

Recommendation for Space Data System Standards

ATTITUDE DATA MESSAGES

RECOMMENDED STANDARD

CCSDS 504.0-P-1.11CCSDS 504.0-P-1.10

PROPOSED PINK BOOK

March 2021 July 2020

AUTHORITY

Issue: Recommended Standard, Issue 1

Date: March 2021 July 2020
Location: Washington, DC, USA

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS Recommendations is detailed in the *Procedures Manual for the Consultative Committee for Space Data Systems* (reference Ref. [I1][II]), and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the address below.

This document is published and maintained by:

CCSDS Secretariat
Space Communications and Navigation Office, 7L70
Space Operations Mission Directorate
NASA Headquarters
Washington, DC 20546-0001, USA

STATEMENT OF INTENT

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of its members. The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed **Recommended Standards** and are not considered binding on any Agency.

This **Recommended Standard** is issued by, and represents the consensus of, the CCSDS members. Endorsement of this **Recommendation** is entirely voluntary. Endorsement, however, indicates the following understandings:

- o Whenever a member establishes a CCSDS-related **standard**, this **standard** will be in accord with the relevant **Recommended Standard**. Establishing such a **standard** does not preclude other provisions which a member may develop.
- o Whenever a member establishes a CCSDS-related **standard**, that member will provide other CCSDS members with the following information:
 - -- The **standard** itself.
 - -- The anticipated date of initial operational capability.
 - -- The anticipated duration of operational service.
- o Specific service arrangements shall be made via memoranda of agreement. Neither this **Recommended Standard** nor any ensuing **standard** is a substitute for a memorandum of agreement.

No later than five years from its date of issuance, this **Recommended Standard** will be reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect the impact of new technologies, new requirements, or new directions; or (3) be retired or canceled.

In those instances when a new version of a **Recommended Standard** is issued, existing CCSDS-related member standards and implementations are not negated or deemed to be non-CCSDS compatible. It is the responsibility of each member to determine when such standards or implementations are to be modified. Each member is, however, strongly encouraged to direct planning for its new standards and implementations towards the later version of the Recommended Standard.

FOREWORD

This document is a Recommended Standard for Attitude Data Messages (ADMs) and has been prepared by the Consultative Committee for Space Data Systems (CCSDS). The set of attitude data messages described in this Recommended Standard is the baseline concept for attitude representation in data interchange applications that are cross-supported between Agencies of the CCSDS.

This Recommended Standard establishes a common framework and provides a common basis for the interchange of attitude data. It allows implementing organizations within each Agency to proceed coherently with the development of compatible derived standards for the flight and ground systems that are within their cognizance. Derived Agency standards may implement only a subset of the optional features allowed by the Recommended Standard and may incorporate features not addressed by this Recommended Standard.

Through the process of normal evolution, it is expected that expansion, deletion or modification to this document may occur. This Recommended Standard is therefore subject to CCSDS document management and change control procedures, as defined in the *Procedures Manual for the Consultative Committee for Space Data Systems*. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies

- Agenzia Spaziale Italiana (ASI)/Italy.
- British National Space Centre (BNSC)/United Kingdom.
- Canadian Space Agency (CSA)/Canada.
- Centre National d'Etudes Spatiales (CNES)/France.
- Deutsches Zentrum f
 ür Luft- und Raumfahrt e.V. (DLR)/Germany.
- European Space Agency (ESA)/Europe.
- Federal Space Agency (FSA)/Russian Federation.
- Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
- Japan Aerospace Exploration Agency (JAXA)/Japan.
- National Aeronautics and Space Administration (NASA)/USA.

Observer Agencies

- Austrian Space Agency (ASA)/Austria.
- Belgian Federal Science Policy Office (BFSPO)/Belgium.
- Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
- Centro Tecnico Aeroespacial (CTA)/Brazil.
- Chinese Academy of Sciences (CAS)/China.
- Chinese Academy of Space Technology (CAST)/China.
- Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
- Danish National Space Center (DNSC)/Denmark.
- European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.
- European Telecommunications Satellite Organization (EUTELSAT)/Europe.
- Hellenic National Space Committee (HNSC)/Greece.
- Indian Space Research Organization (ISRO)/India.
- Institute of Space Research (IKI)/Russian Federation.
- KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
- Korea Aerospace Research Institute (KARI)/Korea.
- MIKOMTEK: CSIR (CSIR)/Republic of South Africa.
- Ministry of Communications (MOC)/Israel.
- National Institute of Information and Communications Technology (NICT)/Japan.
- National Oceanic and Atmospheric Administration (NOAA)/USA.
- National Space Organization (NSPO)/Chinese Taipei.
- Naval Center for Space Technology (NCST)/USA.
- Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.
- Swedish Space Corporation (SSC)/Sweden.
- United States Geological Survey (USGS)/USA.

DOCUMENT CONTROL

Document	Title	Date	Status
CCSDS 504.0 P 1.10CCSDS 504.0-B-1	Attitude Data Messages, Recommended Standard Attitude Data Message Recommended Standard, Issue 1	July 2020 <u>May</u> 2008	Current First issue.
CCSDS 504.0-P-1.11	Attitude Data Messages, Recommended Standard, Issue 1	March 2021	Current issue.

CONTENTS

	5	<u>Pa</u>	<u>ge</u>
1.	INT	RODUCTION1	-1
<u> </u>	1.1	PURPOSE 1	
	1.2	SCOPE AND APPLICABILITY	
		CONVENTIONS AND DEFINITIONS1	
	1.4	STRUCTURE OF THIS DOCUMENT1	
	1.5	REFERENCES 1	-3
2.	OVI	ERVIEW	<u>-1</u>
	2.1	ATTITUDE DATA MESSAGE TYPES	
	2.2	ATTITUDE PARAMETER MESSAGE (APM)	<u>-1</u>
	2.3	ATTITUDE EPHEMERIS MESSAGE (AEM)	<u>-1</u>
	2.4	ATTITUDE COMPREHENSIVE MESSAGE (ACM)	<u>-2</u>
		EXCHANGE OF MULTIPLE MESSAGES	
	2.6	DEFINITIONS 2	<u>-3</u>
3.	ATI	TITUDE PARAMETER MESSAGE (APM)3	<u>-1</u>
	3.1	OVERVIEW	<u>-1</u>
	3.2	APM CONTENT	<u>-1</u>
4.	ATI	TITUDE EPHEMERIS MESSAGE (AEM)4	-1
	4.1	OVERVIEW. 4	<u>-1</u>
	4.2	AEM CONTENT4	<u>1</u>
5.	ATI	TITUDE COMPREHENSIVE MESSAGE (ACM)5	<u>-1</u>
	5.1	GENERAL 5	
	5.2	ACM CONTENT/STRUCTURE	-1
<u>6.</u>	CO	NSTRUCTING AN ADM/XML INSTANCE6	
	6.1	OVERVIEW6	<u>i-1</u>
	6.2	ADM/XML BASIC STRUCTURE6	<u>i-1</u>
	6.3	ADM/XML TAGS6	<u>i-2</u>
	6.4	CONSTRUCTING AN ADM/XML INSTANCE	<u>i-2</u>
	6.5	CREATING AN APM INSTANTIATION	
	6.6	CREATING AN AEM INSTANTIATION	<u>-8</u>
	6.7	CREATING AN ACM INSTANTIATION6-	_
	6.8	CREATING A COMBINED INSTANTIATION	<u>13</u>
	6.9	SPECIAL SYNTAX RULES FOR ADM/XML	<u>15</u>
<u>7.</u>	ATI	TITUDE DATA MESSAGES KVN SYNTAX7	<u>-1</u>
	7.1	INTRODUCTION	-1
	7.2	APM	<u>-1</u>
	7.3	AEM	<u>-1</u>
	7.4	ACM	-1
	7.5	LINES	<u>-1</u>
	7.6	KEYWORDS7	-1
	7.7	VALUES	<u>-2</u>
	7.8	UNITS	<u>-4</u>
	7.9	COMMENTS	-5

1.	_INT	RODUCTION	1-1
	1.1	PURPOSE	11
	1.2	SCOPE AND APPLICABILITY	11
	1.3	-CONVENTIONS AND DEFINITIONS	1-1
	1.4	STRUCTURE OF THIS DOCUMENT	1-2
	1.5	_REFERENCES	13
2.	_OV	ERVIEW	2-1
	2.1	ATTITUDE DATA MESSAGE TYPES	21
	2.2	ATTITUDE PARAMETER MESSAGE (APM)	21
	2.3	ATTITUDE EPHEMERIS MESSAGE (AEM)	
	2.4	ATTITUDE COMPREHENSIVE MESSAGE (ACM)	22
	2.5	EXCHANGE OF MULTIPLE MESSAGES	2-2
	2.6	- DEFINITIONS	
3.	AT	FITUDE PARAMETER MESSAGE (APM)	3-3
	3.1-	-OVERVIEW	
	3.2	APM CONTENT	3-3
4.	AT	FITUDE EPHEMERIS MESSAGE (AEM)4	-11
	4.1	-OVERVIEW	11
	4.2	AEM CONTENT4	11
5.	AT	FITUDE COMPREHENSIVE MESSAGE (ACM)5	5-20
	5.1	- GENERAL 5	5 20
	5.2	ACM CONTENT/STRUCTURE	5-20
6.	-CO	NSTRUCTING AN ADM/XML INSTANCE	
	6.1 -	_OVERVIEW	5-35
	6.2	ADM/XML BASIC STRUCTURE6	5-35
	6.3 -	-ADM/XML TAGS€	5-36
	6.4	CONSTRUCTING AN ADM/XML INSTANCE	5 36
	6.5 –	LOCAL OPERATIONS	
	6.6	CREATING AN APM INSTANTIATION	5 39
	6.7 –	CREATING AN AEM INSTANTIATION	5 42
	6.8	-CREATING AN ACM INSTANTIATION	5-45
7.		FITUDE DATA MESSAGES KVN SYNTAX	7-1
	7.1 –	-INTRODUCTION	7-1
	7.2	_APM	71
	7.3	AEM	71
	7.4	ACM	71
	7.5 –	LINES	7-1
	7.6	-KEYWORDS	
		-VALUES	
		-UNITS	7-4
		COMMENTS	7-4
8.	AT	FITUDE DATA MESSAGES XML SYNTAX	8-1
	8.1	_OVERVIEW	8-1
	0.2	ADM LINES IN XML	8-1
		VALUES IN THE ADM/XML	8 1
	8.4	UNITS IN THE ADM/XML	82

8.5 COMMENTS IN ADM/XML 8.2
ANNEX A IMPLEMENTATION CONFORMANCE STATEMENT (ICS)
PROFORMA (NORMATIVE)
ANNEX B VALUES FOR SELECTED KEYWORDS (NORMATIVE)B-1
ANNEX C CONVENTIONS FOR ADM DATA (INFORMATIVE)
ANNEX D EXAMPLES (INFORMATIVE)
ANNEX E LIST OF CHANGES VERSUS ADM VERSION 1 (INFORMATIVE)E-1
ANNEX F RATIONALE FOR ATTITUDE DATA MESSAGES (INFORMATIVE) F-1
ANNEX G ITEMS FOR AN INTERFACE CONTROL DOCUMENT
(INFORMATIVE)G-1
ANNEX H ABBREVIATIONS AND ACRONYMS (INFORMATIVE)H-1
ANNEX I INFORMATIVE REFERENCES (INFORMATIVE)I-1
ANNEX J SECURITY, SANA, AND PATENT CONSIDERATIONS
(INFORMATIVE)

ANNEX A IMPLEMENTATION CONFORMANCE STATEMENT (ICS)	
PROFORMA (NORMATIVE)	8-2
ANNEX B VALUES FOR SELECTED KEYWORDS (NORMATIVE)	B-1
ANNEX C CONVENTIONS FOR ADM DATA (INFORMATIVE)	
ANNEX D EXAMPLES (INFORMATIVE)	
ANNEX E LIST OF CHANGES VERSUS ADM VERSION 1 (INFORMAT	
ANNEX F RATIONALE FOR ATTITUDE DATA MESSAGES (INFORM	
ANNEX G ITEMS FOR AN INTERFACE CONTROL DOCUMENT	,
(INFORMATIVE)	G-1
ANNEX H ABBREVIATIONS AND ACRONYMS (INFORMATIVE)	
ANNEX I INFORMATIVE REFERENCES (INFORMATIVE)	
ANNEX J SECURITY, SANA, AND PATENT CONSIDERATIONS	
(INFORMATIVE)	

<u>Figures</u> <u>Page</u>
Figure 6-1: ADM/XML Basic Structure 6-1
Figure 6-2: Comparison of Single Message APM with NDM Combined Instantiation 6-14
Figure 6-3; NDM Combined Instantiation Showing Mix of ADMs and Use of Attributes 6-15
Figure D-1: APM example with quaternion
Figure D-2: APM File Example with Euler Angles
Figure D-3: APM File Example with various contents
Figure D-4: AEM Example
Figure D-5: AEM Spinner Example
Figure D-6: Simple/Succinct ACM File example
Figure D-7: ACM example with Attitude State Time History, Maneuver Specification, and Attitude Determination Data
Figure D-8: Example Space Object Physical Characteristics
Figure D-9: ACM example with Attitude State Covariance Time History and Attitude Determination Data
Figure 6-1: ADM XML Basic Structure 6-35
Figure D 1: APM example with quaternion
Figure D 2: APM File Example with Euler Angles
Figure D-3: APM File Example with various contents
Figure D 4: AEM Example
Figure D 5: AEM Spinner Example
Figure D-6: Simple/Succinct ACM File example
Figure D 7: ACM example with Attitude State Time History, Maneuver Specification, and Attitude Determination Data
Figure D-8: Example Space Object Physical Characteristics
Figure D 9: ACM example with Attitude State Covariance Time History and Attitude Determination Data

<u>Tables</u>

Table 3-1: APM Header.	3-2
Table 3-2: APM Metadata	3-3
Table 3-3: APM Data	3-5
Table 4-1: AEM File Layout Specifications	4-2
Table 4-2: AEM Header.	4-3
Table 4-3: AEM Metadata	4-4
Table 4-4: Types of Attitude Ephemeris Data Lines	4-8
Table 5-1 ACM Layout and Ordering Specification	5-2
Table 5-2: ACM Header	<u>5-5</u>
Table 5-3: ACM Metadata	5-7
Table 5-4: ACM Data: Attitude State Time History	5-12
Table 5-5: ACM Data: Space Object Physical Characteristics	5-14
Table 5-6: ACM Data: Covariance Time History	5-15
Table 5-7: ACM Data: Maneuver Specification	5-17
Table 5-8: ACM Data: Attitude Determination Data	5-18
Table 5-9: ACM Data: User-Defined Parameters.	5-20
Table F-1: Primary Requirements	F-2
Table F-2: Heritage Requirements.	F-10
Table F-3: Desirable Characteristics.	F-11
Table F-4: Applicability of the Criteria to Attitude Data Messages	F-12
Table F-5: Services Available with Attitude Data Messages	F-13
Table G-1: Items Recommended for an ICD.	G-1
Table 3-1: APM Header	3-4

Table 3-2: APM Metadata	3 5
Table 3-3: APM Data	3-7
Table 4-1: AEM File Layout Specifications	4 11
Table 4 2: AEM Header	4 13
Table 4-3: AEM Metadata	4 14
Table 4-4: Types of Attitude Ephemeris Data Lines	4-18
Table 5-1: ACM File Layout and Ordering Specification	5 21
Table 5-2: ACM Header	5-23
Table 5 3: ACM Metadata	5 24
Table 5-4: ACM Data: Attitude State Time History	5-27
Table 5 5: ACM Data: Space Object Physical Characteristics	5 28
Table 5 6: ACM Data: Covariance Time History	5 29
Table 5 7: ACM Data: Maneuver Specification	5 31
Table 5-8: ACM Data: Attitude Determination Data	5-32
Table 5 9: ACM Data: User Defined Parameters	5 33
Table F 1: Primary Requirements	F 2
Table F 2: Heritage Requirements	F 3
Table F-3: Desirable Characteristics	F-3
Table F-4: Applicability of the Criteria to Attitude Data Messages	F-4
Table F-5: Services Available with Attitude Data Messages	F-4
Table G. 1: Items Recommended for an ICD	G 1

1. INTRODUCTION

1.1 PURPOSE

- **1.1.1** This Attitude Data Message (ADM) Recommended Standard specifies three standard message formats for use in transferring spacecraft attitude information between space agencies and commercial or governmental spacecraft operators: the Attitude Parameter Message (APM), the Attitude Ephemeris Message (AEM), and the Attitude Comprehensive Message (ACM). Such exchanges are used for:
 - preflight planning for attitude estimation support;
 - scheduling attitude and data processing support;
 - carrying out attitude operations;
 - performing attitude comparisons;
 - carrying out attitude propagations and/or sensor predictions;
 - testing to initialize sub-system simulators (communications, power, etc.).
- **1.1.2** This Recommended Standard includes sets of requirements and criteria that the message formats have been designed to meet. For exchanges where these requirements do not capture the needs of the participating agencies, another mechanism may.can be selected.

1.2 SCOPE AND APPLICABILITY

- **1.2.1** This document contains three attitude data messages designed for applications involving data interchange in space data systems. The rationale behind the design of each message is described in ANNEX F and may can help the application engineer to select a suitable message. Applicability information specific to each Attitude Data Message format appears in sections 3 through 53, 4, and 5 as well as in annex subsection F3. Definition of the attitude accuracy underlying a particular attitude message is outside of the scope of this Recommended Standard and should can be specified via Interface Control Document (ICD) between data exchange participants.
- **1.2.2** This Recommended Standard is applicable only to the message format and content, but not to its transmission. The transmission of the message between agencies is outside the scope of this document—and should be specified in an Interface Control Document (ICD) or by following a CCSDS standard on transmission.
- <u>1.2.3</u> Description of the message formats based on the use of the eXtensible Markup Language (XML) is available (see <u>Section-66</u>).

1.2.31.2.4 The format to be exchanged (Keyword Value Notation (KVN) or XML) is subject to agreement between exchange partners. Agencies should specify, via ICD, the ASCII file format to be exchanged (Keyword Value Notation [KVN] or XML).

1.3 CONVENTIONS AND DEFINITIONS

- **1.3.1** The following conventions apply throughout this Recommended Standard:
 - a) the words 'shall' and 'must' imply a binding and verifiable specification;
 - b) the word 'should' implies an optional, but desirable, specification;
 - c) the word 'may' implies an optional specification; and
 - d)—the words 'is', 'are', and 'will' imply statements of fact.

d)

<u>1.3.2</u> As in some attitude dynamics references, in this document the term "nutation" is used to mean the motion of the spin axis of a body about an inertial axis. In many other references this motion is called "precession".

1.4 STRUCTURE OF THIS DOCUMENT

- **1.4.1** Section 2 provides a brief overview of the CCSDS-recommended Attitude Data Message types, the Attitude Parameter Message (APM), the Attitude Ephemeris Message (AEM), and the Attitude Comprehensive Message (ACM).
- **1.4.2** Section 33 provides details about the structure and content of the APM.
- **1.4.3** Section 44 provides details about the structure and content of the AEM.
- **1.4.4** Section 55 provides details about the structure and content of the ACM.
- **1.4.5** Section 66 provides details about constructing an ADM/XML instance.
- **1.4.6** Section 7 provides details about ADM KVN syntax.
- 1.4.7 Section 8 provides details about ADM XML syntax.
- **1.4.8 1.4.7** ANNEX A provides the Implementation Conformance Statement (ICS) requirements list.
- **1.4.91.4.8** ANNEX B provides a list of approved values for selected keywords in the ADM metadata and data sections.
- **1.4.101.4.9** ANNEX C details the conventions relative to ADM data used in this document.
- 1.4.111.4.10 ANNEX D shows examples of ADM messages.

1.4.121.4.11 ANNEX E gives a summary of changes between ADM versions 1 and 2.

1.4.131.4.12 ANNEX F lists a set of requirements that were taken into consideration in the design of the APM, AEM, and ACM, along with tables and discussion regarding the applicability of the three message types to various attitude estimation tasks and functions.

1.4.141.4.13 ANNEX G lists a number of items that should be covered to cover in ICDs prior to exchanging ADMs on a regular basis. There are several statements throughout the document that refer to the desirability or necessity of such a document; this annex lists all the suggested ICD items in a single place in the document.

1.4.151.4.14 ANNEX H is a list of abbreviations and acronyms applicable to the ADM.

1.4.161.4.15 ANNEX I is a list of informative references.

1.4.171.4.16 ANNEX J is relative to security, SANA, and patents considerations.

1.5 REFERENCES

The following documents contain provisions which, through reference in this text, constitute provisions of this Recommended Standard. At the time of publication, the editions indicated were valid. All documents are subject to revision, and users of this Recommended Standard are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS Recommended Standards.

- [1] Information Technology—8-Bit Single-Byte Coded Graphic Character Sets—Part 1: Latin Alphabet No. 1. International Standard, ISO/IEC 8859-1:1998. Geneva: ISO, 1998.
- [2] United Nations Office of Outer Space Affairs satellite designator/index, searchable at http://www.unoosa.org/oosa/osoindex>
- [3] *Time Code Formats*. Recommendation for Space Data System Standards, CCSDS 301.0-B-4. Blue Book. Issue 4. Washington, D.C.: CCSDS, November 2010.
- [4] XML Specification for Navigation Data Messages. The XML Specification for Navigation Data Messages Recommended Standard describes an integrated XML schema set that is suited to interagency exchanges of navigation data messages, CCSDS 505.0-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS, December 2010.
- [5] *IEEE Standard for Binary Floating-Point Arithmetic*. IEEE Std 754-1985. New York: IEEE, 1985.
- [66] Orbit Data Messages. Recommended standard, CCSDS 502.0-B-2. Blue Book, Issue 2. Washington, D.C.: CCSDS. November 2009 (with Technical Corrigendum 1, May 2012).

- [7] Henry S. Thompson, et al., eds. *XML Schema Part 1: Structures*. 2nd ed. W3C Recommendation. N.p.: W3C, October 2004.
- [8] Paul V. Biron and Ashok Malhotra, eds. *XML Schema Part 2: Datatypes*. 2nd ed. W3C Recommendation. N.p.: W3C, October 2004.
- [9] SANA Navigation Working Group Registry: https://sanaregistry.org/r/navigation_standard_normative_annexes
- [10] F. Landis Markley and John L. Crassidis. Fundamentals of Spacecraft Attitude Determination and Control. New York, New York, Springer, 2014.

2. OVERVIEW

2.1 ATTITUDE DATA MESSAGE TYPES

- **2.1.1** Three CCSDS-recommended Attitude Data Messages (ADMs) are described in this Recommended Standard: the Attitude Parameter Message (APM), the Attitude Ephemeris Message (AEM), and the Attitude Comprehensive Message (ACM).
- 2.1.2 The recommended attitude data messages are ASCII text format. While binary-based attitude data message formats are computer efficient and minimize overhead on uplinked/downlinked data streams, there are ground-segment applications for which an ASCII character-based message is more appropriate. For example, when files or data objects are created using text editors or word processors, ASCII character-based attitude data format representations are necessary. They are also useful in transferring text files between heterogeneous computing systems, because the ASCII character set is nearly universally used and is interpretable by all popular systems. In addition, direct human-readable downloads of text files or objects to displays or printers are possible without preprocessing. The penalty for this convenience is inefficiency.
- **2.1.3** As currently specified, an APM, AEM, or ACM file is to represent attitude data for a single vehicle.

2.2 ATTITUDE PARAMETER MESSAGE (APM)

- **2.2.1** An APM specifies the attitude state of a single object at a specified epoch. This message is suited to inter-agency exchanges that (1) involve automated interaction and/or human interaction, and (2) do not require high-fidelity dynamic modeling. F-(for high-fidelity dynamic modeling, see 2.3, Attitude Ephemeris Message and 2.4 2.4, Attitude Comprehensive Message).
- **2.2.2** The APM requires the use of a propagation technique to determine the attitude state at times different from the specified epoch, leading to a higher level of effort for software implementation than for the AEM. When inertial frames are specified, the APM is fully self-contained and no additional information is required to specify the attitude; if local orbital frames are specified, then an APM must be accompanied by a corresponding Orbit Data Message (reference-Ref. [6][6]).
- **2.2.3** The APM allows for modeling of any number of finite maneuvers.
- **2.2.4** The attributes of the APM also make it suitable for applications such as exchanges by FAX or voice, or applications where the message is to be frequently interpreted by humans.

2.3 ATTITUDE EPHEMERIS MESSAGE (AEM)

2.3.1 An AEM specifies the attitude state of a single object at multiple epochs, contained within a specified time range. The AEM is suited to inter-agency exchanges that (1) involve automated interaction (e.g., computer-to-computer communication where frequent, fast,

automated time interpretation and processing are required), and (2) require higher fidelity or higher precision dynamic modeling than is possible with the APM (e.g., flexible structures, more complex attitude movement, etc.).

- **2.3.2** The AEM allows for dynamic modeling of any number of torques (solar pressure, atmospheric torques, magnetics, etc.). The AEM requires the use of an interpolation technique to interpret the attitude state at times different from the tabular epochs.
- **2.3.3** The AEM is fully self-contained; no additional information is required when inertial reference frames are specified. If local orbital reference frames are specified, then an AEM must be used in conjunction with an Orbit Data Message (reference Ref. [6][6]).

2.4 ATTITUDE COMPREHENSIVE MESSAGE (ACM)

2.4.1 An ACM specifies the attitude state of a single object at multiple epochs, contained within a specified time range. The ACM aggregates and extends APM and AEM content in a single comprehensive hybrid message and offers the following capabilities:

———Optional rate data elements	
———_Optional spacecraft physical properties	
———_Optional covariance matrix	
———_Optional maneuver parameters	

- Optional estimator information

- **2.4.2** The ACM is well-suited for inter-agency exchanges that (1) involve automated interaction (e.g., computer-to-computer communication where frequent, fast, automated time interpretation and processing are required), and (2) require more detailed information such as estimator type, additional estimator states (e.g., gyro bias), sensor details, and covariance data.
- **2.4.3** The ACM is fully self-contained; no additional information is required when inertial reference frames are specified. If local orbital reference frames are specified, then an ACM must be used in conjunction with an Orbit Data Message (reference Ref. [6][6]).

2.5 EXCHANGE OF MULTIPLE MESSAGES

2.5.1 For a given object, multiple APM, AEM, or ACM messages <u>may can</u> be provided in a message exchange session to achieve attitude fidelity requirements. If attitude information for multiple objects is to be exchanged, then multiple APM, AEM, or ACM files <u>must be usedare necessary</u>.

2.6 **DEFINITIONS**

2.6.1 Definitions of time systems, reference frames, attitude estimation and prediction methods and models are provided in reference Ref. [12][12].

2.6.1—

3. ATTITUDE PARAMETER MESSAGE (APM)

3.1 OVERVIEW

- **3.1.1** Attitude information may be exchanged between two participants by sending the attitude state (see reference-Ref. [I2][H2]) for a specified epoch using an Attitude Parameter Message (APM). The message recipient must have an attitude propagator available that is able to propagate the APM state to compute the estimated attitude at other desired epochs. For this propagation, additional ancillary information (spacecraft properties such as inertia matrix, torque vectors, reaction wheel data, other data from momentum exchange devices, maneuver planning data, if applicable) shall be included with the message.
- **3.1.2** The use of the APM shall be applicable under the following conditions:
 - Attitude states at specific times have to be exchanged (no propagation is required at the receiver's location).
 - Attitude states at other times desired by the recipient have to be exchanged. In this case a propagator including a precise enough modeling of the dynamics has to be available at the receiver's location.
- **3.1.3** The APM shall be a text file consisting of attitude data for a single object.
- 3.1.4 The APM file-naming scheme should be mutually agreed between message exchange partners The APM file naming scheme should be agreed to on a case by case basis between the participating agencies, and should be documented in an ICD.
- <u>3.1.5</u> -The method of exchanging APMs should be mutually agreed between message exchange partners.
- 3.1.4 NOTE: Example APMs are provided in ANNEX D. The method of exchanging APMs shall be decided on a case-by-case basis by the participating agencies and documented in an ICD.

