ..10
1.3 STRUCTURE OF THIS DOCUMENT ...10
1.4 DEFINITIONS ...12

1.4.1 ACRONYMS AND ABBREVIATIONS...12
1.4.2 TERMINOLOGY ...12

1.5 REFERENCES ...14
2 OVERVIEW OF A SERVICE REGISTRY/REPOSITORY16

2.1 ENVIRONMENT CONTEXT FOR A REGISTRY AND
REPOSITORY..16

2.2 FUNCTIONAL VIEWS OF A REGISTRY AND REPOSITORY17
2.3 GENERAL FEATURES OF A REGISTRY AND REPOSITORY.........................19

3 USE CASES..20
3.1 ACTORS...20
3.2 GENERAL USE CASES..20

3.2.1 PUBLISH..21
3.2.2 UPDATE...22
3.2.3 APPROVE ..23
3.2.4 DEPRECATE ...23
3.2.5 DELETE ...23
3.2.6 VALIDATE ..24
3.2.7 CATALOG ...24
3.2.8 VERSION ...25
3.2.9 STORE..25
3.2.10 NOTIFY..25
3.2.11 DISCOVER ..26
3.2.12 RETRIEVE ...26

3.3 ADMINISTRATION USE CASES..26
3.4 SPECIFIC USE CASES ...26

3.4.1 SERVICE REGISTRY USE CASES ...27
3.4.2 XML SCHEMA REGISTRY ...28

4 INFORMATION MODEL..33
4.1 OVERVIEW OF A REGISTRY INFORMATION MODEL33
4.2 A GENERAL REGISTRY INFORMATION MODEL ...33

4.2.1 RESPONSE TO USE CASES ..34
4.2.2 VIEWS OF THE REGISTRY MODEL ...37

5 FEDERATION...40
5.1 OVERVIEW ...40
5.2 CONCEPT OF FEDERATION..41
5.3 FEDERATED ARCHITECTURE..41

 9

5.4 FEDERATED REGISTRY SERVICES...42
5.4.1 FEDERATED REGISTRY USE CASES...43
5.4.2 REGISTRY FEDERATION...43
5.4.3 QUERIES..44
5.4.4 FEDERATION LIFECYCLE MANAGEMENT PROTOCOLS.................44

6 EXTRINSIC OBJECTS ..46
6.1 OVERVIEW ...46

6.1.1 EXTRINSIC OBJECT SUBCLASSES (CCSDS)..47
7 API...53

7.1 OVERVIEW ...53
7.2 JAXR OVERVIEW ..53

7.2.1 JAXR ARCHITECTURE...53
7.3 JAXR API SUMMARY ..58
7.4 SPECIALIZED FACADE INTERFACES...60

7.4.1 XML SCHEMAS..60
8 LIFECYCLE MANAGEMENT...61

8.1 OVERVIEW ...61
8.2 UPDATE OBJECTS PROTOCOL...61
8.3 APPROVE OBJECTS PROTOCOL ..61
8.4 DEPRECATE OBJECTS PROTOCOL ...61
8.5 UNDEPRECATE OBJECTS PROTOCOL ...62
8.6 REMOVE OBJECTS PROTOCOL..63
8.7 REGISTRY MANAGED VERSION CONTROL ...63

ANNEX 1 REFERENCE REGISTRY USE CASES ..67
ANNEX 2 JAXR APIS MAPPINGS ...117

Table of Figure

FIGURE 1 ENVIRONMENT VIEW OF A REGISTRY AND REPOSITORY 17
FIGURE 2: TWO CONCEPTUAL VIEWS OF A REGISTRY/REPOSITORY 18
FIGURE 8 - EXAMPLES OF EXTRINSIC OBJECTS .. 47

 10

1 INTRODUCTION

This concept paper represents the beginning of a series of CCSDS
Recommendations and Reports meant to provide CCSDS registry and repository
recommendations to accommodate the current computing environment and meet
evolving requirements.

1.1 PURPOSE AND SCOPE

The main purpose of this document is to define a staged set of CCSDS
Recommendations for registries and repositories that meet current CCSDS agency
requirements and can be implemented to demonstrate practical, near-term results.
This specification needs to be augmented with substantial proof-of-concept and
performance prototyping of several registries and repositories in CCSDS
environments.

The scope of application of this document is the entire space informatics domain
from operational messaging to science archives. In recognition of this varied user
community, this document proposes aggressive use of current and emerging W3C
and Web Services standards to provide advanced data access techniques and
adherence to the OAIS Reference Model (reference [7]) information model.

1.2 BACKGROUND

Registries are pervasive components in most information systems. For example,
data dictionaries, service registries, LDAP directory services, and even databases
provide “registry-like” services, including an account of informational items that
are used in large-scale information systems. These items range from data values
such as names and codes, to vocabularies, services and software components.
Within the business community, a registry has been defined as “an information
system that securely manages any content type and the standardized metadata that
describes it.” [6]

This paper presents a set of use cases for registries. These use cases describe
sequences of actions for specific purposes between a registry and its users. These
uses case in turn will be used to derive requirements and help define classification
attributes.

1.3 STRUCTURE OF THIS DOCUMENT

This document is divided into informative and normative chapters and annexes

Sections 1- 3 of this document are informative chapters that give a high level view
of the rationale, the conceptual environment, some of the important design issues
and an introduction to the terminology and concepts.

 11

• Section 1 gives background to this effort, its purpose and scope, a view of the
overall document structure, and the acronym list, glossary, and reference list
for this document.

• Section 2 provides a high level view of the anticipated computing
environment and the key concepts in the domain of registries and repositories.

• Section 3 provides use case scenarios that convey how actors interact with a
registry in the most general cases. These use cases convey a general concept
of actors and functions that are supported by registries.

Sections 4 –11 of this document are the normative portion of the specification.

• Section 4 presents a registry reference information model. The information
model defines the classes needed to support the essential functions provided
by a registry that allows an organization to publish and discover services and
artifacts.

• Section 5 presents a federated model that includes features for federated query
support, linking of content and metadata across registry boundaries,
replication and synchronization of content and metadata among repositories,
moving of content and metadata from one registry to another, and event
notifications.

• Section 6 presents a model for extrinsic objects. Since the registry can contain
arbitrary content without intrinsic knowledge about that content, the extrinsic
object models allows special metadata attributes to provide some knowledge
about the object.

• Section 7 presents a standard Java API that performs registry operations over
a diverse set of registries and defines a unified information model for
describing registry contents. Regardless of the registry provider, applications
use common APIs and a common information model.

• Section 8 defines the protocols supported by Lifecycle Management service
interface of the Registry. The Lifecycle Management protocols provide the
functionality required by RegistryClients to manage the lifecycle of
RegistryObjects and RepositoryItems within the registry.

Annexes 1-2
• Annex 1 provides sets of use cases for specific systems
• Annex 2 provides the mapping for the JAXR API’s to the use cases of Chapter

4 and to the CCSDS XML/Schema tool APIs.

 12

1.4 DEFINITIONS

1.4.1 ACRONYMS AND ABBREVIATIONS

AIC Archival Information Collection
AIP Archival Information Package
AIU Archival Information Unit
ASCII American Standard Code for Information Interchange
CCSDS Consultative Committee for Space Data Systems
CD-ROM Compact Disk - Read Only Memory
CORBA Common Object Request Broker Architecture
CRC Cyclical Redundancy Check
DIME Direct Internet Message Encapsulation
DIP Dissemination Information Package
ebXML Electronic Business using eXtensible Markup Language
FITS Flexible Image Transfer System
GIF Graphics Interchange Format
ISBN International Standard Book Number

ISO International Organization for Standardization
METS Metadata Encoding and Transmission Standard
MIME Multipurpose Internet Mail Extensions
OAIS Open Archival Information System
OWL Web Ontology Language
PDI Preservation Description Information
PDS Planetary Data System
RDF Resource Description Format
SFDU Standard Formatted Data Unit
SIP Submission Information Package
SOAP Simple Object Access Protocol
UDDI Universal Description Discovery & Integration
UML Unified Modeling Language
UNICODE Universal Code
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
W3C World Wide Wed Consortium
WWW Worldwide Web
XFDU XML Formatted Data Unit
XML Extensible Markup Language

1.4.2 TERMINOLOGY

CCSDS Control Authority: An organization under the auspices of the CCSDS
that supports the transfer and usage or SFDUs by providing operational services

 13

of registration, archiving, and dissemination of data descriptions. It is comprised
of:

• The CCSDS Secretariat supported by the Control Authority Agent

• Member Agency Control Authority Offices

Content Data Object: The Data Object, which together with associated
Representation Information, is the original target of preservation.

Content Information: The set of information that is the original target of
preservation. It is an Information Object comprised of its Content Data Object and its
Representation Information. An example of Content Information could be a single
table of numbers representing, and understandable as, temperatures, but excluding the
documentation that would explain its history and origin, how it relates to other
observations, etc.

Context Information: The information that documents the relationships of the
Content Information to its environment. This includes why the Content
Information was created and how it relates to other Content Information objects.

Content Objects: The data and/or metadata objects, and any Content Units,
logically within a given Content Unit.

Content Unit: A structure that contains pointers to data objects and associated
metadata objects, and possibly other Content Units.

Data: A reinterpretable representation of information in a formalized manner
suitable for communication, interpretation, or processing. Examples of data
include a sequence of bits, a table of numbers, the characters on a page, the
recording of sounds made by a person speaking, or a moon rock specimen.

Data Dictionary: A formal repository of terms used to describe data.

Data Object: Contains some file content and any data required to allow the
information consumer to reverse any transformations that have been performed on
the object and restore it to the byte stream intended for the original designated
community and described by the Representation metadata in the Content Unit

Data Object Section: Contains a number of data Object elements

Description Data Unit: A Content Unit where all the content objects are
metadata objects.

Descriptive Information: The set of information, consisting primarily of
Package Descriptions, which is provided to Data Management to support the
finding, ordering, and retrieving of OAIS information holdings by Consumers.

 14

Designated Community: An identified group of potential Consumers who
should be able to understand a particular set of information. The Designated
Community may be composed of multiple user communities.

Digital Object: An object composed of a set of bit sequences.

Information: Any type of knowledge that can be exchanged. In an exchange, it
is represented by data. An example is a string of bits (the data) accompanied by a
description of how to interpret a string of bits as numbers representing
temperature observations measured in degrees Celsius (the representation
information).

Information Object: A Data Object together with its Representation
Information.

Metadata: Data about other data.

Physical Object: An object (such as a moon rock, bio-specimen, microscope
slide) with physically observable properties that represent information that is
considered suitable for being adequately documented for preservation,
distribution, and independent usage.

Representation Information: The information that maps a Data Object into
more meaningful concepts. An example is the ASCII definition that describes
how a sequence of bits (i.e., a Data Object) is mapped into a symbol.

Structure Information: The information that imparts meaning about how other
information is organized. For example, it maps bit streams to common computer
types such as characters, numbers, and pixels and aggregations of those types
such as character strings and arrays.

Submission Information Package (SIP): An Information Package that is
delivered by the Producer to the OAIS for use in the construction of one or more
AIPs.

1.5 REFERENCES

[1] Information Architecture Reference Model, CCSDS 312.0-G-1, Draft Green
Book, June 2006.

[2] Reference Model for an Open Archival Information System (OAIS), CCSDS
650.0-B-1, Blue Book, January 2002.

[4] Open Gis Project Document - Registry Service - Version: 0.3

 15

[5] OASIS/ebXML Registry Information Model v2.0, Approved OASIS Standard,
OASIS/ebXML Registry Technical Committee, April 2002

[6] Najmi, Farrukh, "Web Content Management Using the OASIS ebXML
Registry Standard", XML Europe 2004,
http://www.idealliance.org/papers/dx_xmle04/papers/04-02-02/04-02-
02.html, April 2004.

[7] Use Cases for the DSMS Information Services Architecture Registry (Draft),
M. Demore Editor, Jet Propulsion Laboratory, Oct 2004.

[8] Registry Pilot Task, Costin Radulescu, 9/17/2007, Presentation.

[9] ESA Use Cases

[10] SM&C Use Cases

[11] Java API for XML Registries (JAXR), JAXR Version 1.0, Sun
MicroSystems, 2002.

[12] CCSDS Registry Information Model Specification, Draft White Book,
Version 0.080303, September 2008.

[13] ebXML Registry Services and Protocols, Version 3.0, 15 March, 2005

 16

2 OVERVIEW OF A SERVICE REGISTRY/REPOSITORY

This section provides an overview of some of the key concepts that are
incorporated in the design of the Registry and Repository
recommendation. A Registry provides the following essential functions:

• Discovery and maintenance of registered content.

• Support for collaborative development, where users can create
content and submit it to the registry for use and potential enhancement by
the authorized parties.

• Persistence of registered content and science documents.

• Secure version control of registered content.

• Federation of cooperating registries to provide a single view of
registered content by seamless querying, synchronization, and relocation
of registered content.

• Event notification.

A registry implementation complies with the specification if it meets the
following conditions:

• It supports the registry information model.

• It supports the syntax and semantics of the registry interfaces and security.

• It supports the registry schema.

