

Draft Report Concerning
Space Data System Standards

INFORMATION
ARCHITECTURE

REFERENCE MODEL

DRAFT INFORMATIONAL REPORT

CCSDS 312.0-G-0

DRAFT GREEN BOOK
February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

AUTHORITY

 Issue: Draft Informational Report, Issue 0

 Date: February 2006

 Location: Not Applicable

This document has been approved for publication by the Management Council of the
Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of
technical panel experts from CCSDS Member Agencies. The procedure for review and
authorization of CCSDS Reports is detailed in the Procedures Manual for the Consultative
Committee for Space Data Systems.

This document is published and maintained by:

CCSDS Secretariat
Office of Space Communication (Code M-3)
National Aeronautics and Space Administration
Washington, DC 20546, USA

CCSDS 312.0-G-0 Page i February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

FOREWORD

Through the process of normal evolution, it is expected that expansion, deletion, or
modification of this document may occur. This Recommended Standard is therefore subject
to CCSDS document management and change control procedures, which are defined in the
Procedures Manual for the Consultative Committee for Space Data Systems. Current
versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the
CCSDS Secretariat at the address indicated on page i.

CCSDS 312.0-G-0 Page ii February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies

– Agenzia Spaziale Italiana (ASI)/Italy.
– British National Space Centre (BNSC)/United Kingdom.
– Canadian Space Agency (CSA)/Canada.
– Centre National d’Etudes Spatiales (CNES)/France.
– Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.
– European Space Agency (ESA)/Europe.
– Federal Space Agency (Roskosmos)/Russian Federation.
– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
– Japan Aerospace Exploration Agency (JAXA)/Japan.
– National Aeronautics and Space Administration (NASA)/USA.

Observer Agencies

– Austrian Space Agency (ASA)/Austria.
– Belgian Federal Science Policy Office (BFSPO)/Belgium.
– Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
– Centro Tecnico Aeroespacial (CTA)/Brazil.
– Chinese Academy of Space Technology (CAST)/China.
– Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
– Danish Space Research Institute (DSRI)/Denmark.
– European Organization for the Exploitation of Meteorological Satellites

(EUMETSAT)/Europe.
– European Telecommunications Satellite Organization (EUTELSAT)/Europe.
– Hellenic National Space Committee (HNSC)/Greece.
– Indian Space Research Organization (ISRO)/India.
– Institute of Space Research (IKI)/Russian Federation.
– KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
– Korea Aerospace Research Institute (KARI)/Korea.
– MIKOMTEK: CSIR (CSIR)/Republic of South Africa.
– Ministry of Communications (MOC)/Israel.
– National Institute of Information and Communications Technology (NICT)/Japan.
– National Oceanic & Atmospheric Administration (NOAA)/USA.
– National Space Program Office (NSPO)/Taipei.
– Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.
– Swedish Space Corporation (SSC)/Sweden.
– United States Geological Survey (USGS)/USA.

CCSDS 312.0-G-0 Page iii February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

DOCUMENT CONTROL

Document Title Date Status

1.0 Draft Information Architecture for
Space Data Systems

02/01/2004 Draft

1.1 Draft Information Architecture for
Space Data Systems

04/01/2004 Reviewed in Montreal,
Canada

1.2 Draft Information Architecture for
Space Data Systems

08/01/2004 Submitted to wider
IAWG audience for
review

1.3 Draft Information Architecture for
Space Data Systems

02/05/2005 Revised Chapter 2 after
IAWG meeting in
Toulouse, France

1.4 Draft Information Architecture for
Space Data Systems

03/03/2005 Organizational changes to
the structure and content
of chapter 2 after IAWG
discussion.

1.5 Information Architecture for Space
Data Systems Green Book
Submission

06/01/2005 Document revised, in
particular changes to
section 2 to address
comments by IPR
Working Group after
Spring meetings in
Athens, Greece.

1.6 Reference Architecture for Space
Information Management Green
Book Revision after TIM at Goddard

09/01/2005 Draft CCSDS 312-0.G-1
revisions made after
IAWG meeting in
Atlanta, GA

1.7 Reference Architecture for Space
Information Management Green
Book Submission

11/10/2005 CCSDS 312-0.G-1

CCSDS
312.0-G-0

Information Architecture Reference
Model, Draft Informational Report,
Issue 0

February
2006

Current draft

CCSDS 312.0-G-0 Page iv February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

CONTENTS

Section Page

1 INTRODUCTION.. 1-1

1.1 SCOPE AND APPLICABILITY.. 1-2
1.2 TERMINOLOGY ... 1-2
1.3 REFERENCES ... 1-3

2 INFORMATION ARCHITECTURE .. 2-1

2.1 INTRODUCTION .. 2-1
2.2 INFORMATION OBJECTS... 2-4
2.3 MODELING CONCEPTS.. 2-10
2.4 INTEROPERABILITY .. 2-15

3 SOFTWARE COMPONENTS FOR INFORMATION ARCHITECTURE 3-1

3.1 PRIMITIVE INFORMATION MANAGEMENT OBJECTS 3-1
3.2 ADVANCED INFORMATION MANAGEMENT OBJECTS 3-4

4 SPACE DATA SYSTEMS .. 4-1

4.1 OAIS ... 4-1
4.2 GRIDS .. 4-2

ANNEX A APPLICABLE STANDARDS USED IN THIS DOCUMENT.................... A-1
ANNEX B ABBREVIATIONS AND ACRONYMS ...B-1

Figure

1-1 High-Level Abstract View of Interoperable Information Architecture 1-1
2-1 A Data Object ... 2-2
2-2 A Metadata Object, Adapted from Reference [5]... 2-3
2-3 An Information Object.. 2-4
2-4 Primitive Information Object Example... 2-5
2-5 A Complex Information Object .. 2-6
2-6 Service Agreement Information Model Overview ... 2-10
2-7 Information Object in Context.. 2-10
2-8 Model Hierarchy, Adapted from Reference [24].. 2-11
2-9 Example Planetary Domain Model (Simplified) .. 2-13
2-10 Data Models, Meta-Models, and Domains ... 2-15
3-1 The Internal Structure of a Physical Data Storage.. 3-2
3-2 A Data Store Object.. 3-2

CCSDS 312.0-G-0 Page v February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

CONTENTS (continued)

Figure Page

3-3 The Put Operation of the Data Store Object... 3-3
3-4 The Get Operation of the Data Store Object... 3-3
3-5 A Query Object... 3-4
3-6 The Find Operation of the Query Object.. 3-4
3-7 Repository Service Object .. 3-5
3-8 A Registry Service Object .. 3-7
3-9 A Product Service Object ... 3-9
3-10 An Archive Service Object ... 3-10
3-11 A Query Service Object.. 3-11
4-1 The Open Archival Information System Reference Model .. 4-2
4-2 SpaceGRID Proposed Infrastructure .. 4-4

Table

2-1 Information Object View of a Spacecraft Command Message File 2-7
2-2 Information Object View of a Planetary Data System Product 2-8
2-3 Information Object View of an SLE Service Management Object 2-9
3-1 A Taxonomy of Repository Service Objects .. 3-6
3-2 A Taxonomy of Registry Service Objects .. 3-8
4-1 Example Projects Using Related RASIM Concepts ... 4-1
A-1 CCSDS Information Standards Mapped to Information Architecture Concept A-3

CCSDS 312.0-G-0 Page vi February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

1 INTRODUCTION

In the absence of sufficient information system standards for interoperability and cross
support, we have seen systems developed that do not allow the exchange of information
between the ground side of the domain and the flight side of the domain. These systems,
often, do not allow for integrated exchange of information between components within these
environments, let alone space agencies. The focus of this document is to present a reference
space information management architecture (or information architecture in short) that
encompasses the capture, management, and exchange of data for both flight and ground
systems across the operational mission lifecycle. This includes identification of a set of
conceptual functional components for information management, definition of their interfaces
for information management, representation of these components and interfaces, and
definitions of information processes (interactions between users and systems). The intent of
this document is to provide a conceptual basis on which standards can be developed to
support information management across the entire mission environment. This document,
therefore, defines the necessary concepts and terminology for information architecture and
leverages much of the past CCSDS work in the area. Part of this leveraging includes defining
how existing standards can be assembled to fit into an information architecture for deploying
space data systems. The information architecture covers problem areas associated with space
data systems (such as organizational, functional, operational, and cross support issues).