3.2 APM CONTENT

3.2.1 GENERAL

The APM shall be represented as a combination of the following:

- a) a header;
- b) metadata (data about the data);
- c) optional comments (explanatory information); and
- d) data.

3.2.2 APM HEADER

- **3.2.2.1** The header shall provide a CCSDS Attitude Data Message version number that identifies the format version; this is included to anticipate future changes. The version keyword shall be CCSDS_APM_VERS and the value shall have the form of 'x.y', where 'y' shall be incremented for corrections and minor changes, and 'x' shall be incremented for major changes. Version 1.0 shall be reserved for the initial version accepted by the CCSDS as an official Recommended Standard ('Blue Book'). Testing shall be conducted using APM version numbers less than 1.0 (e.g., 0.x). Participating agencies should specify in the ICD the specific APM version numbers they will support.
- **3.2.2.2** The header shall include the CREATION_DATE keyword with the value set to the Coordinated Universal Time (UTC) when the file was created, formatted according to reference Ref. [3][3] ASCII Time Code A or B. A description of APM header keywords and values is provided in Ttable 3-13-1.
- **3.2.2.3** The first header line shall be the first non-blank line in the file.
- **3.2.2.4** Table 3-13-1 specifies for each header item:
 - a) the keyword to be used;
 - b) a short description of the item;
 - c) whether the values are normative (N) values or just examples (E);
 - d) values (either the list of all normative values or examples);
 - e) whether the item is mandatory (M) or optional (O).
- **3.2.2.5** Only those keywords shown in Ttable 3-13-1 shall be used in an APM header.

Table 3-1: APM Header

Keyword	Description	N/E	Values	Man dator yM/ O
CCSDS_APM_VERS	Format version in the form of 'x.y', where 'y' is incremented for corrections and minor changes, and 'x' is incremented for major changes.	N	2.0	Yes <u>M</u>
COMMENT	Comments (allowed at the beginning of the APM Header after the APM version number). Each comment line shall begin with this keyword.	Е	This is a comment	No O
CREATION_DATE	File creation date/time in UTC. For format specification, see 7.7.	Е	2001-11- 06T11:17:33 2001-101T11:17:33	¥es <u>M</u>
ORIGINATOR	Creating agency. The value for the "ORIGINATOR" keyword should come from the 'Abbreviation' column in the	Е	CNES ESOC GSFC	Yes <u>M</u>

 $3-2\frac{3-3}{3}$

	'Organizations' registry of the SANA Registry		GSOC	
	(https://sanaregistry.org/r/organizations).		JPL	
			JAXA	
			Other agency	
MESSAGE_ID	ID that uniquely identifies a message from a given	E	201113719185	<u> NoO</u>
	originator. The format and content of the message		ABC-12_	
	identifier value are at the discretion of the		34	
	originator.			

3.2.3 APM METADATA

- **3.2.3.1** Table 3-23-2 specifies for each metadata item:
 - a) the keyword to be used;
 - b) a short description of the item;
 - c) whether the values are normative (N) values or just examples (E);
 - d) values (either the list of all normative values or examples);
 - e) whether the item is mandatory (M) or optional (O).
- **3.2.3.2** Only those keywords shown in table <u>3-23-2</u> shall be used in APM metadata. For some keywords (OBJECT_NAME, OBJECT_ID, CENTER_NAME) there are no definitive lists of authorized values maintained by a control authority; the references listed in 1.5 and annex I are the best known sources for authorized values to date.

Table 3-2: APM Metadata

Keyword	Description	N/E	Values	Man date ryM/ O
COMMENT	Comments (allowed only at the beginning of the APM Metadata before OBJECT_NAME). Each comment line shall begin with this keyword.	Е	This is a comment	<u>NoO</u>
OBJECT_NAME	Spacecraft name of the object corresponding to the attitude data to be given. There is no CCSDS-based restriction on the value for this keyword, but it is recommended to use names from the UN Office of Outer Space Affairs (Ref. [2]).	Е	EUTELSAT W1 MARS PATHFINDER	¥es <u>M</u>

OBJECT_ID	Spacecraft identifier of the object corresponding to the attitude data to be given. While there is no CCSDS-based restriction on the value for this keyword, it is recommended to use international designators from the UN Office of Outer Space Affairs (Ref. [2]). Recommended values have the format YYYY-NNNP{PP}, where: YYYY = Year of launch. NNN = Three digit serial number of launch in year YYYY (with leading zeros). P{PP} = At least one letter for the identification of the part brought into space by the launch. In cases where the asset is not listed in Ref. [2], the UN Office of Outer Space Affairs designator index format is not used, or the content cannot be disclosed, the value should be set to UNKNOWN.	Е	2000-052A	¥es <u>M</u>
CENTER_NAME	Celestial body orbited by the object-and origin of the reference frame, which may be a natural solar system body (planets, asteroids, comets, and natural satellites), including any planet barycenter or the solar system barycenter. The set of allowed values is described in ANNEX BANNEX B, S, Section B8 B8. The value should be taken from the orbit center column in the SANA orbit centers registry at https://sanaregistry.org/r/orbit_centers.	Е	EARTH BARYCENTER MOON	No O
TIME_SYSTEM	Time system used for attitude and maneuver data. The set of allowed values is described in ANNEX B, Section B2.	Е	UTC TAI	¥es <u>M</u>

3.2.4 APM DATA

- **3.2.4.1** Table <u>3-3-3</u> provides an overview of the six logical blocks in the APM Data section (attitude quaternion, attitude Euler angles, angular velocity data, spin data, spacecraft inertia parameters, maneuver parameters), and specifies for each data item:
 - a) the keyword to be used;
 - b) a short description of the item;
 - c) whether the values are normative values (N) or just examples (Ethe data type (R: real, S: string; I: integer, E: epoch);
 - d) the values/units (either the list of all normative values or examples, or units if applicable);
 - e) whether the item is mandatory (M) or optional (O).

3-43-3

- **3.2.4.2** Only those keywords shown in table <u>Table 3-33-3</u> shall be used in APM data. Some remarks concerning the keywords in table <u>Table 3-33-3</u> appear immediately after the table.
- **3.2.4.3** The APM message shall contain at least one logical block.
- **3.2.4.4** Any particular type of block may be repeated several times.
- **3.2.4.5** All data, except for the maneuver onesdata, shall be relative to the same epoch.

Table 3-3: APM Data

Keyword	Description	Type N/E	Values <u>U</u> <u>nit</u>	Man dator yM/ O
COMMENT	One or more comment line(s). Each comment line shall begin with this keyword.	<u>n/a</u> E	n/a This is a comment	NoO_
EPOCH	Epoch of the attitude elements and optional logical blocks. For format specification, see 7.7.	<u>E</u> E	2001- 11- 06T11:1 7:33 n/a	¥es <u>M</u>

Block: Attitude Quaternion

All mandatory elements are to be provided if the block is present.

See ANNEX C for conventions and further detail.

QUAT_START	Indicator of start of data block	<u>n/a</u> n/a	n/a	<u>YesM</u>
COMMENT	One or more comment line(s). Each comment line shall	<u>n/a</u> E	n/a This is	NoO
	begin with this keyword.		a	
			comment	
REF_FRAME_A	Name of the reference frame that defines the starting point	<u>S</u> E	<u>n/a</u>	<u>YesM</u>
	of the transformation.		ICRF	
	The set of allowed values is described in ANNEX B,		INSTRU	
	Section B3.		MENT_A	
REF_FRAME_B	Name of the reference frame that defines the end point of	<u>S</u> E	<u>n/a</u>	<u>YesM</u>
	the transformation. The set of allowed values is described in ANNEX B, Section B3.		SC_BOD	
	III AINNEA D, <u>S</u> ection D3.		Y_1	
			STARTR	
			ACKER	
Q1	$e_1 * \sin(\phi/2)$	Rn/a	n/a dimens	<u>YesM</u>
	ϕ = rotation angle, e1 = 1st component of rotation axis		ionless n/a	
Q2	$e_2 * \sin(\phi/2)$	Rn/a	dimension	<u>YesM</u>
	ϕ = rotation angle, e2 = 2nd component of rotation axis		<u>less</u> n/an/a	
Q3	$e_3 * \sin(\phi/2)$	Rn/a	dimension	Yes <u>M</u>
	ϕ = rotation angle, e3 = 3rd component of rotation axis		<u>less n/an/a</u>	
QC	$\cos(\phi/2)$	Rn/a	dimension	<u>YesM</u>
	ϕ = rotation angle		<u>less n/an/a</u>	
Q1_DOT	Time derivative of Q ₁	R n/a	1/s	NoO
Q2_DOT	Time derivative of Q ₂	Rn/a	1/s	<u>O</u> No

Keyword	Description	Type N/E	Values <u>U</u> <u>nit</u>	Man dator yM/ O
Q3_DOT	Time derivative of Q ₃	<u>R</u> n/a	1/s	<u>O</u> No
QC_DOT	Time derivative of Qc	<u>Rn/a</u>	1/s	<u>O</u> No
QUAT_STOP	Indicator of end of data block	<u>n/a</u> n/a	n/a	Yes <u>M</u>

Block: Euler angle elements

All mandatory elements of the logical block are to be provided if the block is present.

See ANNEX C for conventions and further detail.

EULER_START	Indicator of start of data block	<u>n/an/a</u>	n/a	Yes M
COMMENT	One or more comment line(s). Each comment line shall begin with this keyword.	<u>n/a</u> E	n/aThis is a comment	<u>NoO</u>
REF_FRAME_A	Name of the reference frame that defines the starting point of the transformation. The set of allowed values is described in ANNEX B, Section B3.	<u>S</u> E	n/a SC_BOD Y_1 STARTR ACKER_ 1	Yes <u>M</u>
REF_FRAME_B	Name of the reference frame that defines the end point of the transformation. The set of allowed values is described in ANNEX B, Section B3.	<u>S</u> E	n/a LVLH SC_BOD Y_1	<u>M</u> Yes
EULER_ROT_SEQ	Rotation sequence that defines the REF_FRAME_A to REF_FRAME_B transformation. The order of the transformation is from left to right, where the leftmost letter represents the rotation axis of the first rotation.	<u>S</u> E	n/aXYZ ZXZ	<u>M</u> Yes
ANGLE_1	Angle of the first rotation	Rn/a	deg	<u>M</u> Yes
ANGLE_2	Angle of the second rotation	<u>R</u> n/a	deg	<u>M</u> Yes
ANGLE_3	Angle of the third rotation	<u>R</u> n/a	deg	<u>M</u> Yes
ANGLE_1_DOT	Time derivative of angle of the first rotation	<u>R</u> n/a	deg/s	NoO
ANGLE_2_DOT	Time derivative of angle of the second rotation	Rn/a	deg/s	NoO
ANGLE_3_DOT	Time derivative of angle of the third rotation	Rn/a	deg/s	NoO
EULER_STOP	Indicator of end of data block	<u>n/a</u> n/a	n/a	<u>M</u> Yes

Block: angular velocity vector

All mandatory elements are to be provided if the block is present.

See ANNEX C for conventions and further detail.

ANGVEL_START	Indicator of start of data block	<u>n/a</u> n/a	n/a	<u>M</u> Yes
COMMENT	One or more comment line(s). Each comment line shall	<u>n/a</u> E	<u>n/a</u> This is	NoO
	begin with this keyword.		a	
			comment	
REF_FRAME_A	Name of the reference frame that defines the starting point	<u>S</u> E	<u>n/a</u>	<u>M</u> Yes
	of the transformation.		SC_BOD	
	The set of allowed values is described in ANNEX B,		Y_1	
	Section B3.		ICRF	

3-63-3

Keyword	Description	Type N/E	Values <u>U</u> nit	Man dator yM/ O
REF_FRAME_B	Name of the reference frame that defines the end point of the transformation. The set of allowed values is described in ANNEX B, Section B3.	<u>S</u> E	n/a ICRF INSTRU MENT_A	Yes <u>M</u>
ANGVEL_FRAME	Reference frame in which the components of the angular velocity vector are given.	<u>S</u> N	n/a REF_FRA ME_A REF_FRA ME_B	Yes <u>M</u>
ANGVEL_X	Component of the angular velocity vector on the X axis	Rn/a	deg/s	Yes <u>M</u>
ANGVEL_Y	Component of the angular velocity vector on the Y axis	Rn/a	deg/s	Yes <u>M</u>
ANGVEL_Z	Component of the angular velocity vector on the Z axis	Rn/a	deg/s	<u>YesM</u>
ANGVEL_STOP	Indicator of end of data block	<u>n/a</u> n/a	n/a	<u>M</u> Yes

Block: Spin

 $All\ mandatory\ elements\ are\ to\ be\ provided\ if\ the\ block\ is\ present.$

See ANNEX C for conventions and further detail.

SPIN_START	Indicator of start of data block	<u>n/a</u> n/a	n/a	<u>M</u> Yes
COMMENT	One or more comment line(s). Each comment line shall	<u>n/a</u> E	<u>n/a</u> This is	NoO
	begin with this keyword.		a	
			comment	
REF_FRAME_A	Name of the reference frame that defines the starting point	<u>S</u> E	<u>n/a</u> SC_B	<u>M</u> Yes
	of the transformation.		ODY_1	
	The set of allowed values is described in ANNEX B, Section B3.		ICRF	
REF_FRAME_B	Name of the reference frame that defines the end point of	<u>S</u> E	n/a ICRF	<u>M</u> Yes
	the transformation.		SC_BOD	
	The set of allowed values is described in ANNEX B,		Y_1	
	Section B3.			
SPIN_ALPHA	Right ascension of spin axis vector	<u>R</u> n/a	deg	<u>M</u> Yes
SPIN_DELTA	Declination of the spin axis vector	Rn/a	deg	<u>M</u> Yes
SPIN_ANGLE	Phase of the satellite about the spin axis	Rn/a	deg	<u>M</u> Yes
SPIN_ANGLE_VEL	Angular velocity of satellite around spin axis	Rn/a	deg/s	<u>M</u> Yes
NUTATION	Nutation angle of spin axis	Rn/a	deg	<u>M</u> Yes
NUTATION_PER	Body nutation period of the spin axis	Rn/a	S	<u>M</u> Yes
NUTATION_PHASE	Inertial nutation phase	Rn/a	deg	<u>M</u> Yes
SPIN_STOP	Indicator of end of data block	<u>n/a</u> n/a	n/a	<u>M</u> Yes

Block: Inertia

 $All\ mandatory\ elements\ are\ to\ be\ provided\ if\ the\ block\ is\ present.$

 $See \ ANNEX \ C \ for \ conventions \ and \ further \ detail.$

INERTIA_START	Indicator of start of data block	<u>n/a</u> n/a	n/a	<u>M</u> Yes
COMMENT	One or more comment line(s). Each comment line shall	<u>n/a</u> E	<u>n/a</u> This is	NoO
	begin with this keyword.		a	
			comment	
INERTIA_REF_FRAME	Coordinate system for the inertia tensor.	<u>S</u> E	<u>n/a</u>	<u>YesM</u>
	The set of allowed values is described in ANNEX B,		SC_BOD	
	Section B3.		Y_1	

Keyword	Description	Type N/E	Values <u>U</u> nit	Man dator yM/ O
IXX	Moment of Inertia about the X-axis	<u>R</u> n/a	kg*m**2	<u>M</u> Yes
IYY	Moment of Inertia about the Y-axis	<u>R</u> n/a	kg*m**2	<u>M</u> Yes
IZZ	Moment of Inertia about the Z-axis	<u>R</u> n/a	kg*m**2	<u>M</u> Yes
IXY	Inertia Cross Product of the X and Y axes	<u>R</u> n/a	kg*m**2	<u>M</u> Yes
IXZ	Inertia Cross Product of the X and Z axes	Rn/a	kg*m**2	<u>M</u> Yes
IYZ	Inertia Cross Product of the Y and Z axes	<u>R</u> n/a	kg*m**2	<u>M</u> Yes
INERTIA_STOP	Indicator of end of data block	<u>n/a</u> n/a	n/a	<u>M</u> Yes

Block: Maneuver Parameters

All mandatory elements are to be provided if the block is present.

See ANNEX C for conventions and further detail.

MAN EUVER _START	Indicator of start of data block	<u>n/a</u> n/a	n/a	<u>M</u> Yes
COMMENT	One or more comment line(s). Each comment line shall	<u>n/a</u> E	<u>n/a</u> This is	NoO
	begin with this keyword.		a	
			comment	
MAN_EPOCH_START	Epoch of start of maneuver. For format specification, see	<u>E</u> n∕a	<u>n/a</u> 2020-	Yes M
	Section 7.7.		08-	
			02T10:18:	
			30.000	
MAN_DURATION	Maneuver duration	<u>R</u> n/a	S	<u>M</u> Yes
MAN_REF_FRAME	Coordinate system for the torque vector.	<u>S</u> n∕a	n/a	<u>M</u> Yes
	The set of allowed values is described in ANNEX B,			
	Section B3.			
MAN_TOR_X	1 st component of the torque vector	<u>R</u> n/a	N*m	<u>M</u> Yes
MAN_TOR_Y	2 nd component of the torque vector	Rn/a	N*m	<u>M</u> Yes
MAN_TOR_Z	3 rd component of the torque vector	<u>R</u> n/a	N*m	<u>M</u> Yes
DELTA_MASS	Mass change during maneuver (value is < 0)	<u>R</u>	<u>kg</u>	<u>O</u>
MAN EUVER _STOP	Indicator of end of data block	n/a n/a	n/a	<u>M</u> Yes

3.2.5 REMARKS

3.2.5.1 DATA FORMAT

- **3.2.5.1.1** See Section 7.7 for instructions about how to format the EPOCH and MAN_EPOCH_START.
- **3.2.5.1.2** In specifying the EPOCH of the message, care must be taken if UTC is used as the TIME_SYSTEM. If an APM message reports attitude during a time of leap seconds, the system making use of the message should be able to recognize 60 as a valid value for the seconds (e.g., 20xx-xx-xxT23:59:58.000 .. 20xx-xx-xxT23:59:59.000 .. 20xx-xx-xxT23:59:60.000 .. 20xx-xx-xxT00:00:00.000)

3.2.5.2 TECHNICAL

3.2.5.2.1 It may become necessary to utilize particular orbit information to process Euler angle elements or a local orbit frame (e.g., LVLH, QSW) properly. An approach to this is to

add a 'COMMENT' block specifying a particular OPM message to use in conjunction with a particular APM.

3.2.5.2.2 Specification of Euler angle rotations around only one or two axes may be handled by entering the appropriate sequence for the desired one or two axis rotation and freely choosing the final axis of rotation and giving a value of zero for the rotation angle.

4. ATTITUDE EPHEMERIS MESSAGE (AEM)

4.1 OVERVIEW

- **4.1.1** Attitude state information may be exchanged between participants by sending an ephemeris in the form of a series of attitude states using an Attitude Ephemeris Message (AEM). The message recipient must have a suitable means of interpolating across these attitude states to obtain the attitude state at an arbitrary time contained within the span of the attitude ephemeris.
- **4.1.2** The AEM file-naming scheme should be mutually agreed between message exchange partners.
- **4.1.3** The method of exchanging AEMs should be mutually agreed between message exchange partners.

NOTE: Example AEMs are provided in ANNEX D.

4.1.2 The file naming scheme should be agreed to on a case by case basis between the participating agencies, typically using an Interface Control Document (ICD). The method of exchanging AEMs shall be decided on a case by case basis by the participating agencies and documented in an ICD.

4.2 AEM CONTENT

4.2.1 GENERAL

- **4.2.1.1** The AEM shall be represented as a combination of the following:
 - a) a header;
 - b) metadata (data about data);
 - c) optional comments (explanatory information); and
 - d) attitude data.
- d) The group composed of "metadata", optional comments, and data is called a segment. The set of segments if called "body".

Table 4-14-1 outlines the contents of an AEM.

Table 4-1: AEM File Layout Specifications

Item			Mandatory M/O?
Header			Yes <u>M</u>
	Segment 1	Metadata 1	
		Data 1	Yes <u>M</u>
	Segment 2	Metadata 2	
		Data 2	No <u>O</u>
Body	±	•	
	±		<u>№</u> 0
	<u> </u>	•	110 0
	Segment n	Metadata n	
		Data n	No <u>O</u>

4.2.2 AEM HEADER

- **4.2.2.1** The header shall provide a CCSDS Attitude Data Message version number that identifies the format version; this is included to anticipate future changes. The version keyword shall be CCSDS_AEM_VERS and the value shall have the form of 'x.y', where 'y' is incremented for corrections and minor changes, and 'x' is incremented for major changes. Version 1.0 shall be reserved for the initial version accepted by the CCSDS as an official Recommended Standard ('Blue Book'). Testing shall be conducted using AEM version numbers less than 1.0 (e.g., 0.x). Participating agencies should specify in the ICD the specific AEM version numbers they will support.
- **4.2.2.2** The header shall include the CREATION_DATE keyword with the value set to the Coordinated Universal Time (UTC) when the file was created, according to reference Ref. [3][3] ASCII Time Code A or B. A description of AEM header keywords and values is provided in table Table 4-24-2.
- **4.2.2.3** The first header line must be the first non-blank line in the file.
- **4.2.2.4** The AEM header assignments are shown in table <u>Table 4-24-2</u>, which specifies for each item:
 - a) the keyword to be used;
 - b) a short description of the item;
 - c) whether the values are normative (N) values or just examples (E);
 - d) values (either the list of all normative values or examples);
 - e) whether the item is mandatory (M) or optional (O).
- **4.2.2.5** Only those keywords shown shall be used in an AEM header.

 $4-2\frac{3-3}{3}$

Table 4-2: AEM Header

Keyword	Description	N/E	Values	Man dator yM/ O
CCSDS_AEM_VERS	Format version in the form of 'x.y', where 'y'	N	2.0	Yes <u>M</u>
	is incremented for corrections and minor			
	changes, and 'x' is incremented for major			
	changes.			
COMMENT	One or more comment lines.	E	This is a <mark>ec</mark> omment.	NoO
	Each comment line shall begin with this			
	keyword.			
CREATION_DATE	File creation date/time in UTC.	E	2001-11-06T11:17:33	<u>YesM</u>
	For format specification, see 7.7.			
ORIGINATOR	Creating agency.	E	CNES	YesM
	The value for the "ORIGINATOR" keyword		ESOC	
	should come from the 'Abbreviation' column		GSFC	
	in the 'Organizations' registry of the SANA		GSOC	
	Registry		JPL	
	(https://sanaregistry.org/r/organizations).		JAXA	
MESSAGE_ID	ID that uniquely identifies a message from a	E	201113719185	NoO
	given originator. The format and content of		ABC-12_	
	the message identifier value are at the		34	
	discretion of the originator.			

4.2.3 AEM METADATA

- **4.2.3.1** A single METADATA group shall precede each attitude ephemeris data block. Multiple occurrences of a METADATA group followed by an attitude ephemeris data block may be used (e.g., METADATA, DATA, METADATA, DATA, etc.).
- **4.2.3.2** Before each METADATA group the string 'META_START' shall appear on a separate line and after each METADATA group (and before the associated DATA_START keyword) the string 'META_STOP' shall appear on a separate line.
- **4.2.3.3** The AEM metadata assignments are shown in table <u>Table 4-34-3</u>, which specifies for each item:
 - a) the keyword to be used;
 - b) a short description of the item;
 - c) whether the values are normative (N) values or just examples (E);
 - d) values (either the list of all normative values or examples);
 - e) whether the item is mandatory (M) or optional (O).

4.2.3.4 Only those keywords shown shall be used in AEM metadata. For some keywords (OBJECT_NAME, OBJECT_ID, CENTER_NAME) there are no definitive lists of authorized values maintained by a control authority; the references listed in 1.5 are the best known sources for authorized values to date.

Table 4-3: AEM Metadata

Keyword	Description	N/E	Values	Man dator yM/ O
META_START	The AEM message contains both metadata and attitude ephemeris data; this keyword is used to delineate the start of a metadata block within the message (metadata are provided in a block, surrounded by 'META_START' and 'META_STOP' markers to facilitate file parsing). This	n/a	n/a	¥es <u>M</u>
COMMENT	keyword must appear on a line by itself. Comments allowed only at the beginning of the Metadata section. Each comment line shall begin with this keyword.	E	This is a comment.	NoO_
OBJECT_NAME	Spacecraft name of the object corresponding to the attitude data to be given. There is no CCSDS-based restriction on the value for this keyword, but it is recommended to use names from the UN Office of Outer Space Affairs (Ref. [2]).	Е	EUTELSAT W1	Yes <u>M</u>
OBJECT_ID	Spacecraft identifier of the object corresponding to the attitude data to be given. While there is no CCSDS-based restriction on the value for this keyword, it is recommended to use international designators from the UN Office of Outer Space Affairs (Ref. [2]). Recommended values have the format YYYY-NNNP{PP}, where: YYYY = Year of launch. NNN = Three-digit serial number of launch in year YYYY (with leading zeros). P{PP} = At least one capital letter for the identification of the part brought into space by the launch. In cases where the asset is not listed in Ref. [2], the UN Office of Outer Space Affairs designator index format is not used, or the content cannot be disclosed, the value should be set to UNKNOWN.	E	2000-052A	¥es <u>M</u>

4-43-3

Keyword	Description	N/E	Values	Man dator yM/ O
CENTER_NAME	Celestial body orbited by the object-and origin of the reference frame, which may be a natural solar system body (planets, asteroids, comets, and natural satellites), including any planet barycenter or the solar system barycenter. The set of allowed values is described in ANNEX B, Section B8 B8. The value should be taken from the orbit center column in the SANA orbit centers registry at https://sanaregistry.org/r/orbit_centers-	Е	EARTH STS 106	No O
REF_FRAME_A	Name of the reference frame that defines the starting point of the transformation. The set of allowed values is described in ANNEX B, Section B3.	Е	ICRF SC_BODY_1 INSTRUMENT_A	¥es <u>M</u>
REF_FRAME_B	Name of the reference frame that defines the end point of the transformation. The set of allowed values is described in ANNEX B, Section B3.	Е	SC_BODY_1 INSTRUMENT_A	Yes M
TIME_SYSTEM	Time system used for both attitude ephemeris data and metadata. The set of allowed values is described in ANNEX B, Section B2.	Е	UTC TAI	Yes <u>M</u>
START_TIME	Start of TOTAL time span covered by attitude ephemeris data immediately following this metadata block. For format specification, see 7.7.	Е	1996-12- 18T14:28:15.11 72	<u>M</u> Yes
USEABLE_STA RT_TIME	Optional start of USEABLE time span covered by attitude ephemeris data immediately following this metadata block. To allow for proper interpolation near the beginning/end of the attitude ephemeris data block, it may be necessary to utilize this keyword with values within the time span covered by the attitude ephemeris data records as denoted by the START / STOP_TIME time tags. The USEABLE_START_TIME time tag of a new block of ephemeris data must be greater than or equal to the USEABLE_STOP_TIME time tag of the previous block. For format specification, see 7.7.	E	1996-12- 18T14:28:15.11 72	NoQ
USEABLE_STO P_TIME	Optional stop of USEABLE time span covered by attitude ephemeris data immediately following this metadata block. See also USEABLE_START_TIME. For format specification, see 7.7.	E	1996-12- 18T14:28:15.11 72	No O

Keyword	Description	N/E	Values	Man dator yM/ O
STOP_TIME	End of TOTAL time span covered by the attitude ephemeris data immediately following this metadata block. For format specification, see 7.7.	Е	1996-12- 18T14:28:15.11 72	Yes <u>M</u>
ATTITUDE_TY PE	The format oftype of information contained in the data lines in the message. This keyword must have a value from the set specified at the right. See 4.2.5 Table 4-4 for details of the data contained in each line.	N	QUATERNION QUATERNION/DERIVATIVE QUATERNION/ANGVEL EULER_ANGLE EULER_ANGLE/DERIVATIVE EULER_ANGLE/ANGVEL SPIN SPIN/NUTATION	¥es <u>M</u>
EULER_ROT_S EQ	The rotation sequence of the Euler angles that rotate from REF_FRAME_A to REF_FRAME_B. This keyword is applicable only if ATTITUDE_TYPE specifies the use of Euler angles.	Е	ZXZ XYZ	<u>NoO</u>
ANGVEL_FRAM E	The frame of reference in which angular velocity data are specified. The allowed values are shown at right. This keyword is applicable only if ATTITUDE_TYPE specifies the use of rates angular velocities in conjunction with either quaternions or Euler angles.	N	REF_FRAME_A REF_FRAME_B	<u>O</u> No
INTERPOLATI ON_METHOD	Recommended interpolation method for attitude ephemeris data in the block immediately following this metadata block.	Е	linear HERMITE LAGRANGE	<u>O</u> No
INTERPOLATI ON_DEGREE	Recommended interpolation degree for attitude ephemeris data in the block immediately following this metadata block. It must be an integer value. This keyword must be used if the 'INTERPOLATION_METHOD' keyword is used.	Е	5	<u>O</u> Ne
META_STOP	The end of a metadata block within the message. The AEM message contains both metadata and attitude ephemeris data; this keyword is used to delineate the end of a metadata block within the message (metadata are provided in a block, surrounded by 'META_START' and 'META_STOP' markers to facilitate file parsing). This keyword must appear on a line by itself.	n/a	n/a	Yes <u>M</u>

4.2.4 AEM DATA

4.2.4.1 The data section of the AEM shall be delineated by the 'DATA_START' and 'DATA_STOP' keywords. These keywords are intended to facilitate parsing, and will also serve to advise the recipient that all the attitude data records associated with the immediately preceding AEM Metadata section have been received (the rationale for including this is that data volumes can be very large, so knowing when the data begins and ends is desirable). The AEM recipient may process the 'DATA_STOP' keyword as a 'local' end-of-file marker.