2.1 ENVIRONMENT CONTEXT FOR A REGISTRY AND
REPOSITORY

Figure 1 illustrates a registry and repository in the context of a generic
layered system environment [8]. The registry/repository foundation in the
framework includes features for query support, linking of content and
metadata, replication and synchronization of content and metadata, and
event notification. In a federated environment, these features extend over
the federated registries. The use of existing standards, such as JAXR,
helps illustrate the maturity of the registry/repository concept. JAXR in
particular supports registry operations over a diverse set of registries and
defines a unified information model for describing registry contents.
Finally access control and data management modules, tools, and a
governance model bridge the functionality gap to support the enterprise
applications.

 17

Figure 1 Environment View of a Registry and Repository

2.2 FUNCTIONAL VIEWS OF A REGISTRY AND
REPOSITORY

A registry allows organizations to publish and discover both Web services and
generic artifacts. The two dominate registry standards, UDDI (Universal
Description, Discovery, and Integration) and ebXML (Electronic Business using
eXtensible Markup Language) illustrate that registry support for Web services
differs from the support required for generic artifacts. For example where
ebXML supports services as generic artifacts, it in addition provides service
bindings for the registered services.

Two functional views result, a registry as a Service Address Book or as an
Information Repository. These two functional views are illustrated in
Figure 2. As a Service Address Book, the service is first registered. A
software element subsequently looks up the service and then executes the

 18

service. As an information repository, the software element simply
requests then receives the service.

This document focuses on a generic reference model for a registry, where
services and generic artifacts are managed in the same way, as much as
possible.

Figure 2: Two Conceptual Views of a Registry/Repository

Software Element Service Provider

Registry as a Service Address Book (Yellow Pages)

Registry as an Information Repository

Software Element

Software Element

Function

Data

register servicelookup service

service description

execute service

information request

information

information request

information

 19

2.3 GENERAL FEATURES OF A REGISTRY AND
REPOSITORY

A registry and repository need to support the registration and discovery of
data artifacts and services by providing interfaces for their submission,
approval, and publishing, query capabilities for searching, metadata
management capabilities for classification and association, governance
and control authorities for maintaining integrity, change control processes
for management, and effective access by both people and computer
systems. Figure 3 illustrates these features. The Application Programming
Interface (API) and Information Model sections of this paper describe the
individual APIs and model classes that support the functionalities
associated with Content Management, Events, Secure Architecture, and
Web Services Registry. The Federation section of this document describes
the Federated Architecture.

Figure 3: Features of a Federated Registry/Repository

 20

3 USE CASES

The purpose of this section is to capture use case scenarios for registries.
These use cases have been derived from several sources including the
Information Architecture paper [1] , and formally defined Use Cases for
the DSMS Information Services Architecture Registry [7], Open GIS
Project Registry, AMALFI Multi-Missions – Xml Schema Repository,
JPL Deep Space Network Information Service Architecture Registry,
CCSDS Service Link Exchange (SLE) WG, CCSDS Navigation WG,
Common and Core SM&C, Operations Automation and Scheduling,
Remote Software Management, Payload Data Product Management, and
Operator Interaction.

3.1 ACTORS

The following actors are identified for the Registry Repository use cases.

publisher <<system or person>> - A publisher is a system or person that
provides an artifact to be submitted into the registry

artifact consumer <<system or person>> - An artifact consumer is a
system or person that receives an artifact from a registry

subscriber <<system or person>> - A subscriber is a person or system
that has the right to receive a notification about a change in status of an
artefact in a registry.

system administrator <<person>> - A system administrator is a person
employed to maintain, and operate a registry/repository configuration.

registry service <<system>> - A registry service is a system interface
through which another actor is able to perform registry functions which
include changes to the catalog and/or repository.

3.2 GENERAL USE CASES

This section provides use case scenarios that convey how actors interact
with a registry in the most general cases. Since general use cases have
been developed by many other tasks, the intent here is to convey a
general concept of actors and functions that are supported by registries.
In addition, use cases for specific objects are addressed in subsequent
sections of this document.

 21

Figure 4 illustrates a generalized view of the interactions between actors
and registry services [8], the interface available for performing registry
functions.

Figure 4 General Registry Repository Use Cases

In Annex 2, the general use cases in Figure 4 are mapped to the use cases
that were produced for the OPEN GIS Project [4].

3.2.1 PUBLISH

Description

This use case describes the actions necessary for a user to publish an artifact in
the registry

 22

Actors: Registry Publisher, Registry Service

Actions:

1. User publishes a new artifact in the registry which includes descriptive
metadata about the artifact

2. Registry service validates the metadata

3. Registry service assigns a version identifier for the artifact

4. Registry service updates the catalog with the metadata

5. Registry service stores the artifact in the repository

6. Registry service returns an identifier for the published artifact and the
version

7. Notification is sent to the subscribers regarding the published artifact

3.2.2 UPDATE

Description

This use case describes the actions necessary to update an artifact in the
registry

Actors: Registry Publisher, Registry Service

Actions:

1. User requests that an artifact be updated based on an identifier and version
for the artifact

2. Registry service replaces the artifact in the repository

3. Registry service updates the metadata for the artifact in the catalog

4. Notification is sent to the subscribers of the update

 23

3.2.3 APPROVE

Description

This use case describes the actions necessary to approve an artifact in the
registry

Actors: System Administrator, Registry Service

Actions:

1. User queries the registry service for newly published artifacts which are
not already approved

2. User updates the metadata for an artifact to indicate whether it is approved
or rejected

3. Notification is sent to the publisher and subscribers

3.2.4 DEPRECATE

Description

This use case describes the actions necessary to deprecate an artifact in the
registry

Actors: System Administrator, Publisher, Registry Service

Actions:

1. Publisher updates the registry with a new version of an artifact, if
applicable

2. System administrator updates the registry to indicate that a specific artifact
and version is deprecated.

3. Subscribers are notified of the deprecated artifact.

3.2.5 DELETE

Description

This use case describes the actions necessary to delete an artifact in the registry

Actors: Registry Publisher, Registry Service

 24

Actions:

1. User requests that an artifact be deleted based on an identifier for the
artifact

2. Registry service deletes the artifact from the repository

3. Registry service removes the artifact from the catalog

3.2.6 VALIDATE

Description

This use case describes the actions necessary to validate the metadata
associated with an artifact

Actors: Registry Service

Actions:

1. User publishes a new artifact which includes descriptive metadata about
the artifact

2. Registry service validates the metadata

3.2.7 CATALOG

Description

This use case describes the actions necessary to catalog a new artifact

Actors: Registry Service

Actions:

1. User publishes a new artifact which includes descriptive metadata about
the artifact

2. Registry service updates the catalog with the metadata

 25

3.2.8 VERSION

Description

This use case describes the actions necessary to version a new artifact

Actors: Registry Service

Actions:

1. User publishes a new artifact

2. Registry service assigns a version identifier to the artifact

3.2.9 STORE

Description

This use case describes the actions necessary to store the artifact

Actors: Registry Service

Actions:

1. User publishes a new or updated artifact

2. Registry service updates to the repository with the artifact

3.2.10 NOTIFY

Description

This use case describes the actions necessary to subscribe to registry events

Actors: Registry Consumer, Registry Service

Actions:

1. User creates a subscription for the registered event

2. Registry service notifies the user when the event has occurred

 26

3.2.11 DISCOVER

Description

This use case describes the actions necessary to discover registered artifacts

Actors: Registry Consumer, Registry Service

Actions:

1. User enters search criteria

2. Registry searches the catalog and returns metadata describing registered
artifacts that meet the search criteria.

3.2.12 RETRIEVE

Description

This use case describes the actions necessary to retrieve a registered artifacts

Actors: Registry Consumer, Registry Service

Actions:

1. User enters an identifier for the artifact

2. Registry retrieves the artifact from the repository and returns the artifact in
its original form

3.3 ADMINISTRATION USE CASES

The administration use cases describe the actions necessary to manage the
registry. These include use cases include user management, system management
and policy management. Section 8, Lifecycle Management, addresses many of
these use cases.

3.4 SPECIFIC USE CASES

This section provides use case scenarios for specific subclasses of
registries. These are extensions to the general set of registry actions

 27

described in 4.2. At present, these are specifically service and XML
schema registry use cases.

3.4.1 SERVICE REGISTRY USE CASES

Service registries allow for the registration of services, in particular, for
service-oriented architectures. Service registries inherit several of the
functions of a general registry allowing for registration and discovery of
online services.

3.4.1.1 Actors

Service registry – a specialized registry for the management and
discovery of online services

Service provider - A service provider is a system or person that
provides a service to be submitted into the registry

Service consumer – A service consumer is a system or person that
discovers and receives descriptions of services in the registry

3.4.1.2 Service Registration Use Cases

Description: The service provider adds information about the service to
the registry

Actors: Service registry, Service Provider

Scenarios:

1. A Service Provider registers a service through a registry service
using standardized metadata.

2. The registry service adds the metadata describing the service to the
catalog

3. The registry service allows classification of the registered service

Subm it a Serv ice

Service provider

Validate Serv ice
D escrip tion

Serv ice Registry

Associa te m etadata

C lassify M etadata

 28

based on namespace

4. The registry service allows the association of services with other
related resources (URIs, web sites, documentation, etc) located both
locally and externally.

3.4.1.3 Service Discovery Use Cases

Description: A service consumer requests the service information from the
registry

Actors: Service Registry, Service Consumer

Scenarios

1. A service consumer requests information about registered services
from the service registry

2. The registry service returns information that corresponds to
registered services based on the specific attributes passed to the service.
This includes information related to accessing and connecting to the
service.

3.4.1.4 Service Removal Use Cases

Description: A service provider requests the service be removed from the
registry

Actors: Service Provider, Service Consumer

Scenarios

1. A service provider requests the service registry to remove the
service

2. The registry service removes the entry from the catalog

3.4.2 XML SCHEMA REGISTRY

This section provides use cases for an XML Schema Registry. An XML
Schema Registry allows for the registration, discovery and management

 29

of XML schemas. The XML schema registry inherits several of
functions of the general registry described earlier.

3.4.2.1 Actors

XML schema registry service – a specialized registry for the
management and discovery of XML schemas

XML schema provider - A XML schema provider is a system or
person that provides a schema to be submitted into the registry

XML schema consumer – A XML schema consumer is a system
or person that discovers and receives descriptions and schemas
from the registry.

3.4.2.2 XML Schema Registration Use Cases

Description: A Data Provider registers an XML schema through a
registry service.

Actors/Users: XML Schema Registry, XML Schema Provider

Scenarios

1. A XML Schema Provider registers an XML schema file
through a registry service using standardized metadata.

2. The registry service associates the metadata to the XML
schema in the catalog

3. The registry service allows classification of the registered
XML schema in the catalog based on classification schemes in the
registry (including namespace)

4. The registry service assigns a version identifier for the
XML schema in the catalog

5. The registry service stores the XML schema in the
repository

6. The registry service returns a unique identifier for
accessing the schema

 30

3.4.2.3 XML Schema Search Use Cases

Description: A XML Schema Consumer searches for existing
XML schemas through a registry service.

Actors/Users: XML Schema Registry, XML Schema Consumer

Scenarios

1. A XML Schema Consumer searches the XML schema
registry based on a set of criteria.

2. The registry service returns metadata results describing
registered XML schemas.

3.4.2.4 XML Schema Access Use Cases

Description: A XML Schema Consumer accesses a schema based
on a unique identifier

Actors/Users: XML Schema Registry, XML Schema Consumer

Scenarios

1. A XML Schema Provider retrieves an XML schema file
through a registry service using a unique identifier for the schema
and version (e.g., URL)

2. The registry service retrieves the XML schema from the
repository and returns it to the consumer

3.4.2.5 XML Schema Validation Use Cases

Description: A Data Consumer validates an XML document
against a schema in the registry

Actors/Users: XML Schema Registry, XML Schema Consumer

Scenarios

1. A XML schema registry consumer provides an XML
document to the XML Registry Service requesting that it be
validated against a registered XML schema based on the unique
identifier

 31

2. The registry service performs the validation and returns the
results to the consumer

3.4.2.6 XML Schema Update Use Cases

Description: A XML schema registry provider updates the metadata for a
XML schema in the registry

Actors: XML Schema Provider, XML Schema Registry

Scenarios

1. A XML Schema Provider provides updates to the metadata for
a registered XML schema

2. The registry service updates the metadata for the XML
schema in the catalog

3.4.2.7 XML Schema New Version Use Cases

Description: A XML schema registry provider registers a new version
of a schema

Actors: XML Schema Provider, XML Schema Registry

Scenarios

1. A XML Schema Provider registers a new version of a
XML schema file through a registry service using
standardized metadata.