Figure 1-1: High-Level Abstract View of Interoperable Information Architecture

The information architecture presented within this document is layered. To achieve
interoperability both within and across domains, and across applications built based on this
document, each layer should be addressed. Figure 1-1 depicts this view and represents
possible means of achieving interoperability at each layer. Each layer is critical to achieving
interoperability. At the software and information levels, it is essential that common interfaces
and meta-models for information and messages flowing between application interfaces be

CCSDS 312.0-G-0 Page 1-1 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

defined along with common definitions for the information itself, in order to achieve system
interoperability. This architecture document purposely separates into sections the information
architecture and the information management components that implement that architecture.
The separation of the information architecture from the software architecture promotes reuse
provided that the software components can be configured by common meta-models. The
concept of having multi-mission, but common meta-models is critical to achieving multi-
mission, cross agency interoperability. For example, a common XML schema defined to
annotate telemetry data files could be developed to support improved information
management of telemetry systems. Structuring the XML document in such a way as to enable
a common cataloging function to catalog the metadata in the XML document across missions
would provide a multi-mission capability. If this XML schema is derived from a core meta-
model, then it could support annotation of other data objects such as science data objects.
This would enable the same cataloging function, deployed in a completely different part of
the ground system, to catalog the science data. Architecting systems to consider the
underlying models, how they are derived, and how they can be used by a core set of
information components, will increase the longevity of software systems design and promote
an infrastructure which enables improved utility of the data generated from international
space missions.

1.1 SCOPE AND APPLICABILITY

This document is intended for those interested in understanding and developing information
architectural elements for building space data systems. These elements include software
components, such as registries, and repositories, and data components and interfaces. This
document is most applicable in complex environments such as space, but clearly has the
potential to provide a roadmap for information architecture in many types of data systems.

1.2 TERMINOLOGY

The following terminology is used throughout the document.

Model A model provides a specification for representing objects
and their relationships.

Metadata Metadata is literally ‘data about data’, i.e., information that
describes another set of data.

Meta-model A meta-model is a model which describes another model.

Schema A schema is a means for defining the structure, content
and, to some extent, the semantics of data.

Application
Information Object

An application information object (AIO) is an object
containing an internal Data Object and a Metadata Object.

CCSDS 312.0-G-0 Page 1-2 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

Application
Information
Architecture

An application information architecture is the notion of
architecting information systems across system domains
(e.g., space data systems, archiving systems, biomedical
informatics systems) with a focus on both data
architecture, and software architectural concerns.

Data Architecture A data architecture is the specification the overall
structure, logical components, and the logical
interrelationships of data and information.

Software Architecture A software architecture is the specification of overall
structure, behavior, logical components, and logical
interrelationships of a software system.

Data Product A data product is the result of an active function which
produces data. A data product may be simple and include
just data value, or it may be complex and contain both data
and metadata objects.

1.3 REFERENCES

[1] “Association, Aggregation and Composition.” June 1998. Object Orientation Tips.
<http://ootips.org/uml-hasa.html>

[2] Mandar Chitnis, Pravin Tiwari, and Lakshmi Ananthamurthy. “The UML Class
Diagram: Part 1.” May 2003. Developer.com.
<http://www.developer.com/design/article.php/2206791>

[3] “The SIMBAD Astronomical Database.” Centre de Données Astronomiques de
Strasbourg. <http://cdsweb.u-strasbg.fr/Simbad.html>

[4] J. Blythe, E. Deelman, and Y. Gil. “Automatically Composed Workflows for Grid
Environments.” IEEE Intelligent Systems 19, no. 4 (July/August 2004): 16-23

[5] Reference Model for an Open Archival Information System (OAIS). Recommendation
for Space Data System Standards, CCSDS 650.0-B-1. Blue Book. Issue 1.
Washington, D.C.: CCSDS, January 2002.

[6] The Data Description Language EAST Specification (CCSD0010). Recommendation
for Space Data System Standards, CCSDS 644.0-B-2. Blue Book. Issue 2.
Washington, D.C.: CCSDS, November 2000.

[7] Data Entity Dictionary Specification Language (DEDSL)—XML/DTD Syntax
(CCSD0013). Recommendation for Space Data System Standards, CCSDS 647.3-B-1.
Blue Book. Issue 1. Washington, D.C.: CCSDS, January 2002.

CCSDS 312.0-G-0 Page 1-3 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

[8] Ann Chervenak, et al.. “A Framework for Constructing Scalable Replica Location
Services.” In Proceedings of the 2002 ACM/IEEE Conference on Supercomputing
(Baltimore, Maryland), 1-17. Los Alamitos, CA, USA: IEEE Computer Society Press,
2002.

[9] Ann Chervenak, et al.. “The Data Grid: Towards an Architecture for the Distributed
Management and Analysis of Large Scientific Datasets.” Journal of Network and
Computer Applications 23 (2001): 187-200.

[10] D. Crichton, et al.. “A Component Framework Supporting Peer Services for Space
Data Management.” In Proceedings of the 2002 IEEE Aerospace Conference (Big Sky,
Montana), 2639-2649. Piscataway, NJ: IEEE, 2002.

[11] D. J. Crichton, J. S. Hughes, and S. Kelly. “A Science Data System Architecture for
Information Retrieval.” In Clustering and Information Retrieval, edited by W. Wu, H.
Xiong, and S. Shekhar, 261-298. Network Theory and Applications. Norwell,
Massachusetts, USA, and Dordrecht, The Netherlands: Kluwer, 2003.

[12] Ewa Deelman, et al.. “Mapping Abstract Complex Workflows onto Grid
Environments.” Journal of Grid Computing 1, no. 1 (2003): 9-23.

[13] Ewa Deelman, et al.. “Grid-Based Galaxy Morphology Analysis for the National Virtual
Observatory.” In Proceedings of the 2003 IEEE Conference on Supercomputing
(Phoenix, AZ). Los Alamitos, CA, USA: IEEE Computer Society, 2003.

[14] “EOSDIS Core System Data Model.” January 6, 2006. NASA Earth Science Data
Systems SPG. NASA/Goddard Space Flight Center.
<http://spg.gsfc.nasa.gov/standards/heritage/eosdis-core-system-data-model>

[15] Roberto Puccinelli. “An Introduction to DataGrid.” Illustrated by Aldo Stentella.
March 2004. The DataGrid Project. <http://web.datagrid.cnr.it/LearnMore/index.jsp>

[16] The Globus Alliance. The University of Chicago/Argonne National Laboratory.
<http://www.globus.org/>

[17] H. Gomaa, D. Menasc, and L. Kerschberg. “A Software Architectural Design Method
for Large-Scale Distributed Information Systems.” Distributed Systems Engineering 3,
no. 3 (1996):162-172.

[18] Hyperdictionary. <http://hyperdictionary.com/>

[19] Information technology—Metadata registries (MDR)—Part 1: Framework.
International Standard, ISO/IEC 11179-1:2004. 2nd ed. Geneva: ISO, 2004.

[20] C. Kesselman, I. Foster, and S. Tuecke. “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations.” The International Journal of High Performance Computing
Applications 15, no. 3 (Fall 2001): 200-222.

CCSDS 312.0-G-0 Page 1-4 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

[21] SpaceGRID Study Final Report. SGD-SYS-DAT-TN-100-1.2. Issue 1.2. SpaceGRID
Consortium, 2003.

[22] Chris A. Mattmann, et al.. “Software Architecture for Large-Scale, Distributed, Data-
Intensive Systems.” In Proceedings of the 4th IEEE/IFIP Working Conference on
Software Architecture (WICSA-4, Oslo, Norway), 255-264. Los Alamitos, CA, USA:
IEEE Computer Society, 2004.

[23] R.W. Moore, et al.. “Data-Intensive Computing.” In The Grid: Blueprint for a New
Computing Infrastructure, edited by Ian Foster and Carl Kesselman, 105-130. San
Francisco: Morgan Kaufmann Publishers, 1999.

[24] Object Management Group. <http://www.omg.org/>

[25] Lou Reich. “XML Packaging for the Archiving and exchange of Binary Data and
Metadata.” In Proceedings of the 2003 Open Forum on Metadata Registries (Santa Fe,
New Mexico). 2003. <http://metadata-standards.org/>

[26] Gurmeet Singh, et al.. “A Metadata Catalog Service for Data Intensive Applications.”
In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing (Phoenix, AZ).
Los Alamitos, CA, USA: IEEE Computer Society, 2003.

[27] SPASE Consortium. A Space and Solar Physics Data Model. Version 1.0.1. N.p.:
SPASE Consortium, January 2006.
<http://www.igpp.ucla.edu/spase/data/makedoc.php>

[28] Tim Bray, et al., eds. Extensible Markup Language (XML) 1.0. 3rd ed. W3C
Recommendation. N.p.: W3C, February 2004. <http://www.w3.org/TR/2004/REC-
xml-20040204/>

[29] XML Formatted Data Units.1

[30] Parameter Value Language Specification (CCSD0006 and CCSD0008).
Recommendation for Space Data System Standards, CCSDS 641.0-B-2. Blue Book.
Issue 2. Washington, D.C.: CCSDS, June 2000.