4.2.5 ATTITUDE EPHEMERIS DATA LINES

4.2.5.14.2.4.2 For AEMs, each set of attitude ephemeris data, including the time tag, must be provided on a single line. Table <u>4-44-4</u> lists the allowable combinations of data items, with each item following the same definition as given in <u>tableTable 3-33-3</u>. The order in which the data items are given shall be fixed as in <u>tableTable 4-44-4</u>, with the exception of Euler angle data for which the order of angle data must correspond with the sequence given by EULER_ROT_SEQ.

4.2.5.24.2.4.3 The choice of one of the formats in table 4-44-4 shall be specified via the ATTITUDE_TYPE keyword in the metadata. See ANNEX C for more information on the data.

Table 4-4: Types of Attitude Ephemeris Data Lines

Keyword	Value	Ephemeris Data Line	
Quaternion Options (note that keywords	only appear in Metadata section, and values	in Data section)	
	QUATERNION	Epoch, Q1, Q2, Q3, QC	
ATTITUDE_TYPE	QUATERNION/DERIVATIVE	Epoch, Q1, Q2, Q3, QC, Q1_DOT, Q2_DOT, Q3_DOT, QC_DOT	
	QUATERNION/ANGVEL	<pre>Epoch, Q1, Q2, Q3, QC, ANGVEL_X, ANGVEL_Y, ANGVEL_Z</pre>	
Euler Angle Options (note that keyword	s only appear in Metadata section, and values	s in Data section)	
	EULER_ANGLE	Epoch, ANGLE_1, ANGLE_2, ANGLE_3	
ATTITUDE_TYPE	EULER_ANGLE/DERIVATIVE	Epoch, ANGLE_1, ANGLE_2, ANGLE_3, ANGLE_1_DOT, ANGLE_2_DOT, ANGLE_3_DOT	
	EULER_ANGLE/ANGVEL	Epoch, ANGLE_1, ANGLE_2, ANGLE_3, ANGVEL_X, ANGVEL_Y, ANGVEL_Z	
Spin Axis Options (note that keywords	only appear in Metadata section, and values in	n Data section)	
	SPIN	Epoch, SPIN_ALPHA, SPIN_DELTA, SPIN_ANGLE, SPIN_ANGLE_VEL	
ATTITUDE_TYPE	SPIN/NUTATION	Epoch, SPIN_ALPHA, SPIN_DELTA, SPIN_ANGLE, SPIN_ANGLE_VEL, NUTATION, NUTATION_PER, NUTATION_PHASE	

4.2.5.34.2.4.4 The units used shall be the following:

- dimensionless: EPOCH, Q1, Q2, Q3, QC;
- 1/s: Q1_DOT, Q2_DOT, Q3_DOT, QC_DOT;
- deg: ANGLE_1, ANGLE_2, ANGLE_3, SPIN_ALPHA, SPIN_DELTA, SPIN_ANGLE, NUTATION, NUTATION_PHASE;
- deg/s: ANGLE_1_DOT, ANGLE_2_DOT, ANGLE_3_DOT, ANGVEL_X, ANGVEL_Y, ANGVEL_Z, SPIN_ANGLE_VEL;
- s: NUTATION_PER.

Note NOTE: The units do not appear in the AEM data lines. The data lines only contain values.

4-83-3

4.2.5.44.2.4.5 FORMAT

4.2.5.4.14.2.4.5.1 At least one space character must be used to separate the items in each attitude ephemeris data line.

4.2.5.4.24.2.4.5.2 See Section 7.7 for instructions about how to format the EPOCH. Note that any epoch specified denotes spacecraft event time.

4.2.5.4.34.2.4.5.3 In specifying the EPOCH of the message, care must be taken if UTC is used as the TIME_SYSTEM. If an AEM message reports attitude during a time of leap seconds, the system making use of the message should be able to recognize 60 as a valid value for the seconds (e.g., 20xx-xx-xxT23:59:58.000 .. 20xx-xx-xxT23:59:59.000 .. 20xx-xx-xxT23:59:60.000 .. 20xx-xx-xxT00:00:00.000).

4.2.5.54.2.4.6 TECHNICAL

4.2.5.5.14.2.4.6.1 Attitude ephemeris data lines in a given data block must be ordered by increasing time, and time tags must not be repeated. The time step duration may vary within a given AEM.

4.2.5.5.24.2.4.6.2 The TIME_SYSTEM value must remain fixed within an AEM segment.

4.2.5.5.34.2.4.6.3 The occurrence of a second (or greater) metadata block after some attitude ephemeris data shall indicate that interpolation using succeeding attitude ephemeris data with attitude ephemeris data occurring prior to that metadata block shall not be done. This method may be used for proper modeling of propulsive maneuvers or any other source of a discontinuity such as eclipse entry or exit.

4.2.5.5.44.2.4.6.4 Details about the interpolation method should be specified using the INTERPOLATION_METHOD and INTERPOLATION_DEGREE keywords within the AEM. All data blocks must contain a sufficient number of attitude ephemeris data records to allow the recommended interpolation method to be carried out consistently throughout the AEM.

4.2.64.2.5 **REMARKS**

4.2.6.14.2.5.1 It may become necessary to utilize particular orbit information to process Euler angle elements or a local orbit frame (e.g., LVLH, QSW) properly. An approach to this is to add a 'COMMENT' block specifying a particular OEM message (Ref. [6]) to use in conjunction with a particular AEM.

4.2.6.2 Specification of Euler angle rotations around only one or two axes may be handled by entering the appropriate sequence for the desired one or two axis rotation and freely choosing the final axis of rotation and giving a value of zero for the rotation angle.

5. ATTITUDE COMPREHENSIVE MESSAGE (ACM)

5.1 GENERAL

- **5.1.1** Attitude information may be exchanged between two participants using an Attitude Comprehensive Message (ACM). The ACM aggregates and extends APM and AEM content in a single hybrid message. The ACM simultaneously emphasizes flexibility and message conciseness by offering extensive optional standardized content while minimizing mandatory content.
- <u>5.1.2</u> The ACM shall be a plain text file consisting of attitude data for a single space object. It shall be easily readable by both humans and computers.
- 5.1.2 NOTE: A sequence of ACMs for either a single object or multiple objects may be aggregated into a single Navigation Data Message (NDM) XML file as shown in 6.8ANNEX TBD.
- <u>5.1.3</u> The ACM file-naming scheme should be mutually agreed between message exchange partners.
- <u>5.1.4</u> The method of exchanging ACMs should be mutually agreed between message exchange partners.
- **5.1.3** The ACM file-naming scheme should be mutually agreed between message exchange partners.
- **5.1.4** The method of exchanging ACMs should be mutually agreed between message exchange partners.
- **5.1.5** If attitude states are desired at arbitrary time(s) contained within the span of the attitude ephemeris, the message recipient is encouraged to use a suitable interpolation or propagation method. For times outside of supplied attitude state time spans or if the step size between attitude states is too large to support interpolation or propagation, optional dynamic parameters should be included with this message and the recipient must have a suitably-compatible attitude dynamics propagator.

NOTE 1: ——Detailed syntax rules for the ACM are specified in Section 7.

NOTE 2: Example ACMs are provided in ANNEX D.

5.2 ACM CONTENT/STRUCTURE

5.2.1 GENERAL STRUCTURE

- **5.2.1.1** The ACM shall be represented as a combination of the following as shown in <u>Table 5-1 Table 5-1</u>. The ordering of these sections is mandatory. The order of occurrence of the ACM sections shall be fixed as shown in <u>Table 5-1 Table 5-1</u>:
 - 1) one mandatory header;
 - 2) a single mandatory metadata section (data about data);
 - 3) optional data section(s), comprised of one or more data constituent types:
 - a. one or more optional attitude state time histories
 - b. one optional space object physical characteristics section
 - c. one or more optional covariance time histories
 - d. one or more optional maneuver specification section(s)
 - e. one optional attitude determination data section
 - <u>f.</u> one optional, user-defined data and supplemental comments (explanatory information).

f. ____

Table 5-1: ACM File Layout and Ordering Specification

Section	Content
Header	Mandatory: Header of message
Metadata	Mandatory: Metadata
	(Informational comments recommended but not required.)
Attitude State Time	Optional: One or more attitude state time histories (each consisting of one or
History	more attitude states). Referred to as Attitude in metadata.
Space Object Physical	Optional: Space object physical characteristics. Referred to as Physical in
Characteristics	metadata.
Attitude State	Optional: One or more covariance time histories (each consisting of one or more
Covariance Time	covariance matrices). Referred to as Covariance in metadata.
History	
Maneuver	Optional maneuver specifications. Referred to as Maneuver in metaldata.
Specification	
Attitude	Optional attitude determination data. Referred to as AD in metadata.
Determination Data	
User Defined	Optional: One or more user defined parameters. Referred to as User in metadata.
Parameters	

Table 5-1 ACM Layout and Ordering Specification

Section	Content	Status M/O
ACM Header	A single header of the message	<u>M</u>
ACM Metadata	A single metadata section (data about data)	<u>M</u>

5-23-3

	attitude data 1 i attitude data n	data description data lines data description data description data lines	One or more attitude state time histories (each consisting of one or more attitude states)	Q
	physical properties		A single space object physical characteristics section	<u>O</u>
<u>Data</u>	covariance data 1 covariance data n	data description data lines data description data lines	One or more covariance time histories (each consisting of one or more covariance matrices)	<u>O</u>
	maneuver data 1 maneuver data n		One or more maneuver specification sections	<u>O</u>
	attitude determination data		A single orbitattitude determination data section	<u>O</u>
	user-defined data		A single user-defined data section	<u>O</u>

5.2.2 GENERAL REQUIREMENTS

5.2.2 GENERAL REQUIREMENTS

The following requirements apply to all ACM sections and content:

- **5.2.2.1** The order of occurrence of ACM keywords shall be fixed as listed in the keyword value tables in the ACM section descriptions.
- **5.2.2.2** Within each section, note that keywords labeled as "mandatory" in the corresponding tables denotes those keywords that must be included in this section <u>if</u> that particular section is included. If a keyword is labeled as <u>mandatory optional</u> and is not provided, the default value specified in the corresponding table entry shall be used.
- 5.2.2.3 All time-tags may be specified by either a <u>(signed)</u> <u>double precision</u> relative time (e.g., 20157.26) measured in SI seconds with respect to the specified epoch time_-(e.g., the overarching <u>default value EPOCH_TZERO</u>) or <u>as an absolute time</u> (e.g., 2018-11-13T11:13:20.5Z <u>in CCSDS Time String A or B format, as formatted specified in Section 7.57.109) epoch time.</u>
- **5.2.2.35.2.2.4** Duplicate time tags shall not be permitted. Where one or more duplicate time tags are discovered, the former value(s) shall be supplanted by the single latter entry.
- **5.2.2.4** Since the entirety of that data block, all time-tags must adhere to either relative time, or absolute time, for the entirety of that data block. It is not permitted to An ACM must not mix relative and absolute time within the same data block.
- **5.2.2.5** Time tags of information within ordered sequences of ACM sections may be separated by uniform or non-uniform step size(s).
- 5.2.2.65.2.2.7 Time tags of one ACM section may or may not match those of another ACM section.

5.2.3 ACM HEADER

- **5.2.3.1** The header shall provide a CCSDS Attitude Data Message version number that identifies the format version; this is included to anticipate future changes. The version keyword shall be CCSDS_ACM_VERS and the value shall have the form of 'x.y', where 'y' is incremented for corrections and minor changes, and 'x' is incremented for major changes. Version 1.0 shall be reserved for the initial version accepted by the CCSDS as an official Recommended Standard ('Blue Book'). Testing shall be conducted using ACM version numbers less than 1.0 (e.g., 0.x). Participating agencies should specify in the ICD the specific ACM version numbers they will support.
- **5.2.3.2** The header shall include the CREATION_DATE keyword with the value set to the Coordinated Universal Time (UTC) when the file was created, according to reference Ref. [3][3] ASCII Time Code A or B. A description of ACM header keywords and values is provided in Table 5-2table 54-2.
- **5.2.3.3** The first header line must be the first non-blank line in the file.

5-43-3

- 5.2.3.4 <u>Table 5-2 Table 5-2</u> specifies the keywords for each header item, whether the values are normative (N) values or just examples (E), and whether they are mandatory (M) or optional (O).
- **5.2.3.5** Only those keywords shown in <u>Table 5-2 Table 5-2</u> shall be used in an ACM header.
- **5.2.3.6** The order of occurrence of these ACM header keywords shall be fixed as shown in Table 5-2 Table 5-2.

<u>Keyword</u>	Description	<u>N/E</u>	<u>Values</u>	<u>M/O</u>
CCSDS_ACM_VERS	Format version in the form of 'x.y', where 'y' is	<u>N</u>	2.0	<u>M</u>
	incremented for corrections and minor changes, and 'x' is incremented for major changes.			
COMMENT	Comments (allowed in the ACM Header only immediately after the ACM version number).	<u>E</u>	This is a comment	<u>O</u>
CREATION DATE	File creation date/time in UTC. (For format specification, see 7.7.)	<u>E</u>	2001-11-06T11:17:33 2002-204T15:56:23Z	<u>M</u>
<u>ORIGINATOR</u>	Creating agency. Value should come from the 'Abbreviation' column in the 'Organizations' registry of the SANA registry (https://sanaregistry.org/r/organizations).	<u>E</u>	CNES ESOC GSFC Other Agency	<u>M</u>
MESSAGE ID	ID that uniquely identifies a message from a given originator. The format and content of the message identifier value are at the discretion of the originator.	<u>E</u>	<u>201113719185</u> <u>ABC-12_34</u>	<u>O</u>

Table 5-2: ACM Header

Keyword	Description	Examples of Values	Mandato ry
CCSDS_ACM_VERS	Format version in the form of 'x.y', where 'y' is incremented for corrections and minor changes, and 'x' is incremented for major changes.	2.0	Yes
COMMENT	Comments (allowed in the ACM Header only immediately after the ACM version number).	COMMENT This is a comment	No
CREATION_DATE	File creation date/time in UTC. (For format specification, see 7.7.)	2001-11-06T11:17:33 2002-204T15:56:23Z	Yes
ORIGINATOR	Creating agency. Value should come from the 'Abbreviation' column in the 'Organizations' registry of the SANA registry (https://sanaregistry.org/r/organizations).	CNES, ESOC, GSFC, GSOC, JPL, JAXA, Other Agency	Yes
MESSAGE_ID	ID that uniquely identifies a message from a given originator. The format and content of the message identifier value are at the discretion of the originator.	201113719185 ABC-12_34	No

5.2.4 ACM METADATA

5.2.4.1 <u>Table 5-3Table 5-3</u> specifies the metadata keywords, <u>whether the values are normative (N) values or just examples (E), and whether they are mandatory (M) or optional (O)</u>. Only those keywords shown in <u>Table 5-3Table 5-3</u> shall be used in ACM metadata.

5.2.4.2 The "ACM Metadata" section is mandatory; "mandatory" in the context of Table 5-3 denotes those keywords which must be included in this section.

<u>5.2.4.2</u> Each metadata section must begin with keyword META_START and end with keyword META_STOP.

The ACM shall only contain a single metadata section in the entire scope of the message.

5.2.4.3

5.2.4.4 The order of occurrence of these ACM metadata keywords shall be fixed as shown in Table 5-3Table 5-3.

5.2.4.5 The TIME_SYSTEM value must remain fixed within an ACM.

5.2.4.61.1.1.1 The ACM shall only contain a single metadata section in the entire scope of the message.

NOTE <u>1</u>—For some keywords (OBJECT_NAME, OBJECT_ID) there are no definitive lists of authorized values maintained by a control authority; the references listed in 1.5 are the best known sources for authorized values to date.

NOTE 2 — While specification of OBJECT_NAME, OBJECT_DESGINATOR, and INTERNATIONAL_DESIGNATOR are individually optional, it is recommended that at least one of these three keywords be supplied.

NOTE_2_3___Metadata fields which are relied upon by the subsequent optional ACM message subtypes (e.g. attitude state time histories, maneuver specification, etc.) are designated as such in the right-hand column of <u>Table 5-3Table 5-3</u>.

5-63-3

Table 5-3: ACM Metadata

Keyword	Description	Examp les of Values	<u>Values</u>	Mand atory M/O
META_START	Start of the metadata section	<u>N/E</u> <u>n/an/a</u>	n/a	n/aYes
COMMENT	Comments (allowed only at the beginning of the ACM Metadata). Each comment line shall begin with this keyword.	EThis is a commen	This is a comment.	<u>M</u> <u>ONo</u>
CLASSIFICATION	User-defined free-text message classification/caveats of this ACM. It is recommended that selected values be pre-coordinated between exchanging entities by mutual agreement.	ESBU "Operat or- propriet ary data; seconda EY distribut ion not permitte d"	SBU "Operator-proprietary data; secondary distribution not permitted"	<u>ONe</u>
OBJECT NAME	Spacecraft name of the object corresponding to the attitude data to be given. There is no CCSDS-based restriction on the value for this keyword, but it is recommended to use names from the UN Office of Outer Space Affairs (Ref. [2]).	E	SPOT ENVISAT IRIDIUM INTELSAT	M
INTERNATIONAL DESIG NATOR	Free text field containing an international designator for the object as assigned by the UN Committee on Space Research (COSPAR) and the US National Space Science Data Center (NSSDC). Such designator values have the following COSPAR format: YYYY-NNNP{PP}, where: YYYY = Year of launch. NNN = Three-digit serial number of launch in year YYYY (with leading zeros). P{PP} = At least one capital letter for the identification of the part brought into space by the launch. In cases where the object has no international designator, the value UNKNOWN may be used.	<u>E</u>	2000-052A 1996-068A 2000-053A 1996-008A UNKNOWN	0
CATALOG NAME	Free text field containing the satellite catalog source (or source agency or operator, value to be drawn from the abbreviated "Organizations" name column of the SANA registry at https://www.sanaregistry.org/r/organizations) from which OBJECT_DESIGNATOR was obtained.	<u>E</u>	CSPOC RFSA ESA COMSPOC	<u>O</u>
OBJECT DESIGNATOR	Free text field specification of the unique satellite identification designator for the object, as reflected in the catalog whose name is "CATALOG NAME". If the ID is not known (uncorrelated object), "UNKNOWN" may be used (or this keyword omitted).	<u>E</u>	22444 18SPCS 18571 2147483648_04ae[]d84c UNKNOWN	<u>0</u>
ORIGINATORPOC	Free text field containing Programmatic or Technical Point-of-Contact (PoC) for ACM	EMs. Rodgers	Ms. Rodgers	<u>O</u> No
ORIGINATOR POSITION	Free text field containing contact position of the PoC	<u>E</u>	GNC Engineer ACS Design Lead	<u>O</u>
ORIGINATORPHONE	Free text field containing PoC phone number	<u>E</u> +49615 130312	+49615130312	<u>O</u> No

Keyword	Description	Examp	Values	Mand
•	_	les of		atory
		Values		M/O
		N/E		
ORIGINATOR POSITION	Free text field containing contact position of the PoC	GNC		No
ORIGINATION_TOSTITON	The text field containing contact position of the Foc	Enginee		110
		r		
		ACS		
		Design		
		Lead		
ORIGINATOR_ADDRESS	Free text field containing Technical PoC information	EJANE.		<u>O</u> No
	for ACM creator (suggest email, website, or physical	DOE@	SOMEWHERE.NET	
	address, etc.)	SOME		
		WHER		
		E.NET		ON
ODM_MSG_LINK	Free text field containing a unique identifier of Orbit	EODM_		<u>O</u> No
	Data Message(s) that are linked (relevant) to this	MSG_1	ORB_ID_0123	
	Attitude Data Message	2345.txt		
		ORB_I D_0123		
ODVECTE MANGE	0 0 0 1 1 1 1	SPOT.		Yes
OBJECT_NAME	Spacecraft name of the object corresponding to the	ENVIS		108
	attitude data to be given. There is no CCSDS based restriction on the value for this keyword, but it is	AT,		
	recommended to use names from the UN Office of	IRIDIU		
	Outer Space Affairs (Ref. [2]).	M,		
	Outer Space Arrans (Ref. [2]).	INTELS		
		AT		
INTERNATIONAL_DESIG	Free text field containing an international designator	2000-		No200
NATOR	for the object as assigned by the UN Committee on	052A		0-052A
	Space Research (COSPAR) and the US National Space	1996-		1996-
	Science Data Center (NSSDC). Such designator values	068A		068A
	have the following COSPAR format:	2000-		2000-
	YYYY NNNP(PP), where:	053A		053A
	YYYY = Year of launch.	1996-		1996-
	NNN = Three-digit serial number of launch in year	A800		008A
	YYYY (with leading zeros).	UNKNO		UNKN
		WN		OWN
	P{PP} = At least one capital letter for the			
	identification of the part brought into			
	space by the launch.			
	In cases where the object has no international			
~ · = · · · · · · · · · · · ·	designator, the value UNKNOWN may be used.			00000
CATALOG_NAME	Free text field containing the satellite catalog source	CSPOC		CSPOC
	(or source agency or operator, value to be drawn from	RESA		No.
	the abbreviated "Organizations" name column of the	ESA		RFSA
	SANA registry	COMSP		ESA
	at https://www.sanaregistry.org/r/organizations) from	OC		COMSP
	which INTERNATIONAL_DESIGNATOR and OBJE	N/A		OC
	CT_DESIGNATOR were obtained).			N/A
	Free text field specification of the satellite catalog			
	source (or source agency or operator, value to be			
	drawn from the abbreviated "Organizations" name			
	column of the SANA registry at			
	https://www.sanaregistry.org/r/organizations) from			
	which the international designator and catalog ID were			
	obtained).			

Keyword	Description	Examp les of	<u>Values</u>	Mand atory
		Values N/E		M/O
OBJECT_DESIGNATOR	Free text field specification of the unique satellite identification designator for the object, as reflected in the catalog whose name is "CATALOG_NAME". If the ID is not known (uncorrelated object), "UNKNOWN" may be used (or this keyword omitted) It may be useful to provide the control authority/source of this ID as well (e.g., 18SPCS, ISON, independent key ID). If the ID is not known (uncorrelated object), "UNKNOWN" may be used.	22444 18SPCS 18571 214748 3648 0 4ae[]d 84e UNKNO WN		No224 44 18SPCS 18571 214748 3648_0 4ae[] d84c UNKN OWN N/A
CENTER_NAME	Celestial body orbited by the object-and origin of the reference frame, which may be a natural solar system body (planets, asteroids, comets, and natural satellites), including any planet barycenter or the solar system barycenter. The value should be taken from the orbit center column in the SANA orbit centers registry at https://sanaregistry.org/r/orbit_centers . The set of allowed values is described in ANNEX B, Section B8B8.	EEART H EARTH BARYC ENTER MOON	EARTH BARYCENTER MOON	No O
TIME_SYSTEM	Time system used for metadata, attitude data, covariance data. The set of allowed values is described in ANNEX B, Section B2.	EUTC TAI	UTC TAI	Yes <u>M</u>
EPOCH_TZERO	Epoch from which all ACM relative times are referenced. (For format specification, see 7.7). The time scale for EPOCH_TZERO is the one specified by "TIME_SYSTEM" keyword in the metadata section.	E2001- 11- 06T00:0 0:00	2001-11-06T00:00:00	Yes <u>M</u>
ACM_DATA_ELEMENTS	Comma-delimited list of elements of information data blocks included in this message. The order shall be the same as the order of the data blocks in the message. Values shall be confined to the following list: ATT, PHYS, COV, MAN, AD, USER. If the ACM contains multiple ATT, COV, MAN data blocks (as allowed by Table 5-1), the corresponding ATT, COV, MAN entry shall be duplicated to match.	<u>E</u>	ATT, AD, USER ATT, ATT, PHYS ATT,COV,AD	<u>O</u>
ACM_DATA_ELEMENTS	Comma delimited list of elements of information data blocks included in this message. May include one or more ATT, COV, MAN (See Table 5-1). See Table 5-1.	ATTITUDE, PHYSICAL, MANEUVER, COVARIANCE, H21, AD, USER	ATT,ATT,PHYS ATT,COV,AD	No
START_TIME	Time of the earliest data contained in the ACM, specified as either a relative or absolute time tag.	E100.0 2020 10- 10T00:0 0:00	100.0 2020-10-10T00:00:00	<u>O</u> No

Keyword	Description	Examp les of Values N/E	<u>Values</u>	Mand atory M/O
STOP_TIME	Time of the latest data contained in the ACM, specified as either a relative or absolute time tag.	E1500.0 2020- 10- 11T00:0 0:00	1500.0 2020-10-11T00:00:00	<u>O</u> No
TAIMUTC_AT_TZERO	Difference (TAI – UTC) in seconds (i.e. total # leap seconds elapsed since 1958) as modeled by the message originator at epoch "EPOCH_TZERO".	<u>E</u> 37 [s]	<u>37</u>	<u>O</u> No
META_STOP	End of the metadata section	<u>n/a</u> n/a	<u>n/a</u>	n/a <u>Yes</u> <u>M</u>

5.2.5 ACM DATA: ATTITUDE STATE TIME HISTORY

5.2.5.1 <u>Table 5-4 Table 5-4</u> provides an overview of the ACM attitude state time history section. Only those keywords shown in <u>Table 5-4 Table 5-4</u> shall be used in ACM attitude state time history data specification.