2. The registry service associates the metadata to the XML
schema in the catalog

3. The registry service allows classification of the registered
XML schema in the catalog based on classification schemes in
the registry (including namespace)

4. The registry service increments a version identifier for the
XML schema in the catalog

 32

5. The registry service stores the XML schema in the
repository

6. The registry service returns a unique identifier for
accessing the schema

3.4.2.8 XML Schema Removal Use Cases

Description: A XML schema registry provider requests the XML
schema be removed from the registry

Actors: XML Schema Provider, XML Schema Registry

Scenarios

1. A XML schema provider requests the XML Schema Registry to
remove the schema based on a unique identifier

2. The registry service removes the schema from the repository

3. The registry service removes the description from the catalog

 33

4 INFORMATION MODEL

The CCSDS Registry Information Model specification document [12] defines the
general registry information model. This information model, based on the ebXML
Reference Information Model (RIM) [5], is assumed if the JAXR (Java API for
XML Registries) standard API is adopted for CCSDS registries. Assuming that
the JAXR API is adopted, then the ebXML RIM provides a benchmark
information model that can be used to develop a general information model for
CCSDS Registries that can be extended for specific implementation, for example
an XML Schema registry. The ebXML RIM subsumes the UDDI information
model.

4.1 OVERVIEW OF A REGISTRY INFORMATION MODEL

A registry allows organizations to publish and discover Web services and
artifacts. Currently, two registry standards dominate: UDDI (Universal
Description, Discovery, and Integration) and ebXML (Electronic Business using
eXtensible Markup Language). With either of these, science organizations can
publish Web services and artifacts and their internal or external participating
organizations can discover them.

The registry information model defines the classes and associations that support
the registry features illustrated in Figure 3 such as Content Management, Events,
Secure Architecture, Web Services Registry and the Federated Architecture. The
objects acted on by the registry API are defined in the information model and
support the required functionality such as Publish, Discover, and Manage registry
objects.

4.2 A GENERAL REGISTRY INFORMATION MODEL

A unified information model for describing registry contents is defined by the
JAXR (Java API for XML Registries) standard API. The information defines the
classes necessary for publication and discovery of Web services and artifacts in
the underlying registries.

The ebXML Registry Information Model (RIM) [5] defines the JAXR unified
information model. The Registry Information Model provides a blueprint or high-
level schema for an ebXML Registry. It provides implementers with information
on the type of metadata that is stored in the Registry as well as the relationships
among metadata Classes. The Registry information model defines what types of
objects are stored in the Registry and how stored objects are organized in the
Registry. The current specification leverage as much as possible the work done in
the OASIS [OAS] and the ISO 11179 [ISO] Registry models.

 34

4.2.1 RESPONSE TO USE CASES

The following table provides the information model response to the registry use
cases. For each use case, the associated actions are used to derive functional
requirements for registry functions. From the functional requirements the
information model classes and the instantiated objects needed by the registry to
perform the associated function are derived. This response matrix verifies that the
ebXML information model components can be derived from the general use cases
in section 2.

Use Cases Derived Functional

Requirements -- Provide
services and tools that
implement system
functions.

Derived Requirements
affecting Data
Architecture -- define
standard models that
support System Services.

Suggested Class

Publish
Description
This use case describes the
actions necessary for a
user to publish an artifact in
the registry
Actors: Registry Publisher,
Registry Service

1. User publishes a new
artifact in the registry which
includes descriptive
metadata about the artifact
2. Registry service
validates the metadata
3. Registry service assigns
a version identifier for the
artifact
4. Registry service updates
the catalog with the
metadata
5. Registry service stores
the artifact in the repository
6. Registry service returns
an identifier for the
published artifact and the
version
7. Notification is sent to the
subscribers regarding the
published artifact

A registry shall have
models for the following
concepts: user, artifact,
registry, descriptive
metadata, version
identifier, catalog,
repository, identifier,
version, notification,
subscriber, service

Registry, Regist
ClassificationSc
Identifiable,
ContentInformat
Person, Organiz
Service, Notifica
Subscription, Us
VersionInfo, Rep

Update
Description
This use case describes the
actions necessary to
update an artifact in the
registry
Actors: Registry Publisher,
Registry Service

1. User requests that an
artifact be updated based
on an identifier and version
for the artifact
2. Registry service replaces
the artifact in the repository
3. Registry service updates
the metadata for the artifact
in the catalog
4. Notification is sent to the
subscribers of the update

 35

Approve

Description
This use case describes the
actions necessary to
approve an artifact in the
registry
Actors: System
Administrator, Registry
Service

1. User queries the registry
service for newly published
artifacts which are not
already approved
2. User updates the
metadata for an artifact to
indicate whether it is
approved or rejected
3. Notification is sent to the
publisher and subscribers

A registry shall have
models for the following
concepts: query, search
constrains, status,
publisher

QueryExpressio
StatusType, pub

Deprecate
Description
This use case describes the
actions necessary to
deprecate an artifact in the
registry
Actors: System
Administrator, Publisher,
Registry Service

1. Publisher updates the
registry with a new version
of an artifact, if applicable
2. System administrator
updates the registry to
indicate that a specific
artifact and version is
deprecated.
3. Subscribers are notified
of the deprecated artifact.

A registry shall have
models for the following
concepts: system
adminitrator,

system adminitr

Delete
 Description
This use case describes the
actions necessary to delete
an artifact in the registry
Actors: Registry Publisher,
Registry Service

1. User requests that an
artifact be deleted based on
an identifier for the artifact
2. Registry service deletes
the artifact from the
repository
3. Registry service removes
the artifact from the catalog

Validate

Description
This use case describes the
actions necessary to
validate the metadata
associated with an artifact
Actors: Registry Service

1. User publishes a new
artifact which includes
descriptive metadata about
the artifact
2. Registry service
validates the metadata

 36

Catalog
Description
This use case describes the
actions necessary to
catalog a new artifact
Actors: Registry Service

1. User publishes a new
artifact which includes
descriptive metadata about
the artifact
2. Registry service updates
the catalog with the
metadata

Version
Description
This use case describes the
actions necessary to
version a new artifact
Actors: Registry Service

1. User publishes a new
artifact
2. Registry service assigns
a version identifier to the
artifact

Store
 Description
This use case describes the
actions necessary to store
the artifact
Actors: Registry Service

1. User publishes a new or
updated artifact
2. Registry service updates
to the repository with the
artifact

Notify

 Description
This use case describes the
actions necessary to
subscribe to registry events
Actors: Registry Consumer,
Registry Service

1. User creates a
subscription for the
registered event
2. Registry service notifies
the user when the event
has occurred

A registry shall have
models for the following
concepts: registered event

EventType

Discover
Description
This use case describes the
actions necessary to
discover registered artifacts
Actors: Registry Consumer,
Registry Service

1. User enters search
criteria
2. Registry searches the
catalog and returns
metadata describing
registered artifacts that
meet the search criteria.

A registry shall have
models for the following
concepts: search criteria

 37

Retrieve
Description
This use case describes the
actions necessary to
retrieve a registered
artifacts
Actors: Registry Consumer,
Registry Service

1. User enters an identifier
for the artifact
2. Registry retrieves the
artifact from the repository
and returns the artifact in its
original form

A registry shall have
models for the following
concepts: package

RegistryPackage
ExtrinsicObject

Table 1 – Derived Classes

4.2.2 VIEWS OF THE REGISTRY MODEL

The CCSDS Registry Information Model Specification document [12] provides a
formal data engineering definition of the registry information model captured
from the ebXML Registry Information Model (RIM) specification. [5] In the
following two sections conceptual and logical views of the formation model are
provided.

4.2.2.1 Conceptual

A conceptual model defines the community model from a manager’s point of
view. It is concerned with the language of the community, mainly concepts, facts,
words, and symbols. Some key concepts are listed in the following table. These
concepts are then presented in the concept map in Figure 5 below.

 38

Table 1 - CCSDS Registry Components and Functions

The following Conceptual Map illustrates these key concepts and their
relationships as well as additional concepts needed to support the essential
functions.

Figure 5 - CCSDS Registry Conceptual Map – Key Classes

4.2.2.2 Logical

The logical model defines the system model of data from a designer’s point of
view and is concerned with entity classes, attributes, and relationships that

Registry Components Registry Function

Registry, Registry Object, Registry Package,
Classification

Discovery and maintenance of registered content.

Identif iable, Version Information, Auditable Event,
Service

Support for collaborative development, where users
can create content and submit it to the registry for
use and potential enhancement by the authorized
parties..

Registry Package Persistence of registered content and science
documents.

Version Information, Auditable Event Secure version control of registered content.

Federation, External Identifiers, Service,
Classification

Federation of cooperating registries to provide a
single view of registered content by seamless
querying, synchronization, and relocation of
registered content.

Auditable Event Event notification.

 39

describe the things of significance in rigorous terms. Figure 6 illustrates the
logical model for the key registry classes. A data dictionary is also written as a
companion to the logical model.

Figure 6 – Key Registry Class Definitions

 40

5 FEDERATION

5.1 OVERVIEW

A federated registry provides services for sharing content and metadata
between cooperating registries in a federated environment; and allows
cooperating registries to be federated together to appear and act as a
single virtual registry/repository within the federated model. The
benefits of which are evident in seamless information integration and
sharing while preserving local autonomy over data (e.g., federated search
seamlessly returns results from multiple stores).

The federated model includes features for federated query support,
linking of content and metadata across registry boundaries, replication /
synchronization of content and metadata among repositories, moving of
content and metadata from one registry to another, and event
notifications. These capabilities enable the tying together of internal
applications and the systems of the participating organizations in a
federated architecture.

• Query – search registered content and metadata in any
cooperating registry (i.e., provide a seamless service across
different registries in different domains).

• Linking – linking content and the associated metadata in any
cooperating registry (i.e., provide a seamless service across
different registries in different domains).

• Replication / Synchronization – replication / synchronization of
registered content and metadata between all cooperating registries
(i.e., provide a seamless service across different registries in
different domains).

• Relocation – relocation of registered content and metadata from
one cooperating registry to another (i.e., provide a seamless
service across different registries in different domains).

• Notification – content-based event notification to registered client
applications / systems to become aware of the latest information
(i.e., provide a seamless service across different registries in
different domains).

 41

5.2 CONCEPT OF FEDERATION

A federation implies a loosely coupled system distributed across the Internet or an
intranet, where the participants can join in and leave the federation without
breaking the federation. It also implies that participants are autonomous
independent entities that can function on their own when they are not a part of a
federation. Each participant can support different schemas and their
implementations can also be different. All participants do need to understand a
common subset, which is represented by various federated models. That level of
common understanding should suffice to create a federated architecture. An entity
can participate in many federations at the same time and membership in a
federation is not static. Each science organization typically maintains its own
software systems (e.g., workflow, etc.) that cannot be dependent on systems of
other organizations. These features make the federated architecture scalable and
practical for science organizations.

A federation consists of more than one registry that is self governing but abides
by a common set of rules to enable interoperability. The federation operates at a
level where the participants within the federation are in agreement as to how to
cooperate with respect to interoperability. Federation is expressed as a gradient of
minimal interoperability to fully federated interoperability. Examples of various
levels of federation; include:

1. Minimally federated – entities share a minimal common subset (e.g.,
minimal rules and metadata; minimal access controls, etc.) where the
federation operates as a loosely coupled system.

2. Partially federated – entities share a larger common subset (e.g., half-
measured set of rules and metadata; partial definition / enforcement over
access controls, etc.) where the federation is represented by an semi-
autonomous architecture.

3. Fully federated – entities share a full common architecture where the
federation operates using various federated models.

5.3 FEDERATED ARCHITECTURE

A federated architecture enables the individual cooperating organizations to
function as a single federated system. The federated architecture supports both
large science organizations; as well as, small science organizations having limited
resources. A federation implies a loosely coupled system where participants can
join in and leave the federation without breaking the federation. It also implies
that participants can function on their own when they are not a part of the
federation. This represents the reality where member organizations act as
independent “businesses”. The federation concept fits within these needs.

 42

A federated architecture enables the individual cooperating organizations to
function as a single federated system. The Federation class in the information
model allows the creation of a Federation. A Federation is a registry object and is
registered and managed as any other registry object.

The goal of a federated architecture is to create the appearance of a single
“corporate” registry-repository while allowing individual organizations regional
control over their individual realms. (“sub”-registries). One of the main
requirements in achieving this goal is the ability to link and share information
securely among sub-registries.

Figure 7. The Federated Reference Architecture

5.4 FEDERATED REGISTRY SERVICES

This section describes the capabilities and protocols that federated registries to
cooperate with each other for the following use cases. The use cases, capabilities,
and protocols have been extracted from [13].

 43

5.4.1 FEDERATED REGISTRY USE CASES

1. Inter-registry Object References - A submitter wishes to submit a
RegistryObject such that the submitted object references a RegistryObject
in another registry.

2. Federated Queries - A client wishes to issue a single query against

multiple registries and get back a single response that contains results
based on all the data contained in all the registries. From the client’s
perspective it is issuing its query against a single logical registry that has
the union of all data within all the physical registries.

3. Local Caching of Data from Another Registry - A destination registry

wishes to cache some or all the data of another source registry that is
willing to share its data. The shared dataset is copied from the source
registry to the destination registry and is visible to queries on the
destination registry even when the source registry is not available. Local
caching of data may be desirable in order to improve performance and
availability of accessing that object. An example might be where a
RegistryObject in one registry is associated with a RegistryObject in
another registry, and the first registry caches the second RegistryObject
locally.