1 XFDU Structure and Construction Rules is a proposed CCSDS Recommended Standard.

CCSDS 312.0-G-0 Page 1-5 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

2 INFORMATION ARCHITECTURE

2.1 INTRODUCTION

Software systems of today are growing in complexity, dynamicity, and heterogeneity, and are
becoming increasingly more costly to operate. Space data systems are a representative
example of this emerging trend. Data systems in the space systems application domain are
highly distributed, complex software entities that must manage information from its inception
at a scientific instrument to its distribution via one of many existing CCSDS protocols (e.g.,
CFDP, Proximity-1), to its arrival at a ground station on Earth, to its delivery to a science
processing center, and ultimately to its archival in a long term archiving center for
preservation. In a sense, the space data system should be driven by the models of the
information that it must process, distribute, and manage. This could mean models of an
image on a spacecraft. It could mean models of engineering data that needs to be sent to a
control operations center. It could also mean models of other models. There are many
different models that need to be managed across an end-to-end space data system. To avoid
rigidity, however, software used by a space data system should be flexible: it should be
driven by the models that it operates on, and not vice versa.

For the most part, however, current space data systems are not flexible, and include software
implementations that are extremely tied to the information that they operate in. Sadly, space
data systems are not unique in this regard. Space data systems serve as a prime example of
many existing information system application domains. Bio-medical informatics systems,
science processing systems, and space flight operation systems all exhibit the same austere
structure: software and model tied together. A change in the model requires a change in the
software; a change in the software leads to a change in the model.

In this document, the application information object1 is described. The application
information object is the cornerstone of defining and constructing a data-driven system where
models and software function in unison, but are separate entities. An application information
object is an independent, flexible model of the data and corresponding metadata in an
information system, and is meant to be reusable across many information system domains.
The main guiding principle of the information object is to separate the models of information
(e.g., data, metadata, etc.) from the actual implemented system code. In this fashion the
software system and the models that describe the information in the system may both evolve
independently of one another. Modularity, separation of concerns, and dynamic evolution of
information system components are only a representative cross-section of the benefits that
this model provides.

The information object is composed of the data object, a sequence of bits responsible for
physically representing data, and the metadata object, information about the data object
including, but not limited to, structure, semantic, and preservation information (reference
[6]). This section starts by providing key definitions and is followed by a small taxonomy of

1 Also used and described throughout the document as an information object.

CCSDS 312.0-G-0 Page 2-1 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

information object types commonly used in information architecture and a set of Standard
Information Object examples across domains for clarification. The section concludes with
definitions of meta-models, domain models, and data dictionaries, which play a key role in
the description of information objects.

2.1.1 DATA OBJECTS

Data objects are either physical objects or digital objects as illustrated in figure 2-1. A
physical object is a tangible thing (e.g., a moon rock) together with some representation
information bringing to light the fact that any object that can be described with data is a data
object. On the other hand, a digital object is a sequence of bits, representing a thing that is
not tangible (e.g., an electronic document, image file, a ‘folder’ of files). This document
focuses on the digital object specialization of the data object; the physical object
specialization is not considered.

Figure 2-1: A Data Object

CCSDS 312.0-G-0 Page 2-2 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

2.1.2 METADATA OBJECTS

Figure 2-2: A Metadata Object, Adapted from Reference [5]

Metadata objects in this document provide information (or metadata) about the data object.
Similar to the OAIS reference model (reference [5]), a metadata object in this document
comprises representation and preservation description information as two broad
classifications of metadata. As shown in figure 2-2 representation information includes
structure (syntactic) and semantic information and preservation information includes
reference, provenance, fixity, and context information. Also, the metadata objects described
in this document might be atomic or comprised of a set of metadata sub-objects. Data objects
and metadata objects are highly interdependent. Without the metadata object, essentially the
data object is just a self-contained sequence of bits about which nothing is known: systems
cannot unlock its information. When a metadata object and data object are present (e.g., an
information object), a myriad of capabilities are available to the user (or system). If the data
object is an image, most likely the metadata object will describe what kind of image (JPEG
or ‘raster’ for example). If the metadata object mandates that the data object has a field called
pixel, an examination of a specified (by the metadata object) location within the data object
will reveal the value of the pixel.

CCSDS 312.0-G-0 Page 2-3 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

2.2 INFORMATION OBJECTS

Figure 2-3: An Information Object

Information objects (shown in figure 2-3) build upon the data and metadata object by
logically associating them together. Information objects are components in information
architecture that model both a granule of information (i.e., the bits) and its corresponding
metadata. An information object consists of a data object and one or more metadata objects:
the latter models the aforementioned information and metadata properties. The metadata
object can describe the data object’s structure, such as what fields it is composed of, the
fields’ valid values (e.g., in the case of ‘Uplink Speed’, the data may have a controlled list of
available speeds such as 1MB or 2MB/sec), and the semantic relationships between the
structural elements (such as ‘Uplink Speed must always equal Downlink Speed’).

2.2.1 TAXONOMY OF INFORMATION OBJECTS

For the purposes of comparing different information objects, this subsection identifies a set
of information object classes. They are detailed below.

2.2.1.1 Primitive Information Object

A primitive information object is an information object with simple metadata information
that contains a small amount of metadata with a data object. Simple metadata indicates that
the only metadata captured for a particular data object are primitive attributes such as name
format, and modification date. These are attributes typically associated with a file in a file
system and seldom provide any information about content or relationships.

CCSDS 312.0-G-0 Page 2-4 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

Figure 2-4: Primitive Information Object Example

An example of a primitive information object is a data file managed in a solid state recorder.
Minimal metadata exists for it other than basic properties that define its name, type, and size.
A name often is used to denote specialized information about an object. In practice, it is
preferable to separate the name of an object from other information such as creation date,
sequence numbers, etc. Many space data systems have typically focused on the management
of primitive information objects and have not made metadata objects first-class citizens.

2.2.1.2 Standard Information Object

A Standard Information Object is defined as an information object that has well-defined
metadata and a data object. The metadata is an instance of one or more domain models. The
data object can be null. A number of data systems throughout the space agencies have
Standard Information Objects as part of their system design. These have been predominately
used within archive and science processing data systems. The metadata for these information
objects are often defined by some data description language like XML and may be stored in
an online registry or database to enable effective search and browsing. Increasing emphasis
on constructing end-to-end mission information system architectures will require that
Standard Information Objects be used at a variety of stages including observation planning,
execution, processing, and distribution across the mission pipeline. Standard Information
Objects are applicable across this entire pipeline since it is a mechanism to enable
interoperability between systems as long as the information objects and their associated
models are planned.

2.2.1.3 Complex Information Object

Complex information objects (shown in figure 2-5) are information objects that encapsulate one
or more information objects, coupled with a metadata object containing packaging information.
Similar to the OAIS reference model (reference [5]), packaging information is the set of
information, consisting primarily of package descriptions, which is provided to data management

CCSDS 312.0-G-0 Page 2-5 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

to support the finding, ordering, and retrieving of information holdings by consumers.
Additionally packaging information is the information that is used to bind and identify the
components of an information package. For example, it may be the ISO 9660 volume and
directory information used on a CD-ROM to provide the content of several files containing
content information and preservation description information. It also can describe the algorithms
and formats of the package structure itself (e.g., whether or not the package was compressed,
which compression algorithm was used, such as ZIP, TAR,1 etc.).

Figure 2-5: A Complex Information Object

Each information object in a complex information object includes its own metadata that may
or may not correlate with other metadata from the other information objects in the package.
This makes it difficult to interpret and compare information objects, even ones that come
from the same repository, unless they conform to a standard meta-model, e.g., such as the
XFDU packaging model (reference [25]).

The purpose of the complex information object is to provide the aggregation of related data
to the user. It is assumed that the user typically knows how to use each information object
within the set. If the user does not know how to correlate the information, then descriptive
information related to the complex information object (such as index information regarding
the individual information objects in the complex information object) can be used to deduce
package properties.

2.2.2 EXAMPLES OF INFORMATION OBJECTS

This subsection explores information objects through several illustrative examples in the
context of different application domains. For ground data systems, a spacecraft command

1 See reference [for definitions of ZIP and TAR. 18]

CCSDS 312.0-G-0 Page 2-6 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

message file information object is discussed. For archive data systems, a planetary data
system information object is discussed. Finally, for space data systems, a service link
exchange (SLE) information object is discussed.

2.2.2.1 Spacecraft Command Message File

Table 2-1: Information Object View of a Spacecraft Command Message File

Data Object Metadata Object

Name Type Data
Element

Data
Element
Type

Semantic Constraints

Ground
Station
Name

String None

Packet-
Sent Time

Timestamp ≤ Current System Time

Command Sequence
of bits

Instrument
Name

String Value:=
{ }| spectrometer, hi-resolution imagera a∈

A spacecraft command message file is a telemetry uplink packet sent from a ground station
to a spacecraft. It can be modeled using an information object. The information object is
made up of a sequence of bits representing the command to be sent to the spacecraft. This bit
sequence is mapped to an application information object consisting of one data object,
command sequence. The associated structural information for the telemetry uplink packet
consists of three data elements, ground station name (representing the ground station that
sent the command to the spacecraft), instrument name (representing the instrument on-board
the spacecraft that this sequence of commands is intended for), and packet sent-time (a
timestamp representing the exact time the packet was sent from ground to space). Semantic
information about these three data elements consists of valid values for the data element
instrument name (e.g., spectrometer, or hi-resolution imager), and min value for the
timestamp, which states that the timestamp for packet sent-time should be less than or equal
to the current time on the sending system. This example is summarized in table 2-1.

