
Overlap Assessment between OMG C2MS
and CCSDS MO
Revision 1.0, 2018-06-22

Prepared by Stefan Gärtner, DLR,
on behalf of CCSDS SM&C Working Group members of CNES, DLR and ESA

Contents
Contents .. 1

1. Introduction ... 1

2. References ... 2

3. Overlap regarding scope ... 2

4. Overlap regarding functionality .. 4

5. Overlap regarding technical details ... 8

5.1. Use of Messages .. 8

5.2. Messaging Patterns ... 9

5.3. Data Types ... 9

6. Conclusion ... 10

7. Abbreviations .. 12

1. Introduction
This document assesses possible overlaps between the proposed OMG C2MS standard [1] and the set of
published CCSDS MO standards [2], [3], [4], [5], [6], [7] and proposed CCSDS MO standards [8], [9].
Overlaps are identified on several levels of abstraction – overall scope of the standards, functionality
defined in either of the standards, down to overlap in technical details. Notable differences and caveats
are pointed out where necessary.

Although this document tries to explain overlaps of C2MS and MO in an understandable way, it is out of
scope of this document to provide an introduction to either of the standards. In order to gain more in-
depth knowledge reading of [1] and [2] is recommended.

Throughout the document abbreviations C2MS and MCMS for [1] will be used interchangeably.

2. References
[1] OMG, Proposed Mission Control Message Specification (MCMS) RFC.

[2] CCSDS, 520.0-G-3 Mission Operations Services Concept, 2010.

[3] CCSDS, 521.0-B-2 Mission Operations Message Abstraction Layer, 2013.

[4] CCSDS, 521.1-B-1 Mission Operations Common Object Model, 2014.

[5] CCSDS, 522.1-B-1 Mission Operations Monitor & Control Services, 2017.

[6] CCSDS, 524.1-B-1 Mission Operations - MAL Space Packet Transport Binding and Binary Encoding,
2015.

[7] CCSDS, 524.2-B-1 Mission Operations - Message Abstraction Layer Binding to TCP/IP Transport and
Split Binary Encoding, 2017.

[8] CCSDS, 522.0 Mission Operations Common Services.

[9] CCSDS, 522.2 Mission Operations Mission Data Product Distribution Services.

[10] CCSDS, 523.1-M-0 Mission Operations Message Abstraction Layer - Java API, 2013.

[11] CCSDS, 523.2 Mission Operations - C++ API.

[12] CCSDS, 524.3 Mission Operations - Message Abstraction Layer Binding to HTTP Transport and XML
Encoding.

[13] CCSDS, 524.4 Mission Operations - Message Abstraction Layer Binding to ZeroMQ Message
Transport Protocol.

3. Overlap regarding scope
C2MS objectives and benefits [1, p. xiv]:

“The objective of this MCMS (Mission Control Message Specification) standard is to establish
common format specifications to allow for common data exchange interfaces for integrating
satellite mission ground data system products from multiple vendors and system developers. The
formats may be of benefit for system-internal interface definitions and for communications
between systems.”

Scope of C2MS [1, p. 1]:

“This document, the Mission Control Message Specification (MCMS), is the definition of the
standardized messages along with interaction patterns for their use for common interfaces found

in typical satellite ground data systems. This promotes platform independence that allows easy
plug and play intercommunication among components.”

MO objectives and benefits [2, p. 2–3]:

“Standardisation of a Mission Operations Service Framework offers a number of potential benefits for
the development, deployment and maintenance of mission operations infrastructure:

• increased interoperability between agencies, at the level of spacecraft, payloads, or ground-
segment infrastructure components;

• standardisation of infrastructure interfaces, even within agencies, leading to re-use between
missions and the ability to establish common multi-mission infrastructure;

• standardisation of operational interfaces for spacecraft from different manufacturers;

[…]”

Scope of MO [2, p. 2–5]:

“The Mission Operations Service Framework is concerned with end-to-end interaction between
mission operations application software, wherever it may reside within the space system.”