4. Object Relocation - A Submitting Organization wishes to relocate its

RegistryObjects and/or repository items from the registry where it was
submitted to another registry.

5.4.2 REGISTRY FEDERATION

A registry federation is a group of registries that have voluntarily agreed to form a
loosely coupled union. Such a federation may be based on common business
interests and specialties that the registries may share. Registry federations appear
as a single logical registry to registry clients.

Registry federations are based on a peer-to-peer (P2P) model where all
participating registries are equal. Each participating registry is called a registry
peer. There is no distinction between the registry operator that created a
federation and those registry operators that joined that Federation later. Any
registry operator MAY form a registry federation at any time. When a federation
is created it MUST have exactly one registry peer which is the registry operated
by the registry operator that created the federation.

Any registry MAY choose to voluntarily join or leave a federation at any time.

The Federation information model is summarized here as follows:

 44

• A Federation instance represents a registry federation.
• A Registry instance represents a registry that is a member of the

Federation.
• An Association instance with associationType of HasFederationMember

represents membership of the registry in the federation. This Association
links the Registry instance and the Federation instance.

5.4.3 QUERIES

A federation appears to registry clients as a single unified logical registry. A
query, encoded into an instance of the class AdhocQueryRequest, is sent by a
client to a federation member. The query may be local or federated as indicated
by the boolean attribute “federated” in the instance of AdhocQueryRequest.

Local Queries - When the federated attribute of the query has the value of false
then the query is a local query. A local AdhocQueryRequest is only processed by
the registry that receives the request. A local AdhocQueryRequest does not
operate on data that belongs to other registries.

Federated Queries - When the federated attribute of AdhocQueryRequest has the
value of true then the query is a federated query. A federation member MUST
route a federated query received by it to all other federation member registries on
a best attempt basis. When a registry routes a federated query to other federation
members it MUST set the federated attribute value to false and the federation
attribute value to null to avoid infinite loops.

Membership in Multiple Federations - A registry MAY be a member of multiple
federations. In such cases if the federated attribute of AdhocQueryRequest has the
value of true then the registry MUST route the federated query to all federations
that it is a member of.

5.4.4 FEDERATION LIFECYCLE MANAGEMENT PROTOCOLS

This section describes the various operations that manage the lifecycle of a
federation and its membership. Federation lifecycle operations are done using
standard LifeCycleManager interface of the registry in a stylized manner.
Federation lifecycle operations are privileged operations. A registry SHOULD
Restrict Federation lifecycle operations to registry User’s that have the
RegistryAdministrator role.

Joining a Federation - The following rules govern how a registry joins a
federation:

• Each registry SHOULD have exactly one Registry instance within that
registry for which it is a home. The Registry instance is owned by the

 45

RegistryOperator and may be placed in the registry using any operator
specific means. The Registry instance SHOULD never change its home
registry.

• A registry MAY request to join an existing federation by submitting an
instance of an Extramural Association that associates the Federation
instance as sourceObject, to its Registry instance as targetObject, using an
associationType of HasFederationMember. The home registry for the
Association and the Federation objects MUST be the same.

Creating a Federation - The following rules govern how a federation is created:

• A Federation is created by submitting a Federation instance to a registry
using SubmitObjectsRequest.

• The registry where the Federation is submitted is referred to as the
federation home.

• The federation home may or may not be a member of that Federation.
• A federation home MAY contain multiple Federation instances.

Leaving a Federation - The following rules govern how a registry leaves a
federation:

• A registry MAY leave a federation at any time by removing its
HasFederationMember Association instance that links it with the
Federation instance. This is done using the standard
RemoveObjectsRequest.

Dissolving a Federation - The following rules govern how a federation is
dissolved:

• A federation is dissolved by sending a RemoveObjectsRequest to its home
registry and removing its Federation instance.

• The removal of a Federation instance is controlled by the same Access
Control Policies that govern any RegistryObject.

• The removal of a Federation instance is controlled by the same lifecycle
management rules that govern any RegistryObject. Typically, this means
that a federation MUST NOT be dissolved while it has federation
members. It MAY however be deprecated at any time. Once a Federation
is deprecated no new members can join it.

 46

6 EXTRINSIC OBJECTS

6.1 OVERVIEW

 An Extrinsic Object is a type of registry object that catalogues content
whose type is unspecified or unknown. Extrinsic Objects provide
metadata that describes submitted content whose type is not intrinsically
known to the Registry and therefore must be described by means of
additional attributes. Since the registry can contain arbitrary content
without intrinsic knowledge about that content, Extrinsic Objects require
special metadata attributes to provide some knowledge about the object
(e.g., mime type).

The super class for Extrinsic Object is Registry Object. As a subclass it
inherits all registered object attributes. Attributes defined specifically for
the Extrinsic Object are “Is Opaque” and “mime Type”. The “Is Opaque”
attribute determines whether the content catalogued by this Extrinsic
Object is opaque to (not readable by) the Registry. In some situations, a
Submitting Organization may submit content that is encrypted and not
even readable by the Registry. The “mime Type” attribute provides
information about the type of object since the object Type is user defined
and not predefined in the registry.

The following table lists pre-defined object types, for example schemas.
Note that for an Extrinsic Object there are many types defined based on
the type of repository item the Extrinsic Object catalogs. In addition there
are object types defined for all leaf sub-classes of RegistryObject.

 47

Figure 3 - Examples of Extrinsic Objects

6.1.1 EXTRINSIC OBJECT SUBCLASSES (CCSDS)

The following Extrinsic Object subclasses are defined within the CCSDS.

6.1.1.1 XML Schema

XML Schema is an extension of the ExtrinsicObject class. XML Schema
is a W3C Recommendation and specifies the XML Schema definition
language, which offers facilities for describing the structure and
constraining the contents of XML documents. The XML Schema
extension allows an organization to address XML Schema management
functions, including registration, versioning, administer, store, and access
using a CCSDS Registry/Repository.

A ExtrinsicObject has a boolean flag that indicates whether the content
catalogued by the ExtrinsicObject is opaque to (not readable by) the
registry. See opaque attribute below.

The XML Schema extrinsic object is not opaque, and therefore allows the
registry to read and process the content. Content processing, such as
decomposing the XML Schema and registering each component requires
an augmentation to the registry’s generic capabilities.

 48

Registering XML Schema components after decomposition will require
that each component be defined as an extrinsic object. For example the
XML Schema Element component will have to be defined.

The following required Event Types allow the tracking of XML Schemas.

• Created - An Event that created a RegistryObject.

• Deleted - An Event that deleted a RegistryObject.

• Deprecated - An Event that deprecated a RegistryObject.

• Updated - An Event that updated the state of a RegistryObject.

• Versioned - An Event that versioned a RegistryObject

In addition, each RegistryEntry instance must have a life cycle status
indicator, assigned by the registry. The following table lists the pre-
defined choices for RegistryObject status attribute.

• Submitted - Status of a RegistryObject that catalogues content that
has been submitted to the Registry.

• Approved - Status of a RegistryObject that catalogues content that
has been submitted to the Registry and has been subsequently
approved.

• Deprecated - Status of a RegistryObject that catalogues content
that has been submitted to the Registry and has been subsequently
deprecated.

• Withdrawn - Status of a RegistryObject that catalogues content
that has been withdrawn from the Registry.

Since ExtrinsicObject is a subclass of RegistryObject, the XML Schema
class inherits the following RegistryObject attributes and is managed
according to the registry life-cycle protocols. In the following list the
attributes are defined and restricted for use as a XML Schema.

isOpaque - This attribute determines whether the content catalogued by
this ExtrinsicObject is opaque to (not readable by) the registry. – For all
XML SChemas, the value will be true. This implies that the registry be
able to read and process the content of the XML Schema.

mimeType - The mimeType provides information on the type of
repository item catalogued by the ExtrinsicObject instance. – For all

 49

XML Schema the mimeType will be the XML Schema MimeType.

home - The home attribute, if present, MUST contain the base URL to the
home registry for the RegistryObject instance. No specific restriction.

Id - Each Identifiable instance MUST have a unique identifier which is
used to refer to that object. No specific restriction.

Description - Each RegistryObject instance MAY have textual description
in a human readable and user-friendly form. No specific restriction.

Lid - Each RegistryObject instance MUST have a lid (Logical Id)
attribute . The lid is used to refer to a logical RegistryObject in a version
independent manner. No specific restriction.

Name - Each RegistryObject instance MAY have a human readable name.
The name does not need to be unique with respect to other RegistryObject
instances. No specific restriction.

VersionInfo.Comment - Each VersionInfo instance MAY have comment.
This attribute defines the comment associated with the VersionInfo for a
specific RegistryObject version. No specific restriction.

VersionInfoversion.Name - Each VersionInfo instance MUST have
versionName. This attribute defines the version name identifying the
VersionInfo for a specific RegistryObject version. No specific restriction.

Slot.name - Each Slot instance MUST have a name. The name is the
primary means for identifying a Slot instance within a RegistryObject.
The Slot class is used to provide additional metadata for the
ExtrinsicObject, beyond that defined for a standard RegistryObject. For
the XML Schema extension, the Slot is used to indicate query model
attributes for finding XML Schema.

Slot.slotType - Each Slot instance MAY have a slotType that allows
different slots to be grouped together. The slotType attribute MAY also
be used to indicate the data type or value domain for the slot value(s). See
Slot.Name for XML Schema restrictions in general.

Slot.values - A Slot instance MUST have a Sequence of values. See
Slot.Name for XML Schema restrictions in general.

ExternalIdentifier.value - Each ExternalIdentifier instance MUST have a
value attribute that provides the identifier value for this ExternalIdentifier.
No specific restriction. For a information system this could be a URI.

 50

6.1.1.2 Content Information

The Content Information Object (CIO) is an extension of the
ExtrinsicObject class. The CIO is defined within the OAIS [2] as “The
set of information that is the original target of preservation.” It consists of
a content data object together with its representation data. The CIO
extension allows science data information systems to address many of
their archive ingest, administration, data management, archival storage,
preservation, and access functional requirements using a CCSDS
Registry/Repository.

For example, the archive tracking requirements can be met using
Auditable Event Types. The following Event Types must be supported in
a CCSDS Registry.

• Created - An Event that created a RegistryObject.

• Deleted - An Event that deleted a RegistryObject.

• Deprecated - An Event that deprecated a RegistryObject.

• Updated - An Event that updated the state of a RegistryObject.

• Versioned - An Event that versioned a RegistryObject

In addition, each RegistryEntry instance must have a life cycle status
indicator, assigned by the registry. The following table lists the pre-
defined choices for RegistryObject status attribute.

• Submitted - Status of a RegistryObject that catalogues content that
has been submitted to the Registry.

• Approved - Status of a RegistryObject that catalogues content that
has been submitted to the Registry and has been subsequently
approved.

• Deprecated - Status of a RegistryObject that catalogues content
that has been submitted to the Registry and has been subsequently
deprecated.

• Withdrawn - Status of a RegistryObject that catalogues content
that has been withdrawn from the Registry.

Since ExtrinsicObject is a subclass of RegistryObject, the CIO class
inherits the following RegistryObject attributes and is managed according

 51

to the registry life-cycle protocols. In the following list the attributes are
defined and restricted for use as a CIO.

isOpaque - This attribute determines whether the content catalogued by
this ExtrinsicObject is opaque to (not readable by) the registry. – For all
CIOs, the value will be false. This implies that the registry will not care
about the content of the CIO and the information system will be required
to retrieve a CIO from the registry for further processing.

mimeType - The mimeType provides information on the type of
repository item catalogued by the ExtrinsicObject instance. – For all
CIO;s the mimeType will indicate parent information system and possible
a CIO subclass. For example, within the PDS, the mimeType will indicate
that the CIO is a PDS data product and its subtype, such as an Image.

home - The home attribute, if present, MUST contain the base URL to the
home registry for the RegistryObject instance. No specific restriction.

Id - Each Identifiable instance MUST have a unique identifier which is
used to refer to that object. No specific restriction.

Description - Each RegistryObject instance MAY have textual description
in a human readable and user-friendly form. No specific restriction.

Lid - Each RegistryObject instance MUST have a lid (Logical Id)
attribute . The lid is used to refer to a logical RegistryObject in a version
independent manner. No specific restriction.

Name - Each RegistryObject instance MAY have a human readable name.
The name does not need to be unique with respect to other RegistryObject
instances. No specific restriction.

VersionInfo.Comment - Each VersionInfo instance MAY have comment.
This attribute defines the comment associated with the VersionInfo for a
specific RegistryObject version. No specific restriction.

VersionInfoversion.Name - Each VersionInfo instance MUST have
versionName. This attribute defines the version name identifying the
VersionInfo for a specific RegistryObject version. No specific restriction.

Slot.name - Each Slot instance MUST have a name. The name is the
primary means for identifying a Slot instance within a RegistryObject.
The Slot class is used to provide additional metadata for the
ExtrinsicObject, beyond that defined for a standard RegistryObject. For
the CIO extension, the Slot is used to indicate query model attributes for
the information system. For example, within the PDS, the common data

 52

elements used for finding data products would be encoded into Slot, such
as Time, Mission, Instrument, and Node. Discipline specific slot such as
the imaging disciplines Latitude and Longitude could also be considered.