5.2.5.2 Keyword values shall be provided in the units specified in the Units column of Table 5-4.

5.2.5.3 <u>5.2.5.2</u> The order of occurrence of these ACM Attitude State Time History keywords shall be fixed as shown in <u>Table 5-4Table 5-4</u>.

5.2.5.4 The "ACM Data: Attitude State Time History" section is optional; "mandatory" in the context of Table 5 4 denotes those keywords which must be included in this section if this section is included.

5.2.5.55.2.5.3 Each attitude state time history data block must begin with keyword ATT_START and end with keyword ATT_STOP.

5.2.5.65.2.5.4 Each keyword shall appear on a line by itself.

5.2.5.75.2.5.5 Multiple Attitude State Time History blocks should appear in an ACM if:

5.2.5.7.15.2.5.5.1 They are delimited by separate ATT_START and ATT_STOP keywords.

<u>5.2.5.7.25.2.5.5.2</u> Each <u>orbit attitude</u> state data block should <u>differ from all others in at least one of the following respects</u> be unique from all others in at least one of the following respects:

- 1) The selected attitude state set (ATT_STATES) is unique
- 2) The Attitude State Time History is based upon a unique attitude determination solution

- 3) The transformations frames are unique (REF_FRAME_A, REF_FRAME_B)
- 4) The data interval timespan is unique (i.e., has no overlap with any other data interval(s)).

5.2.5.8 All attitude state values in the ACM data shall be time-tagged by a relative time value measured with respect to the epoch time specified via the EPOCH_TZERO keyword.

5.2.5.9 Each attitude state time history shall be time-ordered to be monotonically increasing, with the exception that the message creator may indicate a change in state over which interpolation or propagation should not be performed by providing exactly two consecutive lines containing a duplicate timestamp (e.g. following application of a maneuver or spacecraft or orbit event). In the case of such a duplicate timestamp, interpolation or propagation prior to the duplicate timestamp shall use the first of the two duplicate timestamp attitude states, and interpolation or propagation after the duplicate timestamp shall use the second of the two.

5.2.5.105.2.5.6 If the user includes attitude states at key mission event times, it is recommended that those mission event states be annotated as such by a descriptive comment line(s) immediately following the ATT_START keyword.

5.2.5.115.2.5.7 Time tags of consecutive attitude states within the ordered sequence may be separated by uniform or non-uniform step size(s).

5.2.5.125.2.5.8 Attitude state time tags may or may not match those of maneuver or covariance time histories.

5.2.5.135.2.5.9 At least one space character must be used to separate the items in each attitude data line.

Table 5-4: ACM Data: Attitude State Time History

Keyword	Description	Units	Examples of	Manda
			Values	toryM/
				<u>O</u>
ATT_START	Start of an attitude state time history section	n/a	n/a	<u>YesM</u>
COMMENT	Comments allowed only immediately after the	n/a	COMMENT This is a	<u>O</u> No
	ATT_START keyword		comment	
ATT_ID	Optional alphanumeric free-text string containing the	n/a	ATT_20160402_XYZ	<u>O</u> No
	identification number for this attitude state time history.			
ATT_PREV_ID	Optional alphanumeric free-text string containing the	n/a	ATT_20160401_XYZ	<u>O</u> No
	identification number for the previous attitude time			
	history block. Note: if the message is not part of a			
	sequence of attitude time histories or if this attitude time			
	history is the first in a sequence of orbit time histories,			
	then ATT_PREV_ID should be excluded from this			
	message.			

ATT_BASIS	Basis of this attitude state time history data, this is a text field with the following suggested values: 1. "PREDICTED" 2. "DETERMINED_GND" when estimated by post-	n/a	PREDICTED	<u>O</u> No
	processing attitude sensor data on the ground 3. "DETERMINED_OBC" when estimated onboard using onboard sensor data 4. "SimulatedSIMULATED" for future mission design			
REF_FRAME_A	or other testing purposes Name of the reference frame that defines the starting point of the transformation. The set of allowed values is described in ANNEX B, Section B3.	n/a	J2000	Yes <u>M</u>
REF_FRAME_B	Name of the reference frame that defines the end point of the transformation. The set of allowed values is described in ANNEX B, Section B3.	n/a	SC_BODY	Yes <u>M</u>
NUMBER_STATES	Number of data states included. States to be included are attitude states and optional rate states.	n/a	3 4 7	Yes <u>M</u>
ATT_TYPE	Type of attitude data, selected per ANNEX B, Section B4 B4. Attitude states must always be listed before RATE_STATES. Attitude data must always be listed before rate data. The units that shall be used are given in ANNEX B, Section B4. If ATT_TYPE = EULER_ANGLES, data included will have units of degrees.	n/a	QUATERNION EULER_ANGLES DCM	<u>M</u> Yes
RATE_TYPE	Type of rate data, selected per ANNEX B, Section-B4 B4. If rate data is included, NUMBER_STATES must be at least 6 to include both attitude and rate data. The units that shall be used are given in ANNEX B, Section B4. If RATE_TYPE = ANGVEL or GYRO_BIAS, data included will have units of deg/sec.	n/a	ANGVEL GYRO_BIAS Q_DOT NONE	NoO_
< Insert attitude lines here_>	Data lines. For the data units, see above (ATT_TYPE and RATE_TYPE keywords).			<u>M</u> Yes
ATT_STOP	End of an attitude state time history section	n/a	n/a	<u>M</u> Yes

5.2.6 ACM DATA: SPACE OBJECT PHYSICAL CHARACTERISTICS

- **5.2.6.1** <u>Table 5-5</u> provides an overview of the ACM space object physical characteristics section. Only those keywords shown in <u>Table 5-5</u> shall be used in ACM space object physical characteristics data.
- **5.2.6.2** Keyword values shall be provided in the units specified in <u>Table 5-5Table 5-5</u>.
- **5.2.6.3** The order of occurrence of these ACM Space Objects Physical Characteristics keywords shall be fixed as shown in <u>Table 5-5Table 5-5</u>.
- **5.2.6.4** The "ACM Data: Space Object Physical Characteristics" section is optional; "mandatory" in the context of Table 5–5 denotes those keywords which must be included in this section if this section is included.

5.2.6.55.2.6.4 Only one space object physical characteristics section shall appear in an ACM.

5.2.6.65.2.6.5 The space object physical characteristics data section in the ACM shall be indicated by two keywords: PHYS_START and PHYS_STOP.

5.2.6.75.2.6.6 Further definition of Space Object Physical Characteristics parameters is provided in <u>Ref. [IH2]</u>.

Table 5-5: ACM Data: Space Object Physical Characteristics

Keyword	Description	Units	Examples of Values	Mandat oryM/O
PHYS_START	Start of a Space Object Physical Characteristics specification	n/a	n/a	<u>M</u> Yes
COMMENT	Comments allowed only immediately after the PHYS_START keyword.	n/a	COMMENT This is a comment	No O
DRAG_COEF	<u>Drag coefficient</u>	<u>n/a</u>	2	<u>ONo</u>
<u>WET_</u> MASS	Total S/CSpace object total m-Mass_at the <u>current</u> reference epoch "EPOCH_TZERO"	kg	500.0	<u>O</u> No
DRY_MASS	Space object dry mass (without propellant)	kg	<u>750.0</u>	<u>O</u> No
CP REF FRAME	Coordinate system for the center of pressure vector. The set of allowed values is described in ANNEX B, Section B3 B3.	<u>n/a</u>	SC BODY 1	<u>NoO</u>
СР	Vector location of spacecraft center of pressure for determining solar pressure torque, measured from the spacecraft center of mass. The coordinate frame is defined by CP REF FRAME. CP contains 3 elements, one for each axis represented in CP REF FRAME.	<u>m</u>	0.02 0.01 0.2	<u>ONo</u>
INERTIA_REF_F RAME	Coordinate system for the inertia tensor. The set of allowed values is described in ANNEX B, Section—B3 B3.	<u>n/a</u>	SC_BODY_1	<u>ONo</u>
IXX	Moment of Inertia about the X-axis of the the spacecraft's primary body frame defined by INERTIA REF FRAME. (e.g. SC_Body_1)	kg*m**2	1000.0	<u>O</u> No
IYY	Moment of Inertia about the Y-axis	kg*m**2	800.0	<u>O</u> No
IZZ	Moment of Inertia about the Z-axis	kg*m**2	400.0	<u>O</u> No
IXY	Inertia Cross Product of the X & Y axes	kg*m**2	20.0	<u>O</u> No
IXZ	Inertia Cross Product of the X & Z axes	kg*m**2	40.0	<u>O</u> No
IYZ	Inertia Cross Product of the Y & Z axes	kg*m**2	60.0	<u>O</u> No
CP	Vector location of spacecraft center of pressure for determining solar pressure torque, measured from the spacecraft center of mass in the spacecraft's primary body frame (e.g. SC_Body_1).	m	[0.02, 0.01, 0.2]	No
DRAG_COEF	Drag coefficient	n/a	2	No
PHYS_STOPFUEL _MASS	Fuel mass	kg	750.0	No
PHYS_STOP S_STOP	End of a Space Object Physical Characteristics specification	n/a	n/a	Yes <u>M</u>

5.2.7 ACM DATA: ATTITUDE STATE COVARIANCE TIME HISTORY

- **5.2.7.1** <u>Table 5-6</u> provides an overview of the ACM attitude state covariance time history section. Only those keywords shown in <u>Table 5-6</u> shall be used in ACM covariance time history data specification.
- **5.2.7.2** Each attitude state covariance time history data block must begin with keyword COV_START and end with keyword COV_STOP.
- **5.2.7.3** Multiple covariance data blocks may appear in an ACM only if they are delimited by separate COV_START and COV_STOP keywords.
- **5.2.7.4** Each attitude state covariance data block should be uniquediffer from all others in at least one of the following respects:
 - 1) the covariance time history basis (PREDICTED, DETERMINED, SIMULATEDION, OTHER)
 - 2) the covariance time history is based upon a unique attitude determination solution or simulation
 - 3) the data interval timespan is unique (i.e., has no overlap with any other data interval(s))

5.2.7.5 All covariance matrices in the ACM data shall be time-tagged by a relative time value measured with respect to the epoch time specified via the EPOCH_TZERO keyword.

5.2.7.65.2.7.5 Each attitude state covariance time history shall be time-ordered to be monotonically increasing.

5.2.7.7 5.2.7.6 If the user includes attitude state covariances at key mission events or times, it may be useful to provide times, names, and significance for such mission events in descriptive comment line(s) immediately following the COV_START keyword.

5.2.7.8 Values in the covariance matrix shall be only main diagonal elements provided on a single line directly following the time tag specification.—Off-diagonal elements may be defined in a user-defined block.

5.2.7.95.2.7.8 Values in the attitude state covariance matrix shall be expressed in the applicable reference frame specified via the 'COV_REF_FRAME' keyword.

Keyword	Description	Units	Examples of Values	Man dator
				<u>yM/</u> <u>O</u>
COV_START	Start of a covariance time history section	n/a	n/a	<u>YesM</u>
COMMENT	Comments allowed only immediately after the COV_START keyword	n/a	COMMENT—This is a comment	NoO
COV_ID	Optional alphanumeric free-text string containing the identification number for this attitude covariance time history block	n/a	COV_20160402_XYZ	<u>O</u> No

Table 5-6:—ACM Data: Covariance Time History

Keyword	Description	Units	Examples of Values	Man
				dator yM/ O
COV_PREV_ID	Optional alphanumeric free-text string containing the identification number for the previous covariance time history block.—Note: if the message is not part of a sequence of covariance time histories or if this covariance time history is the first in a sequence of covariance time histories, then COV_PREV_ID should be excluded from this message.	n/a	COV_20160401_XYZ	<u>O</u> No
ATTCOV_BASIS	Basis of this covariance time history data, this is a text field with the following suggested values: 1. "PREDICTED" 2. "DETERMINED_GND" when estimated by post-processing attitude sensor data on the ground 3.—"DETERMINED_OBC" when estimated onboard using onboard sensor data 4. "SimulatedSIMULATED" for future mission design or other testing purposes	n/a	PREDICTED	<u>O</u> No
COV_REF_FRAME	Reference frame of the covariance time history. The full set of values is enumerated in annex ANNEX BB, Section-B3 B3.	n/a	SC_BODY	<u>O</u> No
COV_TYPE	Indicates covariance composition.—Select from ANNEX BANNEX B, Section B6B6.	Deg, deg/sec <u>n</u> /a	ANGLE ANGLE_GYROBIAS	Yes <u>M</u>
< Insert covariance data here>				<u>M</u> Yes
COV_STOP	For the data units, see ANNEX B, Section B6. End of a covariance time history section	n/a	n/a	<u>M</u> Yes

5.2.8 ACM DATA: MANEUVER SPECIFICATION

- **5.2.8.1** <u>Table 5-7</u> provides an overview of the ACM maneuver specification section.—Only those keywords shown in table 5-7 Table 5-7 shall be used in the ACM maneuver specification.
- **5.2.8.2** Keyword values shall be provided in the units specified in the Units column of Table 5-7Table 5-7.

The order of occurrence of these ACM Maneuver Specification keywords shall be fixed as shown in <u>Table 5-7</u>Table 5-7.

- **5.2.8.3** Maneuver data in the ACM shall be indicated by two keywords:—MAN_START and MAN_STOP.
- **5.2.8.4** Multiple maneuver data blocks shall appear in an ACM only when delimited by separate MAN_START and MAN_STOP keywords.
- **5.2.8.5** The 'MAN_PURPOSE' keyword must appear before the first line of any maneuver time history data.
- **5.2.8.6** Attitude maneuver data in the ACM data shall be time tagged by a relative time value measured with respect to the epoch time specified via the EPOCH_TZERO keyword.

5-163-3

5.2.8.7 Each maneuver data block should be uniquediffer from all other maneuver data blocks in at least one of the following respects:

- 1) the maneuver purpose (MAN_PURPOSE) is unique
- 2) the data interval timespan is unique (i.e., has no overlap)

Table 5-7:-_ACM Data: Maneuver Specification

Keyword	Description	Units	Examples of Values	Manda tory <u>M/</u> <u>O</u>
MAN_START	Start of a maneuver data interval specification	n/a	n/a	Yes <u>M</u>
COMMENT	Comments allowed only immediately after the	n/a	COMMENT This	<u>NoO</u>
	MAN_START keyword.	,	is a comment	ON
MAN_ID	Optional alphanumeric free-text string containing the identification number for this maneuver	n/a	DH2018172	<u>O</u> No
MAN_PREV_ID	Optional alphanumeric free-text string containing the identification number for the previous maneuver block. Note: if the message is not part of a sequence of maneuver-s or if this maneuver is the first in a sequence of maneuvers, then MAN_PREV_ID should be excluded from this message.	n/a	DH2018171	<u>O</u> No
MAN_PURPOSE	The user may specify the intention(s) of the maneuver.—Multiple maneuver purposes may be provided as a comma-delimited list.—While there is no CCSDS-based restriction on the value for this keyword, it is suggested to use: Attitude adjust (ATT_ADJUST)Momentum desaturation (MOM_DESAT)Pointing Request Message (PRM_ID_xxxx)Science objective (SCI_OBJ)Spin rate adjust (SPIN_RATE_ADJUST)	n/a	ATT_ADJUST	No Yes M
MANBEGIN	Start time of actual maneuver, measured as a relative time with respect to EPOCH_TZERO	s	100.0	MNoYe
MANEND	End time of actual maneuver, measured as a relative time with respect to EPOCH_TZERO	s	120.0	MNoYe
MAN_DURATION	Length of maneuver, should only specify MAN_END or MAN_DURATION, not both	S	20.0	MNoYe
ACTUATOR_USED	Specifies the type of actuator used for the maneuver	n/a	ATT-THRUSTER RWA	No O
TARGET_MOMENTUM	If MAN_PURPOSE=MOM_DESAT, TARGET_MOMENTUM in SC_BODY, contains 3 elements for each of the 3 SC_BODY axes	N <u>*</u> -m <u>*</u> -s	[0_, -10_, 0]	<u>O</u> No
TARGET_ATTITUDE	If MAN_PURPOSE=ATT_ADJUST, target quaternion. Contains 4 elements in the order Q1, Q2, Q3, QC.	n/a	[00, 0, 0, 1]	<u>O</u> No
TARGET_SPINRATE	If MAN_PURPOSE=SPIN_RATE_ADJUST, target spin rate	deg/s	0.31	<u>O</u> No
MAN_STOP	End maneuver data interval specification	n/a	n/a	<u>YesM</u>

5.2.9 ACM DATA: ATTITUDE DETERMINATION DATA

- **5.2.9.1** <u>Table 5-8</u> provides an overview of the ACM attitude determination data section.—Only those keywords shown in <u>Table 5-8</u> shall be used in ACM attitude determination data specification.
- **5.2.9.2** At most, only one Attitude Determination Data section shall appear in an ACM.
- **5.2.9.3** Attitude determination data in the ACM shall be indicated by two keywords: AD_START and AD_STOP.
- **5.2.9.4** The attitude determination specification shall apply to all ACM attitude and covariance time history data sections that are based upon "determined" attitude solutions.

Table 5-8:-ACM Data: Attitude Determination Data

Keyword	Description	Units	Examples of Values	Man dator

AD_START	Start of an attitude determination data section	n/a	n/a	Yes <u>M</u>
COMMENT	Comments allowed only immediately after the AD_START keyword	n/a	COMMENT This is a comment	<u>O</u> No
AD_ID	Optional alphanumeric free-text string for this attitude determination.	n/a	AD_20190101	<u>O</u> No
AD_PREV_ID	Optional alphanumeric free-text string containing the identification number for the previous attitude determination block.—Note: if the message is not part of a sequence of attitude determination blocks—or if this attitude determination block is the first in a sequence of attitude determination blocks, then AD_PREV_ID should be excluded from this message.	n/a	AD_20190100	<u>O</u> No
AD_METHOD	Type of <u>attitude determination estimator method</u> used.—For further description see <u>ANNEX B, Section Annex B5B5</u> .	n/a	EKF ,-TRIAD, QUEST, BATCH, Q METHOD, FILTER SMOOTHER	<u>O</u> No
ATTITUDE_SOURCE	Source of attitude estimate, whether from a ground based estimator or onboard estimator	n/a	GND ,OBC	<u>O</u> No
NUMBER_STATES	Number of states if EKF, BATCH, or FILTER SMOOTHER is specified.	n/a	3 6 7	<u>O</u> No
ATTITUDE_STATES	Type of attitude data, selected per ANNEX B, Section B4B4. Attitude states must always be listed before RATE_STATES.	n/a	QUATERNION	Yes <u>M</u>
COV_TYPE	Type of attitude error state included in the estimator. Select from <u>ANNEX B ANNEX B</u> , Section <u>B6-B6</u> .	n/a	ANGLE ANGLE_GYROBIAS NONE	No O
REF_FRAME_A	Name of the reference frame that defines the starting point of the transformation described by the attitude state in the estimator. The set of allowed values is described in ANNEX B, Section B3.	n/a	J2000	Yes <u>M</u>

5-183-3

Keyword	Description	Units	Examples of Values	Man dator yM/ O
REF_FRAME_B	Name of the reference frame that defines the ending point of the transformation described by the attitude state in the estimator. The set of allowed values is described in ANNEX B, Section B3.	n/a	SC_BODY	<u>M</u> Yes
RATE_STATES	Type of rate state included in the estimator, if RATE_STATES are included NUMBER_STATES must be at least 6 to include both ATTITUDE_STATES and RATE_STATES	deg/s	ANGVEL GYRO_BIAS	No O
SIGMA_U	Rate random walk if RATE_STATES=GYRO_BIAS	deg/s**1.5	3.7e-7	<u>O</u> No
SIGMA_V	Angle random walk if RATE_STATES=GYRO_BIAS	deg/s**0.5	1.3e-5	<u>O</u> No
RATE PROCESS NOI SE_STDDEV	Process noise standard deviation if RATE STATES=ANG VEL	deg/s**1.5	<u>5.1E-06</u>	<u>ONo</u>
NUMBER_SENSORS_ USED	Number of sensors used to provide estimator measurements	n/a	2 3	<u>O</u> No
SENSORS_USED_I	Types of sensors used in estimation, I = 1 to NUMBER_SENSORS_USED	n/a	AST ,-DSS GYRO	<u>O</u> No
NUMBER_SENSOR_ NOISE_COVARIANC E_I	Number of noise elements for sensor I.—For example, noise along horizontal and vertical directions of a CCD, or noise along x, y, and z axes of a sensor.	n/a	2 3	<u>O</u> No
SENSOR_NOISE_STD DEV_I	Standard deviation of sensor noise, size will be the same as NUMBER_SENSOR_NOISE_COVARIANCE_I	deg	£0.0097 , 0.0097]	<u>O</u> No
SENSOR_FREQUENC Y_I	Frequency of sensor I data	Hz	5	<u>O</u> No
RATE_PROCESS_NOI SE_STDDEV	Process noise standard deviation if RATE_STATES=ANG_VEL	deg/s**1.5	5.1E-06	No
AD_STOP	End of an attitude determination data section	n/a	n/a	Yes <u>M</u>

5.2.10 ACM DATA: USER-DEFINED PARAMETERS

5.2.10.1 A <u>single</u> section of <u>Uuser-Ddefined Pparameters <u>may be provided if necessaryis</u> <u>allowed.</u>—In principle, this provides flexibility, but also introduces complexity, non-standardization, potential ambiguity, and potential processing errors.—Accordingly, if used, the keywords and their meanings must be described in an ICD.—User-Defined Parameters, if included in an ACM, should be used as sparingly as possible; their use is not encouraged.</u>

5.2.10.2 The "ACM data: User Defined Parameters" section is optional; "mandatory" in the context of Table 5-9 denotes those keywords which must be included in this section if this section is included.

5.2.10.35.2.10.2 At most, only one User-Defined Parameters section shall appear in an ACM.

Each <u>U</u>user-<u>D</u>defined parameter line may be preceded by one or more comment lines.

<u>5.2.10.4</u> <u>Table 5-9</u> <u>P</u>provides an overview of the ACM <u>U</u>user-<u>D</u>defined data section.—Only those keywords shown in <u>Table 5-9</u> shall be used in ACM <u>U</u>user-<u>D</u>defined data specification.

Table 5-9: ACM Data: User-Defined Parameters

Keyword	Description	<u>Units</u>	Examples of Values	M/O
USER_START	Start of a Unser-Defined Pparameters data block	<u>n/a</u>	<u>n/a</u>	<u>M</u>
COMMENT	Comments allowed only immediately after the USER_START keyword. See 7.9 for formatting rules.	<u>n/a</u>	This is a comment	<u>O</u>
USER DEFINED x	User-Ddefined Pparameter, where 'x' is replaced by a variable length user specified character string. Any number of User-Ddefined Pparameters may be included, if necessary to provide essential information that cannot be conveyed in standard ACM keywords or in COMMENT statements	(variable)	FINE GUIDANCE SENSOR	<u>O</u>
USER_STOP	End of a Uuser-Defined Pparameters data block	<u>n/a</u>	<u>n/a</u>	<u>M</u>

5.2.10.5

Table 5 9: ACM Data: User Defined Parameters

Keyword	Description	Units	Examples of Values	Mandatory
USER_START	Start of a user-defined parameters data block	n/a	n/a	Yes
COMMENT	Comments allowed only immediately after the USER_START keyword. See 7.9 for formatting rules.	n/a	COMMENT This is a comment	No
USER_DEFINED_x	User-defined parameter, where 'x' is replaced by a variable length user specified character string. Any number of user defined parameters may be included, if necessary to provide essential information that cannot be conveyed in standard ACM keywords or in COMMENT statements		USER_DEFINED_S ENSOR = FINE_GUIDANCE_ SENSOR	No
USER_STOP	End of a user-defined parameters data block	n/a	n/a	Yes

6. CONSTRUCTING AN ADM/XML INSTANCE

6.1 OVERVIEW

- **6.1.1** This section provides detailed instructions for the user on how to create an XML message based on one of the KVN-formatted messages described in Sections 3 through 5 of this document. This section applies only to the XML representation of the ADM messages.
- **6.1.2** The ADM/XML schemas are available on the SANA Web site. SANA is the registrar for the protocol registries created under CCSDS. The ADM/XML schemas explicitly define the permitted data elements and values acceptable for the XML versions of the ADM messages. The location of the ADM/XML schemas is:

APM: https://sanaregistry.org/r/ndmxml/ndmxml-1.0-apm-2.0.xsd

AEM: https://sanaregistry.org/r/ndmxml/ndmxml-1.0-aem-2.0.xsd

ACM: https://sanaregistry.org/r/ndmxml/ndmxml-1.0-acm-2.0.xsd

6.1.3 Where possible these schemas use simple types and complex types used by the constituent schemas that make up Navigation Data Messages (see Ref. [4]).

6.2 ADM/XML BASIC STRUCTURE

- **6.2.1** Each ADM shall consist of a <header> and a <body>.
- <u>6.2.2</u> The <body> shall consist of one or more <segment> constructs (one for the APM, one or more for the AEM, one for the ACM).
- 6.2.3 Each < segment > shall consist of one < metadata > / < data > pair, as shown in .

NOTE: An AEM may have more than one segment, in which case the metadata/data pair is repeated in each segment.

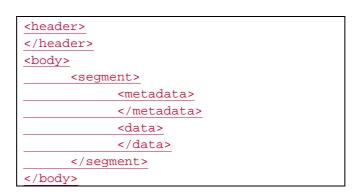


Figure 6-1: ADM/XML Basic Structure

6.3 ADM/XML TAGS

- **6.3.1** An ADM/XML tag shall be all uppercase if it corresponds directly to a KVN keyword from the Header, Metadata, or Data sections.
- 6.3.2 The 'CCSDS A*M VERS' keyword and value shall appear as XML attributes of the root element rather than as XML elements. This is an exception where there is not a strict correspondence between keywords in the KVN and tags in the XML implementations, specifically, the 'CCSDS A*M VERS' keywords from the Headers for the APM, AEM, and ACM respectively.
- 6.3.3 ADM/XML tags related to the XML message structure (i.e., that do not correspond directly to a KVN keyword) shall be in 'lowerCamelCase' (e.g., <header>, <segment>, <metadata>, <attitudeStateType>, etc.).

6.4 CONSTRUCTING AN ADM/XML INSTANCE

6.4.1 XML VERSION

6.4.1.1 The first line in the instantiation shall specify the XML version:

<?xml version="1.0" encoding="UTF-8"?>

This line must appear on the first line of each instantiation, exactly as shown.