CCSDS 312.0-G-0 Page 2-7 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

Table 2-2: Information Object View of a Planetary Data System Product

Data Object Metadata Object

Name Type Data
Element

Data
Element
Type

Semantic Constraints

File Name String Must exist in the volume

Orbit
Numbers

Long
Integer

Must be valid orbit within the mission

SPICE
files

Set of
ancillary
spacecraft
data files

Mission
Name

String Must be valid PDS Mission

Image
Files

Raster
Image

Image
Dimensions

W x H
image
dimensions

Dimensions must not exceed 1024
pixels by 768 pixels

2.2.2.2 Planetary Data System Product

A Planetary Data System (PDS) product is an archive structure consisting of one or more
science data files (e.g., image files, calibration files, SPICE files) and a PDS Label file in the
ODL format. It can be represented using the information object construct. The information
object consists of a set of data objects, such as image or SPICE files. Each data object is
described by a metadata object, the PDS Label. For the SPICE files, metadata objects defined
data elements such as file name to identify the name of the SPICE file, Orbit Numbers to
identify the spacecraft orbit numbers that the SPICE file data covers, and Mission Name for
which the SPICE file describes the navigation data. Each of the data elements for the SPICE
files has semantic constraints. For instance, the mission name element’s value must be a valid
PDS mission. The orbit number element’s value must be a valid orbit number from the
mission. The file name of the SPICE file must exist in the PDS volume. For each the image
file data objects, there are single metadata objects containing the data element image
dimensions, which describes the width and height of the image in pixels. There is a single
semantic constraint on this element; for example, in this case, the width of the image must
not exceed 1024 pixels, and the height must not exceed 768 pixels. This example is
summarized in table 2-2.

CCSDS 312.0-G-0 Page 2-8 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

Table 2-3: Information Object View of an SLE Service Management Object

Data Object Metadata Object

Name Type Data
Element

Data
Element
Type

Semantic Constraints

Maximum
Size
Storage

Long
integer

Maximum CM allowed size of storage
does not exceed a pre specified value.

Allowed
trajectory
formats

List Formats conform to standard mimeType
specifications.

Trajectory
Prediction
Operations
Constraints

TBD

Operation
Timeout
Limits

List Timeouts cannot exceed pre specified
value.

Service
Agreement

Aggregati
on of
SLE
objects

Service
agreement
identifier

URN Identifier URN should be within an
accepted SLE namespace

2.2.2.3 Space Link Extension (SLE) Service Management Objects

CCSDS is developing standards to support automation of requests between agencies for
managing space link and SLE services known as ‘SLE-SM’. SLE-SM defines a set of
information objects called service management objects (shown in figure 2-6) for automating
the exchange of SLE-SM information. The service request includes the service agreement,
configuration profiles, trajectory predictions, and service packages. The SLE Service
Management Objects can be modeled as an information object in the same fashion shown in
previous examples. The SLE Service Management information object would consist of a set
of data objects including a service agreement, trajectory prediction constraints, a forward
carrier agreement, and the rest of the objects shown in figure 2-6. Each data object would
have a corresponding metadata object. For example, two of the data objects from figure 2-6
are shown in table 2-3 above, leaving out the rest of the examples for brevity. In the above
table, the Trajectory Prediction Constraints data object has a metadata object associated with
it that contains three data elements: Maximum Size Storage, of type long integer, that
represents the maximum amount allowed for storage by a content manager (CM); Allowed
Trajectory Formats is a list of acceptable CCSDS and non-CCSDS formats that this service
agreement defines; and Operation Timeout Limits is a list of timeout values on operations
involved in this service agreement. Examples of semantic constraints in the above metadata
objects would be verifying that the operation timeout limits do not exceed pre-specified
values, that the formats correspond to known mimeType specifications, and checking to
ensure that the maximum size storage does not exceed a pre-specified value.

CCSDS 312.0-G-0 Page 2-9 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

Figure 2-6: Service Agreement Information Model Overview

2.3 MODELING CONCEPTS

Figure 2-7: Information Object in Context

Models are important in information architecture because they provide the means to describe
and use objects. Without explicit models, objects cannot be examined, understood, or
changed accurately. They also cannot be compared or integrated with other objects. These
capabilities are critical in space data systems because they facilitate the correlative use and
exchange of data.

CCSDS 312.0-G-0 Page 2-10 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

The basic relationship between information architecture models and the objects they describe
are illustrated in figure 2-7. The data object is described by the metadata object, both
components of an information object. The metadata object is an instance of a class of objects
that are prescribed by (one or more) domain models (e.g., a ‘preservation domain model’).
The domain model in turn is an instance of a class of objects that are prescribed by a meta-
model.

The hierarchical relationship between objects, models, meta-models, and even meta-meta-
models can be simplified using a generalization proposed by OMG (reference [24]). Namely,
when considering the hierarchy of models illustrated in figure 2-8, any object at level n can
be described by an instantiation of an object from a class in level n-1. For example, the
domain model at level M1 can be described by an instance of a UML model at level M2.

Models interact within and across levels. For example, ISO/IEC 11179 can be used as a
model for a data dictionary. In turn, the data dictionary could be used as a component of a
domain model.

Figure 2-8: Model Hierarchy, Adapted from Reference [24]

In information architecture, the focus is on identifying a set of standard models that meet the
requirements for developing information management systems. At the M3 level, MOF has
been identified as the key model. At the M2 level, UML, the XML meta-model, and

CCSDS 312.0-G-0 Page 2-11 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

ISO/IEC 11179 have been identified as key models for system and domain models, data
interchange structures, and metadata registries, respectively.

2.3.1 META-MODELS

A meta-model is simply a model that prescribes another model. For example in the
generalization illustrated in figure 2-8, UML at level M2 is a meta-model that can be used to
develop a domain model at M1.

In information architecture, meta-models are important because they prescribe how elements
can be compared and examined across domains. If elements did not conform to a particular
meta-model, then it would be impossible to guarantee the ability to compare and examine
them even within the same domain. Since the ability to compare elements is critical to
enabling interoperability of data exchanged between systems, it is necessary that common
and/or compatible meta-models be used to describe domain elements both within and across
domains. For example, the PDS defines the data element Mission Name described earlier
using a meta-model that requires the data element name, a description and a set of valid
values. In order for a query using Mission Name as a constraint to find data in both the PDS
and another space science domain it is critical that the second domain have a compatible
meta-model in order to find the equivalent mission constraint that will produce valid results.

In the following subsections, several standard meta-models will be briefly described. These
include the ISO/IEC 11179 standard for the specification and standardization of data
elements (reference [19]), the CCSDS Data Entity Dictionary Specification Language
(DEDSL) (reference [7]), and the XFDU (reference [25]) model for describing information
packages.

2.3.1.1 ISO/IEC 11179

In the realm of meta-models, the ISO/IEC 11179 (reference [19]) standard framework for the
specification and standardization of data elements provides a basic foundation for meta-
models, metadata registries and how to use them. It specifies general registry functions such
as definition, identification, naming, administration, and classification. Practically it provides
an accepted base set of attributes needed to describe data elements. As an international
standard it also provides a global basis for data element definition and classification and
supports data dictionary interoperability. The specification classifies the basic set of
attributes into four categories: identifying, definitional, representational, and administrative.

2.3.1.2 Data Entity Dictionary Specification Language (DEDSL)

The Consultative Committee for Space Data Systems (CCSDS) Data Entity Dictionary
Specification Language (DEDSL) provides a specification for the construction and
interchange of data entity dictionaries using XML, and its conformance to ISO/IEC 11179
has been documented in (reference [7]).

CCSDS 312.0-G-0 Page 2-12 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

2.3.1.3 XFDU

The XML Formatted Data Unit (XFDU) Structure and Construction Rules is a set of CCSDS
recommendations for the packaging of data and metadata, including software, into a single
package to facilitate information transfer and archiving. It also provides a detailed
specification of core packaging structures and mechanisms that meets current CCSDS agency
requirements. (See reference [29].)

2.3.2 SPACE DOMAIN MODELS

A domain model describes objects belonging to a particular area of interest. The domain
model also defines attributes of those objects, such as name and identifier. The domain model
defines relationships between objects such as ‘instruments produce data sets’. Besides
describing a domain, domain models also help to facilitate correlative use and exchange of
data between domains. Below we briefly mention some common space domain models.

2.3.2.1 Planetary Science

Figure 2-9: Example Planetary Domain Model (Simplified)

NASA’s Planetary Science domain model defines objects such as instruments and data sets
and science users and their associated relationships (such as instruments produce data sets
and data sets are distributed to science users). This is illustrated in figure 2-9. The planetary
science domain model was defined in PVL/ODL (described in Section 2.3.3.1).