Slot.slotType - Each Slot instance MAY have a slotType that allows
different slots to be grouped together. The slotType attribute MAY also
be used to indicate the data type or value domain for the slot value(s). See
Slot.Name for CIO restrictions in general. Slot.slotType would be used to
differentiate between science disciplines specific queries such Imaging
Latitude and Longitude and PPI regions.

Slot.values - A Slot instance MUST have a Sequence of values. See
Slot.Name for CIO restrictions in general.

ExternalIdentifier.value - Each ExternalIdentifier instance MUST have a
value attribute that provides the identifier value for this ExternalIdentifier.
No specific restriction. For a information system this could be a URI.

6.1.1.3 Service

Since Services and Service Binding are first-class RegistryObjects,
defined in the Registry Information Model, there is no need for a Registry
Extension.

 53

7 API

7.1 OVERVIEW

A registry allows organizations to publish and discover Web services. Currently,
two registry standards dominate: UDDI (Universal Description, Discovery, and
Integration) and ebXML. With either of these, science organizations can publish a
set of Web services so their internal or external participating organizations can
discover them. However, integrating Web services' discovery and registration
regardless of the supported registry standard can prove challenging. For example,
suppose some of the organizations published their services in a UDDI registry,
while others published in an ebXML registry. How does an application discover
those services published by all the participating organizations?

JAXR, the Java API for XML Registries, provides a standard API for publication
and discovery of Web services through underlying registries.

7.2 JAXR OVERVIEW

JAXR does not define a new registry standard. Instead, this standard Java API
performs registry operations over a diverse set of registries and defines a unified
information model for describing registry contents. Regardless of the registry
provider, applications use common APIs and a common information model. The
JAXR specification defines a general-purpose API, allowing any JAXR client to
access and interoperate with any business registry accessible via a JAXR
provider. In this sense, JAXR provides a Write Once, Run Anywhere API for
registry operations, simplifying Web services development, integration, and
portability.

7.2.1 JAXR ARCHITECTURE

The JAXR architecture defines three important architectural roles:

• A registry provider implements an existing registry standard, such as the
OASIS (Organization for the Advancement of Structured Information) /
ebXML Registry Services Specification.

• A JAXR provider offers an implementation of the JAXR specification
approved by the Java Community Process (JCP) in May 2002. Most
organizations elect to implement a JAXR provider as a facade around an
existing registry provider, such as a UDDI or ebXML registry provider.
Currently, the JAXR reference implementation 1.0 offers a JAXR UDDI
provider implementation. A group of developers are developing an open
source JAXR ebXML provider implementation at www.sourceforge.com.

• A JAXR client is a Java program that uses JAXR to access the registry
provider via a JAXR provider. A JAXR client can be either a standalone
J2SE (Java 2 Platform, Standard Edition) application or J2EE components,

 54

such as EJBs (Enterprise JavaBeans), Java Servlets, or JSPs (JavaServer
Pages). The JAXR reference implementation also supplies one form of a
JAXR client, a Swing-based registry browser application.

Figure 10 illustrates how diverse JAXR clients interoperate with diverse registries
using JAXR. Architecturally, JAXR clients use the API to perform registry
operations, while JAXR providers implement the API. Because JAXR offers a
standard API for accessing diverse registry providers and a unified information
model to describe registry contents, JAXR clients, whether HTML browsers,
J2EE components, or standalone J2SE applications, can uniformly perform
registry operations over various registry providers.

Figure 10 JAXR interoperability with any client to any registry.
Source: Sun Microsystems

Figure 11 shows a high-level view of the JAXR architecture. The JAXR provider
shown is a JAXR pluggable provider with underlying implementations of a
UDDI-specific JAXR provider and an ebXML-specific provider. The JAXR
provider exposes capability-specific methods to the JAXR client via the
RegistryService interface. The JAXR client queries the RegistryService and
discovers the provider capability level via the CapabilityProfile interface.

 55

Figure 11. JAXR architecture Source: Sun Microsystems

Before a JAXR client can invoke capability-level methods on the JAXR provider,
it must connect to the provider. First the client obtains a ConnectionFactory
instance using the static method ConnectionFactory.newInstance(). The
ConnectionFactory interface lets the client create the Connection using its
createConnection() method. Note that the JAXR client connects with the JAXR
provider, not the registry provider. The JAXR provider acts as a proxy on the
client's behalf, directing and invoking methods on the appropriate registry
provider. The connection maintains client state. In addition, the JAXR client
dynamically sets its authentication information and communication preference on
the connection any time during the connection's lifetime. Please refer to the code
demonstrating how a JAXR client connects to a JAXR provider in the
development examples later in the article.

After the JAXR client invokes JAXR capability-level methods, the JAXR
provider transforms these methods into registry-specific methods and executes
requests to the underlying registry providers. After the registry providers process
the requests and return registry-specific results to the JAXR provider, the JAXR
provider transforms the information into JAXR information model
RegistryObjects and returns them to the JAXR client. The RegistryObject
interface is an abstract interface that provides the common information such as
key, name, and description for the more specialized JAXR information model
interfaces. Note that the communication protocol between a JAXR provider and a
registry provider is registry provider-specific and transparent to the JAXR client.
For example, a JAXR provider communicates with the UDDI registry provider by
exchanging basic SOAP messages, while the JAXR provider communicates with
the ebXML registry provider through SOAP messaging or ebXML message
service.

 56

7.2.1.1 Capability Profiles

Because some diversity exists among registry provider capabilities, the JAXR
expert group decided to provide multilayer API abstractions through capability
profiles. Each method of a JAXR interface is assigned a capability level, and
those JAXR methods with the same capability level define the JAXR provider
capability profile.

Currently, JAXR defines only two capability profiles: level 0 profile for basic
features and level 1 profile for advanced features. Level 0's basic features support
so-called business-focused APIs, while level 1's advanced features support
generic APIs. At the minimum, all JAXR providers must implement a level 0
profile. A JAXR client application using only those methods of the level 0 profile
can access any JAXR provider in a portable manner. JAXR providers for UDDI
must be level 0 compliant.

JAXR providers can optionally support the level 1 profile. The methods assigned
to this profile provide more advanced registry capabilities needed by more
demanding JAXR clients. Support for the level 1 profile also implies full support
for the level 0 profile. JAXR providers for ebXML must be level 1 compliant. A
JAXR client can discover the capability level of a JAXR provider by invoking
methods on the CapabilityProfile interface. If the client attempts to invoke
capability level methods unsupported by the JAXR provider, the provider will
throw an UnsupportedCapabilityException.

7.2.1.2 Registry Service Interfaces

As mentioned in the previous section, the JAXR provider supports capability
profiles that group the methods on JAXR interfaces by capability level.
RegistryService exposes the JAXR provider's key interfaces, that is, Web services
discovery and registration. The JAXR client can obtain an instance of the
RegistryService interface by invoking the getRegistryService() method on the
connection established between the JAXR client and JAXR provider. Once the
JAXR client has the RegistryService, it can obtain the primary registry interfaces
and perform life-cycle management and query management through the JAXR
provider.

The JAXR specification defines two life-cycle management interfaces:

• BusinessLifeCycleManager for level 0
• LifeCycleManager for level 1

 57

BusinessLifeCycleManager defines a simple business-level API for life-cycle
management. This interface resembles the publisher's API in UDDI, which should
prove familiar to the UDDI developer. For its part, LifeCycleManager interface
provides complete support for all life-cycle management needs using a generic
API.

Life-cycle management includes creating, saving, updating, deprecating, and
deleting registry objects. In addition, the LifeCycleManager provides several
factory methods to create JAXR information model objects. In general, life-cycle
management operations are privileged, while a user can use query management
operations for browsing the registry.

JAXR's top-level interface for query management, QueryManager, has two
extensions:

• BusinessQueryManager for level 0
• DeclarativeQueryManager for level 1

Query management deals with querying the registry for registry data. A simple
business-level API, the BusinessQueryManager interface provides the ability to
query for the most important high-level interfaces in the information model, such
as Organizations, Services, ServiceBindings, ClassificationSchemes, and
Concepts. Alternatively, the DeclarativeQueryManager interface provides a more
flexible, generic API, enabling the JAXR client to perform ad hoc queries using a
declarative query language syntax. Currently, the only declarative syntaxes JAXR
supports are SQL-92 and OASIS/ebXML Registry Filter Queries. As noted in the
JAXR specification, ebXML registry providers optionally support SQL queries. If
a registry provider does support SQL queries, the JAXR ebXML provider will
throw an UnsupportedCapabilityException on DeclarativeQueryManager
methods.

7.2.1.3 JAXR Information Model

Invoking life-cycle and query management methods on the JAXR provider
requires the JAXR client to create and use the JAXR information model objects.
The JAXR information model resembles the one defined in the ebXML Registry
Information Model 2.0, but also accommodates the data types defined in the
UDDI Data Structure Specification. Although developers familiar with the UDDI
information model might face a slight learning curve, once understood, the JAXR
information model will provide a more intuitive and natural interface to most
developers.

Most JAXR information-model interfaces are derived from the abstract
RegistryObject interface, which defines the common state information, called
attributes, that all registry objects share. Example attributes include key, name,
and description. The InternationalString interface defines attributes that must be

 58

internationalization compatible, such as name and description. The
InternationalString interface contains a collection of LocalizedStrings, where each
LocalizedString defines locale, character set, and string content.

The RegistryObject interface also defines collections of Classifications,
ExternalIdentifiers, ExternalLinks, and Associations. The BusinessQueryManager
often uses those collections as parameters in its find methods.

Also specializations of the RegistryObject interface, the concrete interfaces
Organization, Service, ServiceBinding, Concept, and ClassificationScheme
provide additional state information. For example, the Organization interface
defines a collection of Services, and Service defines a collection of
ServiceBindings. A ServiceBinding might contain a collection of
SpecificationLinks. UDDI developers should be familiar with these concrete
interfaces; they map quite well to the five major UDDI data types shown in the
table below.

7.3 JAXR API SUMMARY

JAXR, the Java API for XML Registries, provides a standard API for publication
and discovery of Web services through underlying registries. The following table
presents a summarized list of the individual API’s together with a brief
description. APIs with similar functions but different arguments were combined.
For example, the two addAssociation APIs, one for a single association and the
other for collection of associations were combined. A table in Annex 4 provides
the mapping for the JAXR API’s to the use cases of Chapter 4 and to the CCSDS
XML/Schema tool APIs.

 59

API Description
addRegistryObjects Adds RegistryObjects.

getRegistryObjects
Gets the collection of member RegistryObjects of this
RegistryPackage.

removeRegistryObjects Removes RegistryObject.
addAssociation Adds specified Association for this object.
addClassifications Adds specified Classification to this object.

addExternalIdentifier
Adds specified ExternalIdentifier as an external identifier to this
object.

addExternalLink Adds specified ExternalLink to this object.

getAssociatedObjects
Returns the collection of RegistryObject instances associated with
this object.

getAssociations Gets all Associations where this object is the source.

getAuditTrail
Returns the complete audit trail of all requests that effected a state
change in this object

getClassifications Get the Classification instances that classify this object.
getDescription Get the textual description for this object.
getExternalIdentifiers Returns the ExternalIdentifiers associated with this object.
getExternalLinks Returns the ExternalLinks associated with this object.

getKey
Gets the key representing the universally unique ID (UUID) for this
object.

getLifeCycleManager Returns the LifeCycleManager that created this object.
getName Gets the user-friendly name of this object.
getObjectType Gets the object type that best describes the RegistryObject.
getRegistryPackages Returns the Package associated with this object.
getSubmittingOrganization Gets the Organization that submitted this RegistryObject.
removeAssociation Removes specified Association from this object.
removeClassification Removes specified Classification from this object.

removeExternalIdentifier
Removes specified ExternalIdentifier as an external identifier from
this object.

removeExternalLink Removes specified ExternalLink from this object.

setAssociations
Replaces all previous Associations from this object with specified
Associations.

setClassifications Replaces all previous Classifications with specified Classifications.
setDescription Sets the context independent textual description for this object.

setExternalIdentifiers
Replaces all previous external identifiers with specified Collection of
ExternalIdentifiers as an external identifier.

setExternalLinks Replaces all previous ExternalLinks with specified ExternalLinks.

setKey
Sets the key representing the universally unique ID (UUID) for this
object.

setName Sets user-friendly name of object in repository.

toXML
Returns a registry provider specific XML representation of this
Object.

 60

7.4 SPECIALIZED FACADE INTERFACES

7.4.1 XML SCHEMAS

The following table lists the APIs for the FreebXML Façade implemented for the
XML Schema Tool. [JavaDoc descriptions will be inserted when available.]

API Description
addSchemaAssociatedObject ?
approveSchema ?
createObjKey ?
deleteAssociationsForObject ?
deleteObject ?
deleteSchema ?
findAllExtrinsicObjects ?
findLatestVersionKey ?
getAllSchemaVersions ?
getObjectContentIfExists ?
getPackage ?
getRepositoryItem ?
getRepositoryItemForLatestVersion ?
getSchema ?
getSchemaAssociatedObjects ?
getSchemaImportsIncludes ?
getSchemaRepositoryObects ?
ingestSchema ?
publishTargetNamespace ?
updateSchema ?
Validate ?