6.4.2 BEGINNING THE INSTANTIATION: ROOT ELEMENT TAG

- **6.4.2.1** Each instantiation shall have a 'root element tag' that identifies the message type and other information such as where to find the applicable schema, required attributes, etc.
- **6.4.2.2** The root element tag in an ADM/XML instantiation shall be one of those listed in .

Table 6-1: ADM/XML Root Element Tags

Root Element Tag	Message Type
<apm></apm>	Attitude Parameter Message
<aem></aem>	Attitude Ephemeris Message
<acm></acm>	Attitude Comprehensive Message

 $6-2\frac{3-3}{3}$

6.4.2.3 The XML Schema Instance namespace attribute must appear in the root element tag of all ADM/XML instantiations, exactly as shown:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

6.4.2.4 If it is desired to validate an instantiation against the CCSDS Web-based schema, the xsi:noNamespaceSchemaLocation attribute must be coded as a single string of non-blank characters, with no line breaks, exactly as shown:

xsi:noNamespaceSchemaLocation="http://sanaregistry.org/r/ndmxml/ndmxml-1.0master.xsd"

- NOTE The length of the value associated with the xsi:noNamespaceSchemaLocation attribute can cause the string to wrap to a new line; however, the string itself contains no breaks.
- 6.4.2.5 For use in a local operations environment, the schema set may be downloaded from the SANA website to a local server that meets local requirements for operations robustness. See Ref. [4].
- 6.4.2.6 If a local version is used, the value associated with the xsi:noNamespaceSchemaLocation attribute must be changed to a URL that is accessible to the local server.
- 6.4.2.7 Two attributes shall appear in the root element tag of an ADM/XML single message instantiation, specifically, the CCSDS_xxx_VERS keyword that is also part of the standard KVN header, and the Blue Book version number. The final attributes of the root element tag shall be 'id' and 'version'.
- 6.4.2.8 The CCSDS_xxx_VERS keyword shall be supplied via the 'id' attribute of the root element tag. The 'id' attribute shall be 'id="CCSDS_xxx_VERS"', where xxx = AEM, APM, or ACM.
- 6.4.2.9 The version number of the Blue Book to which the schema applies shall be supplied via the 'version' attribute. The 'version' attribute shall be 'version="2.0"'.
- NOTE The following example root element tag for an APM instantiation combines all the directions in the preceding several subsections:

<?xml version="1.0" encoding="UTF-8"?>

<apm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>

xsi:noNamespaceSchemaLocation=

"http://sanaregistry.org/r/ndmxml/ndmxml-1.0-master.xsd"
id="CCSDS_APM_VERS" version="2.0">

6.4.3 THE STANDARD ADM/XML HEADER SECTION

- 6.4.3.1 The ADMs (APM, AEM, ACM) shall share a standard header format, with tags <header> and </header> (see Ref. [4]).
- **6.4.3.2** Immediately following the <header> tag the message may have any number of <COMMENT>elements.
- **6.4.3.3** The standard ADM header shall contain the <CREATION_DATE> and <ORIGINATOR> elements.
- **6.4.3.4** The standard ADM header may contain the <MESSAGE_ID> element.
- NOTE The rules for these keywords are specified in Table 3-1, Table 4-2 and Table 5-2.

 An example <header> section is shown immediately below:

6.4.4 THE ADM/XML BODY SECTION

- **6.4.4.1** After coding the <header>, the instantiation must include a <body> section.
- **6.4.4.2** Inside the <body> section must appear at least one <segment> section, depending on the particular ADM (APM, AEM, ACM).
- <u>6.4.4.3</u> Each <segment> must be made up of one <metadata> section and one <data> section.

6.4.5 THE ADM/XML METADATA SECTION

- **6.4.5.1** All ADMs must have at least one metadata section.
- **6.4.5.2** The Metadata section shall be delimited by the <metadata> element.
- **6.4.5.3** Immediately following the <metadata> tag, the message may have any number of <COMMENT></COMMENT> tag pairs.

NOTE: The <COMMENT></COMMENT> placement is regulated by the XML schema. Standard XML comments, i.e. of the form <!-- comment content --> may be placed anywhere in the Metadata Section because they are ignored by the XML schema validator.

6-43-3

6.4.5.4 Between the <metadata> and </metadata> tags, the keywords shall be the same as those in the Metadata sections in Sections 3 through 5 of this document, with exceptions as noted in the subsections that discuss creating instantiations of the specific messages.

6.4.6 THE ADM/XML DATA SECTION

- **6.4.6.1** All ADMs must have at least one data section.
- **6.4.6.2** The Data Section shall follow the Metadata Section and shall be delimited by the <data> element.
- **6.4.6.3** Immediately following the <data> tag, the message may have any number of <COMMENT></COMMENT> tag pairs.
- NOTE: The <COMMENT></COMMENT> placement is regulated by the XML schema. Standard XML comments, i.e. of the form <!-- comment content --> may be placed anywhere in the Data Section because they are ignored by the XML schema validator.
- 6.4.6.4 Between the <data> and </data> tags, the keywords shall be the same as those in the data sections in Sections 3 through 5 of this document, with exceptions as noted in the subsections that discuss creating instantiations of the specific messages.

6.5 CREATING AN APM INSTANTIATION

- **6.5.1** An APM instantiation shall be delimited by the <apm></apm> root element tags using the standard attributes documented in Ref. [4].
- NOTE Figures <<TBD>> provide example APM instantiations.
- 6.5.2 The final attributes of the <apm> tag shall be 'id' and 'version'; the order in which these attributes are specified is not significant.
- **6.5.3** The 'id' attribute shall be 'id="CCSDS APM VERS"'.
- 6.5.4 The 'version' attribute for the version of the APM described in Section 3 shall be 'version="2.0".
- **6.5.5** The standard ADM/XML header shall follow the <apm> tag (see Ref. [4]).
- **6.5.6** The APM <body> shall consist of a single <segment>.
- **6.5.7** The <segment> shall consist of a <metadata> section and a <data> section.
- **6.5.8** The keywords in the <metadata> and <data> sections shall be those specified in Section 3.2. The rules for including any of the keyword tags in the APM/XML are the same as those specified for the APM/KVN.

6.5.9 Tags for keywords shall be all uppercase, as in Section 3.2.

6.5.10 Several of the APM/XML keywords may have a unit attribute, if desired by the APM producer, as illustrated in the following table:

Table 6-2: APM XML Units

Keyword	<u>Units</u>	<u>Example</u>	
Q1_DOT	<u>1/s</u>	<q1_dot units="1/s">numeric-value</q1_dot>	
Q2_DOT	<u>1/s</u>	<q2_dot units="1/s">numeric-value</q2_dot>	
Q3_DOT	<u>1/s</u>	<q3_dot units="1/s">numeric-value</q3_dot>	
QC_DOT	<u>1/s</u>	<qc_dot units="1/s">numeric-value</qc_dot>	
ANGLE_1	deg	<pre><angle_1 units="deg">numeric-value</angle_1></pre>	
ANGLE_2	deg	<pre><angle_2 units="deg">numeric-value</angle_2></pre>	
ANGLE_3	deg	<pre><angle_3 units="deg">numeric-value</angle_3></pre>	
ANGLE_1_DOT	deg/s	<pre><angle_1_dot units="deg/s">numeric-value</angle_1_dot></pre>	
ANGLE_2_DOT	deg/s	<pre><angle_2_dot units="deg/s">numeric-value</angle_2_dot></pre>	
ANGLE_3_DOT	deg/s	<pre><angle_3_dot units="deg/s">numeric-value</angle_3_dot></pre>	
ANGVEL_X	deg/s	<pre><angvel_x units="deg/s">numeric-value</angvel_x></pre>	
ANGVEL_Y	deg/s	<pre><angvel_y units="deg/s">numeric-value</angvel_y></pre>	
ANGVEL_Z	deg/s	<pre><angvel_z units="deg/s">numeric-value</angvel_z></pre>	
SPIN_ALPHA	deg	<pre><spin_alpha units="deg">numeric-value</spin_alpha></pre>	
SPIN_DELTA	deg	<pre><spin_delta units="deg">numeric-value</spin_delta></pre>	
SPIN_ANGLE	deg	<pre><spin_angle units="deg">numeric-value</spin_angle></pre>	
SPIN_ANGLE_VEL	deg/s	<pre><spin_angle_vel units="deg/s">numeric-</spin_angle_vel></pre>	
		value	
NUTATION	deg	<pre><nutation units="deg">numeric-value</nutation></pre>	
NUTATION_PER	<u>s</u>	<pre><nutation_per units="s">numeric-value</nutation_per></pre>	
NUTATION_PHASE	deg	<pre><nutation_phase units="deg">numeric-</nutation_phase></pre>	
		value	
IXX	kg*m**2	<ixx units="kg*m**2">numeric-value</ixx>	
IYY	kg*m**2	<iyy units="kg*m**2">numeric-value</iyy>	
IZZ	<u>kg*m**2</u>	<izz units="kg*m**2">numeric-value</izz>	
IXY	<u>kg*m**2</u>	<ixy units="kg*m**2">numeric-value</ixy>	
IXZ	kg*m**2	<ixz units="kg*m**2">numeric-value</ixz>	
IYZ	<u>kg*m**2</u>	<iyz units="kg*m**2">numeric-value</iyz>	
MAN_DURATION	<u>s</u>	<pre><man_duration units="s">numeric-value</man_duration></pre>	
MAN_TOR_X	<u>N*m</u>	<man_tor_x units="N*m">numeric-value</man_tor_x>	
MAN_TOR_Y	<u>N*m</u>	<man_tor_y units="N*m">numeric-value</man_tor_y>	
MAN_TOR_Z	<u>N*m</u>	<man_tor_z units="N*m">numeric-value</man_tor_z>	

6.5.11 SPECIAL TAGS IN THE APM/XML BODY

NOTE – In addition to the APM keywords specified in Section 3, there are several special tags associated with the APM body as described in the next few subsections. The information content in the APM is separated into constructs referred to as 'logical blocks'. Special tags in the APM are used to encapsulate the information in the logical blocks of the APM.

6.5.11.1 The APM/XML tags used to delimit the logical blocks of the APM shall be drawn from the following table:

Table 6-3: Special Tags in the APM/XML Body

APM Logical Block	Associated APM/XML Tag
Attitude Quaternion	<quaternionstate></quaternionstate>
	<pre><quaternion></quaternion></pre>
	<pre><quaternionderivative></quaternionderivative></pre>
	The <quaternionstate> consists of the <quaternion></quaternion></quaternionstate>
	tag that contains the components of the quaternion itself, and the
	<pre><quaternionderivative> tag that contains the rate of</quaternionderivative></pre>
	change of the quaternion components
Euler Angle Elements	<pre><eulerangleelements></eulerangleelements></pre>
Angular Velocity Vector	<angularvelocity></angularvelocity>
<u>Spin</u>	<spin></spin>
<u>Inertia</u>	<inertia></inertia>
Maneuver Parameters	<pre><maneuverparameters></maneuverparameters></pre>

6.5.11.2 Between the begin tag and end tag (e.g., between <eulerAngleElements> and </eulerAngleElements>), the user shall place the keywords required by the specific logical block as specified in Section 3.

6.5.12 DISCUSSION

This non-normative subsection discusses and provides examples of the use of quaternion tags in the APM.

The XML representations of quaternions in the ADM constituent messages share a common quaternion definition. However, there are some differences in those definitions in the underlying KVN definitions of the APM and AEM. The following examples are meant to illustrate the standard for representing quaternions in the APM.

Here is an example APM quaternion construct:

<quaternionstate></quaternionstate>
<epoch>2004-100T00:00:00Z</epoch>
<pre><ref_frame_a>ICRF</ref_frame_a></pre>
<pre><ref_frame_b>ICRF</ref_frame_b></pre>
<quaternion></quaternion>
<q1>0.00005</q1>
<q2>0.87543</q2>
<q3>0.40949</q3>
<qc>0.25678</qc>

Here is an example APM quaternion construct with the optional derivative:

<pre><quaternionstate></quaternionstate></pre>
<pre><epoch>2004-100T00:00:00Z</epoch></pre>
<pre><ref_frame_a>ICRF</ref_frame_a></pre>
<pre><ref_frame_b>ICRF</ref_frame_b></pre>
<quaternion></quaternion>

<q1>0.00005</q1>
<q2>0.87543</q2>
<q3>0.40949</q3>
<qc>0.25678</qc>
<quaternionderivative></quaternionderivative>
<q1_dot>0.002</q1_dot>
<q2_dot>0.003</q2_dot>
<q3_dot>0.004</q3_dot>
<qc_dot>0.001</qc_dot>

6.6 CREATING AN AEM INSTANTIATION

- 6.6.1 An AEM instantiation shall be delimited with the <aem></aem> root element tags using the standard attributes documented in Ref. [4].
- <u>NOTE</u> Figures <<TBD>> provide example AEM instantiations.
- 6.6.2 The final attributes of the <aem> tag shall be 'id' and 'version'; the order in which these attributes are specified is not significant.
- **6.6.3** The 'id' attribute shall be 'id="CCSDS_AEM_VERS"'.
- **6.6.4** The 'version' attribute for the version of the AEM described in Section 4 shall be 'version="2.0"'.
- **6.6.5** The standard ADM/XML header shall follow the <aem> tag (see Ref. [4]).
- **6.6.6** The AEM <body> shall consist of one or more < segment> constructs (see Ref. [4], Section 3.4).
- **6.6.7** Each <segment> shall consist of a <metadata> section and a <data> section.
- **6.6.8** The keywords in the <metadata> and <data> sections shall be those specified in Section 4.2. The rules for including any of the keyword tags in the AEM/XML are the same as those specified for the AEM/KVN.
- **6.6.9** Tags for keywords shall be all uppercase as in Section 4.2.
- **6.6.10** Although units are not specified in the KVN representation of the AEM, several of the AEM/XML keywords may have a units attribute, if desired by the AEM producer, as illustrated in the following table:

6-83-3

Table 6-4: AEM XML Units

Keyword	<u>Units</u>	Example
Q1_DOT	<u>1/s</u>	<q1_dot units="1/s">numeric-value</q1_dot>
Q2_DOT	<u>1/s</u>	<q2_dot units="1/s">numeric-value</q2_dot>
Q3_DOT	<u>1/s</u>	<pre><q3_dot units="1/s">numeric-value</q3_dot></pre>
QC_DOT	<u>1/s</u>	<qc_dot units="1/s">numeric-value</qc_dot>
ANGLE_1	deg	<pre><angle_1 units="deg">numeric-value</angle_1></pre>
ANGLE_2	deg	<pre><angle_2 units="deg">numeric-value</angle_2></pre>
ANGLE_3	deg	<pre><angle_3 units="deg">numeric-value</angle_3></pre>
ANGLE_1_DOT	deg/s	<pre><angle_1_dot units="deg/s">numeric-value</angle_1_dot></pre>
ANGLE_2_DOT	deg/s	<pre><angle_2_dot units="deg/s">numeric-value</angle_2_dot></pre>
ANGLE_3_DOT	deg/s	<pre><angle_3_dot units="deg/s">numeric-value</angle_3_dot></pre>
ANGVEL_X	deg/s	<pre><angvel_x units="deg/s">numeric-value</angvel_x></pre>
ANGVEL_Y	deg/s	<pre><angvel_y units="deg/s">numeric-value</angvel_y></pre>
ANGVEL_Z	deg/s	<pre><angvel_z units="deg/s">numeric-value</angvel_z></pre>
SPIN_ALPHA	deg	<pre><spin_alpha units="deg">numeric-value</spin_alpha></pre>
SPIN_DELTA	deg	<pre><spin_delta units="deg">numeric-value</spin_delta></pre>
SPIN_ANGLE	deg	<pre><spin_angle units="deg">numeric-value</spin_angle></pre>
SPIN_ANGLE_VEL	deg/s	<pre><spin_angle_vel units="deg/s">numeric-</spin_angle_vel></pre>
		value
NUTATION	deg	<pre><nutation units="deg">numeric-value</nutation></pre>
NUTATION_PER	<u>s</u>	<pre><nutation_per units="s">numeric-value</nutation_per></pre>
NUTATION_PHASE	deg	<pre><nutation_phase units="deg">numeric-value</nutation_phase></pre> /NUTATION_PHASE>

6.6.11 SPECIAL TAGS IN THE AEM BODY

NOTE – In addition to the AEM keywords specified in Section 4.2, there are several special tags associated with the AEM body as described in the next few subsections.

6.6.11.1 The <attitudeState> tag shall be used to encapsulate the keywords associated with the structure of one of the attitude ephemeris data line types.

<u>**6.6.11.2**</u> The ADM/XML tags used within the <attitudeState> structure shall be drawn from the following table:

Table 6-5: Special Tags in the AEM/XML Body

AEM 'ATTITUDE TYPE' Metadata Value	Associated ADM/XML Tag in the <attitudestate></attitudestate>
QUATERNION	<quaternionstate></quaternionstate>
QUATERNION/DERIVATIVE	<quaternionderivative></quaternionderivative>
QUATERNION/ANGVEL	<quaternionangvel></quaternionangvel>
EULER ANGLE	<eulerangle></eulerangle>
EULER_ANGLE/DERIVATIVE	<pre><euleranglederivative></euleranglederivative></pre>
EULER_ANGLE/ANGVEL	<pre><eulerangleangvel></eulerangleangvel></pre>
SPIN	<spin></spin>
SPIN/NUTATION	<pre><spinnutation></spinnutation></pre>

6.6.11.3 Between the begin tag and end tag (e.g., between <quaternionState> and </quaternionState>), the user shall place the values required by the specific ephemeris data line type as specified in Section 4.2.4, Table 4-4.

6.6.11.4 In the XML representation of the AEM, the components of the <attitudeState> ephemeris data line must be represented with keywords (i.e., a tag).

6.6.11.5 The <attitudeState> keywords shall be the same as those defined for the same construct in the APM.

NOTE - In the KVN representations of the ephemeris data lines, keywords are not used. Rather, the components of the ephemeris data line appear in an order defined by the specific ephemeris data line type. In the XML representation, the tags described are fundamental to the format.

6.6.12 DISCUSSION

This non-normative subsection discusses and provides examples of the use of quaternion tags in the AEM.

The XML representations of quaternions in the ADM constituent messages share a common quaternion definition. However, there are some differences in those definitions in the underlying KVN definitions of the APM and AEM. As in the KVN representation of the quaternion, it is possible to code the tags for the individual components of the quaternion (Q1, Q2, Q3, QC) in either of the standard orders (i.e., scalar component first or last). The following examples are meant to illustrate the standard for representing quaternions in the AEM.

Here is an example AEM quaternion for a 'QUATERNION' ephemeris data line:

<attitudestate></attitudestate>
<quaternionstate></quaternionstate>
<epoch>2004-100T00:00:00</epoch>
<quaternion></quaternion>
<q1>0.00005</q1>
<q2>0.87543</q2>
<q3>0.40949</q3>
<qc>0.25678</qc>

Here is an example AEM quaternion for a 'QUATERNION/DERIVATIVE' ephemeris data line:

<attitudestate></attitudestate>
<quaternionderivative></quaternionderivative>
<epoch>2004-100T00:00:00</epoch>
<quaternion></quaternion>
<q1>0.00005</q1>
<q2>0.87543</q2>
<q3>0.40949</q3>
<qc>0.25678</qc>
<quaternionderivative></quaternionderivative>
<q1_dot>0.002</q1_dot>
<q2_dot>0.003</q2_dot>
<q3_dot>0.004</q3_dot>
<qc_dot>0.001</qc_dot>

6.7 CREATING AN ACM INSTANTIATION

- 6.7.1 An ACM instantiation shall be delimited with the <acm></acm> root element tags using the standard attributes documented in Ref. [4].
- 6.7.2 The final attributes of the <acm> tag shall be 'id' and 'version'.
- **6.7.3** The 'id' attribute shall be 'id="CCSDS_ACM_VERS"'.
- **6.7.4** The 'version' attribute for the version of the ACM described in Section ATTITUDE Comprehensive Message (ACM)5 shall be 'version="2.0"'.
- **6.7.5** The standard NDM header shall follow the <acm> tag (see Ref. [4]).
- **6.7.6** The ACM <body> shall consist of a single <segment> construct.
- **6.7.7** The <segment> shall consist of a <metadata> section and a <data> section.
- 6.7.8 The keywords in the <metadata> and <data> sections shall be those specified in Section 5. The rules for including any of the keyword tags in the ACM/XML are the same as those specified for the ACM in Section 5.
- **6.7.9** Tags for keywords specified in Section 5 shall be all uppercase.
- **6.7.10** Several of the ACM/XML keywords may have the unit attribute.
- **6.7.11** In all cases, the units shall match those defined in the tables in Section 5.
- **6.7.12** The following table Table 6-6 lists examples of the use of units in the ACM/XML.

Table 6-6. Example Units for ACM/XML/Table 6-6: Example Units for ACM/XML

Keyword	<u>Units</u>	<u>Example</u>
SENSOR_NOISE_STDDEV_I	deg	<pre><sensor_noise_stddev_i units="deg">numeric-</sensor_noise_stddev_i></pre>
		value
TARGET_SPINRATE	deg/s	<target_spinrate units="deg/s">numeric-</target_spinrate>
		value
SIGMA_V	deg/s**0.5	<sigma_v units="deg/s**0.5">numeric-</sigma_v>
		value
SIGMA_U	deg/s**1.5	<sigma_u units="deg/s**1.5">numeric-</sigma_u>
		value
SENSOR_FREQUENCY	Hz	<pre><sensor_frequency units="Hz">numeric-</sensor_frequency></pre>
		value
MASS	kg	<mass units="kg">numeric-value</mass>
IXX	kg*m**2	<ixx units="kg*m**2">numeric-value</ixx>
CP	m	<pre><cp units="m">numeric-value</cp></pre>
TARGET_MOMENTUM	N*m*s	<target_momentum units="N*m*s">numeric-</target_momentum>
		value
TAIMUTC_TZERO	S	<taimutc_tzero units="s">numeric-</taimutc_tzero>
	_	value

6.7.13 In addition to the ACM keywords specified in Section 5, there are some special tags associated with the ACM body as described in the next sections and given in Table 6-7.

Table 6-7. ACM Blocks and Tags. Table 6-7: ACM Blocks and Tags

ACM Logical Block	ADM/XML ACM Section Tags	<u>Data Line Tag</u>
Attitude Data	<u><att></att></u>	<attline></attline>
Space Object Physical Characteristics	<phys></phys>	<u>N/A</u>
Covariance Data	<u><cov></cov></u>	<covline></covline>
Maneuver Data	<u><man></man></u>	<u>N/A</u>
Attitude Determination Data	<u><ad></ad></u>	<u>N/A</u>
<u>User-Defined Parameters</u>	<user></user>	<u>N/A</u>

- 6.7.14 Between the begin tag and end tag (e.g., between <att> and </att>), the user must place the keywords required by the specific ACM section as specified in Section 5.
- 6.7.15 The data type of the <attLine> and <covLine> elements is "xsd:string", i.e., there is no validation of the contents and the line must be parsed by the ACM recipient to access the individual components of the attitude or covariance line.
- 6.7.16 The number of individual components in the multipartite <attLine> shall be determined by the number of components in the value for the ATT_TYPE keyword, plus one for the timetag.
- **6.7.17** If "N" is the dimension of the covariance matrix, then the number of individual components in the multipartite <covLine> shall be (N**2+N)/2, plus one for the timetagThe number of individual components in the multipartite <covLine> shall be determined by the number of components for the COV_TYPE keywords, plus one for the timeta.

6.8 CREATING A COMBINED INSTANTIATION

- **6.8.1** An ADM user may create an XML instance that incorporates any number of messages from Sections 3 through 5 of this document in a logical suite called an 'NDM (Navigation Data Message) Combined Instantiation'. Such combined instantiations may be useful for some situations, for example:
- A scenario where both a "with maneuver" message and a "without maneuver" message are combined in a single message.
- A constellation scenario where states (APM) and/or ephemeris data (AEM, ACM) for all the spacecraft in the constellation are combined in a single XML message.
- A full AEM or ACM ephemeris with detail on important states reflected in some number of APMs. The AEM/ACM and the multiple APMs can be conveniently conveyed in a single NDM.
- **6.8.2** An NDM combined instantiation shall be delimited with the <ndm></ndm> root element tags instead of one of the individual message tags described in Table 6-1.
- 6.8.3 The standard attributes documented in Ref. [4] shall be used with the <ndm> tag, with the exception that neither 'id' nor 'version' attributes are associated with the <ndm> tag.
- **6.8.4** In the NDM combined instantiation, the only attributes that shall appear on the constituent message tags (i.e., the tags listed in 8.3.2 Figure Figure 6-26.3) are the 'id' and 'version' attributes.
- 6.8.5 Between the <ndm></ndm> tags, the desired messages described in 6.5 through 6.7 may be combined as needed to meet user requirements.
- **6.8.6** Any combination of constituent ADM message types may be used in an NDM combined instantiation.
- 6.8.7 Figure 6-2 and Figure 6-3 illustrate the basic structure of an NDM combined instantiation. All detail has been removed from Figure 6-2 in order to contrast the single message ADM with an NDM combined instantiation. As shown in Figure 6-3, in an NDM combined instantiation the individual message tags still have the 'id' and 'version' attributes, but the namespace attributes and schema location attributes are associated only with the <ndm> root element.

Single Message APM	NDM Combined Instantiation
	<u><ndm></ndm></u>
<apm></apm>	<apm></apm>
<header></header>	<header></header>
	<pre></pre>
<body></body>	<body></body>
	<u> </u>
	<header></header>
	<body></body>

Figure 6-2: Comparison of Single Message APM with NDM Combined Instantiation

The APMs shown in the right-hand column of Figure 6-2 may be replaced with any number of AEM or ACM messages in any combination as needed to meet user requirements, as shown in Figure 6-3 below.

```
<?xml version="1.0" encoding="UTF-8"?>
<ndm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
      xsi:noNamespaceSchemaLocation="https://sanaregistry.org/r/ndmxml/ndmxml-1.0-
<COMMENT>This figure combines multiple ADM/XML messages into a single message</COMMENT>
<COMMENT>Message detail is deleted in order to focus on the message structure</COMMENT>
<COMMENT>Note use of "<ndm>" root element, and ADM message/version attributes</COMMENT>
   <apm id="CCSDS_APM_VERS" version="2.0">
      <header>
      </header>
      <body>
      </body>
   <aem id="CCSDS_AEM_VERS" version="2.0">
      <header>
      </header>
      <body>
      </body>
   </aem>
   <apm id="CCSDS_APM_VERS" version="2.0">
      <header>
      </header>
      <body>
      </body>
   </apm>
   <aem id="CCSDS_AEM_VERS" version="2.0">
      <header>
      </header>
      <body>
      </body>
   </aem>
   <acm id="CCSDS_ACM_VERS" version="2.0">
      <header>
      </header>
      <body>
      </body>
   </acm>
</ndm>
```

Figure 6-3: NDM Combined Instantiation Showing Mix of ADMs and Use of Attributes

NOTE: See Figure <<TBD>> for a full example of one use case combining multiple ADMs in a single XML message. For instructions on creating a combined instantiation that incorporates ADM/XML messages combined with other navigation related messages, see Ref. [4].

6.9 SPECIAL SYNTAX RULES FOR ADM/XML

- 6.9.1 Most of the KVN syntax rules apply for ADM/XML instantiations of an ADM, however, there are a few variations described in this section that shall be observed.
- **6.9.2** Each mandatory XML tag must be present and contain a valid value.