2.3.2.2 SPASE

SPASE (reference [27]) is a space and solar physics domain model being developed by an
international working group with participation from several national agencies, universities,
and industrial affiliates. The SPASE model attempts to define relationships between ancillary
data, images, and plots for space and solar physics data products, such as images and data
collected about photons and particles.

CCSDS 312.0-G-0 Page 2-13 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

2.3.2.3 EOSDIS and EOS Core Data Model

The EOSDIS (reference [17]) domain model defines data product types, a knowledge base,
and a global thesaurus for Earth science terminology to interpret the data products collected
in Earth observing systems. Data products include sea surface temperature measurements,
global climate measurements, and many other Earth science data products. The ECS Core
Data Model (reference [14]) was developed as an extension to the earlier EOSDIS domain
model in order to specify relationships necessary to handle the sheer data volume (nearly two
terabytes a day) that is regularly captured in the EOSDIS system. In the ECS Model data is
represented as collections of smaller units, called granules. Collections define a series of
attributes including, but not limited to, spatial coverage, temporal coverage, and contents.

2.3.3 DATA DESCRIPTION LANGUAGES

Data description languages are notations used for representing semantic and syntactic data.
As such, they provide the necessary implementation level facilities to manipulate and
exchange application information objects, and to implement meta-models, domain models
and information. Some common examples of data description languages are listed below.

2.3.3.1 PVL/ODL

The Parameter Value Language (PVL) (reference [30]) is a CCSDS Recommended Standard
for the specification of a standard keyword value type language for naming and expressing
information objects. It defines a language that is both human readable and machine readable.
This keyword value type language has been used to document domain models in a way
conceptually similar to the approach taken by the W3C (World Wide Web Consortium)’s
Resource Description Framework (RDF). The Object Description Language (ODL) is a
subset of PVL.

2.3.3.2 EAST

The Data Description Language EAST Specification (reference [6]) is a CCSDS
Recommended Standard that defines a language and syntax for the expression and exchange
of information objects, in the form of Data Description Records (DDRs). The idea behind a
DDR is to provide enough information about data (e.g., its format, size, etc.) to be able to
interpret and exchange it in an automated fashion.

2.3.3.3 XML

The Extensible Markup Language (XML) (reference [28]) is a World Wide Web Consortium
(W3C) specification and syntactic format for data objects formatted in XML, which is a
subset, or restricted form of the popular Standard Generalized Markup Language (SGML).
XML defines information objects called entities which capture data (parsed or unparsed)
delimited by XML tags, which are named value attributes enclosed by a ‘<’ and ‘>’ symbol

CCSDS 312.0-G-0 Page 2-14 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

respectively. Entities may have sub-entities, and attributes, which describe related
information about a particular entity object, such as its name, or its id.

2.4 INTEROPERABILITY

Data dictionary interoperability is a key facet of enabling heterogeneous data systems to
exchange and compare information. Ultimately, since domain models contain data elements
that model a particular domain, and because data elements for a domain model originate from
the data dictionary for a particular domain, the data dictionary plays an important role in
making data systems exchange information.

It is important to have a common meta-model for data dictionaries so that they can be
captured and exchanged in a common way. This is critical for building things like metadata
registries and for capturing and sharing data elements across projects. Further, it is important
to recognize that data dictionaries cannot be constructed without a domain model.

Classification Category

Normative Constructs

Normative Abstracted Structure
(Metaphor)

Structuring Rules

Meta Model

Domain A
Data Model

Domain B
Data Model

Interchange Model
Model Element Mappings

Prescribes Prescribes Prescribes

Domain A Domain B

Describes

Describes
Describes

Something to be
interchanged

Figure 2-10: Data Models, Meta-Models, and Domains

The key requirement to enable data system interoperability is to have common or at least
compatible data elements across the respective domain data models. In figure 2-10, two
domains and their respective data models are illustrated. The two domains can interoperate,
or exchange information, when knowledge exists about data element commonality at the data
model level. For example, if both domain data models contain the data element target name
with ‘Mars’ as a valid value, then the two domains can exchange information about Mars.

CCSDS 312.0-G-0 Page 2-15 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

The knowledge about data element commonality, depicted as the interchange model in the
figure, is difficult to acquire and requires domain experts to compare elements from their
respective domains for similarities. Often elements will have similar attributes such as name
and valid values but significantly different interpretations and definitions. These similarities
and differences must be understood and documented.

The process of comparing data elements is made much easier if a single data model (or meta-
model) is used to capture the domain data models. It provides a standard notation, syntax,
and semantics so that data elements from two different domains can be contrasted and
compared. For example, the ISO/IEC 11179 recommendation for the specification of data
elements (reference [19]) provides a comprehensive set of attributes for describing data
elements and provides a good basis for data dictionary development.

CCSDS 312.0-G-0 Page 2-16 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

3 SOFTWARE COMPONENTS FOR INFORMATION
ARCHITECTURE

This section describes Information Management Objects (IMOs)1 used for the access,
distribution, capture, and management of information objects. Two types of IMOs are
identified: Primitive Information Management Objects (pIMOs) and Advanced Information
Management Object (aIMOs). Generally, aIMOs are constructed from one or more pIMO
components. pIMOs are active objects capable of putting, getting and finding information
from the underlying data stores. aIMOs are complex objects, composed from one or more
pIMOs, that enable basic capabilities of information architecture, including ingestion,
retrieval, processing, distribution, and querying of data objects, metadata objects, and
information objects. Although this set of capabilities is not the entire set of capabilities that
could be derived, it is meant to be a framework of building blocks from which further
complex capabilities are defined.

3.1 PRIMITIVE INFORMATION MANAGEMENT OBJECTS

Primitive information management objects are simple functional components capable of
manipulating their underlying data storage using put, get, and find operations. There are two
types of pIMO: Data Store Object (DSO), and Query Object (QO). These objects
(components) are called primitive since this document does not explicitly identify any of
their architecturally relevant sub-components. Both of these pIMOs operate on a Physical
Data Storage component.

A physical data storage component is a hardware or software component responsible for
storing data. Devices such as tape drives, hard disks, solid state recorders, RAM, flash
memory, and the like are all examples of physical data storages. There are two basic parts of
physical data storages:

– Memory—the physical location of the data in the data storage (labeled as ‘D’ in
figure 3-1);

– Local Identifiers—the index catalog of pointers to memory containing data objects
(labeled as ‘H’ in figure 3-1).

These parts enable low-level access to physical data storages to (1) place data objects into
memory locations; and (2) index those locations for use in search and retrieval process. The
organization of a physical data storage is shown in figure 3-1.

1 The words ‘objects’ and ‘components’ are used interchangeably in this context.

CCSDS 312.0-G-0 Page 3-1 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

Figure 3-1: The Internal Structure of a Physical Data Storage

3.1.1 DATA STORE OBJECT

The data store object (shown in figure 3-2) is attached to a physical data storage and supports
putting and getting information. Figures 3-3 and 3-4 depict the put and get operations of the
DSO, respectively. The get operation takes a local identifier as input (ranging from a simple
memory address to a string identifier) and returns the data object residing in the addressed
memory location as an output. The put operation takes a data object as input and, upon
completion, places the data object in a free memory location (labeled as ‘local identifier’ in
figure 3-3) determined by the catalog and ingestion process of the underlying physical data
storage. The local identifier is then returned back to the caller.

Figure 3-2: A Data Store Object

CCSDS 312.0-G-0 Page 3-2 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

Figure 3-3: The Put Operation of the Data Store Object

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

Figure 3-4: The Get Operation of the Data Store Object

CCSDS 312.0-G-0 Page 3-3 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

3.1.2 QUERY OBJECT

The query object shown in figure 3-5 enables retrieval of data objects. Data objects (shown
as DOs in figure 3-5) are retrieved using the find operation. The find operation takes an
expression parameter representing a specific search criterion for the underlying physical data
storage. Each matching data object is then returned to the caller of the find operation. A find
invocation may return zero or more data objects. Figure 3-6 visually describes an example of
the find operation and the data flow between the query object component and the respective
physical data stores it communicates with.

Figure 3-5: A Query Object

Figure 3-6: The Find Operation of the Query Object

3.2 ADVANCED INFORMATION MANAGEMENT OBJECTS

Advanced Information Management Objects (aIMOs) are components composed from one or
more pIMOs. aIMOs leverage pIMOs’ primitive data store and retrieval functions to arrive at
complex capabilities. Examples of these capabilities include ingestion of data into
repositories, federated search across heterogeneous repositories using registries, and the like.
The set of aIMOs presented in this document is not meant to be comprehensive. There are

CCSDS 312.0-G-0 Page 3-4 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

other aIMOs, but the set presented here represents a sound cross-section of advanced
components that span the typical usage scenarios involved in data systems. In the rest of this
section, the following aIMO components are discussed in more detail: Repository Service
Objects, Registry Service Objects, Product Service Objects, Archive Service Objects, and
Query Service Objects.