And, more specifically, scope of MO MAL [2, p. 2–12]:

“The Message Abstraction Layer provides a standard messaging layer between the Consumer and
Provider sides of the service framework. This, together with standardized bindings between the MO
Service Framework layers, ensures that different implementations of the service framework can
interoperate across the service interfaces, providing the underlying communications protocol stack is
equivalent on both sides of the interface. The layer provides the following fundamental aspects:

• A specification of the fundamental data types, enumerations and structures;
• A definition of the rules for combining data types and structures;
• Generic Messaging Interaction Patterns that define the allowed sequence of message

exchange;
• Fundamental concepts such as security and Quality of Service (QoS).”

As can be seen from the citations and as will become clear from the following assessment of functional
overlaps, the scope of both C2MS and MO have strong overlaps: Both standards strive to provide means
to integrate typical satellite ground-segment applications common in satellite mission operations. Both
standards approach this goal by standardizing the communication interfaces between systems,
leveraging a Platform Independent Model (PIM) [1, p. 1], [2, p. 2–10]. The resulting benefits are the same
in both cases: “plug-and-play” of components from different vendors or agencies, standardized external
interfaces with possibility for internal use and re-use, and more that can be looked up in either of the
standards.

It should be noted that CCSDS MO provides a whole framework consisting of service descriptions (e.g.
[5], [8], [9]), a Platform Independent Model called MAL [3], an abstract API formulated using request and

indication primitives, concrete APIs for several implementation languages (e.g. [10], [11]), and concrete
transport bindings (e.g. [6], [7], [12], [13]). The proposed C2MS standard provides message descriptions
and a Platform Independent Model, but neither an abstract or concrete API nor concrete on-the-wire
representations of the messages. The API is declared out of scope by C2MS, although at least one
proprietary concrete API (GMSEC API) seems to exist. The on-the-wire message representation is not
explicitly declared out of scope, but it can be inferred that this would be an implementation detail of the
GMSEC API’s message bus implementation. As such, C2MS does not provide any interoperability
between two parties implementing the standard. Lack of an on-the-wire format prevents on-the-wire
interoperability. Lack of an API prevents compatibility of any software components.

Comparison with MO thus makes most sense if C2MS is compared with MAL and its service descriptions.
APIs and transport bindings are largely out of scope for C2MS and will not be compared to the MO
counterparts.

C2MS currently restricts itself to ground-to-ground interfaces, whereas MO tries to be as deployment-
independent as possible and explicitly addresses not only ground-to-ground, but also space-to-ground
and space-to-space interfaces. A transport mapping to space-to-ground is available in [6]. The C2MS
restriction mainly comes from the fact that a broker-based message bus is expected to be used. This
technology is usually not available over the space link. However, due to the lack of a concrete on-the-
wire format, this is not a fundamental restriction of C2MS. Still, employing C2MS over the space link
would probably require a redesign of many message formats in order to efficiently use the limited band-
width.

4. Overlap regarding functionality
The following table lists each message type defined by C2MS and identifies overlaps and equivalents
with MO services. Generally, MO offers additional functionality on top of that (e.g. a MC::Statistics or
MC::Check service, or more functionality for each of the mentioned services). As this document is
primarily concerned with overlaps the added functionality is out of scope and only mentioned where
deemed necessary. On the other hand, added functionality by C2MS over MO will be mentioned
explicitly.

Usually, there is no direct one-to-one correspondence between a C2MS message and an MO service or
operation, therefore the closest mapping or the idiomatic way of performing the same or similar
function is mentioned. MO provides some rather generic services that are not only meant to be used by
the end-user, but also by some other service. Most notably, these are the COM services (Event, Archive,
Activity) [4]. Each service making use of those usually specifies usage specializations (e.g. concrete
message body contents). C2MS has some similar message types, e.g. the Log message type that is used
to convey different types of information belonging to different functional domains. C2MS specifies all
uses of message types in one place, whereas MO groups together functional domains in services. This is
the effect of the difference between the service-oriented paradigm of MO and the message-oriented
paradigm of C2MS. However, the provided functionalities can be compared with each other nonetheless.