- 6.9.3 Integer values shall follow the conventions of the integer data type per Ref. [8]. Additional restrictions on the allowable range of values permitted for any integer data element may also be defined in the ADM/XML Schema.
- NOTE Examples of such restrictions may include a defined range (e.g., 0 100, 1 10, etc.), a set of enumerated values (e.g., 0,1,2,4,8), a pre-defined specific variation such as positiveInteger, or a user-defined data type variation.
- **6.9.4** Non-integer numeric values may be expressed in either fixed-point or floating-point notation. Numeric values shall follow the conventions of the double data type per Ref. [8]. Additional restrictions on the allowable range of values permitted for any numeric data element may also be defined in the ADM/XML Schema.
- NOTE Examples of such restrictions may include a defined range (e.g., 0.0-100.0, etc.), or a user-defined data type variation.
- 6.9.5 Text values shall follow the conventions of the string data type per Ref. [8]. Additional restrictions on the allowable range or values permitted for any data element may also be defined in the ADM/XML Schema.
- NOTE Examples of such restrictions may include a set of enumerated values (e.g., 'YES'/'NO') or other user-defined data type variation.
- 6.9.6 The units in the ADM/XML shall be the same units used in the KVN-formatted ADM described in Sections 3 through 5. XML attributes shall be used to explicitly define the units or other important information associated with the given data element. See the "A*M XML Units" tables in this section for the APM, AEM, and ACM for coding examples.
- **6.9.7** Comments must be displayed as values between the <COMMENT> and </COMMENT> tags.

6. CONSTRUCTING AN ADM/XML INSTANCE

6.1 OVERVIEW

6.1.1 This section provides more detailed instructions for the user on how to create an XML message based on one of the ASCII-text KVN-formatted messages described in Sections 3 through 5 of this document.

6.1.2 This section applies only to the XML representation of the ADM messages. The ADM/XML schemas are available on the SANA Web site. SANA is the registrar for the protocol registries created under CCSDS. The ADM XML schemas explicitly define the permitted data elements and values acceptable for the XML versions of the ADM messages. The location of the ADM/XML schemas is:

APM: https://sanaregistry.org/r/ndmxml/ndmxml 1.0 apm 2.0.xsd

AEM: https://sanaregistry.org/r/ndmxml/ndmxml 1.0 aem 2.0.xsd

ACM: https://sanaregistry.org/r/ndmxml/ndmxml 1.0 acm 2.0.xsd

6.1.3 Where possible these schemas use simple types and complex types used by the constituent schemas that make up Navigation Data Messages (see Reference [5]).

6.2 ADM/XML BASIC STRUCTURE

6.2.1 Each ADM shall consist of a <header> and a <body>.

6.2.2 The <body> shall consist of one or more < segment> constructs (one for the APM, one or more for the AEM, one for the ACM).

6.2.3 Each <segment> shall consist of one <metadata>/<data> pair, as shown in Figure 6-1.

NOTE: An AEM may have more than one segment, in which case the metadata/data pair is repeated in each segment.

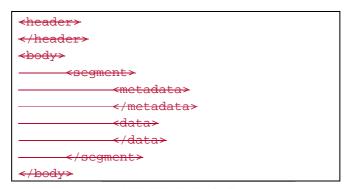


Figure 6-1: ADM XML Basic Structure

6.3 ADM/XML TAGS

- **6.3.1** An ADM XML tag shall be all uppercase if it corresponds directly to a KVN keyword from the Header, Metadata, or Data sections.
- **6.3.2** The 'CCSDS_A*M_VERS' keyword and value shall appear as XML attributes of the root element rather than as XML elements. This is an exception where there is not a strict correspondence between keywords in the KVN and tags in the XML implementations, specifically, the 'CCSDS_A*M_VERS' keywords from the Headers for the APM, AEM, and ACM respectively.
- **6.3.3** ADM XML tags related to the XML message structure (i.e., that do not correspond directly to a KVN keyword) shall be in 'lowerCamelCase' (e.g., <header>, <segment>, <metadata>, <attitudeStateType>, etc.).

6.4 CONSTRUCTING AN ADM/XML INSTANCE

6.4.1 OVERVIEW

This subsection provides more detailed instructions for the user on how to create an XML message based on the ASCII text KVN formatted messages described in Sections 1 through 5.

6.4.2 XML VERSION

6.4.2.1 The first line in the instantiation shall specify the XML version:

<?xml version="1.0" encoding="UTF 8"?>

This line must appear on the first line of each instantiation, exactly as shown.

6.4.3 BEGINNING THE INSTANTIATION: ROOT ELEMENT TAG

- **6.4.3.1** Each instantiation shall have a 'root element tag' that identifies the message type and other information such as where to find the applicable schema, required attributes, etc.
- **6.4.3.2** The root element tag in an ADM/XML instantiation shall be one of those listed in Table 6-1.

Root Element Tag	Message Type
<apm></apm>	Attitude Parameter Message
<aem></aem>	Attitude Ephemeris Message
<acm></acm>	Attitude Comprehensive Message

Table 6-1: ADM/XML Root Element Tags

6.4.3.3 The XML Schema Instance namespace attribute must appear in the root element tag of all ADM/XML instantiations, exactly as shown:

XMLNS:XSI="HTTD://WWW.W3.ORC/2001/XMLSCHEMA-INSTANCE"

6.4.3.4 If it is desired to validate an instantiation against the CCSDS Web based schema, the xsi:noNamespaceSchemaLocation attribute must be coded as a single string of non-blank characters, with no line breaks, exactly as shown:

xsi:noNamespaceSchemaLocation="http://sanaregistry.org/r/ndmxml/ndmxml-1.0master.xsd"

- NOTE The length of the value associated with the xsi:noNamespaceSchemaLocation attribute can cause the string to wrap to a new line; however, the string itself contains no breaks.
- **6.4.3.5** There are two attributes that are required in the root element tag of an ADM/XML single message instantiation, specifically, the CCSDS_xxx_VERS keyword that is also part of the standard KVN header, and the Blue Book version number.
- **6.4.3.6** The final attributes of the root element tag shall be 'id' and 'version'.
- **6.4.3.7** The 'id' attribute shall be 'id="CCSDS_xxx_VERS"', where xxx = AEM, APM, or ACM.
- **6.4.3.8** The 'version' attribute shall be 'version="2.0"'.
- NOTE The following example root element tag for an APM instantiation combines all the directions in the preceding several subsections:

```
<?xml version="1.0" encoding="UTF-8"?>
<apm xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://sanaregistry.org/r/ndmxml/ndmxml 1.0 master.xsd"
id="CCSDS_APM_VERS" version="2.0">
```

6.4.4 THE ADM/XML HEADER SECTION

- **6.4.4.1** The ADMs (APM, AEM, ACM) shall share a standard header format, with tags <header> and </header> (see [5]).
- **6.4.4.2** Immediately following the <header> tag the message may have any number of <COMMENT> </COMMENT> tag pairs.
- **6.4.4.3** The standard ADM header shall contain the following element tags:

```
a) <CREATION_DATE>
```

c) <MESSAGE ID>

NOTE The rules for these keywords are specified in Table 3-1, Table 4-2 and Table 5-2. An example <header> section is shown immediately below:

<header>

- <COMMENT>This is the common ADM/XML Header.
- <COMMENT>I can put as many comments here as I want,/COMMENT>
- <COMMENT>including none.
- <CREATION DATE>2010-03-12T22:31:12.000
- <ORIGINATOR>AGENCYX
- <MESSAGE ID>AGENCYX 1234//MESSAGE ID>

</header>

6.4.5 THE ADM/XML BODY SECTION

- **6.4.5.1** After coding the <header>, the instantiation must include a <body></body>tag pair.
- 6.4.5.2 Inside the <body></body> tag pair must appear at least one <segment></segment> tag pair, depending on the particular ADM (APM, AEM, ACM).
- **6.4.5.3** Each <segment> must be made up of one <metadata></metadata> tag pair and one <data></data> tag pair.

6.4.6 THE ADM/XML METADATA SECTION

- **6.4.6.1** All ADMs must have at least one metadata section.
- **6.4.6.2** The Metadata section shall be set off by the <metadata></metadata> tag combination.
- **6.4.6.3** Immediately following the <metadata> tag, the message may have any number of <COMMENT> </COMMENT> tag pairs.
- NOTE: The <COMMENT> </COMMENT> placement is regulated by the XML schema. Standard XML comments, i.e. of the form <! comment content > may be placed anywhere in the Metadata Section because they are ignored by the XML schema validator.
- **6.4.6.4** Between the <metadata> and </metadata> tags, the keywords shall be the same as those in the Metadata sections in Sections 3 through 5 of this document, with exceptions as noted in the subsections that discuss creating instantiations of the specific messages.

6.4.7 THE ADM/XML DATA SECTION

- 6.4.7.1 All ADMs must have at least one data section.
- **6.4.7.2** The Data Section shall follow the Metadata Section and shall be set off by the tag combination.
- **6.4.7.3** Immediately following the <data> tag, the message may have any number of <COMMENT> </COMMENT> tag pairs.
- NOTE: The <COMMENT> </COMMENT> placement is regulated by the XML schema. Standard XML comments, i.e. of the form <!-- comment content --> may be placed anywhere in the Data Section because they are ignored by the XML schema validator.
- **6.4.7.4** Between the <data> and </data> tags, the keywords shall be the same as those in the data sections in Sections 3 through 5 of this document, with exceptions as noted in the subsections that discuss creating instantiations of the specific messages.

6.5 LOCAL OPERATIONS

- **6.5.1** For use in a local operations environment, the NDM/XML schema set (which includes the ADM schemas) may be downloaded from the SANA web site to a local server that meets local requirements for operations robustness. See Reference [5].
- **6.5.2** If a local version is used, the value associated with the xsi:noNamespaceSchemaLocation attribute must be changed to a URL that is accessible to the local server.

6.6 CREATING AN APM INSTANTIATION

- **6.6.1** An APM instantiation shall be delimited by the <apm></apm> root element tags using the standard attributes documented in 6.4.3.
- NOTE Figures << TBD>> provide example APM instantiations.
- **6.6.2** The final attributes of the <apm> tag shall be 'id' and 'version'; the order in which these attributes are specified is not significant.
- 6.6.3 The 'id' attribute shall be 'id="CCSDS_APM_VERS".
- 6.6.4 The 'version' attribute for the version of the APM shall be 'version="2.0".
- **6.6.5** The standard ADM/XML header shall follow the <apm> tag (see 6.4.4).
- 6.6.6 The APM <body> shall consist of a single <segment>.
- **6.6.7** The keywords in the <metadata> and <data> sections shall be those specified in Section 3.2.
- **6.6.8** Tags for keywords shall be all uppercase, as in Section 3.2.

6.6.9 Several of the APM/XML keywords may have a unit attribute, if desired by the APM producer, as illustrated in the following table:

Table 6-2: APM XML Units

Keyword	Units	Example
Q1_DOT	1/s	<pre><q1_dot units="1/s">numeric value</q1_dot></pre>
Q2_DOT	1/s	<q2_dot units="1/s">numeric-value</q2_dot>
Q3_DOT	1/s	<q3_dot units="1/s">numeric-value</q3_dot>
QC_DOT	1/s	< <u>QC_DOT units="1/s">numeric-value</u>
ANCLE_1	deg	numeric-value
ANGLE_2	deg	<a href="mailto:<a href=" mailt<="" mailto:<a="" td="">
ANGLE_3	deg	numeric value
ANCLE_1_DOT	deg/s	<pre><ancle_1_dot units="deg/s">numeric-value</ancle_1_dot></pre>
ANGLE_2_DOT	deg/s	<pre><angle_2_dot units="deg/s">numeric value</angle_2_dot></pre>
ANCLE_3_DOT	deg/s	<pre><ancle_3_dot units="deg/s">numeric-value</ancle_3_dot></pre>
ANGVEL_X	deg/s	<pre><ancvel_x units="deg/s">numeric-value</ancvel_x></pre>
ANGVEL_Y	deg/s	<pre><angvel_y units="deg/s">numeric value</angvel_y></pre>
ANGVEL_Z	deg/s	<pre><angvel_z units="deg/s">numeric value</angvel_z></pre>
SPIN_ALPHA	deg	<pre> <spin_alpha units="deg">numeric value</spin_alpha> </pre>
SPIN_DELTA	deg	<pre><spin_delta units="deg">numeric-value</spin_delta></pre>
SPIN_ANCLE	deg	<pre> <spin_ancle units="deg">numeric-value</spin_ancle> </pre>
SPIN_ANGLE_VEL	deg/s	<pre> <spin_angle_vel units="deg/s">numeric </spin_angle_vel></pre>
		<pre>value</pre>
NUTATION	deg	<pre><nutation units="deg">numeric value</nutation></pre>
NUTATION_PER	S	<pre><nutation_per units="s">numeric value</nutation_per></pre>
NUTATION_PHASE	deg	<pre><nutation_phase units="deg">numeric-</nutation_phase></pre>
		value
IXX	kg*m**2	<pre><!--XX units="kg*m**2"-->numeric-value<!--!XX--></pre>
IYY	kg*m**2	<pre><!--YY units="kg*m**2"-->numeric-value<!--!YY--></pre>
122	kg*m**2	<pre><izz units="kg*m**2">numeric-value</izz></pre>
IXY	kg*m**2	<pre><!--XY units="kg*m**2"-->numeric value<!--!XY--></pre>
IXZ	kg*m**2	<pre><ixz units="kg*m**2">numeric value</ixz></pre>
IYZ	kg*m**2	<pre><iyz units="kg*m**2">numeric-value</iyz></pre>
MAN_DURATION	S	<pre><man_duration units="s">numeric-value</man_duration></pre>
MAN_TOR_X	N*m	<pre><man_tor_x units="N*m">numeric value</man_tor_x></pre>
MAN_TOR_Y	N*m	<pre><man_tor_y units="N*m">numeric-value</man_tor_y></pre>
MAN_TOR_Z	N*m	<pre><man_tor_z units="N*m">numeric value</man_tor_z></pre>

6.6.10 SPECIAL TAGS IN THE APM/XML BODY

NOTE In addition to the APM keywords specified in Section 3, there are several special tags associated with the APM body as described in the next few subsections. The information content in the APM is separated into constructs referred to as 'logical blocks'. Special tags in the APM are used to encapsulate the information in the logical blocks of the APM.

6.6.10.1 The APM/XML tags used to delimit the logical blocks of the APM shall be drawn from the following table:

Table 6-3: Special Tags in the APM/XML Body

APM Logical Block	Associated APM/XML Tag
Attitude Quaternion	< quaternionState>
	< quaternion>
	< quaternionDerivative>
	The <quaternionstate> consists of the <quaternion></quaternion></quaternionstate>
	tag that contains the components of the quaternion itself, and the
	<pre><quaternionderivative> tag that contains the rate of</quaternionderivative></pre>
	change of the quaternion components
Euler Angle Elements	<pre><eulerangleelements></eulerangleelements></pre>
Angular Velocity Vector	<angularvelocity></angularvelocity>
Spin	< spin>
Inertia	<inertia></inertia>
Maneuver Parameters	<maneuverparameters></maneuverparameters>

6.6.10.2 Between the begin tag and end tag (e.g., between <culerAngleElements> and </eulerAngleElements>), the user shall place the keywords required by the specific logical block as specified in Section 3.

6.6.11 DISCUSSION

This non-normative subsection discusses and provides examples of the use of quaternion tags in the APM.

The XML representations of quaternions in the ADM constituent messages share a common quaternion definition. However, there are some differences in those definitions in the underlying KVN definitions of the APM and AEM. The following examples are meant to illustrate the standard for representing quaternions in the APM.

Here is an example APM quaternion construct:

```
<quaternionState>
     <EPOCH>2004 100T00:00:00Z
   <REF_FRAME_A>ICRF</REF_FRAME_A>
<REF_FRAME_B>ICRF</REF_FRAME_B>
  <Q1>0.00005</Q1>
<Q2>0.87543</Q2>
<Q3>0.40949
<del><QC>0.25678</QC></del>
</quaternion>
</quaternionState>
```

Here is an example APM quaternion construct with the optional derivative:

```
<quaternionState>
<EPOCH>2004-100T00:00:00Z</EPOCH>
 <quaternion>
```

6.7 CREATING AN AEM INSTANTIATION

- **6.7.1** An AEM instantiation shall be delimited with the <aem></aem> root element tags using the standard attributes documented in 6.4.3.
- NOTE Figures << TBD>> provide example AEM instantiations.
- **6.7.2** The final attributes of the <aem> tag shall be 'id' and 'version'; the order in which these attributes are specified is not significant.
- 6.7.3 The 'id' attribute shall be 'id="CCSDS_AEM_VERS"'.
- 6.7.4 The 'version' attribute for the version of the AEM shall be 'version="2.0".
- **6.7.5** The standard ADM/XML header shall follow the <aem> tag (see 6.4.4).
- **6.7.6** The AEM <body> shall consist of one or more <segment> constructs (see [5], section 3.4).
- **6.7.7** The keywords in the <metadata> and <data> sections shall be those specified in Section 4.2.
- **6.7.8** Tags for keywords shall be all uppercase as in Section 4.2.
- **6.7.9** Although units are not specified in the KVN representation of the AEM, several of the AEM/XML keywords may have a unit attribute, if desired by the AEM producer, as illustrated in the following table:

Table 6-4: AEM XML Units

Keyword	Units	Example
Q1_DOT	1/s	<q1_dot units="1/s">numeric value</q1_dot>
Q2_DOT	1/s	< <u>Q2_DOT units="1/s">numeric value</u>
Q3_DOT	1/s	<pre><q3_dot units="1/s">numeric value</q3_dot></pre>
QC_DOT	1/s	< <u>QC_DOT units="1/s">numeric-value</u>
ANGLE_1	deg	ANCLE_1 units="deg">numeric-value
ANGLE_2	deg	<a href="mailto:-walue</andle_2">numeric-value
ANGLE_3	deg	<angle="left">ANGLE_3 units="deg">numeric-value</angle="left">
ANGLE_1_DOT	deg/s	<pre><angle_1_dot units="deg/s">numeric value</angle_1_dot></pre>
ANCLE_2_DOT	deg/s	">Numeric-value-/ANCLE_2_DOT>
ANGLE_3_DOT	deg/s	<a deg="" href="mailto:</td></tr><tr><td>ANCVEL_X</td><td>deg/s</td><td><ancvet_x units=" s"="">numeric-value
ANGVEL_Y	deg/s	<pre><ancvel_y units="deg/s">numeric-value</ancvel_y></pre>
ANGVEL_Z	deg/s	<pre><angvel_z units="deg/s">numeric value</angvel_z></pre>
SPIN_ALPHA	deg	<pre> <spin_alpha units="deg">numeric value</spin_alpha> </pre>
SPIN_DELTA	deg	<pre> <spin_delta units="deg">numeric value</spin_delta> </pre>
SPIN_ANGLE	deg	<pre> <spin_ancle units="deg">numeric-value</spin_ancle> </pre>
SPIN_ANGLE_VEL	deg/s	<pre><spin_ancle_vel units="deg/s">numeric-</spin_ancle_vel></pre>
		value
NUTATION	deg	<pre><nutation units="deg">numeric-value</nutation></pre>
NUTATION_PER	S	<pre><nutation_per units="s">numeric value</nutation_per></pre>
NUTATION_PHASE	deg	<pre><nutation_phase units="deg">numeric value</nutation_phase></pre>

6.7.10 SPECIAL TAGS IN THE AEM BODY

NOTE —In addition to the AEM keywords specified in Section 4.2, there are several special tags associated with the AEM body as described in the next few subsections.

6.7.10.1 The <attitudeState> tag shall be used to encapsulate the keywords associated with the structure of one of the attitude ephemeris data line types.

6.7.10.2 The ADM/XML tags used within the <attitudeState> structure shall be drawn from the following table:

Table 6-5: Special Tags in the AEM/XML Body

AEM 'ATTITUDE_TYPE' Metadata Value	Associated ADM/XML Tag in the <attitudestate></attitudestate>
QUATERNION	<quaternionstate></quaternionstate>
QUATERNION/DERIVATIVE	<quaternionderivative></quaternionderivative>
QUATERNION/ANGVEL	< quaternionAngvel>
EULER_ANGLE	<eulerangle></eulerangle>
EULER_ANGLE/DERIVATIVE	<euleranglederivative></euleranglederivative>
EULER_ANGLE/ANGVEL	<eulerangleangvel></eulerangleangvel>
SPIN	<spin></spin>
SPIN/NUTATION	<pre><spinnutation></spinnutation></pre>

6.7.10.3 Between the begin tag and end tag (e.g., between <quaternionState> and </quaternionState>), the user shall place the values required by the specific ephemeris data line type as specified in Section 4.2.5, Table 4.4.

6.7.10.4 In the XML representation of the AEM, the components of the <attitudeState> ephemeris data line must be represented with keywords (i.e., a tag).

6.7.10.5 The <attitudeState> keywords shall be the same as those defined for the same construct in the APM.

NOTE In the KVN representations of the ephemeris data lines, keywords are not used. Rather, the components of the ephemeris data line appear in an order defined by the specific ephemeris data line type. In the XML representation, the tags described are fundamental to the format.

6.7.11 DISCUSSION

This non normative subsection discusses and provides examples of the use of quaternion tags in the AEM.

The XML representations of quaternions in the ADM constituent messages share a common quaternion definition. However, there are some differences in those definitions in the underlying KVN definitions of the APM and AEM. As in the KVN representation of the quaternion, it is possible to code the tags for the individual components of the quaternion (Q1, Q2, Q3, QC) in either of the standard orders (i.e., scalar component first or last). The following examples are meant to illustrate the standard for representing quaternions in the AEM.

Here is an example AEM quaternion for a 'QUATERNION' ephemeris data line:

<attitudestate></attitudestate>
<pre><epoch>2004 100T00:00:00</epoch></pre>
<q1>0.00005</q1>
<
<03>0.40949<!--03-->

<pre></pre>
<pre></pre>

Here is an example AEM quaternion for a 'QUATERNION/DERIVATIVE' ephemeris data line:

```
<del><attitudeState></del>
<EPOCH>2004-100T00:00:00
<quaternion>
<del><01>0.00005</01></del>
 <del><Q3>0.40949</Q3></del>
<del><QC>0.25678</QC></del>
 </quaternion>
     -<quaternionDerivative>
       -<Q1_DOT>0.002</Q1_DOT>
 <Q3_DOT>0.004</Q3_DOT>
       <<u> <QC_DOT>0.001</QC_DOT></u>
 </quaternionDerivative>
 </attitudeState>
```

6.8 CREATING AN ACM INSTANTIATION

6.8.1 SECTION FORTHCOMING AS THE ACM IS DEFINED... NOTHING TO ADD AT THIS TIME.

7. ATTITUDE DATA MESSAGES KVN SYNTAX

7.1 INTRODUCTION

This section details the syntactic requirements for attitude messages. All APM, AEM and ACM messages shall observe the syntax described in subsections 7.2 through 7.9.

7.2 APM

7.2.1 The APM shall be a plain text file, using keyword descriptions given in 3.2.2 through 3.2.4.

7.3 AEM

7.3.1 The AEM shall be a plain text file, using the keyword descriptions given in 4.2.2 through 4.2.5 4.2.4.

7.4 ACM

7.4.1 The ACM shall be a plain text file, using the keywords given in 5.2.3 through 5.2.10.

7.5 LINES

- **7.5.1** Each APM, or AEM, or ACM line must not exceed 254 ASCII characters and spaces, (excluding line termination character([s)]).
- **7.5.2** ACM lines may be of arbitrary length. If exchange between the two parties requires a maximum line length, that limit should be negotiated and agreed.
- **7.5.3** Only printable ASCII characters and blanks shall be used. Control characters (such as TAB, etc.) shall not be used, except as indicated below for the termination of lines.
- **7.5.4** Blank lines may be used at any position within the file.
- **7.5.5** Comment lines shall be optional. See 7.9.2 for details regarding the placement of comment lines in an APM. See 7.9.3 for details regarding the placement of comment lines in an AEM. See 7.9.4 for details regarding the placement of comment lines in an ACM.
- **7.5.6** APM, AEM, and ACM lines shall be terminated by a single Carriage Return or a single Line Feed, or a Carriage Return/Line Feed pair or a Line Feed/Carriage Return pair.

7.6 KEYWORDS

- **7.6.1** All header, metadata, and data lines, with exceptions as noted in 7.6.9, shall use 'keyword = value' notation, abbreviated as KVN.
- **7.6.2** Only a single 'keyword = value' assignment shall be made on a line.

- **7.6.3** Keywords must be uppercase and must not contain blanks.
- **7.6.4** Any white space immediately preceding or following the keyword shall not be significant.
- **7.6.5** Any white space immediately preceding or following the 'equals' sign shall not be significant.
- **7.6.6** Any white space immediately preceding the end of line shall not be significant.
- **7.6.7** Any white space immediately preceding or following the units shall not be significant.
- **7.6.8** The order of occurrence of mandatory and optional KVN assignments shall be fixed as shown in tables 3-13-1, 3-23-2, and 3-33-3 for the APM, as shown in tables 4-24-2 and 4-34-3 for the AEM, and as shown in tables 5-2 Table 5-2 through... 5-9 Table 5-9 for the ACM.
- **7.6.9** The keywords COMMENT, <u>section delimiters</u> *_START (where * is different from "MANEUVER_EPOCH"), and _-*_STOP, and data lines, and some ACM data lines _-are exceptions to the KVN syntax.

7.7 VALUES

- **7.7.1** Angle measurements shall be given in degrees, with values between -360 and 360 degrees. If agencies wish to exchange using radians, this must be specified in an ICD because it is nominally outside the standard.
- **7.7.2** Blanks shall not appear within numeric values and time values.
- **7.7.3** Integer values shall consist of a sequence of decimal digits with an optional leading sign ('+' or '-'). If the sign is omitted, '+' shall be assumed. Leading zeroes may be used. The range of values that may be expressed as an integer is:

$$-2.147.483.648 \le x \le +2.147.483.647$$
 (i.e., $-2^{31} \le x \le 2^{31}-1$)

NOTE – The commas in the range of values above are thousands separators and are used only for readability. They should not appear in an actual message.

7.7.4 Non-integer numeric values may be expressed in either fixed-point or floating-point notation. Both representations may be used within an APM, AEM, or ACM.