Figure 3-7: Repository Service Object

3.2.1 REPOSITORY SERVICE OBJECT

The repository service object component is depicted in figure 3-7. Repository service objects
are responsible for management of an underlying data store object or the physical data store.
The repository service object differs from a data store object by a myriad of properties that
are typically considered non-functional. These properties include scalability, dependability,
uniformity, and other quality attributes. In this context, repository service objects provide the
same get and put methods that the data store object provides. However, whereas a data store
object may not scale across many underlying physical data stores, may not be dependable
24×7, and may not provide a uniform software interface, a repository service object is
responsible for delivering non-trivial quality of service in each of these non-functional
properties.

Its primary interface is a repository request that can be used to manage information objects
(IOs). Information objects can be retrieved from the repository via the repository request
interface, and a response from the repository is provided. The repository service object also
provides basic get and put capabilities of information objects using the capabilities of its
associated data store object.

3.2.1.1 A Taxonomy of Repository Service Objects

Information architecture makes a distinction among different types of repository service
objects, along several dimensions. There are three main dimensions in a repository service
object taxonomy: repository object type, object properties, and object description, each of
which are further explained in this section.

CCSDS 312.0-G-0 Page 3-5 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

First, repository service objects are identified via their type. Type provides a quantifiable
grouping for a family of repositories with similar functional and non-functional properties. This
document identifies three key repository types: data Store, operational archive, and long-term
archive. The object properties dimension serves as a general grouping of various functional and
non-functional properties a repository might have. At the time of preparing this document, the
properties dimension covers the entire scope of properties for a particular repository. In the long
term however, properties will be categorized as dimensions of comparison and classification
between different repository service objects. Potential dimensions of repositories include
compositionality, referring to the lower-level and higher-level organization of the sub-
components of a repository; supported data objects, referring to the type of data objects that a
repository is responsible for storing; permanence, referring to the non-functional property of how
long the data is guaranteed safe and reliable shelter within a repository; and finally interface
richness, referring to the repository’s ability to natively handle either primitive get/put operations,
or higher level operations possibly requiring both querying and processing of data being returned.
The last dimension in the current taxonomy, object description, identifies key services and
responsibilities of the repository when deployed together with a set of other software
components. Table 3-1 lists the current taxonomy and classification of repositories.

Table 3-1: A Taxonomy of Repository Service Objects

Repository Object Type Object Properties Object Description

Data Store Primitive Component (e.g.,
DBMS, and File system).

Basic Data Store component
described in 3.1 sits behind Data
Store Object and supports
Repository Interface to get and
put data (lower level data such as
streams and bits).

Operational Archive Component that stores data
products and higher level
products, possibly including
metadata. Supports retrieval
of data products through
possibly complex methods,
and processing. No support
for permanence. Stores
products for short term
(e.g., less than 10 years),
and allows retrieval of
products.

Advanced Component supporting
retrieval of possibly complex data
products, including their
metadata. Repository where
writes are frequent and reads are
frequent. Data products stored in
this type of archive will be
updated and versioned. Examples
of products stored in this archive
are command sequence products
sent using spacecraft telemetry.

Long-term Archive Stores products for long
term archiving, and
supports basic archive
functionality.

Archive for long-term
preservation of data products, and
data permanence. Supports basic
archive functional interfaces (e.g.,
get, put).

CCSDS 312.0-G-0 Page 3-6 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

3.2.2 REGISTRY SERVICE OBJECT

The registry service object component provides an interface to retrieve metadata objects.
There are two special types of metadata objects which most current registries are able to
return, other than the basic metadata object described in section 2. The first type is a service
description metadata object. A service description is some metadata document that describes
the basic components of a service, such as its interface and its accepted parameters and
values; a Web Services Description Language (WSDL) document would be an example of
this. The second type of metadata object returned by most registry service objects is the
resource metadata object. A resource metadata object is typically simple keyword-value
paired information about an information object, such as an individual science data product, or
a science data set. The registry service object returns metadata objects which satisfy a
particular query expression provided by the user of the metadataQuery interface. Figure 3-8
depicts a registry service object.

H
as

 a

Figure 3-8: A Registry Service Object

Similar to the repository service object, there also exist different classes of registry service
objects. A representative subset of these classes is identified below.

3.2.2.1 A Taxonomy of Registry Service Objects

This taxonomy identifies three main classes of registries and then classifies them along a
particular set of dimensions: the registry type, the return object types, and query interface
parameters.

The three main types of registries are metadata registry, service registry, and resource
registry. The metadata registry returns structural information describing the structure of the
metadata. This is sometimes referred to as a meta-meta-model. Subsequently, the object
returned from a metadata registry is a meta-metadata object. Queries to the metadata registry
are formulated via specification of constraints and values assigned to a set of data elements.

CCSDS 312.0-G-0 Page 3-7 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

Constraints and values are specified either implicitly by querying the data element properties,
or explicitly by specifying the data element’s ID (see reference [19]).

The service registry provides an interface to search for functional services that perform a
needed action specified by a user. Service registries manage descriptions of service interfaces
(called service descriptions), including their respective locations, methods, and method
parameters. New technological standards such as WSDL (reference [28]) provide an
implementation-level facility for service descriptions. An additional implementation of a
service description and its respective service registry exists in the form of the Profile Server
and Resource Profile components specified in references [10], [11], and [22]. Service
descriptions are important because they describe software methods, software systems, and
Web resources using metadata. Because of this, they can be queried to retrieve a service
endpoint (essentially a pointer to the service’s location), and metadata describing how to
invoke the particular service. This helps to facilitate the use and consumption of services
dynamically via software rather than explicit invocations and requests.

The third type of registry, the resource registry, while capable of describing any resource or
object, is used specifically for describing information objects such as science data products
and data sets. Science catalogs such as the SIMBAD Astrophysics Catalog (reference [3]) are
examples of resource registries that serve information objects. Resource registries can also
point to other resource registries to enable discovery of information objects across distributed
registries.

The classification dimensions introduced here effectively categorize the functional properties
of each type of registry, leaving the non-functional classification unspecified at this point.
This type of classification of non-functional registry service properties is very important, and
this contribution is an element of on-going work within this document and within the
Information Architecture (IA) Working Group. The taxonomy of registry service objects is
summarized in table 3-2.

Table 3-2: A Taxonomy of Registry Service Objects

Registry Type Return Object Types Query Interface Parameters

Metadata Registry Data Dictionaries, Data
Elements

Query for Data Element
properties, or Data Element
IDs, or Data Dictionary IDs

Service Registry Service Endpoints,
Service Metadata
(interface properties,
interface type, return
schema)

Query for Service properties

Resource Registry Data Products, Resource
Registry Locations

Data Resource properties

CCSDS 312.0-G-0 Page 3-8 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

3.2.3 PRODUCT SERVICE OBJECT

The next aIMO is the product service object. The product service object contains a repository
service object, coupled with a query object, and a domain processing or transformation
object. The domain processing object is a functional component that provides specialized
processing of a data object to transform it from one object type to another. This is critical in
the era of providing on-the-fly processing of data to other users and systems and allows for
specialization of a core software infrastructure on a product-type specific basis. In fact,
domain processing objects can be externalized and registered on a product-type basis so as to
require that the object is called as part of the retrieval process. Processing can involve
functions such as science level processing, compression, decompression, scaling (in the case
of an image), format conversion, and many other transformations

The product service object serves as a common interface to heterogeneous data sources and
allows for the querying the information objects (shown as IO in figure 3-9) via a query
expression. The query expression is passed along to the internal query object, which in turn
evaluates the query expression and transfers it into a sequence of get calls to the repository
service object, including execution of any specialized data processing objects. A product
service object is shown in figure 3-9.

Figure 3-9: A Product Service Object

3.2.4 ARCHIVE SERVICE OBJECT

Archive service objects are responsible for (a) ingestion of data objects into a repository, and
(b) ingestion of metadata objects into an accompanying registry. The ingestion of both
metadata and data objects can be performed using a task processing approach: the users
define tasks formulating the ingestion process of information objects (shown as IO in figure
3-10). These tasks can then be managed via a rule-based policy which, given a set of criteria
such as time, task type, ingestion type, etc., determines when a particular task, or set of tasks,
should be executed for a given ingestion. This rule-based task processing is often referred to

CCSDS 312.0-G-0 Page 3-9 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

as workflow (see references [4], [12], and [13]) and can execute externalized objects such as
the Domain Processing Object discussed in 3.2.3. This would enable a workflow-oriented
archive service to construct a pipeline for ingestion and processing of level science products
from missions. The externalization of a domain processing object would allow science data
processors to run on appropriate scalable hardware, such as computational clusters,
constructing an architecture for science processing and archive. In fact, this component was
implemented for the SeaWinds Earth science instrument that was part of the payload for the
ADEOS II satellite. This type of ingestion process is shown as the ingest service object
component in figure 3-10.