C2MS Message
Subtype

C2MS
Message
Type

MO Service Equivalent

Log Message No standard Log service defined, but maps well to COM::Event
service, especially because certain occurrence types have
correspondence in certain standardized uses of the COM::Event
service (e.g. telemetry limit violation -> MC::Check service,
configuration change -> Common::Configuration service, ...) In case of
command verification occurrence types the direct correspondence is
contained in the MC::Action service. The MC::Action services defines
how to use the COM::Activity service (which in turn makes use of the
COM::Event service) for the same use case.

Archive
Message
Retrieval

Request COM::Archive retrieve, query, and count operations. COM::Archive
additionally defines standardized ways to store data. In C2MS each
component decides on its own what it stores and has no way of
storing data in a more central archive. With MO both use cases are
covered.
MO does not directly support archive extraction by expression, but
each service instance is free to define additional query operations.
This is not much different than C2MS where extraction by expression
is only possible if additional information from the concrete
component is provided (such as the storage format).

Response The archive message retrieval response data of C2MS is an opaque
binary blob and it is not immediately clear how the requested
messages are represented inside this blob. COM::Archive on the
other hand always retrieves typed COM objects whose structure can
be looked up using the provided information. For arbitrary product
retrieval (on a higher level than COM objects) the Mission Data
Product Distribution Services are provided by MO.

Directive Request No one-to-one correspondence with MO. Typically, requesting a
service from an MO component means invoking a specific operation.
Using the service definition one can say that each operation provides
its own message type. Upon reception of this message type the
service operation is performed and more messages are produced
according to the interaction pattern of the operation.
A generic Directive message is not needed because all possible
service operations are well-defined and as such their messages, too.
Still, if deemed necessary a service definition taking actions according
to the parse result of a free-form text is trivial to specify. This
approach relies on extra information, however, that is better
captured in machine-readable service definition.
Alternatively, for a more dynamic approach that roughly maps to the
Directive message the MC::Action service can be used with
DIRECTIVE-KEYWORD mapping to an ActionIdentity and DIRECTIVE-
STRING to ActionInstanceDetails. ActionInstanceDetails may be much
more complex than a simple String and allow a more structured
Directive request that does not need to rely on String parsing.

Response Typically for an MO service request the response depends on the

interaction pattern and is tailored to the concrete operation to be
performed.
Alternatively, if the dynamic MC::Action service is used, the
submitAction operation provides the acceptance acknowledgment or
error condition. Execution tracking is possible by subscribing to the
events mandated by the COM::Activity service that is required to be
used by the MC::Action service. No additional data can be returned
by this operation.

Component-to-
Component
Transfer (C2CX)

Configuration
Status
Message

Solicited configuration status can be obtained by invoking
COM::Configuration.getCurrent operation on the component in
question. Unsolicited configuration status (the closest to a
Configuration Status Message) is obtained by subscribing to
ConfigurationSwitched COM events, which are created by the
component in question on each configuration change. Group
association is currently not provided by MO, however, considering
the sparse documentation of C2MS on this topic, it seems feasible to
map this to the Domain concept of MO.

Control
Message

Maps to COM::Configuration.activate. A pre-defined set of
component modes or configurations can be selected or a
parameterized mode or configuration, depending on the component
to control. The controlled component is notified using a
ConfigurationSwitch event on the COM::Event service.

Device
Message

No specific MO service defined. It maps to
MC::Parameter.monitorValue or MC::Aggregation.monitorValue as
device parameter reporting is very similar to telemetry reporting.

Heartbeat
Message

No specific MO service defined. It maps to
MC::Parameter.monitorValue, if properly configured.

Resource
Message

No specific MO service defined. It maps to
MC::Parameter.monitorValue or MC::Aggregation.monitorValue, if
properly configured.

Real-Time
Telemetry Data

Message for
CCSDS Packet

No specific MO service defined. The idiomatic way is usage of
MC::Aggregation.monitorValue containing typed parameters.
Depending on the use case other alternatives exist, e.g. definition of
a CCSDS packet service or delivery of CCSDS packets as MAL::Blob
parameters using MC::Aggregation.