 61

8 LIFECYCLE MANAGEMENT

8.1 OVERVIEW

This section defines the protocols supported by Lifecycle Management service
interface of the Registry. The Lifecycle Management protocols provide the
functionality required by RegistryClients to manage the lifecycle of
RegistryObjects and RepositoryItems within the registry. These lifecycle
protocols have been extracted from [13].

8.2 UPDATE OBJECTS PROTOCOL

The UpdateObjectsRequest protocol allows a Registry Client to update one or more
existing RegistryObjects and/or repository items in the registry.

UpdateObjectsRequest - The UpdateObjectsRequest is used by a client to update
RegistryObjects and/or epository items that already exist within the registry.

RegistryObjectList: This parameter specifies a collection of RegistryObject
instances that are being updated within the registry.

8.3 APPROVE OBJECTS PROTOCOL

The Approve Objects protocol allows a client to approve one or more previously
submitted RegistryObject objects using the LifeCycleManager service interface.

ApproveObjectsRequest - The ApproveObjectsRequest is used by a client to
approve one or more existing RegistryObject instances in the registry.

Parameters:

• AdhocQuery: This parameter specifies a query. A registry MUST approve
all objects that match the specified query in addition to any other objects
identified by other parameters.

• ObjectRefList: This parameter specifies a collection of references to
existing RegistryObject instances in the registry. A registry MUST
approve all objects that are referenced by this parameter in addition to any
other objects identified by other parameters.

8.4 DEPRECATE OBJECTS PROTOCOL

 62

The Deprecate Object protocol allows a client to deprecate one or more
previously submitted RegistryObject instances using the LifeCycleManager
service interface. Once a RegistryObject is deprecated, no new references (e.g.
new Associations, Classifications and ExternalLinks) to that object can be
submitted. However, existing references to a deprecated object continue to
function normally.

DeprecateObjectsRequest - The DeprecateObjectsRequest is used by a client to
deprecate one or more existing RegistryObject instances in the registry.

Parameters:

• AdhocQuery: This parameter specifies a query. A registry MUST
deprecate all objects that match the specified query in addition to any
other objects identified by other parameters.

• ObjectRefList: This parameter specifies a collection of references to
existing RegistryObject instances in the registry. A registry MUST
deprecate all objects that are referenced by this parameter in addition to
any other objects identified by other parameters.

8.5 UNDEPRECATE OBJECTS PROTOCOL

The Undeprecate Objects protocol of the LifeCycleManager service interface
allows a client to undo the deprecation of one or more previously deprecated
RegistryObject instances. When a RegistryObject is undeprecated, it goes back to
the Submitted status and new references (e.g. new Associations, Classifications
and ExternalLinks) to that object can now again be submitted.

UndeprecateObjectsRequest - The UndeprecateObjectsRequest is used by a client
to undeprecate one or more existing RegistryObject instances in the registry. The
registry MUST silently ignore any attempts to undeprecate a RegistryObject that
is not deprecated.

Parameters:

• AdhocQuery: This parameter specifies a query. A registry MUST
undeprecate all objects that match the specified query in addition to any
other objects identified by other parameters.

• ObjectRefList: This parameter specifies a collection of references to
existing RegistryObject instances in the registry. A registry MUST
undeprecate all objects that are referenced by this parameter in addition to
any other objects identified by other parameters.

 63

8.6 REMOVE OBJECTS PROTOCOL

The Remove Objects protocol allows a client to remove one or more
RegistryObject instances and/or repository items using the LifeCycleManager
service interface.

RemoveObjectsRequest - The RemoveObjectsRequest is used by a client to
remove one or more existing RegistryObject and/or repository items from the
registry.

Parameters:

• deletionScope: This parameter indicates the scope of impact of the

• RemoveObjectsRequest. The value of the deletionScope attribute MUST
be a reference to a ClassificationNode within the canonical
DeletionScopeType ClassificationScheme.

• AdhocQuery: This parameter specifies a query. A registry MUST remove
all objects that match the specified query in addition to any other objects
identified by other parameters.

• ObjectRefList: This parameter specifies a collection of references to
existing RegistryObject instances in the registry. A registry MUST remove
all objects that are referenced by this parameter in addition to any other
objects identified by other parameters.

8.7 REGISTRY MANAGED VERSION CONTROL

This section describes the version control features of the Registry.

Version Controlled Resources - All repository items in an Registry are implicitly
version-controlled resources. No explicit action is required to make them a
version-controlled resource.

Versioning and Object Identification - Each version of a RegistryObject is a
unique object and as such has its own unique value for its id attribute as defined
by the information model.

Logical ID - All versions of a RegistryObject are logically the same object and are
referred to as the logical RegistryObject. A logical RegistryObject is a tree
structure where nodes are specific versions of the RegistryObject.

A specific version of a logical RegistryObject is referred to as a RegistryObject
instance. A RegistryObject instance MUST have a Logical ID (LID) to identify its

 64

membership in a particular logical RegistryObject. Note that this is in contrast
with the id attribute that MUST be unique for each version of the same logical
RegistryObject. A client may refer to the logical RegistryObject in a version
independent manner using its LID.

Version Identification A Registry supports independent versioning of both
RegistryObject metadata as well as repository item content. It is therefore
necessary to keep distinct version information for a RegistryObject instance and
its repository item if it happens to be an ExtrinsicObject instance.

Version Identification for a RegistryObject - A RegistryObject MUST have a
versionInfo attribute whose type is the VersionInfo class defined by information
model. The versionInfo attributes identifies the version information for that
RegistryObject instance. A registry MUST not allow two versions of the same
RegistryObject to have the same versionInfo.versionName attribute value.

Versioning of ExtrinsicObject and Repository Items - An ExtrinsicObject and its
associated repository item may be updated independently and therefore versioned
independently.

Version Creation - The registry manages creation of new version of a
RegistryObject or a repository item automatically. A registry that supports
versioning MUST implicitly create a new version for a repository item if the
repository item is updated via a SubmitObjectsRequest or UpdateObjectsRequest.
In such cases it MUST also create a new version of its ExtrinsicObject.

 65

 66

ANNEX Sections

 67

Annex 1 Reference Registry Use Cases

A1.1 OPEN GIS PROJECT REGISTRY

The following table outlines general use cases that were produced for the OPEN
GIS Project [4]. The details of the sub-use cases (e.g. description, pre-condition,
and sequence of action) are provided in the referenced document.

Use Case
Number

Use Case Name Description (Sub-use cases)

GIS-1 Query metadata resource
1.1. Query metadata resource by identifier
1.2. Query metadata resource based on content
1.3. Query metadata resource by classification in taxonomy
1.4. Query metadata resource by responsible organization
1.5. Query metadata resource that is associated with other

resource

GIS-2 Follow associations/links
2.1. Associate a registry or repository item with an externally

located item
2.2. Associate a registry or repository item with an internally

located item

GIS-3 Getting to classification
3.1. Find classification scheme/node by identifier
3.2. Find classification node by path expression
3.3. Find classification scheme by content
3.4. Classify a registry object by selected taxonomy

GIS-4 Federated registries
4.1. Administer a federation of registries
4.2. Perform distributed query with search policy

GIS-5 Publish
5.1. Publish dataset description to a registry (remotely

reference content)
5.2. Publish service description to a registry (remotely

reference content)
5.3. Publish service type to a registry (submit content)
5.4. Publish data type to a registry (submit content)
5.5. Publish taxonomy scheme to a registry
5.6. Publish style to a registry
5.7. Publish symbol set to a registry

GIS-6 Update
6.1. Update association between registry objects
6.2. Update registry object classification
6.3. Update classification scheme/node
6.4. Update registry object

GIS-7 Delete
7.1. Delete association between registry objects
7.2. Delete registry object classification
7.3. Delete classification scheme/node
7.4. Delete registry object

GIS-8 Deprecate
8.1. Deprecate classification scheme
8.2. Deprecate registry object

GIS-9 Security
9.1. Submit a publication request using the security mechanism

 68

A1.2 AMALFI MULTI-MISSIONS – XML SCHEMA REPOSITORY

The following use cases have been extracted from the AMALFI Multi Missions
XML Schema Repository Technical Note (GAEL-P236-TCN-002).

A1.2.1.1 Actors

The actor specifies the role played by the users or any other system that interacts
with the XML Schema Repository.

Any Actor models a type of role played by an entity that interacts with the XML
Schema Repository (e.g. by exchanging data), but which is external to it i.e. in the
sense that an instance of an actor is not a part of the instance of its corresponding
repository. Actors may represent roles played by human users, external hardware,
or other subjects. Note that an actor does not necessarily represent a specific
physical entity but merely a particular role of some entity that is relevant to the
specification of its associated use cases. Thus, a single physical instance may play
the role of several different actors and, conversely, a given actor may be played
by multiple different instances.

The following diagram and table introduce the actors that have been identified for
the XML Schema Repository:

Actor Description

User Any entity that plays a role that interacts with the
XML Schema Repository.

Human User Any personnel interacting with the XML Schema
Repository. Human User actors require command line
or graphical interfaces with the XML Schema
Repository e.g. shell commands or Web pages
accessible in a Web client

Administrator A specific Human User that has privileges for
administrating the repository. The administrator may

 69

in particular install the repository; manage security
level and user authentication/rights. An administrator
may be seen as a “Super User”.

Application Any software interacting with the XML Schema
Repository. In the current definition it is not foreseen
that Application would be granted to perform
administration tasks.

AMM Any AMALFI Multi-Mission component: the targeted
and main actor of the current project.

A1.2.1.2 XML Schema Submission Use Cases

Use Case Amalfi-1

A1.2.1.3 Versioning Use Cases

 70

Use Case Amalfi-2

A1.2.1.4 XML Schema Retrieval Use Cases

Use Case Amalfi-3

A1.2.1.5 XML Schema Removal Use Cases

Use Case Amalfi-4

 71

A1.2.1.6 Revision Control Use Cases

Use Case Amalfi-5

A1.2.1.7 Repository Administration Use Cases

Use Case Amalfi-6

 72

A1.2.1.8 Logging/Monitoring Use Cases

Use Case Amalfi-7

A1.3 JPL DEEP SPACE NETWORK INFORMATION SERVICE
ARCHITECTURE REGISTRY USE CASES

This section provides use case scenarios for the “DISA” registry.

A1.3.1.1 Background

The Deep Space Network Information Service Architecture (DISA) is a set of
information services and information models to enable the Deep Space Network
and Advance Multi-mission Operation System (AMMOS) to become a service-
oriented architecture. As such, DISA has identified several services needed to
support movement towards a SOA. A Registry Service is one such service that
has identified needs for managing models, schemas, services, elements, and
namespaces.

A1.3.1.2 Use Cases

A1.3.1.3 General Use Cases

Use Registered Service Develop Schemas Collaboratively

Use Schema Versions Perform XML Translation

 73

Migrate Registry to Operations

A1.3.1.4 Blanket Registry Use Cases

Backup Registry Restore Registry

Provide Alternate Registry

A1.3.1.5 Data Element Use Cases

Registry Element Unregister Element

Update Element Metadata Promote Element

List Elements Query Elements

Get Element Metadata

A1.3.1.6 XML Schema Registry Use Cases

Create Schema Directory Register Schema

Unregister Schema Update Schema

Update Schema Metadata Build Elements from Schema

Promote Schema List Schemas

Query Schemas Get Schema Metadata

Get Versioned Schema

 74

A1.3.1.7 XML Stylesheet Use Cases

Create Stylesheet Directory Register Stylesheet

Unregister Stylesheet Update Stylesheet Metadata

Promote Stylesheet List Stylesheets

Query Stylesheets Get Stylesheet Metadata

Get Versioned Stylesheet

A1.3.1.8 Namespace/Domain Registry Use Cases

Register Namespace Unregister Namespace

Update Namespace Metadata Promote Namespace

List Namespaces Query Namespaces

Get Namespace Metadata Locate Namespace Members

A1.3.1.9 Service Registry Use Cases

Register Service Unregister Service

Update Service Metadata Promote Service

Lookup Service List Services

Get Service Metadata Get Service Interface

 75

A1.4 CCSDS SERVICE LINK EXCHANGE (SLE) WG

A1.4.1.1 Background

The SLE Services provide a standard way of passing CCSDS telecommand and
telemetry services across the ground segment. By implementing SLE services,
TTC Services Providers will be able to provide a standard interface for supplying
TTC services to Missions. This will reduce the cost of providing cross support
services for spacecraft missions once the standard is in widespread use. In the
near future, CCSDS tracking services and security will be added to the SLE
capability, to facilitate the implementation of a fully operational SLE service.

A1.4.1.2 Use Cases

Schema Registry – registration and discovery of both SLE and cross-support
XML schemas with notification

Data Elements – registration and access to common data elements used within
CCSDS

Code Lists – common codes used within CCSDS

Services – agency published catalog of services as part of cross-support activities

A1.5 CCSDS NAVIGATION WG

A1.5.1.1 Background

The Navigation Working Group provides a discipline-oriented forum for detailed
discussions and development of technical flight dynamics standards.