<<Component>>
Archive

Service Object
1

1

<<Component>>
Ingest

Service Object

<<Component>>
Repository

Service Object

1

1

<<Component>>
Registry Service

Object

1

Has A

1
<<Interface>>

Archive Service

+ingestPackage(IO):Identifier
+retrievePackage(Identifier):IO

Figure 3-10: An Archive Service Object

Archive service objects also have the capability of handling transaction-based ingestion of
data and metadata objects, similar to the ingestion interface described in the OAIS model
(reference [5]). This type of transaction capability would be provided by the ingest service
object in figure 3-10, managing all aspects of ingesting an object into the archive (e.g.,
validation, registration, etc.). An archive service object is shown in figure 3-10.

CCSDS 312.0-G-0 Page 3-10 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

3.2.5 QUERY SERVICE OBJECT

The final aIMO defined in this document is the query service object. The query service object
manages routing of queries in order to discover and locate product service objects, repository
service objects and registry service objects which contain information to satisfy user queries.
Routing is accomplished by querying registry service objects in order to discover the location
of the appropriate repository, or product service objects to ultimately locate the information
objects (shown as IOs in figure 3-11) that satisfy a user’s query. Once the service objects
have returned the information objects that satisfy the query, the information objects are
aggregated and returned to the query service object. At that point, the query service object
can perform processing such as packaging, translations to other formats, and other types of
advanced processing. These advanced processing capabilities are shown as the domain
processing object in figure 3-11 and discussed in 3.2.3 as an externalized component of the
product service. Figure 3-11 depicts a query service object.

Figure 3-11: A Query Service Object

CCSDS 312.0-G-0 Page 3-11 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

4 SPACE DATA SYSTEMS

This section provides information about related space data system projects which use
components of the information architecture described in this document. The use of
information architecture components in each project is summarized in table 4-1.

Table 4-1: Example Projects Using Related RASIM Concepts

Project Information Architecture Concepts Used

OAIS CCSDS reference model describing information objects,
information packages, archive service object.

SPACEGRID Uses concept of information objects and registry service
objects.

EOSDIS Uses concepts including meta-models, domain models,
metadata objects, information objects for a national
Earth science program within NASA.

European Data Grid Uses concept of information objects, information
packages, archive service object, registry service object
for a national grid system.

National Virtual Observatory Uses concepts of information objects, information
packages, archive service object, registry service object
for an international astrophysics interoperability effort.

Planetary Data System Uses concepts of information objects, information
packages, archive service object, registry service object
for a national planetary science grid system within
NASA.

4.1 OAIS

The CCSDS OAIS reference model (reference [5]) has made metadata a key element in terms
of the ability to validate ingestion of data products and understand data product format,
which is a key element of information architecture. OAIS defines the notion of an ‘open
archive’. An open archive is an archive service object that interacts with three main outside
entities: Producers, Consumers and Management. In general,

– producers produce Submission Information Packages (SIPs) to send to the OAIS
compliant archive;

CCSDS 312.0-G-0 Page 4-1 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

– consumers consume Dissemination Information Packages (DIPs) that they retrieve
from the OAIS compliant archive;

– management constitutes outside entities responsible for managing data within the
archive and are not involved in the day-to-day operations of the component.

In addition to SIPs and DIPs, OAIS archives also deal with Archival Information Packages
(AIPs), which are created within the OAIS archive from SIPs. With respect to information
architecture, the OAIS DIPs, SIPs, and AIPs could all be considered information objects
conforming to each respective package format specified in reference [5].

Figure 4-1: The Open Archival Information System Reference Model

OAIS-compliant archives are in the business of preserving, providing, managing, and
collecting information. Inherently they are most related to the archive service object
described in 0; however, since the OAIS reference model defines the standard data structures
that an OAIS archive should use, which are all domain specific instantiations of information
objects, OAIS archives could utilize the information objects described in this document.

4.2 GRIDS

Recent work in the grid community (see reference [16]) has characterized a class of
distributed data interoperable systems as data grids (references [8], [9], [23], and [26]). Data
grids involve the identification of (different classes of) metadata (reference [26]), used to
make heterogeneous software systems interoperable. In the next paragraphs, some overviews
of grid projects at various space agencies are listed. Each subsection details how each grid
project uses the components of information architecture.

CCSDS 312.0-G-0 Page 4-2 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

4.2.1 SPACEGRID

ESA’s SpaceGRID Study [21] commenced in 2001 and concluded in 2003 with the goal of
assessing how ESA could infuse grid technology into various Earth observing and space
missions to support (1) distributed data management, (2) data distribution, (3) data access,
and (4) a common architectural approach to designing, implementing, and deploying
software to support such activities. The study spanned several different disciplines including
Earth Observation, Space Research, Solar System Research, and Mechanical Engineering.
Results of the study included identification of 240 user requirements for grids, 146 of which
were considered ‘common’, denoting the fact that the requirement was considered useful for
at least three of the study domains. Of the 146 requirements, a cross-section of design areas
were identified, and user-desired requirements of grids were listed as:

– Flexibility;

– Portal;

– Security;

– Distributed Access;

– Human Computer Interface;

– Virtual Organization;

– Collaborative Environment;

– Reliability.

Figure 4-2 depicts the proposed SpaceGRID infrastructure, which is very similar to the
service objects and architectural model described in this document. It is a layered
architectural model, with client applications at the top-most layer making calls through an
organizational API. The organization’s API makes use of grid services, which in turn use
grid infrastructure to access both ‘hard’ (hardware-based) and ‘soft’ (software-based)
distributed resources.

The data that is made available by grid infrastructure in the ESA report is searched using
metadata catalogs. These catalogs can be thought of as storing metadata objects, which in
turn point to data objects desired by the user. Effectively, the grid infrastructure described in
the SpaceGRID report is distributing, searching, and delivering information objects to users.

CCSDS 312.0-G-0 Page 4-3 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

Figure 4-2: SpaceGRID Proposed Infrastructure

4.2.2 EOSDIS

NASA’s Earth Observing System Data and Information System, or EOSDIS, was a
preliminary investigation into how NASA could support data distribution, processing,
archival and storage of Earth science data sets produced by Earth observing missions.
EOSDIS was an excellent early example of the problems with state-of-the-art information
systems technology circa 1996. So-called “one-off” data systems were being produced
across the country, and viable data sets could not be accessed, distributed and ultimately
used. This required sending data on removable media and ultimately increased the amount of
time necessary to engage in science. The goal of EOSDIS was to bridge the gap between
existing Earth science data systems, and unlock their data, and make it available to scientists.

Many of the conclusions from EOSDIS were early precursors to the study and ultimate
adoption and acceptance of the grid paradigm. The relation between EOSDIS and this

CCSDS 312.0-G-0 Page 4-4 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

document lies in the fact that EOSDIS is a domain-specific example of (1) Earth science
specific information objects, (2) Earth science meta-models, (3) Earth science metadata
objects, and (4) Earth science domain models and ontologies.

4.2.3 EUROPEAN DATA GRID

The European Data Grid (EDG) is an EU- and ESA-funded project aimed at enabling access
to geographically distributed data and computational resources (see reference [15]). EDG
uses Globus Toolkit technology to support base grid infrastructure and then builds data-
specific services on top of the underlying grid infrastructure. These data-specific services are
services such as replica management, metadata management, and storage management.
Because of its focus on data and metadata, EDG is highly related to this document. The EDG
system manages, distributes, processes, and archives information objects. The metadata
objects are stored in metadata catalogs, and the data objects are stored transparently in an
underlying storage system. Users use software components, similar to those described in
section 3, to query for and retrieve application information objects and information packages
made available by the EDG system.

4.2.4 NATIONAL VIRTUAL OBSERVATORY

The National Virtual Observatory, or NVO, is an NSF-funded project whose goal is to enable
science by greatly enhancing access to data and computational resources. NVO uses the
Globus Toolkit (see references [16] and [20]) grid middleware infrastructure to distribute,
process, retrieve, and search for astrophysical science data. The components of NVO are
essentially the components described in this document: (1) a well defined information
architecture, including information objects (or astrophysical data products), (2) common
models to describe the information objects, and (3) software service objects (in the form of
grid services) to exchange science data.

4.2.5 PLANETARY DATA SYSTEM

The Planetary Data System (PDS) is a NASA-funded program that is responsible for
distributing, archiving, and managing planetary science data collected from all NASA funded
planetary missions. The PDS consists of seven ‘discipline nodes’ and an engineering and
management node. Each node resides at a different U.S. university or government agency
and is managed autonomously.