Message for
CCSDS Frame

No specific MO service defined. The idiomatic way is usage of
MC::Aggregation.monitorValue containing typed parameters.
Depending on the use case other alternatives exist, e.g. definition of
a CCSDS frame service or delivery of CCSDS frames as MAL::Blob
parameters using MC::Aggregation.

Message for
TDM Frame

No specific MO service defined. The idiomatic way is usage of
MC::Aggregation.monitorValue containing typed parameters.
Depending on the use case other alternatives exist, e.g. definition of
a TDM frame service or delivery of TDM frames as MAL::Blob
parameters using MC::Aggregation.

Message for
Processed
Telemetry

No specific MO service defined. It would also be unclear how to do
that because a parameter (or mnemonic) value might span more
than one CCSDS frame. A more suitable level for a service of this kind

Frame would be on CCSDS packet level. In this case one can map to
MC::Aggregation.monitorValue with predefined
AggregationDefinitions that are generated per CCSDS packet using
the spacecraft database. MC::Aggregation also provides operations to
manage definition and generation of parameter aggregations, which
is not provided by C2MS.

Replay
Telemetry Data

Request,
Response

These messages roughly map to MDPD::MDPD.requestProduct for
historic product retrieval and MDPD::MDPD.monitorProduct for
future product retrieval. It is also possible to directly query the
COM::Archive service for stored AggregationValueInstance or
ParameterValueInstance objects.
In future, a Replay Session Management and Control service can
provide the possibility to allow the same services and operations for
telemetry data (i.e. MC::Parameter and MC::Aggregation) to be re-
used in a replay session. Every MAL message always contains
information about the session (any identifier) and session type (live,
replay, or simulation).

Real-Time
Mnemonic
Value

Request,
Response

These two messages map to MAL PUBSUB interaction pattern-
specific REGISTER and DEREGISTER messages of
MC::Parameter.monitorValue for continuous delivery.
For “oneshot” requests they would either map to
MC::Parameter.getValue or MC::Aggregation.getValue.

Data Message Maps to the PUBLISH/NOTIFY message of
MC::Aggregation.monitorValue.

Archive
Mnemonic
Value

Request,
Response,
Data Message

The same mapping considerations as for Replay Telemetry Data
apply.

Satellite
Command

Request Maps to MC::Action.submitAction operation.
Response Maps to events emitted by the COM::Activity service, whose use is

mandated by the MC::Action.submitAction operation.
Product Request,

Response
Maps to Mission Data Product Distribution services, specifically to
MDPD::MDPD.requestProduct operation.

Product
Message

If this message would be generated following a Request, Response
exchange, it maps to the UPDATE messages of the
MDPD::MDPD.requestProduct PROGRESS operation.
If this message is used for unsolicited product distribution, it maps to
MDPD::MDPDP.monitorProduct.
In addition to inline or reference delivery, MDPD can also be used for
push delivery, actively pushing the product to a third party.

Navigation
Data

Attitude
Parameter
Message

No corresponding MO services defined yet, but planned in form of
Navigation services.

Attitude
Ephemeris
Message
Orbit
Parameter
Message

Orbit Mean-
Elements
Message
Orbit
Ephemeris
Message
Tracking Data
Message

5. Overlap regarding technical details

5.1. Use of Messages
As already mentioned C2MS employs a message-oriented paradigm, whereas MO uses a service-oriented
paradigm. These paradigms mainly affect how functionality is presented in the documents and how
functionality is grouped together. In fact, both standards mediate data exchange through the use of well-
defined messages and their equally well-defined exchange patterns.

C2MS’ use of messages is the main interface for the user due to lack of a standardized API. MO uses
messages merely as a transport mechanism. Still, each message is well-defined. For interacting parties it
is not discernible how messages were generated, i.e. by the RPC-like API of MAL or directly by an
application. In this sense MAL can be used in the same way as C2MS.

Messages in both standards consist of a message header and a message body. C2MS messages
additionally employ a subject name. The only technical differences that arise from the different
paradigms are different message header fields in order to represent the grouping: In C2MS each
message is defined by combination of fields “Type” and “Subtype”. In MO “Type” would roughly map to
“Interaction Type” and “Interaction Stage” and “Subtype” would decompose in “Area”, “Area Version”
and “Service Number”.