A1.5.1.2 Use Cases

Schema Registry – registration and access to the navigation data messages for
exchange of orbit representations, attitude representations, tracking data, general
accelerations, etc within a federated environment

Data Elements – registration and access to common data elements used within
CCSDS

 76

A1.6 CCSDS MISSION OPERATIONS SERVICES

A1.7 COMMON SM&C USE CASES

Use Case
MOS-1

Register Interest

Brief
description

Use case allows a user to register to receive updates

It is espected that the registering of interest would involve the
sending of some kind of filter and would also require some kind
of privilege.

The requet may also specify that only the current state should be
supplied (single shot), or that the current state and subsequent
changes in the state should be supplied (continuous)

Primary
Actor

Client

Preconditions The subsystem which provides the updates must be available.

Client must have appropriate privileges to perform this.

Main Success
Scenarios

1. The filter provided by th Client is validated

2. The Client is provided with the current state of all the items
they have referenced with the subsystem to receive updates

Use Case
MOS-2

Deregister Interest

Brief
description

Use case allows a client to deregister interest in one or
more items it previously registered for.

Primary
Actor

Client

 77

Preconditions Was previously registered

Main Success
Scenarios

The registration between the Client and the referenced items is
removed

A1.8 CORE SM&C USE CASES

A1.8.1.1 Status Monitoring

Use Case
MOS-3

Register Interest In Parameters

Brief
description

Use case allows a user to register to receive updates reporting the
state of one or more parameters.

In this context the state of the parameter consists of all its
dynamic attributes (e.g., value, status, raw data, quality flags)
The request can specify that only the current parameter
state should be supplied (single shot), or that the current

 78

parameter state and subsequent changes in the state should
be supplied (continuous).

Primary
Actor

M&C Client

Preconditions The M&C Subsystem which provides the Parameter values must
be available.

Main Success
Scenarios

 • All the parameter references provided by the M&C
Status Client are validated.

 • The M&C Status Client is provided with the current
state of all the parameters he has referenced in the request.

 • The M&C Status Client is registered with the
Parameters.

Use Case
MOS-4

Deregister Interest In Parameters

Brief
description

Use case allows a user to deregister interest in one or more
parameters.

Primary
Actor

M&C Client

Preconditions None

Main Success
Scenarios

 • All the parameter references provided by the M&C
Status Client are validated.
 • The registration between the M&C Status Client
and the referenced Parameters is removed.

Use Case
MOS-4

Set Parameters

Brief
description

Use case allows a Client to set a Parameter.

 79

Primary
Actor

M&C Client

Preconditions The M&C Subsystem which maintains the Parameter values must
be available.

Main Success
Scenarios

 • The Set request is forwarded to the M&C Subsystem

A1.8.1.2 Action Invocation

Use Case
MOS-5

Send Action

Brief
description

Use case allows a client to invoke an action (a symbolic
control directive) by submitting an action request. The
action request results in the creation of a new action
instance, which is assigned a unique identifier. The action
may be tagged for immediate execution, or tagged with an
execution time.

Primary
Actor

M&C Client

Preconditions The target of the action must be available. The pre-
transmission verification, if any, must be successful.

Main Success
Scenarios

 • The action is validated.
 • An action instance is created, and a unique

 80

identifier allocated to it.
 • The action is forwarded to the M&C Subsystem.
 • The action is registered with the initiating client,
so that the client will receive updates reporting changes in
the action status.
 • The action identifier is returned to the initiating
client.

Use Case MOS- 6 Update Action Status

Brief Description Use case allows a M&C System to report an
update in the status of an Action.

Primary Actor M&C (Subsystem)

Preconditions The action must have been sent by a M&C
Client.

Main Success
Scenarios

 • The action is validated.
 • The action status is reported all clients
registered with the Action.

Use Case MOS-7 Register Interest in Action

Brief Description Register to receive updates reporting status
change of Actions.
The Actions for which updates are required can
be specified by any of the following methods :-
Providing the instance identifiers – of the Actions
for which updates are required.
Providing the definition identifiers – of the
Actions for which updates are required.
Providing the Domain – updates are supplied for
Actions executing in the Domain.

Primary Actor M&C Client

Preconditions None

 81

Main Success
Scenarios

 • The Client is registered with the
identified Actions.
 • For all Actions identified – report their
current status to the client.

Use Case MOS-8 Deregister Interest In Actions

Brief Description Use case allows a Space System to deregister for
Action updates.

Primary Actor M&C Client

Preconditions None

Main Success
Scenarios

 • The registration between the Client and
the Action is removed.

A1.8.1.3 Alert Notification

 82

Use Case MOS-10 Deregister Interest In Alerts

Brief Description Use case allows a Space System to deregister for
Alerts.

Primary Actor M&C Client

Preconditions None

Main Success
Scenarios

 • The registration between the Client and
the Alert definition is removed.

A1.9 OPERATIONS AUTOMATION USE CASES

A1.9.1.1 Activity Control Use Cases

A1.9.1.2 Activity Monitoring Use Cases

Use Case MOS-9 Register Interest In Alerts

Brief Description Register to receive notification of Alerts.
The Alerts for which notifications are required can
be specified by any of the following methods :
Providing the definition identifiers – of the Alerts for
which updates are required.
Providing the Domain – notifications are supplied
for Alerts raised in the Domain.

Primary Actor M&C Client

Preconditions None

Main Success
Scenarios

 • The Client is registered with the Alert
definition.

 83

Use Case MOS-11 Register Interest In Activities

Brief Description Register to receive updates reporting status
change of Activities.
The activities for which updates are required can
be specified by any of the following methods :
Providing the instance identifiers – of the
activities for which updates are required.
Providing the definition identifiers – of the
activities for which updates are required.
Providing the Domain – updates are supplied for
activities executing in the Domain.

Primary Actor Automation Client

Preconditions None

Main Success
Scenarios

 • The Client is registered with the
identified activities.
 • For all activities identified – report their
current status to the client.

 84

Use Case MOS-12 Deregister Interest In Activities

Brief Description Deregister to receive updates reporting status
change of Activities.

Primary Actor Automation Client

Preconditions Client has registered for the specified activities

Main Success
Scenarios

 • The registration between the Client and
the activities is removed.

Use Case MOS-13 List Available Activities

Brief Description List available activities.

Primary Actor Automation Client

Preconditions None

Main Success
Scenarios

 • Provide the Client with a list of all
Activities that are

Use Case MOS-14 List Executing Activities

Brief Description List executing activities.

Primary Actor Automation Client

Preconditions None

Main Success
Scenarios

 • Provide the Client with a list of all Activities that
are currently executing.

 85

Use Case MOS-15 Update Activity Status

Brief Description Update the execution status of an activity

Primary Actor Automation (Subsystem)

Preconditions None

Main Success
Scenarios

 • Report the Activity Status to all Clients
which have registered to receive updates for the
Activity

A1.10 OPERATIONS SCHEDULING USE CASES

A1.10.1.1 Schedule Level Control Use Cases

A1.10.1.2 Schedule Maintenance

A1.10.1.3 Schedule Activity Level Control Use Cases

A1.10.1.4 Schedule Monitoring Use Cases

 86

Use Case MOS-16 Register Interest In Schedule

Brief Description Register to receive updates reporting status
change of schedule.

Primary Actor Schedule Execution Client

Preconditions None.

Main Success
Scenarios

 • The Client is registered with the
schedule.
 • Report the current status to the client.

Use Case MOS-17 Deregister Interest In Schedule

Brief Description Deregister to receive updates reporting status
change of schedule.

Primary Actor Schedule Execution Client

 87

Preconditions Client has registered.

Main Success
Scenarios

 • The registration between the Client and
the schedule is removed.

Use Case MOS-18 List Schedule

Brief Description List the schedule.

Primary Actor Schedule Execution Client

Preconditions None.

Main Success
Scenarios

 • Provide the Client with a list of all Activities
that are currently contained in the schedule.

Use Case MOS-19 Update Schedule Status

Brief Description Update the execution status of the schedule.

Primary Actor Schedule Execution

Preconditions None.

Main Success
Scenarios

 • Report the Schedule Status to all Clients
which have registered to receive updates for the
Schedule.

A1.11 OPERATIONS PLANNING USE CASES

A1.11.1.1 Planning Control Use Cases

 88

Use Case MOS-20 Register Interest In Plan Generation

Brief Description Allows the client to register for status updates
for selected plan generation events.

Primary Actor Planning Client

Preconditions None.

Main Success
Scenarios

 • Client is registered for plan generation
events.
 • Report the current status to the client.

Use Case MOS-21 Deregister Interest In Plan Generation

 89

Brief Description Allows a client to remove themselves from the list
of clients to be notified of plan generation events.

Primary Actor Planning Client

Preconditions The client is previously registered.

Main Success
Scenarios

 • Client is no longer notified of plan
generation events.

Use Case MOS-22 List Active Plan Generations

Brief Description Returns the complete list of active plan
generations.

Primary Actor Planning Client

Preconditions None.

Main Success
Scenarios

 • The list is returned.

Use Case MOS-23 Update Plan Generation Status

Brief Description Notification to the client of a status change in
the generation.

Primary Actor Planning

Preconditions Client has registered for updates.

Main Success
Scenarios

 • All registered client receive the
update.

A1.11.1.2 Plan Level Maintenance Use Cases

A1.11.1.3 Plan Task Level Maintenance Use Cases

 90

Use Case MOS-24 Register Interest In Element Status

Brief Description Allows the client to register for status updates
for selected plan elements.
Plan elements include:
 Plans
 Tasks
 Activities
 Actions
 Constraints

Primary Actor Planning Client

Preconditions Elements exist.

Main Success
Scenarios

 • Client is registered for updates.
 • Report the current status to the client.

 91

Use Case MOS-25 Deregister Interest In Element Status

Brief Description Removes the client from receiving updates
about the selected elements.

Primary Actor Planning Client

Preconditions Client is already registered to receive updates.

Main Success
Scenarios

 • Client is deregistered for updates.

Use Case MOS-26 Add Task

Brief Description A task is added to a plan.

Primary Actor Planning Client

Preconditions None.

Main Success Scenarios
 • Task is added.

Use Case MOS-27 Modify Task

Brief Description An existing task is modified.

Primary Actor Planning Client

Preconditions Task exists.

Main Success Scenarios
 • Task is modified.

Use Case MOS-28 Delete Task

Brief Description Deletes a task from an existing plan.

 92

Primary Actor Planning Client

Preconditions Task exists.

Main Success Scenarios
 • Task is removed from the plan.

Use Case MOS-29 Add Constraint

Brief Description Adds a constraint to a plan. A constraint can be on a
element or between elements.

Primary Actor Planning Client

Preconditions Element being constrained exists.

Main Success
Scenarios

 • Constraint is inserted in plan.

Use Case MOS-30 Modify Constraint

Brief Description Modify an existing constraint.

Primary Actor Planning Client

Preconditions Constraint exists.

Main Success Scenarios
 • Constraint is modified.

Use Case MOS-31 Delete Constraint

 93

Brief Description Delete an existing constraint from a plan.

Primary Actor Planning Client

Preconditions Constraint exists.

Main Success
Scenarios

 • Constraint is removed from the
plan.

Use Case MOS-32 Update Element Status

Brief Description Send notification of an update to an element to
all registered clients.

Primary Actor Planning

Preconditions None.

Main Success
Scenarios

 • All registered clients are notified of
update.

A1.11.1.4 Plan Monitoring Use Cases

 94

Use Case MOS-33 Register Interest In Planning

Brief Description Allows the client to register for status updates for
selected planning events.

Primary Actor Planning Client

Preconditions None.

Main Success
Scenarios

 • Client is registered for planning events.
 • Report the current status to the client.

Use Case MOS-34 Deregister Interest In Planning

Brief Description Allows a client to remove themselves from the list
of clients to be notified of planning events.

Primary Actor Planning Client

Preconditions The client is previously registered.

Main Success
Scenarios

 • Client is no longer notified of planning

 95

events.

Use Case MOS-35 List Plan

Brief Description Returns the complete plan, or a subsection of,
the plan to the client.

Primary Actor Planning Client

Preconditions None.

Main Success
Scenarios

 • The requested plan is returned.

Use Case MOS-36 Plan Modification Report

Brief Description Summary report of any modification made to
the active plan.

Primary Actor Planning

Preconditions Client had registered for updates.

Main Success
Scenarios

 • All registered clients receive the
update.

Use Case MOS-37 Active Plan Status Update

Brief Description Notification to the client of a status change in the
active plan.

Primary Actor Planning

 96

Preconditions Client has registered for updates.

Main Success
Scenarios

 • All registered client receive the update.

A1.12 GUIDANCE, TRACKING AND SYNCHRONISATION USE CASES

A1.12.1.1 Time use cases

Use Case MOS-38 Register Interest In Time

Brief Description Allows a client to register interest in time
reports.

Primary Actor Time Client

Preconditions None.

 97

Main Success
Scenarios

 • Client is registered for time reports.

Use Case MOS-39 Deregister Interest In Time

Brief Description Allows a previously registered client to stop
receiving time reports.

Primary Actor Time Client

Preconditions Client was previously registered.