For many years PDS distributed its data and metadata (i.e., its information objects) on
physical media, primarily CD-ROM. Each CD-ROM was formatted according to a ‘home-
grown’ directory layout structure called an archive volume, which later was turned into a
PDS standard. PDS metadata objects were constructed using a common, well-structured set
of approximately 1200 metadata elements, such as ‘Target Name’ and ‘Instrument Type’,
that were identified from the onset of the PDS project by planetary scientists. Beginning in
the late 1990s the advent of the WWW and the increasing data volumes of missions led

CCSDS 312.0-G-0 Page 4-5 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

NASA managers to impose a new paradigm for distributing data to the users of the PDS: data
and metadata were now to be distributed electronically, with a single, unified Web portal as
the gateway to the information. This posed a challenge due to the geographically distributed
nature of the data. Consequently, PDS adopted a distributed software framework called the
Object Oriented Data Technology (OODT) (see reference [11]) framework which provided a
set of services for capture and distribution of data within a distributed environment. As a
result a Web portal and accompanying infrastructure to distribute PDS data and metadata
over the Internet was built in 2001 using the OODT middleware. OODT provides an
implementation of several of the information management objects described in this
document, in particular, a registry service object, an archive service object, and a product
service object. Several of these components were provided to PDS as a distributed
architecture called ‘PDS-D’. Scientists and the user community download PDS ‘products’ via
a unified portal connected to a set of common infrastructure services that are geographically
distributed and connected to the planetary science repositories located at the PDS nodes.

CCSDS 312.0-G-0 Page 4-6 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

ANNEX A

APPLICABLE STANDARDS USED IN THIS DOCUMENT

This annex details the applicable standards used in this document, such as the modeling
notation standards, and the governing CCSDS standards that apply to this document.

A1 UML MODELING STANDARDS

All of the UML figures drawn in this report are drawn using the UML 1.0 notation. UML
was chosen because of its broad applicability and use in the design of modern software-
intensive systems.

UML is used to represent data concepts in this document, along with software object
concepts and relationships. The following UML diagrams were used extensively:

A1.1 UML CLASS DIAGRAMS

The UML Class diagram is used to show objects and relationships amongst objects. In
particular UML defines classes, which are entities in a system that interact and interface with
other entities. Classes can have attributes, interfaces, and relationships with other objects.

Primarily, the association relationship is used in this document. An association has a name
and direction, which describes the name of the association (e.g., has a), and the direction
(either uni- or bi-) from which the association originates and ends. Associations can have
roles at each of their ends. Roles define how one end of an association will behave in certain
situations. Associations can also have cardinalities at each end of the relationship, specifying
how many of each class connected to each end of the association participate in the
association. In this document, the cardinality 1 denotes a single participant from a class. The
cardinality * denotes more than one, or many participants from a class.

Soda
Machine

Student
dispenses

soda to1 *

Using the example below, we know that there is a Soda Machine class and a Student class,
with an association between them with a name of dispenses sodas to, originating from the
soda machine class and terminating at the student class. We know that for one soda machine,
there can be many students that it dispenses sodas to. Note that there are no roles defined in
this example.

CCSDS 312.0-G-0 Page A-1 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

The association relationship shown above between soda machines and students can also be
shown using the following notation:

Soda
Machine

Student
dispenses

soda to1 *

There is one other type of relationships used in the UML modeling notation in this document
to represent relationships between two objects, or classes. The type of relationship is a
generalization relationship. Generalization relationships indicate that one class is a
specialization of a more generic class, or that one class is a child of another class, which is its
parent. The generalization relationship is usually shown with an unfilled arrow end at the end
of an association line. In the example below, we have the parent class Bird, and a child class,
Parrott, which is a type of bird; therefore, it is a specialization of the more generic parent
class. As such, there is a generalization relationship between the two classes.

Please see reference [1] and [2] for further clarifications on the UML modeling notation used
in this document.

CCSDS 312.0-G-0 Page A-2 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

A2 CCSDS

Table A-1: CCSDS Information Standards Mapped to Information Architecture
Concept

Information Architecture Concept CCSDS Standard

Meta-Model Specification (section 2) DEDSL (Data Entity Dictionary Specification
Language)
http://www.ccsds.org/documents/647x1b1.pdf

Archive Ingestion Model (section 3) Reference Model for an Open Archival
Information System (OAIS)
http://www.ccsds.org/documents/650x0b1.pdf

Data Element Semantics and
Specification (section 2)

The Data Description Language EAST
Specification (CCSD0010). Blue Book.
Issue 2. November 2000.
http://www.ccsds.org/documents/644x0b2.pdf

Specification of Application
Information Object Format (section 2)

Information Interchange Specification
http://www.ccsds.org/documents/642x1g1.pdf

Data Value Representation (section 2) Parameter Value Language Specification
(CCSD0006 and CCSD0008). Blue Book.
Issue 2. June 2000.
http://www.ccsds.org/documents/641x0b2.pdf

Packaging Specification (section 2) XML Formatted Data Unit (XFDU) Structure
and Construction Rules. White Book, Issue 2,
September 2004.

http://www.ccsdsrg/docu/dscgi/ds.py/Get/File-
1912/IPRWBv2a.doc

Data Object Format Specification
(section 2)

Standard Formatted Data Units — Control
Authority Data Structures. Blue Book.
Issue 1. November 1994.
http://www.ccsds.org/documents/632x0b1.pdf

This section presents a mapping of existing CCSDS Standards to the data and software
components and ideas discussed in this document.

CCSDS 312.0-G-0 Page A-3 February 2006

http://www.ccsds.org/documents/647x1b1.pdf
http://www.ccsds.org/documents/650x0b1.pdf
http://www.ccsds.org/documents/644x0b2.pdf
http://www.ccsds.org/documents/642x1g1.pdf
http://www.ccsds.org/documents/641x0b2.pdf
http://www.ccsds.org/docu/dscgi/ds.py/Get/File-1912/IPRWBv2a.doc
http://www.ccsds.org/docu/dscgi/ds.py/Get/File-1912/IPRWBv2a.doc
http://www.ccsds.org/documents/632x0b1.pdf

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

ANNEX B

ABBREVIATIONS AND ACRONYMS

aIMO advanced information management object

AIO application information object

AIP archival information package

CFDP CCSDS File Delivery Protocol

DDR data description record

DEDSL data entity dictionary specification language

DIP dissemination information package

DO data object

DSO data store object

EAST Enhanced Ada SubseT

ECS EOSDIS Core System

EDG European data grid

EOS Earth Observing System

EOSDIS EOS Data and Information System

ESA European Space Agency

IMO information management object

IO information object

MOF meta-object facility

NSF National Science Foundation

NVO National Virtual Observatory

OAIS Open Archival Information System

ODL Object Description Language

CCSDS 312.0-G-0 Page B-1 February 2006

REPORT CONCERNING REFERENCE ARCHITECTURE FOR SPACE INFORMATION MANAGEMENT

OMG Object Management Group

OODT object oriented data technology

PDS Planetary Data System

pIMOs primitive information management objects

PVL Parameter Value Language

QO query object

RASIM Reference Architecture for Space Information Management

RDF resource description framework

SGML standard generalized markup language

SIP submission information package

SLE Space Link Extension

SPASE Space Physics Archive Search and Exchange

UML Unified Modeling Language

URN Uniform Resource Name

W3C World Wide Web Consortium

WSDL Web Services Description Language

XFDU XML Formatted Data Unit

XML Extensible Markup Language

CCSDS 312.0-G-0 Page B-2 February 2006

	INTRODUCTION
	SCOPE AND APPLICABILITY
	TERMINOLOGY
	REFERENCES

	INFORMATION ARCHITECTURE
	INTRODUCTION
	DATA OBJECTS
	METADATA OBJECTS

	INFORMATION OBJECTS
	TAXONOMY OF INFORMATION OBJECTS
	Primitive Information Object
	Standard Information Object
	Complex Information Object

	EXAMPLES OF INFORMATION OBJECTS
	Spacecraft Command Message File
	Planetary Data System Product
	Space Link Extension (SLE) Service Management Objects

	MODELING CONCEPTS
	META-MODELS
	ISO/IEC 11179
	Data Entity Dictionary Specification Language (DEDSL)
	XFDU

	SPACE DOMAIN MODELS
	Planetary Science
	SPASE
	EOSDIS and EOS Core Data Model

	DATA DESCRIPTION LANGUAGES
	PVL/ODL
	EAST
	XML

	INTEROPERABILITY

	SOFTWARE COMPONENTS FOR INFORMATION ARCHITECTURE
	PRIMITIVE INFORMATION MANAGEMENT OBJECTS
	DATA STORE OBJECT
	QUERY OBJECT

	ADVANCED INFORMATION MANAGEMENT OBJECTS
	REPOSITORY SERVICE OBJECT
	A Taxonomy of Repository Service Objects

	REGISTRY SERVICE OBJECT
	A Taxonomy of Registry Service Objects

	PRODUCT SERVICE OBJECT
	ARCHIVE SERVICE OBJECT
	QUERY SERVICE OBJECT

	SPACE DATA SYSTEMS
	OAIS
	GRIDS
	SPACEGRID
	EOSDIS
	EUROPEAN DATA GRID
	NATIONAL VIRTUAL OBSERVATORY
	PLANETARY DATA SYSTEM
	APPLICABLE STANDARDS USED IN THIS DOCUMENT
	ABBREVIATIONS AND ACRONYMS