Elements that go into a C2MS message subject name typically are represented as ordinary message
header fields in MO messages. If a message broker-based MO transport binding is employed, some of
these header fields would typically be used to construct a subject name. For example C2MS elements
DOMAIN1, DOMAIN2, MISSION, CONST, SAT can be mapped to “Domain” and “Session” MAL header
fields, ME1 would map to “URI from” or “URI to” depending on message type and subtype.

Some C2MS message header fields (UNIQUE-ID, PUBLISH-TIME, MW-INFO, CONNECTION-ID, NODE,
PROCESS-ID, USER-NAME) seem to be included to expose some of the middleware characteristics to the
application layer. Their usage is not specified and thus up to the concrete middleware employed.
Because MO tries to be transport-agnostic, transport characteristics are usually not provided with such a
large number of header fields to the application layer. Instead, transport-specific information is typically
represented in the concrete structure of the “URI from” and “URI to” fields. The concrete form of a URI
has to be defined by each transport and can include such information. This allows more flexibility
regarding the middleware choice.

5.2. Messaging Patterns
Both C2MS and MO rely on message exchange for communication. In both standards no arbitrary
exchange of messages is allowed, but message exchange follows certain patterns. C2MS calls them
Message Exchange Patterns (MEPs), MO calls them Interaction Patterns (IPs). The following table lists the
correspondence between both standard’s patterns. Because C2MS relies on a middleware that only
provides publish-subscribe style message exchange, there is no one-to-one correspondence of the
patterns. For example, the C2MS Publish pattern can either map to a MAL SEND or to a MAL PUBSUB
pattern, depending on the concrete usage.

C2MS Message Exchange Pattern Corresponding MO/MAL Interaction Pattern
Publish SEND or PUBSUB
Request/ACK SUBMIT
Request/Response REQUEST
Request/ACK/Response INVOKE
Request/ACK/Interim Status/Response PROGRESS
Request/Interim Status/Response similar to PROGRESS, but MAL does not allow

omitting the ACK message
Request/Response/Publish INVOKE or PROGRESS
Publish/Request/Response PUBSUB or SEND with subsequent REQUEST
Subscription PUBSUB

5.3. Data Types
Both C2MS and MO define a set of data types that are referenced in the message or service descriptions.
The following table lists the basic C2MS field data types and their corresponding MO data types. Most
have a direct one-to-one correspondence, with notable exceptions mentioned extra.

C2MS Data Type MO/MAL Data Type Notes
Binary Blob
Boolean Boolean
Character Octet or UOctet see note 1
F32 Float
F64 Double
Header String Identifier or String
I16 Short
I32 Integer
I64 Long
String String see note 1
Time Time or FineTime or Duration see note 2
U16 UShort
U32 UInteger
U64 ULong
Variable Attribute
n/a, can be represented as String URI

Note 1: Due to the limitation to ASCII, C2MS::String is a severely limited representation of text strings,
which makes it unsuitable for usage in non-English speaking systems. Likewise, C2MS::Character
cannot represent many non-English characters. MAL::String can be any Unicode string, thus it is able
to represent any string of any language. For C2MS::Character there is no direct corresponding MAL
type because the notion of character is very different in Unicode. If a limited range numeric value
shall be expressed the closest match would be MAL::Octet or MAL::UOctet, otherwise MAL::String
should be used.

Note 2: Instead of one Time data type in C2MS, MAL provides three types: Time, FineTime and Duration.
MAL::Time represents absolute times up to millisecond resolution, MAL::FineTime up to picosecond
resolution. C2MS::Time resolution is limited to microseconds. Relative times are represented using
their own data type in MAL (MAL::Duration), different than C2MS which uses one data type for both
absolute and relative times. MAL does not prescribe concrete time data type representations, in
contrast to C2MS, which prescribes a string representation. A concrete representation of MAL time
types is achieved in the MO framework by a transport binding.