Main Success
Scenarios

 • Client no long receives time reports.

Use Case MOS-40 Time Update

Brief Description Time update is sent.

Primary Actor Time

Preconditions Client has registered for updates.

Main Success
Scenarios

 • All registered client receive a time
update.

A1.12.1.2 Location Reporting use cases

 98

Use Case MOS-41 Register Interest In Location

Brief Description Allows a client to register interest in location
reports.

Primary Actor Location Client

Preconditions None.

Main Success
Scenarios

 • Client is registered for location reports.

Use Case MOS-42 Deregister Interest In Location

Brief Description Allows a previously registered client to stop receiving
location reports.

Primary Actor Location Client

Preconditions Client was previously registered.

 99

Main Success
Scenarios

 • Client no long receives location reports.

Use Case MOS-43 Location Update

Brief Description Location update is sent.

Primary Actor Location

Preconditions Client has registered for updates.

Main Success Scenarios • All registered client receive a location update.

Use Case MOS-44 Ground Station Tracking Update

Brief Description Tracking update is sent.

Primary Actor Location

Preconditions Client has registered for updates.

Main Success
Scenarios

 • All registered client receive a tracking
update.

Use Case MOS-45 Ground Station Ranging Update

Brief Description Ranging update is sent.

Primary Actor Location

Preconditions Client has registered for updates.

Main Success
Scenarios

 • All registered client receive a ranging

 100

update.

A1.12.1.3 Location Control use cases

Use Case MOS-46 Register Interest In Location Control

Brief Description Allows a client to register interest in location control
updates.

Primary Actor Location Client

Preconditions None.

Main Success
Scenarios

 • Client is registered for location control
updates.

 101

Use Case MOS-47 Deregister Interest In Location Control

Brief Description Allows a previously registered client to stop receiving
location control updates.

Primary Actor Location Client

Preconditions Client was previously registered.

Main Success
Scenarios

 • Client no long receives location control
updates.

Use Case MOS-48 List Active Ranging and Tracking

Brief Description Provide the client with a list of active operations and their
status.

Primary Actor Location Client

Preconditions None.

Main Success
Scenarios

 • Provide the Client with a list of all operations
that are currently active.

Use Case MOS-49 Update Ranging and Tracking Status

Brief Description Ranging or Tracking update is sent.

Primary Actor Location Client

Preconditions Client has registered for updates.

Main Success Scenarios
 • All registered clients receive the update.

 102

A1.12.1.4 Flight Dynamics Control use cases

Use Case MOS-50 Register Interest In Generation Status

Brief Description Allows a client to register interest in flight dynamics
generation status.

Primary Actor Flight Dynamics Client

Preconditions None.

Main Success
Scenarios

 • Client is registered for generation status
notification.
 • Report the current status to the client.

Use Case MOS-51 Deregister Interest In Generation Status

Brief Description Allows a previously registered client to stop receiving
flight dynamics generation status.

 103

Primary Actor Flight Dynamics Client

Preconditions Client was previously registered.

Main Success
Scenarios

 • Client no long receives generation status
notification.

Use Case MOS-52 List Active Data Generations

Brief Description Provide the client with a list of active data generations
and their status.

Primary Actor Flight Dynamics Client

Preconditions None.

Main Success
Scenarios

 • Provide the Client with a list of all generations
that are currently executing.

Use Case MOS-53 Update Generation Status

Brief Description Informs clients registered for updates of a change in
the state of a generation task.

Primary Actor Flight Dynamics

Preconditions Client is registered.

Main Success
Scenarios

 • Report the generation to all Clients which
have registered to receive updates.

A1.12.1.5 Flight Dynamics Monitoring use cases

 104

Use Case MOS-54 Register Interest In Flight Dynamics

Brief Description Allows a client to register interest in flight dynamics
data.
The registration allows the client to select the type of
data it wants to receive. Data items include:
 • Orbit vectors
 • Ground station visibilities
 • Predicted events
 • Antenna steering data
 • Attitude data
 • Physical state data
 • Manoeuvre control data
 • Fuel budget assessment
 • End of Life prediction

Primary Actor Flight Dynamics Client

Preconditions None.

Main Success
Scenarios

 • Client is registered for data notification.
 • Report the current status to the client.

 105

Use Case MOS-55 Deregister Interest In Flight Dynamics

Brief Description Allows a previously registered client to stop receiving
flight dynamics data.

Primary Actor Flight Dynamics Client

Preconditions Client was previously registered.

Main Success
Scenarios

 • Client no long receives data.

Use Case MOS-56 Update Of Flight Dynamics Data

Brief Description A new version of a data files has been distributed.

Primary Actor Flight Dynamics

Preconditions Client is registered.

Main Success
Scenarios

 • Send the data to all Clients which have
registered to

A1.13 REMOTE SOFTWARE MANAGEMENT USE CASES

 106

Use Case MOS-57 Register Interest In Software Management

Brief Description Allows a client to register interest in Software
Management data.

Primary Actor Software Management Client

Preconditions None.

Main Success
Scenarios

 • Client is registered for data notification.

Use Case MOS-58 Deregister Interest In Software Management

Brief Description Allows a previously registered client to stop receiving
Software Management data.

Primary Actor Software Management Client

Preconditions Client was previously registered.

Main Success
Scenarios

 • Client no long receives data.

 107

Use Case MOS-59 Software Check Report

Brief Description Reports the result of a software check.

Primary Actor Software Management

Preconditions Client is registered.

Main Success
Scenarios

 • Send the data to all Clients which have
registered to receive it.

A1.14 PAYLOAD DATA PRODUCT MANAGEMENT USE CASES

A1.14.1.1 Data Product Management use cases

 108

Use Case MOS-60 Delete Product

Brief Description Deletes a product from the remote data store.

Primary Actor Data Product Client

Preconditions Product exists in the store.

Main Success Scenarios
 • Product is deleted.

Use Case MOS-61 Copy Product

Brief Description Copies a product in the remote data store.

Primary Actor Data Product Client

Preconditions Product exists in the store.

Main Success Scenarios
 • Product is copied.

Use Case MOS-62 Rename Product

Brief Description Renames a product in the remote data store.

Primary Actor Data Product Client

Preconditions Product exists in the store.

Main Success Scenarios
 • Product is renamed.

Use Case MOS-63 List Directory

Brief Description Returns a list of files in the specified directory.

 109

Primary Actor Data Product Client

Preconditions Directory exists in the store.

Main Success Scenarios
 • Directory list is returned.

Use Case MOS-64 Create Directory

Brief Description Creates a directory from the remote data store.

Primary Actor Data Product Client

Preconditions Parent directory exists in the store. No existing
directory or file with the same name.

Main Success
Scenarios

 • Directory is created.

Use Case MOS-65 Delete Directory

Brief Description Deletes a directory from the remote data store.

Primary Actor Data Product Client

Preconditions Directory exists in the store and is empty.

Main Success Scenarios
 • Directory is deleted.

A1.14.1.2 Data Product Transfer use cases

 110

Use Case MOS-66 Register Interest In Transfers

Brief Description Allows a client to register interest in data transfer
status updates.

Primary Actor Data Product Client

Preconditions None.

Main Success
Scenarios

 • Client is registered for data notification.
 • Report the current status to the client.

Use Case MOS-67 Deregister Interest In Transfers

 111

Brief Description Allows a previously registered client to stop receiving
status updates.

Primary Actor Data Product Client

Preconditions Client was previously registered.

Main Success
Scenarios

 • Client no longer receives status updates.

Use Case MOS-68 List Transfers

Brief Description Provide the client with a list of active data transfers and
the status of them.

Primary Actor Data Product Client

Preconditions None.

Main Success
Scenarios

 • Provide the Client with a list of all transfers that
are currently executing.

Use Case MOS-69 Update Transfer Status

Brief Description Informs clients registered for updates of a change in the
state of a transfer.

Primary Actor Data Product Management

Preconditions Client is registered.

Main Success
Scenarios

 • Report the transfer state change to all Clients
which have registered to receive data product updates.

 112

A1.14.1.3 Data Product Monitoring use cases

Use Case MOS-70 Register Interest In Data Products

Brief Description Allows a client to register interest in data product status
updates.

Primary Actor Data Product Client

Preconditions None.

Main Success
Scenarios

 • Client is registered for data product
notification.

 113

Use Case MOS-71 Deregister Interest In Data Products

Brief Description Allows a previously registered client to stop receiving
product updates.

Primary Actor Data Product Client

Preconditions Client was previously registered.

Main Success
Scenarios

 • Client no long receives product status
updates.

Use Case MOS-72 Update Data Product Status

Brief Description Informs clients registered for updates of a change in the
state of a data product.

Primary Actor Data Product Management

Preconditions Client is registered.

Main Success
Scenarios

 • Report the data product state change to all
Clients which have registered to receive updates.

A1.15 OPERATOR INTERACTION USE CASES

 114

Use Case MOS-73 Notify Operator

Brief Description Used to send a message to an operator that does not
require acknowledgement.

Primary Actor Operator Notification Client

Preconditions None.

Main Success
Scenarios

 • Operator is notified.

Use Case MOS-74 Notify Operator

Brief Description Used to send a message to an operator that does not
require acknowledgement.

Primary Actor Operator Notification Client

 115

Preconditions None.

Main Success
Scenarios

 • Operator is notified.

Use Case MOS-
75

Request Input Data

Brief
Description

Request input data from an operator. This is separate from
normal operator interaction with client application, it is
expected that normally autonomous systems shall use it
when operator interaction is required.
Several input methods are likely to be supported:
 – String
 – Number
 – Select option

Primary Actor Operator Notification Client

Preconditions None.

Main Success
Scenarios

 • Input is requested from operator

Use Case MOS-76 Send Input Data

Brief Description Sends the input data that was requested
previously.

Primary Actor Operator

Preconditions Input data was requested.

Main Success
Scenarios

 • Input data is sent.

Use Case MOS-77 List Interactions

 116

Brief Description Provide the client with a list of active interactions and the
status of them.

Primary Actor Operator Notification Client

Preconditions None.

Main Success
Scenarios

 • Provide the Client with a list of all interactions
that are currently outstanding.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 117 [May 2004]

Annex 2 JAXR APIs Mappings

The following table provides the mapping for the JAXR API’s to the use cases of Chapter 4 and to the
CCSDS XML/Schema tool APIs.

API Description Use Cases XML Schema APIs
addRegistryObjects Adds RegistryObjects. publishObject ingestSchema

getRegistryObjects
Gets the collection of member
RegistryObjects of this RegistryPackage.

getPackage,
getRepositoryItemForLatestVer
getSchema

removeRegistryObjects Removes RegistryObject. deleteObject deleteObject (deleteSchema)

addAssociation
Adds specified Association for this
object. addObjectAssociation

addClassifications
Adds specified Classification to this
object.

addExternalIdentifier
Adds specified ExternalIdentifier as an
external identifier to this object.

addExternalLink
Adds specified ExternalLink to this
object.

getAssociatedObjects
Returns the collection of RegistryObject
instances associated with this object. getObjectAssociation getSchemaAssociatedObjects

getAssociations
Gets all Associations where this object is
the source. getObjectAssociation

getAuditTrail

Returns the complete audit trail of all
requests that effected a state change in
this object

getClassifications
Get the Classification instances that
classify this object.

getDescription Get the textual description for this object.

getExternalIdentifiers
Returns the ExternalIdentifiers
associated with this object.

getExternalLinks
Returns the ExternalLinks associated
with this object.

getKey
Gets the key representing the universally
unique ID (UUID) for this object.

getLifeCycleManager
Returns the LifeCycleManager that
created this object.

getName
Gets the user-friendly name of this
object.

getObjectType
Gets the object type that best describes
the RegistryObject.

getRegistryPackages
Returns the Package associated with this
object. getObject

getSubmittingOrganization
Gets the Organization that submitted this
RegistryObject.

removeAssociation
Removes specified Association from this
object.

removeClassification
Removes specified Classification from
this object. deleteAssociationsForObject

removeExternalIdentifier
Removes specified ExternalIdentifier as
an external identifier from this object.

CCSDS RECOMMENDATION FOR

CCSDS [number] Page 118 [May 2004]

removeExternalLink
Removes specified ExternalLink from
this object.

setAssociations
Replaces all previous Associations from
this object with specified Associations.

setClassifications
Replaces all previous Classifications with
specified Classifications. addSchemaAssociatedObject

setDescription
Sets the context independent textual
description for this object.

setExternalIdentifiers

Replaces all previous external identifiers
with specified Collection of
ExternalIdentifiers as an external
identifier.

setExternalLinks
Replaces all previous ExternalLinks with
specified ExternalLinks.

setKey
Sets the key representing the universally
unique ID (UUID) for this object. createObjKey

setName
Sets user-friendly name of object in
repository.

toXML
Returns a registry provider specific XML
representation of this Object.

 findObject findLatestVersionKey
 setCredentials findAllExtrinsicObjects
 updateObject getAllSchemaVersions
 connect getObjectContentIfExists
 getRepositoryItem
 getSchemaImportsIncludes
 getSchemaRepositoryObects
 publishTargetNamespace
 updateSchema
 validate