7-23-3

- **7.7.4.1** Non-integer numeric values expressed in fixed-point notation shall consist of a sequence of decimal digits separated by a period as a decimal point indicator, with an optional leading sign ('+' or '-'). If the sign is omitted, '+' shall be assumed. Leading and trailing zeros may be used. At least 1 digit is required before and after a decimal point. The number of digits shall be 16 or fewer.
- **7.7.4.2** Non-integer numeric values expressed in floating-point notation shall consist of a sign, a mantissa, an alphabetic character indicating the division between the mantissa and exponent, and an exponent, constructed according to the following rules:
 - The sign may be '+' or '-'. If the sign is omitted, '+' shall be assumed.
 - The mantissa must be a string of no more than 16 decimal digits with a decimal point
 '.' in the second position of the ASCII string, separating the integer portion of the mantissa from the fractional part of the mantissa.
 - The character used to denote exponentiation shall be 'E' or 'e'. If the character indicating the exponent and the following exponent are omitted, an exponent value of zero shall be assumed (essentially yielding a fixed-point value).
 - The exponent must be an integer, and may have either a '+' or '-' sign (if the sign is omitted, then '+' shall be assumed).
 - The maximum positive floating-point value is approximately 1.798E+308, with precision of 16 significant decimal digits. The minimum positive floating-point value is approximately 4.94E-324, with precision of 16 significant decimal digits.
- **7.7.5** These specifications for integer, fixed-point, and floating-point values conform to the XML specifications for the data types four-byte integer 'xsd:int', 'xsd:decimal' and 'xsd:double' respectively. The specifications for floating-point values conform to the IEEE double precision type (reference Ref. [5][5]). Floating-point numbers in IEEE extended-single or IEEE extended-double precision may be represented, but do require an ICD between participating agencies because of their implementation-specific attributes (reference Ref. [5][5]). Note that NaN, +Inf, -Inf, and -0 are not supported values.
- **7.7.6** Text value fields must be constructed using only all uppercase or all lowercase.
- **7.7.7** A non-empty value field must be specified for each keyword provided, except as noted in 7.6.9.
- **7.7.8** In value fields that are text, an underscore shall be equivalent to a single blank. Individual blanks between non-blank characters shall be retained (shall be significant) but multiple blanks shall be equivalent to a single blank.
- **7.7.9** In value fields that represent a timetag or epoch, one of the following two formats shall be used:

YYYY-MM-DDThh:mm:ss[$.d\rightarrow d$][Z]

or

$YYYY-DDDThh:mm:ss[.d\rightarrow d][Z]$

where 'YYYY' is the year, 'MM' is the two-digit month, 'DD' is the two-digit day, 'DDD' is the three-digit day of year, 'T' is constant, 'hh:mm:ss[.d→d] is the time in hours, minutes, seconds, and optional fractional seconds; 'Z' is an optional time code terminator (the only permitted value is 'Z' for Zulu, i.e., UTC). As many 'd' characters to the right of the period may be used to obtain the required precision, up to the maximum allowed for a fixed-point number. All fields shall have leading zeros. See reference Ref. [3][3], ASCII Time Code A and B.

NOTE: During a leap second introduction, the value of the two-digit integer seconds (ss) field shall be '60' as specified on page 3-6 of referenceRef. [3][3].

7.7.10 A number of ACM keywords may be set to values containing more than one number. Examples include CP (see Table 5-5)Table 5-5: ACM Data: Space Object Physical Characteristics and TARGET_MOMENTUM (see Table 5-7). Such vectors shall be spacedelimited and provided serially on a single line following the equals "=" sign, adhering to the requirements for numeric values provided in the previous sections.

7.8 UNITS

7.8.1 APM RESTRICTIONS

- **7.8.1.1** For clarity, units may be included as ASCII text after a value, but they must exactly match the units specified in table Table 3-33-3 (including case). If units are displayed, then:
 - a) there must be at least one blank character between the value and the units text;
 - b) the units must be enclosed within square brackets (e.g., '[deg]');
 - c) multiplication of units shall be denoted with a single asterisk '*' (e.g., '[N*m]');
 - d) division of units shall be denoted with a forward slash '/' (e.g., '[deg/s]');
 - e) exponents of units shall be denoted with a double asterisk '**' (e.g., '[kg*m**2]').

7.8.2 AEM RESTRICTIONS

7.8.2.1 Units shall not be displayed; the applicable units are determined by the value set for the ATTITUDE_TYPE keyword. See <u>4.2.4.44.2.5.3</u>.

7.8.3 ACM RESTRICTIONS

7.8.3.1 Units for ACM keyword values shall not be displayed; applicable units are specified in the "Units" column of Tables 5-4 Table 5-4... Table 5-9through 5-9.

7.9 COMMENTS

7.9.1 GENERAL

- **7.9.1.1** All comment lines shall begin with the 'Comment' keyword followed by at least one space. This keyword must appear on every comment line, not just the first such line. The remainder of the line shall be the comment value. White space shall be retained (shall be significant) in comment values.
- **7.9.1.2** Comments may be used to provide provenance information or to help describe dynamical events or other pertinent information associated with the data. This additional information is intended to aid in consistency checks and elaboration where needed, but shall not be required for successful processing of a file.
- <u>7.9.1.3</u> If accompanying descriptive text designed to clarify and/or remove ambiguities in provided ADM data does not fit well into the single comment line paradigm, it is recommended that the APM, AEM or ACM producer convey key elements of that information in comments and use an ICD to provide further details.

7.9.1.37.9.1.4 Comments may be in any case desired by the user.

7.9.2 APM SPECIFIC

7.9.2.1 Comments are optional and may appear only at the beginning of the APM Header and APM Metadata sections, as shown in tables 3-13-1 and 3-23-2. In the APM Data section, comments shall appear only at the beginning of a logical block. Comments must not appear between the components of any logical block in the APM Data section. The logical blocks in the APM Data section are indicated in tableTable 3-33-3.

7.9.3 AEM SPECIFIC

7.9.3.1 Comments are optional and may appear only after the specification of the keyword CCSDS_AEM_VERS, at the beginning of Metadata sections (only after META_START and before OBJECT_NAME), and immediately following the DATA_START keyword. Comments must not appear between attitude ephemeris data lines, nor after the DATA_STOP keyword. See Table 4-2Table 4-2 and, Table 4-3Table 4-3 and Table 4-4.

7.9.4 ACM SPECIFIC

7.9.4.1 Comments are optional and may appear at the beginning of the ACM Header, ACM Metadata section, and after the start of each included -ACM -Data block. See _as shown in tables _Table 5-4... 5 4 through 5 9 Table 5-9.

8. ATTITUDE DATA MESSAGES XML SYNTAX

NOTE: Could be put in Section 7 also (i.e., one syntax section, divided between KVN and XML.

8.1 OVERVIEW

8.1.1 XML instantiations of an ADM shall observe the syntax described in this chapter.

8.2 ADM LINES IN XML

- **8.2.1** Each ADM file shall consist of a set of ADM lines. Each ADM line shall be one of the following:
 - XML version line:
 - an XML-formatted line; or
 - a blank line.
- **8.2.2** Each ADM line must not exceed 254 ASCII characters and spaces (excluding line termination character[s]).
- **8.2.3** Only printable ASCII characters and blanks shall be used. Control characters (such as TAB, etc.) shall not be used, with the exception of the line termination characters specified below.
- **8.2.4** Blank lines may be used at any position within the file. Blank lines shall have no assignable meaning, and may be ignored.
- **8.2.5** All lines shall be terminated by a single Carriage Return or a single Line Feed, or a Carriage Return/Line Feed pair or a Line Feed/Carriage Return pair.

8.3 VALUES IN THE ADM/XML

- **8.3.1** Each mandatory XML tag must be present and contain a valid value.
- **8.3.2** Integer values shall follow the conventions of the integer data type per Reference [reference here to XML datatypes document [9] (see above)]. Additional restrictions on the allowable range of values permitted for any integer data element may also be defined in the ADM XML Schema.
- NOTE Examples of such restrictions may include a defined range (e.g., 0 100, 1 10, etc.), a set of enumerated values (e.g., 0,1,2,4,8), a pre defined specific variation such as positiveInteger, or a user defined data type variation.
- **8.3.3** Non-integer numeric values may be expressed in either fixed-point or floating-point notation. Numeric values shall follow the conventions of the double data type per Reference [reference here to XML datatypes document [9] (see above)]. Additional restrictions

on the allowable range of values permitted for any numeric data element may also be defined in the ADM XML Schema.

- NOTE Examples of such restrictions may include a defined range (e.g., 0.0 100.0, etc.), or a user-defined data type variation.
- 8.3.4 Text values shall follow the conventions of the string data type per Reference [reference here to XML datatypes document [9] (see above)]. Additional restrictions on the allowable range or values permitted for any data element may also be defined in the ADM XML Schema.
- NOTE Examples of such restrictions may include a set of enumerated values (e.g., 'YES'/'NO') or other user defined data type variation.
- 8.3.5 Text values in ADM/XML instantiations (i.e., the values between the opening and elosing tags), shall consist of either all uppercase or all lowercase characters; an exception is made for values between the <COMMENT> and </COMMENT> tags, which may be in any case desired by the user. Otherwise, instantiations shall not mix uppercase and lowercase characters in values.
- 8.3.6 In value fields that represent a time tag, values shall follow the conventions of the ndm:epochType data type used in all CCSDS NDM/XML schemas (see 7.7).

8.4 UNITS IN THE ADM/XML

8.4.1 The units in the ADM/XML shall be the same units used in the KVN formatted ADM described in Sections 3 through 5. XML attributes shall be used to explicitly define the units or other important information associated with the given data element (see Annex C for examples).

8.5 COMMENTS IN ADM/XML

8.5.1 Comments are optional and must be displayed as values between the <COMMENT> and COMMENT> tags. Comments may be in any case desired by the user.

ANNEX A

IMPLEMENTATION CONFORMANCE STATEMENT (ICS) PROFORMA

(NORMATIVE)

A1 INTRODUCTION

A1.1 OVERVIEW

This annex provides the Implementation Conformance Statement (ICS) Requirements List (RL) for an implementation of the Attitude Data Messages. The ICS for an implementation is generated by completing the RL in accordance with the instructions below. An implementation claiming conformance must satisfy the mandatory requirements referenced in the RL.

A1.2 ABBREVIATIONS AND CONVENTIONS

The RL consists of information in tabular form. The status of features is indicated using the abbreviations and conventions described below.

Item Column

The item column contains sequential numbers for items in the table.

Feature Column

The feature column contains a brief descriptive name for a feature. It implicitly means "Is this feature supported by the implementation?"

Status Column

The status column uses the following notations:

_	M	mandatory;
_	O	optional;
=	<u>MC</u> C	conditionalmandatory under condition;
_	OC	optional under condition;;
_	X	prohibited;
_	I	out of scope;
_	N/A	not applicable.

Support Column Symbols

The support column is to be used by the implementer to state whether a feature is supported by entering Y, N, or N/A, indicating:

- Y Yes, supported by the implementation.
- N No, not supported by the implementation.
- N/A Not applicable.

The support column should also be used, when appropriate, to enter values supported for a given capability.

A1.3 INSTRUCTIONS FOR COMPLETING THE RL

An implementer shows the extent of compliance to the Recommended Standard by completing the RL; that is, the state of compliance with all mandatory requirements and the options supported are shown. The resulting completed RL is called an ICS. The implementer shall complete the RL by entering appropriate responses in the support or values supported column, using the notation described in A1.2. If a conditional requirement is inapplicable, N/A should be used. If a mandatory requirement is not satisfied, exception information must be supplied by entering a reference Xi, where i is a unique identifier, to an accompanying rationale for the noncompliance.

A2 ICS PROFORMA FOR THE ATTITUDE DATA MESSAGE

A2.1 GENERAL INFORMATION

A2.1.1 Identification of ICS

Date of Statement (DD/MM/YYYY)	
ICS serial number	
System Conformance statement cross-reference	

A2.1.2 Identification of Implementation Under Test

Implementation Name	
Implementation Version	
Special Configuration	
Other Information	

A2.1.3 Identification of Supplier

Supplier	
Contact Point for Queries	
Implementation Name(s) and Versions	
Other information necessary for full identification, e.g., name(s) and version(s) for machines and/or operating systems;	
System Name(s)	

A2.1.4 Identification of Specification

504.0-B-2				
Have any exceptions been required?	Yes [] No []			
NOTE – A YES answer means that the implementation does not conform to the Recommended Standard. Non-supported mandatory capabilities are to be identified in the ICS, with an explanation of why the implementation is non-conforming.				

A2.2 REQUIREMENTS LIST

[See CCSDS A20.1-Y-1, CCSDS Implementation Conformance Statements (Yellow Book, Issue 1, April 2014).]

Note: in the following sections, the nomencalure is the following for the "Status" column:

- M: Mandatory
- O: Optional
- MC: Mandatory under the condition that the block containing the keyword is present
- OC: Optional under the condition that the block containing the keyword is present

A2.2.1 Attitude Parameter Message Requirements list

<u>Item</u>	<u>Feature</u>	Keyword	Reference	Status	Support
	APM Header	N/A	<u>Table 3-1</u>	<u>N/A</u>	
<u>1</u>	APM Version	CCSDS APM VERS	<u>Table 3-1</u>	<u>M</u>	
<u>2</u>	Comment	COMMENT	Table 3-1	<u>O</u>	
<u>3</u>	Message creation date and time	CREATION DATE	Table 3-1	<u>M</u>	
4	Message originator	<u>ORIGINATOR</u>	<u>Table 3-1</u>	<u>M</u>	

	Unique message			
<u>5</u>	identifier	MESSAGE ID	<u>Table 3-1</u>	<u>O</u>
	OPM Metadata	<u>N/A</u>	<u>Table 3-2</u>	N/A
<u>6</u>	Comment	COMMENT	<u>Table 3-2</u>	<u>O</u>
7	Name of space object	OBJECT NAME	<u>Table 3-2</u>	<u>M</u>
<u>8</u>	Identifier of space object	OBJECT ID	Table 3-2	<u>M</u>
<u>9</u>	Orbit center	CENTER_NAME	<u>Table 3-2</u>	<u>O</u>
<u>10</u>	Time system applicable to data	TIME SYSTEM	Table 3-2	M
	APM Data	<u>N/A</u>	Table 3-3	N/A
<u>11</u>	Comment	COMMENT	<u>Table 3-3</u>	<u>O</u>
<u>12</u>	Epoch of the state vector	<u>EPOCH</u>	Table 3-3	<u>M</u>
	Quaternion block	<u>N/A</u>	<u>Table 3-3</u>	N/A
<u>13</u>	Start of block	QUAT_START	<u>Table 3-3</u>	MC
<u>14</u>	Comment	COMMENT	<u>Table 3-3</u>	<u>OC</u>
<u>15</u>	Reference frame starting point	REF FRAME A	Table 3-3	MC
<u>16</u>	Reference frame end point	REF_FRAME_B	Table 3-3	<u>MC</u>
<u>17</u>	Quaternion component 1	<u>Q1</u>	Table 3-3	MC
<u>18</u>	Quaternion component 2	<u>Q2</u>	Table 3-3	MC
<u>19</u>	Quaternion component 3	<u>Q3</u>	Table 3-3	MC
<u>20</u>	Quaternion component 4 (real part)	QC	Table 3-3	MC
<u>21</u>	Quaternion derivative component 1	Q1_DOT	Table 3-3	<u>OC</u>
<u>22</u>	Quaternion derivative component 1	Q2_DOT	Table 3-3	<u>OC</u>
<u>23</u>	Quaternion derivative component 3	Q3 DOT	Table 3-3	<u>OC</u>
<u>24</u>	Quaternion derivative component 4 (real part)	QC DOT	Table 3-3	<u>OC</u>
<u>25</u>	End of block	QUAT STOP	Table 3-3	MC
	Euler block	N/A	<u>Table 3-3</u>	N/A
<u>26</u>	Start of block	EULER START	Table 3-3	MC
<u>27</u>	Comment	COMMENT	Table 3-3	<u>OC</u>
<u>28</u>	Reference frame starting point	REF FRAME A	Table 3-3	MC
<u>29</u>	Reference frame end point	REF_FRAME_B	Table 3-3	MC
<u>30</u>	Rotation sequence	EULER ROT SEQ	Table 3-3	MC
<u>31</u>	Rotation angle 1	ANGLE_1	Table 3-3	<u>MC</u>
<u>32</u>	Rotation angle 2	ANGLE_2	Table 3-3	MC
<u>33</u>	Rotation angle 3	ANGLE 3	Table 3-3	MC
<u>34</u>	Rotation angle 1 derivative	ANGLE 1 DOT	Table 3-3	<u>OC</u>

<u>35</u>	Rotation angle 2	ANGLE_2_DOT	Table 3-3	<u>OC</u>
36	derivative Rotation angle 3	ANGLE_3_DOT	Table 3-3	<u>OC</u>
30	derivative		Table 3-3	
<u>37</u>	End of block	EULER_STOP	<u>Table 3-3</u>	MC
	Angular velocity block	N/A	<u>Table 3-3</u>	N/A
<u>38</u>	Start of block	ANGVEL_START	<u>Table 3-3</u>	MC
<u>39</u>	Comment	COMMENT	<u>Table 3-3</u>	<u>OC</u>
<u>40</u>	Reference frame starting point	REF FRAME A	Table 3-3	<u>MC</u>
<u>41</u>	Reference frame end point	REF_FRAME_B	Table 3-3	<u>MC</u>
<u>42</u>	Reference frame	ANGVEL_FRAME	<u>Table 3-3</u>	<u>MC</u>
<u>43</u>	Angular velocity X coordinate	ANGVEL_X	Table 3-3	<u>MC</u>
44	Angular velocity Y coordinate	ANGVEL Y	Table 3-3	<u>MC</u>
<u>45</u>	Angular velocity Y coordinate	ANGVEL Z	Table 3-3	<u>MC</u>
<u>46</u>	End of block	ANGVEL STOP	Table 3-3	<u>MC</u>
	Spin block	<u>N/A</u>	<u>Table 3-3</u>	<u>N/A</u>
<u>47</u>	Start of block	SPIN_START	<u>Table 3-3</u>	<u>MC</u>
<u>48</u>	Comment	COMMENT	<u>Table 3-3</u>	<u>OC</u>
<u>49</u>	Reference frame starting point	REF FRAME A	Table 3-3	<u>MC</u>
<u>50</u>	Reference frame end point	REF FRAME B	Table 3-3	<u>MC</u>
<u>51</u>	Right ascension	SPIN_ALPHA	<u>Table 3-3</u>	MC
<u>52</u>	<u>Declination</u>	SPIN DELTA	<u>Table 3-3</u>	MC
<u>53</u>	<u>Phase</u>	SPIN_ANGLE	<u>Table 3-3</u>	MC
<u>54</u>	Angular velocity	SPIN ANGLE VEL	<u>Table 3-3</u>	MC
<u>55</u>	Nutation angle	NUTATION	Table 3-3	MC
<u>56</u>	Nutation period	NUTATION_PER	Table 3-3	MC
<u>57</u>	Nutation phase	NUTATION_PHASE	Table 3-3	MC
<u>58</u>	End of block	SPIN_STOP	Table 3-3	MC
	Inertia block	N/A	Table 3-3	N/A
<u>59</u>	Start of block	INERTIA_START	Table 3-3	MC
<u>60</u>	Comment	COMMENT	Table 3-3	<u>OC</u>
<u>61</u>	Reference frame	INERTIA_REF_FRAME	Table 3-3	MC
<u>62</u>	Moment about X	IXX	Table 3-3	MC
<u>63</u>	Moment about Y	IYY	Table 3-3	MC
<u>64</u>	Moment about Z	<u>IZZ</u>	Table 3-3	MC
<u>65</u>	Cross product X-Y	IXY	Table 3-3	MC
<u>66</u>	Cross product X-Z	<u>IXZ</u>	<u>Table 3-3</u>	MC
<u>67</u>	Cross product Y-Z	<u>IYZ</u>	Table 3-3	MC
<u>68</u>	End of block	INERTIA_STOP	Table 3-3	MC
	Maneuver block	<u>N/A</u>	Table 3-3	N/A
<u>69</u>	Start of block	MAN START	Table 3-3	MC

<u>70</u>	Comment	COMMENT	<u>Table 3-3</u>	<u>OC</u>	
<u>71</u>	Epoch of maneuver	MAN EPOCH START	Table 3-3	<u>MC</u>	
<u>72</u>	Maneuver duration	MAN DURATION	<u>Table 3-3</u>	<u>MC</u>	
<u>73</u>	Reference frame	MAN REF FRAME	<u>Table 3-3</u>	<u>MC</u>	
<u>74</u>	Torque – X coordinate	MAN_TOR_X	Table 3-3	<u>MC</u>	
<u>75</u>	Torque – Y coordinate	MAN TOR Y	<u>Table 3-3</u>	<u>MC</u>	
<u>76</u>	Torque – Z coordinate	MAN_TOR_Z	<u>Table 3-3</u>	<u>MC</u>	
<u>77</u>	Mass variation	DELTA_MASS	Table 3-3	<u>OC</u>	
<u>78</u>	End of block	MAN STOP	<u>Table 3-3</u>	<u>MC</u>	

A2.2.2 Attitude Ephemeris Message Requirements list

<u>Item</u>	<u>Feature</u>	Keyword	Reference	Status	Support
	AEM Header	<u>N/A</u>	<u>Table 4-2</u>	<u>N/A</u>	
1	AEM Version	CCSDS AEM VERS	Table 4-2	<u>M</u>	
2	Comment	COMMENT	Table 4-2	<u>O</u>	
<u>3</u>	Message creation date and time	CREATION_DATE	Table 4-2	<u>M</u>	
<u>4</u>	Message originator	ORIGINATOR	<u>Table 4-2</u>	M	
<u>5</u>	Unique message identifier	MESSAGE ID	Table 4-2	<u>O</u>	
	Metadata logical block	<u>N/A</u>	<u>Table 4-3</u>	<u>N/A</u>	
<u>6</u>	Start of AEM Metadata	META START	<u>Table 4-3</u>	<u>M</u>	
<u>7</u>	Comment	COMMENT	<u>Table 4-3</u>	<u>O</u>	
<u>8</u>	Name of space object	OBJECT NAME	Table 4-3	<u>M</u>	
9	Identifier of space object	OBJECT_ID	Table 4-3	<u>M</u>	
<u>10</u>	Orbit center	CENTER_NAME	Table 4-3	<u>O</u>	
<u>11</u>	Reference frame starting point	REF_FRAME_A	Table 4-3	<u>M</u>	
<u>12</u>	Reference frame end point	REF_FRAME_B	Table 4-3	<u>M</u>	
<u>13</u>	Time system applicable to data	TIME_SYSTEM	Table 4-3	<u>M</u>	
<u>14</u>	Start of total time span covered by data	START_TIME	Table 4-3	<u>M</u>	
<u>15</u>	Start of useable time span	USEABLE START TIME	Table 4-3	<u>O</u>	
<u>16</u>	End of useable time span	USEABLE STOP TIME	Table 4-3	<u>O</u>	
<u>17</u>	End of total time span covered by data	STOP_TIME	Table 4-3	<u>M</u>	
<u>18</u>	Type of attitude data lines	ATTITUDE_TYPE	Table 4-3	<u>M</u>	
<u>19</u>	Rotation sequence	EULER ROT SEQ	Table 4-3	<u>O</u>	
<u>20</u>	Reference frame for angular velocity vectors	ANGVEL FRAME	Table 4-3	<u>O</u>	
<u>21</u>	Recommended interpolation method	INTERPOLATION METHOD	Table 4-3	<u>O</u>	
<u>22</u>	Recommended interpolation degree	INTERPOLATION DEGREE	Table 4-3	<u>O</u>	

<u>23</u>	End of OEM Metadata	META STOP	Table 4-3	<u>M</u>	
	Data logical block	N/A	Table 4-3	N/A	
<u>24</u>	Ephemeris lines	<insert data="" ephemeris="" here="" lines=""></insert>	Table 4-4	<u>M</u>	

A2.2.3 Attitude Comprehensive Message Requirements list

ACM Header

<u>Item</u>	<u>Feature</u>	Keyword	Reference	Status	Support
	ACM Header	<u>N/A</u>	Table 5-2	N/A	
1	ACM Version	CCSDS ACM VERS	Table 5-2	<u>M</u>	
2	Comment	COMMENT	Table 5-2	<u>O</u>	
<u>3</u>	Message creation date and time	CREATION DATE	Table 5-2	<u>M</u>	
4	Message originator	ORIGINATOR	Table 5-2	<u>M</u>	
<u>5</u>	Unique message identifier	MESSAGE_ID	Table 5-2	<u>O</u>	

ACM Metadata

<u>Item</u>	<u>Feature</u>	<u>Keyword</u>	Reference	Status	Support
<u>8</u>	Metadata logical block	<u>N/A</u>	<u>Table 5-3</u>	N/A	
<u>6</u>	ACM Metadata Start	META START	<u>Table 5-3</u>	<u>M</u>	
7	Comment	COMMENT	<u>Table 5-3</u>	<u>O</u>	
<u>8</u>	Classification	CLASSIFICATION	<u>Table 5-3</u>	<u>O</u>	
9	Spacecraft name for the object	OBJECT_NAME	Table 5-3	<u>M</u>	
<u>10</u>	International designator for the object	INTERNATIONAL DESIGNATOR	Table 5-3	<u>O</u>	
<u>11</u>	Satellite catalog source	CATALOG_NAME	<u>Table 5-3</u>	<u>O</u>	
<u>12</u>	Unique satellite identification designator	OBJECT DESIGNATOR	Table 5-3	<u>O</u>	
<u>13</u>	Message originator or programmatic Point-of-Contact	ORIGINATOR_POC	Table 5-3	<u>O</u>	
<u>14</u>	Contact position of the originator PoC	ORIGINATOR_POSITION	Table 5-3	<u>O</u>	
<u>15</u>	Originator PoC phone number	ORIGINATOR_PHONE	Table 5-3	<u>O</u>	
<u>16</u>	Originator PoC address	ORIGINATOR ADDRESS	<u>Table 5-3</u>	<u>O</u>	
<u>17</u>	Unique identifier of linked Orbit Data Message(s)	ODM MSG LINK	Table 5-3	<u>O</u>	
<u>18</u>	Name of orbited object	CENTER NAME	<u>Table 5-3</u>	<u>O</u>	
<u>19</u>	Time system used for the data	TIME SYSTEM	Table 5-3	<u>M</u>	
<u>20</u>	Default epoch to which all relative times are referenced	EPOCH TZERO	Table 5-3	M	
<u>21</u>	Message contents	ACM DATA ELEMENTS	<u>Table 5-3</u>	<u>O</u>	
<u>22</u>	Time of the earliest data	START_TIME	<u>Table 5-3</u>	<u>O</u>	
<u>23</u>	Time of the latest data	STOP TIME	Table 5-3	<u>O</u>	

	<u>24</u>	<u>Difference (TAI – UTC) in</u> <u>seconds</u>	TAIMUTC_AT_TZERO	Table 5-3	<u>O</u>	
Ī	<u>25</u>	Metadata Stop	META_STOP	Table 5-3	<u>M</u>	

ACM Data: Attitude State Time History

<u>Item</u>	<u>Feature</u>	Keyword	Reference	Status	Support
	Attitude state time history logical block	<u>N/A</u>	Table 5-4	<u>N/A</u>	
<u>26</u>	Attitude state time history start	ATT START	Table 5-4	<u>MC</u>	
<u>27</u>	Comment	COMMENT	<u>Table 5-4</u>	<u>OC</u>	
<u>28</u>	Identification number for this attitude state time history block	ATT ID	Table 5-4	<u>oc</u>	
<u>29</u>	Identification number for the previous attitude time history	ATT PREV ID	Table 5-4	<u>oc</u>	
<u>30</u>	Basis of this OrbitAttitude State time history data	ATT BASIS	Table 5-4	<u>oc</u>	
<u>31</u>	Reference frame starting point	REF_FRAME_A	Table 5-4	<u>MC</u>	
<u>32</u>	Reference frame end point	REF_FRAME_B	Table 5-4	<u>MC</u>	
<u>33</u>	Number of states	NUMBER STATES	<u>Table 5-4</u>	<u>MC</u>	
<u>34</u>	Type of attitude data	ATT_TYPE	<u>Table 5-4</u>	<u>MC</u>	
<u>35</u>	Type of rate data	RATE_TYPE	<u>Table 5-4</u>	<u>OC</u>	
<u>36</u>	ACM attitude state time history	<pre><insert here="" history="" orbit="" state="" time=""></insert></pre>	Table 5-4	<u>MC</u>	
<u>37</u>	Attitude state time history end	ATT_STOP	Table 5-4	<u>MC</u>	