In order to compose more complex data types that are needed for meaningful data exchange C2MS and
MO employ different approaches: C2MS provides UML object diagrams for each message that simply
refer to the basic data types. Fields are grouped into required or optional fields and are optionally
restricted to certain values. MO offers a complete type system by additionally providing abstract types
like Element, Attribute and Composite. Composites are used for composing data structures. Lists and
enumeration are part of MO, but are not present in C2MS. If such structures are needed in C2MS they
are represented by field naming convention (lists) or restrictions of string values (enumerations). MO
does not use UML diagrams to represent composed data types, but a tabular notation that is defined in
[3]. MO data types can be reused across different service specifications, whereas C2MS data types are
closely tied to a concrete message definition and thus cannot be reused for other messages directly.

6. Conclusion
The following table shall give a high-level overview of different areas of overlap. This table intentionally
does not capture lower-level details, especially the depth to which some functionality has been specified.
Generally, due to MO consisting of several standards, a broader set of functionality is offered in each
area by MO. Please refer to the previous chapters for a detailed assessment. Entries marked as
“proposed” are already on standardization track for an extended period of time and are all expected to
be published in the near future. Entries marked as “planned” are in the charter of the CCSDS SM&C
Working Group, but usually not more than a draft has been produced.

 C2MS MO
Scope Integration of satellite

mission operations
applications as main
objective

yes yes

Ground-to-ground
interfaces

yes yes

Space-to-ground no, but possible yes

interfaces
Space-to-space
interfaces

no, but possible yes

Framework Platform Independent
Model

yes yes, MAL

API unspecified, proprietary
API exists (GMSEC API)

yes, for several
programming languages

Transport technology unspecified, but some
kind of message broker
required

yes, several for ground
and space

Modeling language UML MAL
Data model messages and products

are treated as data units
optional, COM

Functionality Archiving yes yes
Satellite Monitoring yes yes
Satellite Control yes yes
Infrastructure
(Configuration, Health,
…)

yes proposed, Common

Product Distribution yes proposed, MDPD
Navigation yes planned
Mission Planning no proposed, dedicated

working group
Automation no planned
File and transfer
management

no planned

Extensible with
bespoke interfaces

 yes yes

The overlap in objectives and functionality between C2MS and MO is substantial. It should be considered
whether the international space community is served well by two incompatible standards serving the
same purpose. C2MS at first appears to be the simpler standard, because it is contained in one medium-
sized document. However, C2MS is incomplete and does not lead to interoperable systems. MO, beside
from being published already, provides proven on-the-wire interoperability and gives system designers
and implementers a complete stack at hand.

C2MS defines interfaces for common mission operations tasks that are mostly present in MO as well. The
most notable difference where this is not the case, is all functionality regarding Navigation and Flight
Dynamics. The MO interface counterparts usually offer more functionality (with the explicit possibility of
implementations with restricted functionality) and either cover or are planning to cover all functional
areas of C2MS and have a roadmap for more.

Both standards allow easy extension to custom interfaces and thus are not only advertised for use
between agencies and vendors, but also inside a single entity, although this is not mandated. Further,
none of the standards mandates any particular system architecture. How interfaces are implemented (in

one or several applications, using a service-oriented architecture or a monolith, …) is completely up to
the system designer.

Instead of having two competing standards it makes sense to leverage the expertise gained from C2MS
for the specification of planned MO services. Particularly Navigation and Flight Dynamics services can
benefit, but also the product category catalogue can provide helpful input for the MDPD services.

7. Abbreviations
API Application Programming Interface
C2CX Component-to-Component Transfer
C2MS Satellite Command & Control Message Specification
CCSDS Consultative Committee for Space Data Systems
COM Common Object Model
GMSEC NASA Goddard Mission Services Evolution Center
MAL Message Abstraction Layer
MC, M&C Monitor and Control
MCMS Mission Control Message Specification
MDPD Mission Data Product Distribution
MO Mission Operations
OMG Object Management Group
RPC Remote Procedure Call

	Contents
	1. Introduction
	2. References
	3. Overlap regarding scope
	4. Overlap regarding functionality
	5. Overlap regarding technical details
	5.1. Use of Messages
	5.2. Messaging Patterns
	5.3. Data Types

	6. Conclusion
	7. Abbreviations