ACM Data: Space Object Physical Characteristics

Item	<u>Feature</u>	Keyword	Reference	Status	Support
	Space Object Physical Characteristics logical block	N/A	Table 5-5	<u>N/A</u>	
<u>38</u>	Start of a Space Object Physical Characteristics specification	PHYS START	Table 5-5	<u>MC</u>	
<u>39</u>	Comment	COMMENT	<u>Table 5-5</u>	<u>OC</u>	
<u>40</u>	Drag Coefficient	DRAG COEFF	<u>Table 5-5</u>	<u>OC</u>	
<u>41</u>	Space object total mass	WET MASS	<u>Table 5-5</u>	<u>OC</u>	
<u>42</u>	Space object dry mass	DRY_MASS	<u>Table 5-5</u>	<u>OC</u>	
<u>43</u>	Coordinate system for the center of pressure vector.	CP_REF_FRAME	Table 5-5	<u>oc</u>	
44	Vector location of spacecraft center of pressure	<u>CP</u>	<u>Table 5-5</u>	<u>OC</u>	
<u>45</u>	Coordinate system for the inertia tensor.	INERTIA REF FRAME	Table 5-5	<u>OC</u>	
<u>46</u>	Moment about X.	IXX	Table 5-5	<u>OC</u>	

Item	Feature	Keyword	Reference	Status	Support
<u>47</u>	Moment about Y.	IYY	Table 5-5	OC OC	Опрроп
<u>48</u>	Moment about Z.	IZZ	<u>Table 5-5</u>	<u>OC</u>	
<u>49</u>	Cross Product X-Y	IXY	Table 5-5	<u>OC</u>	
<u>50</u>	Cross Product X-Z	IXZ	<u>Table 5-5</u>	<u>OC</u>	
<u>51</u>	Cross Product Y-Z	<u>IYZ</u>	<u>Table 5-5</u>	<u>OC</u>	
<u>52</u>	End of the Space Object Physical Characteristics specification	PHYS_STOP	Table 5-5	<u>MC</u>	

ACM Data: Orbit State Covariance Time History

<u>Item</u>	<u>Feature</u>	Keyword	Reference	Status	Support
	Covariance time history logical block	<u>N/A</u>	Table 5-6	<u>N/A</u>	
<u>53</u>	Start of a covariance time history section	COV START	Table 5-6	<u>MC</u>	
<u>54</u>	Comment	COMMENT	<u>Table 5-6</u>	<u>OC</u>	
<u>55</u>	Identification number for this covariance time history block	COV ID	Table 5-6	<u>OC</u>	
<u>56</u>	Identification number for the previous covariance time history	COV PREV ID	Table 5-6	<u>OC</u>	
<u>57</u>	Basis of this covariance time history	COV BASIS	<u>Table 5-6</u>	<u>oc</u>	
<u>58</u>	Reference frame of the covariance time history	COV_REF_FRAME	Table 5-6	<u>oc</u>	
<u>59</u>	Covariance composition	COV_TYPE	<u>Table 5-6</u>	<u>MC</u>	
<u>60</u>	Covariance data	<pre><insert covariance="" data="" here=""></insert></pre>	<u>Table 5-6</u>	<u>MC</u>	
<u>61</u>	End of a covariance time history section	COV STOP	Table 5-6	<u>MC</u>	

ACM Data: Maneuver Specification

<u>Item</u>	<u>Feature</u>	Keyword	Reference	Status	Support
	Maneuver time history logical block	<u>N/A</u>	Table 5-7	<u>N/A</u>	
<u>62</u>	Start of a maneuver data block	MAN_START	Table 5-7	<u>MC</u>	
<u>63</u>	Comment	COMMENT	<u>Table 5-7</u>	<u>OC</u>	
<u>64</u>	Identification number for this maneuver	MAN_ID	Table 5-7	<u>oc</u>	
<u>65</u>	Identification number for the previous maneuver	MAN_PREV_ID	Table 5-7	<u>OC</u>	
<u>66</u>	Specifies the purpose of the maneuver	MAN PURPOSE	Table 5-7	<u>MC</u>	
<u>67</u>	Start time of maneuverre	MAN BEGIN	Table 5-7	<u>MC</u>	
<u>68</u>	End time of maneuverre	MAN_END	Table 5-7	<u>MC</u>	
<u>69</u>	Length of maneuver	MAN DURATION	Table 5-7	<u>MC</u>	

<u>Item</u>	<u>Feature</u>	Keyword	Reference	<u>Status</u>	Support
<u>70</u>	Actuator used for the maneuver	ACTUATOR USED	Table 5-7	<u>MC</u>	
<u>71</u>	Target momentum components	TARGET_MOMENTUM	Table 5-7	<u>OC</u>	
<u>72</u>	Target quaternion components	TARGET ATTITUDE	Table 5-7	<u>OC</u>	
<u>73</u>	Target spin rate	TARGET SPINRATE	Table 5-7	<u>OC</u>	
<u>74</u>	End maneuver data block	MAN STOP	Table 5-7	<u>MC</u>	

ACM Data: Attitude determination

<u>Item</u>	<u>Feature</u>	Keyword	Reference	Status	Support
	Covariance time history logical block	<u>N/A</u>	Table 5-8	N/A	
<u>75</u>	Start of an attitude determination section	AD START	Table 5-8	<u>MC</u>	
<u>76</u>	Identification number for this attitude determination block	AD_ID	Table 5-8	<u>OC</u>	
<u>77</u>	Identification number for the previous attitude determination block	AD PREV ID	Table 5-8	<u>OC</u>	
<u>78</u>	Type of attitude determination method	AD_METHOD	Table 5-8	<u>OC</u>	
<u>79</u>	Source of attitude estimate	ATTITUDE_SOURCE	Table 5-8	<u>oc</u>	
<u>80</u>	Number of states	NUMBER STATES	<u>Table 5-8</u>	<u>OC</u>	
<u>81</u>	Type of attitude data.Reference frame of the covariance time history	ATTITUDE STATES	Table 5-8	MC	
<u>82</u>	Type of attitude error state included	COV TYPE	Table 5-8	<u>OC</u>	
<u>83</u>	Reference frame starting point	REF_FRAME_A	Table 5-8	<u>MC</u>	
<u>84</u>	Reference frame end point	REF_FRAME_B	Table 5-8	<u>MC</u>	
<u>85</u>	Type of rate states included	RATE STATES	Table 5-8	<u>oc</u>	
<u>86</u>	Rate random walk	SIGMA U	Table 5-8	<u>OC</u>	
<u>87</u>	Angle random walk	SIGMA V	Table 5-8	<u>OC</u>	
88	Process noise standard deviation	RATE PROCESS NOISE STDDEV	Table 5-8	<u>OC</u>	
<u>89</u>	Number of sensors used	NUMBER SENSORS USED	Table 5-8	<u>OC</u>	
90	Types of sensors used in estimation	SENSORS USED I	Table 5-8	<u>oc</u>	

<u>Item</u>	<u>Feature</u>	Keyword	Reference	Status	Support
<u>91</u>	Number of noise elements for sensor I	NUMBER SENSOR NOISE COVARIANCE I	Table 5-8	<u>OC</u>	
92	Standard deviation of sensor noise	SENSOR NOISE STDDEV I	Table 5-8	<u>oc</u>	
93	Frequency of sensor I data	SENSOR_FREQUENCY_I	Table 5-8	<u>oc</u>	
94	End of attitude determination data section	AD STOP	Table 5-8	<u>MC</u>	

ACM Data: User-Defined Parameters

Item	<u>Feature</u>	Keyword	Reference	Status	Support
	User Defined Parameters logical block	N/A	Table 5-9	N/A	
<u>95</u>	<u>User-defined parameters</u> <u>block start</u>	<u>USER_START</u>	Table 5-9	<u>MC</u>	
<u>96</u>	As defined by user, "essential information that cannot be conveyed in comment statements"	(User-defined keywords)	Table 5-9	<u>OC</u>	
<u>97</u>	User-defined parameters block end	USER STOP	Table 5-9	<u>MC</u>	

ANNEX B

VALUES FOR SELECTED KEYWORDS

(NORMATIVE)

B1 OVERVIEW

The values in this annex represent the acceptable recommended values for selected keywords. Each keyword's values delineated here are present in either an APM, or ACM message. For details and descriptions of the keyword interpretations, the reader is directed to reference Ref. [12][12]. If exchange partners wish to use different settings, they should be documented in an ICD.

These recommended values are stored on the SANA Registry, globally accessible on the CCSDS SANA registry website (see Ref. [9]).

Note that the message creator or recipient may wish to automate processing of SANA registry normative content, which can be done by ingesting and processing of such content in electronic format. These formats can be accessed via the "Actions" link on each registry, e.g. for the Orbital Elements registry, a comma separated value (CSV) format can be exported at: https://www.sanaregistry.org/r/orbital_elements? export=csv and a (JSON) format at: https://www.sanaregistry.org/r/orbital_elements? export=json. Note that both the registry and these electronic data formats contain the specification of how many vector elements corresponding to each keyword value.

Exchange partners may submit additional (new) keyword values for consideration of future inclusion into the SANA registry by submitting a detailed email request (mailto:info@sanaregistry.org). The CCSDS Area or Working Group responsible for the maintenance of the ODM at the time of the request is the approval authority. Until a suggested value is included in the SANA registry, exchange partners may define and use values that are not listed in the SANA registry if mutually agreed between message exchange partners

B2 TIME_SYSTEM METADATA KEYWORD

The value associated with this keyword <u>must should</u> be selected from the full set of allowed values enumerated in the SANA Registry:

• https://sanaregistry.org/r/time_systems.

B3 REF_FRAME KEYWORD VALUES

This section describes the allowable keywords for reference frames that can be used by ADM messages. They are valid for keywords REF_FRAME_* in the APM, AEM, and ACM messages, where '*' denotes 'A' or 'B' and for the keyword MAN_REF_FRAME.

The value associated with these keywords <u>must should</u> be selected from the full set of allowed values enumerated in one of the following SANA Registries:

- https://sanaregistry.org/r/celestial_body_reference_frames
- https://sanaregistry.org/r/orbit_relative_reference_frames
- https://sanaregistry.org/r/spacecraft_body_reference_frames

B4 ATTITUDE AND RATE TYPES

The following table enumerates the allowed values for the keywords associated with ATT_TYPE and RATE_TYPE in the ACM.

Keyword Value	Meaning/Description
QUATERNION	Coordinate transformation represented as a quaternion, with 4 elements. The scalar element is always last. Units are "dimensionless". 5
EULER_ANGLES	Coordinate transformation represented with three 3 successive rotations. Units are "deg".
DCM	Coordinate transformation represented as a 3x3 matrix. Included as 9 elements listed by columns. First 3 numbers are column one, second 3 are column two, third 3 are column three. Units are "dimensionless".
ANGVEL	Angular velocity vector, contains 3 elements. <u>Units are "deg/s".</u>
Q_DOT	Rate of change of the quaternion, contains 4 elements. Units are "dimensionless /s".
EULER_RATE	Time derivative of the Euler angles, contains 3 elements. Units are "deg/s".
GYRO_BIAS	Correction to gyro estimated angular velocity, contains 3 elements. Units are "deg/s".

B5 ESTIMATOR TYPES

The following table enumerates the allowed values for the keyword AD_METHOD in the ACM:

Keyword Value	Meaning/Description
EKF	Extended Kalman Filter, a sequential estimation algorithm applied to spacecraft attitude determination. Often additional state vector components are included, such as gyro biases or angular velocity.

TRIAD	TRIAxial Attitude Determination, an algebraic method for determination of spacecraft attitude from a set of two vector observations.
QUEST	QUaternion ESTimator, an efficient, deterministic algorithm to estimate a spacecraft attitude quaternion.
ВАТСН	A batch least squares algorithm to estimate spacecraft attitude, and optionally additional sensor parameters such as alignments, biases, scale factors.
Q_METHOD	Considered the best deterministic algorithm to estimate a spacecraft attitude quaternion. Requires use of an eigenvalue decomposition algorithm. See Ref. [10][I3].
FILTER_SMOOTHER	A method to smooth noisy processes. Several smoothing approaches exist such as fixed-point, fixed-lag, and fixed-interval. Used in ground applications to produce fine attitude estimates for post-processing applications.

COVARIANCE MATRIX TYPES B6

This section describes the allowable keywords for covariance matrix types that can be used by ACM messages.

Keyword Value	Meaning/Description
ANGLE	The diagonal elements of Aa 3x3 matrix, the diagonal elements containing: a Angular errors about each spacecraft axis. U, units are deg.
ANGLE GYROBIAS	The diagonal elements of a A-6x6 matrix, the diagonal elements containing: a-Angular errors about each spacecraft axis and gyro bias errors. Units are deg for the angular errors and deg/see for the gyro bias errors.
ANGLE_ANGVEL	The diagonal elements of a A-6x6 matrix, the diagonal elements containing: aAngular errors about each spacecraft axis and angular velocity errors. Units are deg for the angular errors and deg/see for the angular velocity errors.
QUATERNION	The diagonal elements of a A 4x4 matrix, the diagonal elements containing :—qQuaternion errors. —Units are N/A "dimensionless" for the quaternion errors.
QUATERNION_GYROBIAS	The diagonal elements of a A-7x7 matrix, the diagonal elements containing 7:—qQuaternion errors and gyro bias errorsUnits are N/A"dimensionless" for the quaternion errors and deg/see for the gyro bias errors.
QUATERNION ANGVEL	The diagonal elements of a A-7x7 matrix, the diagonal elements containing a Quaternion errors and angular velocity errors, Units

NameKeyword Value	Description and Reference Meaning/Description	Nomenclature	Default Units/Type
ANGLE	3x3: Angular errors about each spacecraft axis	d 0_1, d 0_2, d 0_3	deg
ANGLE_GYROBIAS	6x6: Angular errors about each spacecraft axis and gyro bias errors	d0_1, d0_2, d0_3, db_1, db_2, db_3	deg, deg/sec
ANGLE_ANGVEL	6x6: Angular errors about each spacecraft axis and angular velocity errors	$d\theta_{-1}, d\theta_{-2}, d\theta_{-3}, d\omega_{-1}, d\omega_{-2}, d\omega_{-3}$	deg, deg/sec
QUATERNION	4x4: Quaternion errors	dQ_1, dQ_2, dQ_3, dQ_C4	unitless
QUATERNION_GYROBIAS	7x7: Quaternion errors and gyro bias errors	dQ_1, dQ_2, dQ_3, dQ_C4, db_1, db_2, db_3	unitless, deg/sec
QUATERNION_ANGVEL	7x7: Quaternion errors and angular velocity errors	dQ_1, dQ_2, dQ_3, dQ_C4, d\omega_1, d\omega_2, d\omega_3	unitless, deg/sec
	are N/A" dimensionless" for the quangular velocity errors.	naternion errors an	nd deg/see for the

B7 NORMATIVE REFERENCES FOR ATTITUDE AND SPACECRAFT **CONVENTIONS**

[B 1] SANA Registry of Attitude and Spacecraft Conventions are defined in the following SANA registry: https://sanaregistry.org/r/attitude_and_spacecraft_conventions

B8 ORBIT CENTER KEYWORD VALUES

-A set of allowed values for the reference frame center keywords (**CENTER_NAME** for APM, AEM, and ACM) is enumerated in the SANA Registry of Orbit Centers, located at:

https://sanaregistry.org/r/orbit_centers

ANNEX C

CONVENTIONS FOR ADM DATA

(INFORMATIVE)

C1 OVERVIEW

This annex details the conventions used in this document for the definition of Attitude data.

C2 QUATERNIONS

The quaternion called "from frame A to frame B" is defined as the quaternion of the rotation that transforms the basis vectors of frame A into the basis vectors of frame B. That is to say that the basis vectors of frame B are the respective images of the basis vectors of frame A by the rotation.

The quaternion is defined by four components:

$$Q_1 = \sin(\phi/2) * e_1$$

$$Q_2 = \sin(\phi/2) * e_2$$

$$Q_3 = \sin(\phi/2) * e_3$$

$$Q_C = \cos(\phi/2)$$

where:

- \$\phi\$ is the rotation angle,
- e₁, e₂ and e₃ are the coordinates of the rotation axis in either frame A or frame B.

The quaternion is related to the frame transformation matrix in the following way:

Let X_A be the coordinates of some vector in frame A, and X_B the coordinates of the <u>same</u> vector in frame B.

The frame transformation matrix M_{BA} that transforms coordinates in frame A to coordinates in frame B is defined by:

$$X_B = M_{BA} * X_A$$

where M_{BA} is a function of the quaternion components:

$$M_{BA} = \begin{bmatrix} Q_1^2 - Q_2^2 - Q_3^2 + Q_c^2 & 2(Q_1 Q_2 + Q_3 Q_c) & 2(Q_1 Q_3 - Q_2 Q_c) \\ 2(Q_1 Q_2 - Q_3 Q_c) & -Q_1^2 + Q_2^2 - Q_3^2 + Q_c^2 & 2(Q_2 Q_3 + Q_1 Q_c) \\ 2(Q_1 Q_3 + Q_2 Q_c) & 2(Q_2 Q_3 - Q_1 Q_c) & -Q_1^2 - Q_2^2 + Q_3^2 + Q_c^2 \end{bmatrix}$$

C3 EULER ANGLES

The Euler angles called "from frame A to frame B" are the rotation angles of the 3 successive <u>intrinsic</u> rotations that transform frame A into frame B.

Let's call θ_1 , θ_2 , θ_3 the 3 rotation angles, and a_1 , a_2 , a_3 the respective rotation axes (X-axis, Yaxis, or Z-axis). The images of the basis vectors of frame A by the 3 successive rotations of angle θ_1 and axis a_1 , angle θ_2 and axis a_2 , angle θ_3 and axis a_3 are the respective basis vectors of frame B.

Example:

Let's consider the 3 successive rotations around axes $a_1=X$, $a_2=Y$, $a_3=Z$ of respective angles θ_1 , θ_2 , θ_3 .

Let's define the frame transformation matrix M such that:

$$X_B = M_{BA} * X_A$$

where X_A denotes the coordinates of some vector in frame A, and X_B the coordinates of the same vector in frame B.

Then we have:

$$\mathbf{M}_{\mathrm{BA}} = \begin{bmatrix} \cos\theta_3 & \sin\theta_3 & 0 \\ -\sin\theta_3 & \cos\theta_3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos\theta_2 & 0 & -\sin\theta_2 \\ 0 & 1 & 0 \\ \sin\theta_2 & 0 & \cos\theta_2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_1 & \sin\theta_1 \\ 0 & -\sin\theta_1 & \cos\theta_1 \end{bmatrix}$$

C4 ANGULAR VELOCITY VECTOR

The angular velocity vector from frame A to frame B represents the angular velocity vector of frame B with respect to frame A.

The components can be defined either in frame A or frame B.

C5 SPIN DATA

The spin data enable the user of the message to propagate the attitude of an object using a simple model.

The spin data from frame A to frame B are defined as follows:

The spin axis is the Z axis of frame B, a principal axis.

The initial attitude is defined as the result of 3 successive rotations of respective angles spin_alphaSPIN_ALPHA, spin_deltaSPIN_DELTA, and spin_angleSPIN_ANGLE around the successive axes Z, Y, Z starting from frame A.

Nutation_angleNUTATION is the angle between the principal axis (spin axis) and the angular momentum.

Nutation_phaseNUTATION_PHASE describes the initial orientation of the spin axis in itshis motion around the angular momentum vector.

The components of the angular momentum vector in frame B are:

• alpha, delta

- Pi/2 delta is the nutation angle
- Alpha pi is the offset angle

C6 INERTIA DATA

Inertia data consist of:

- Moments of inertia (diagonal terms)
- Inertial cross products (off diagonal terms)

$$I = \begin{bmatrix} I_{XX} & -I_{XY} & -I_{XZ} \\ -I_{XY} & I_{YY} & -I_{YZ} \\ -I_{XZ} & -I_{YZ} & I_{ZZ} \end{bmatrix}$$

The cross product terms are negative.

The inertia matrix is defined relative to a particular frame (defined by its axis and origin).

ANNEX D

EXAMPLES

(INFORMATIVE)

D1 APM EXAMPLES

This section contains examples of Attitude Parameter Messages.

Figure D-1 Figure D-1 is a simple example with one quaternion.

Figure D-2Figure D-2 is a simple example with Euler angles.

Figure D-3 Figure D-3 is a more complex example with several data blocks.

```
CCSDS_APM_VERS = 2.0
CREATION_DATE = 2003-09-30T19:23:57
ORIGINATOR = GSFC
MESSAGE_ID = A7015Z1
          GEOCENTRIC, CARTESIAN, EARTH FIXED OBJECT_ID: 1997-009A074A
COMMENT
COMMENT
COMMENT $ITIM = 1997 NOV 21 22:2\overline{6:18}.40000000, $ original launch time
OBJECT_NAME = TRMM
OBJECT_ID _= <u>1997-074A</u> <u>1997-009A</u>
CENTER NAME = EARTH
TIME_SYSTEM = UTC
         Current attitude for orbit 335
COMMENT
COMMENT
           Attitude state quaternion
COMMENT Accuracy of this attitude is 0.02 deg RSS.
EPOCH
        = 2003-09-30T14:28:15.1172
QUAT_START
REF_FRAME_A = SC_BODY_1
REF_FRAME_B = ITRF19-97
01
         = 0.00005
        = 0.87543
02
         = 0.40949
03
        = 0.25678
OC
QUAT_STOP
```

Figure D-1: APM example with quaternion

```
CCSDS_APM_VERS = 2.0
CREATION_DATE = 2006-03-13T13:13:33

ORIGINATOR = GSFC

MESSAGE_ID = A7015Z2
OBJECT_NAME = GOES-P
OBJECT_ID = 2006-003A
CENTER_NAME = EARTH
TIME_SYSTEM = UTC
COMMENT GEOSYNCHRONOUS, CARTESIAN, EARTH FIXED
COMMENT OBJECT_ID: 2006-003A
COMMENT $ITIM = 2006 FEB 5 03:23:45.60000000, $ original launch time
COMMENT Attitude given by Euler angles
EPOCH = 2006-03-12T09:56:39.4987
EULER START
COMMENT Euler angles
REF_FRAME_A = BODY_FRAME_A
REF_FRAME_B = ITRF19-97
EULER_ROT_SEQ = YXY
            = -26.78 [deg]
ANGLE_1
           = 46.26 [deg]
= 144.10 [deg]
ANGLE_2
ANGLE_3
EULER_STOP
```

Figure D-2: APM File Example with Euler Angles

Ì

```
CCSDS APM VERS = 2.0
CREATION_DATE = 2004-02-14T19:23:57
ORIGINATOR = JPL
MESSAGE_ID = 900018
OBJECT_NAME = MARS SPIRIT
OBJECT_ID = 2004-003A
CENTER_NAME = EARTH
TIME_SYSTEM = UTC
             GEOCENTRIC, CARTESIAN, EARTH FIXED
COMMENT
COMMENT OBJECT_ID: 2004-003
COMMENT $ITIM = 2004 JAN 14 22:26:18.400000, $ original launch time 14:36
COMMENT
              Generated by JPL
            Current attitude for orbit 20 and attitude maneuver
COMMENT
COMMENT
             planning data.
           = 2004-02-14T14:28:15.1172
QUAT_START
             Attitude state quaternion (ref frame = ITRF19-97)
COMMENT
REF_FRAME_A = ITRF<u>19</u>-97
REF_FRAME_B = INSTRUMENT_A
         = 0.03123
        = 0.78543
Q2
        = 0.39158
03
QC
         = 0.47832
QUAT_STOP
QUAT_START
COMMENT
             Attitude state quaternion (ref frame = ICRF)
REF_FRAME_A = ICRF
REF_FRAME_B = INSTRUMENT_A
         = 0.02478
Q2
         = 0.78576
       = 0.39552
= 0.47491
Q3
QC
QUAT_STOP
INERTIA_START
COMMENT Spacecraft Inertia Parameters
INERTIA_REF_FRAME = SC_BODY_1
         = 6080.0 [kg*m**2]
         = 5245.5 [kg*m**2]
= 8067.3 [kg*m**2]
IYY
T 7.7.
          = -135.9 [kg*m**2]
IXY
          = 89.3 [kg*m**2]
IXZ
         = -90.7 [kg*m**2]
IYZ
INERTIA_STOP
MANEUVER START
COMMENT Data follows for 1 planned maneuver.
COMMENT First attitude maneuver for: MARS SPIRIT
COMMENT Impulsive, torque direction fixed in body frame
MAN_EPOCH_START = 2004-02-14T14:29:00.5098
MAN_DURATION = 3 [s]
MAN_REF_FRAME = ICRF
MAN\_TOR\_X = -1.25
                       [N*m]
MAN_TOR_Y
              = -0.5
                        [N*m]
MAN_TOR_Z
              = 0.5
                       [N*m]
MANEUVER_STOP
```

Figure D-3: APM File Example with various contents

D2 AEM EXAMPLES

1

1

This section contains examples of Attitude Ephemeris Messages.

<u>Figure D-4</u> is an example of an AEM. Note that some attitude ephemeris lines were omitted.

```
CCSDS_AEM_VERS = 2.0
CREATION_DATE = 2002-11-04T17:22:31
ORIGINATOR = NASA/JPL
MESSAGE_ID = A7015Z3
META_START
COMMENT This file was produced by M.R. Somebody, MSOO NAV/JPL.
COMMENT It is to be used for attitude reconstruction only. The relative accuracy of these
COMMENT attitudes is 0.1 degrees per axis.
OBJECT_NAME = MARS GLOBAL SURVEYOR
OBJECT ID
                = 1996-062A

        CENTER_NAME
        =
        MARS
        BARYCENTERmars
        barycenter

        REF_FRAME_A
        =
        EME2000

        REF_FRAME_B
        =
        SC_BODY_1

        TIME_SYSTEM
        =
        UTC

        START_TIME
        =
        1996-11-28T21:29:07.2555

USEABLE_START_TIME = 1996-11-28T22:08:02.5555
USEABLE_STOP_TIME = 1996-11-30T01:18:02.5555
STOP_TIME = 1996-11-30T01:28:02.5555
ATTITUDE_TYPE = QUATERNION
INTERPOLATION_METHOD = hermite
INTERPOLATION_DEGREE = 7
META_STOP
DATA START
1996-11-28T21:29:07.2555 0.56748 0.03146 0.45689 0.68427
1996-11-28T22:08:03.5555 0.42319 -0.45697 0.23784 0.74533
1996-11-28T22:08:04.5555 -0.84532 0.26974 -0.06532 0.45652
         < intervening data records omitted here >
1996-11-30T01:28:02.5555 0.74563 -0.45375 0.36875 0.31964
DATA_STOP
META START
COMMENT This block begins after trajectory correction maneuver TCM-3.
OBJECT_NAME = mars global surveyor
OBJECT_ID
                 = 1996-062A
CENTER_NAME = MARS BARYCENTER
REF_FRAME_A = EME 2000
REF FRAME B
                    = SC BODY 1
TIME_SYSTEM = UTC
START TIME = 1996-12-18T12:05:00.5555
USEABLE_START_TIME = 1996-12-18T12:10:00.5555
USEABLE_STOP_TIME = 1996-12-28T21:23:00.5555
                = 1996-12-28T21:28:00.5555
STOP_TIME
ATTITUDE_TYPE = QUATERNION
META_STOP
DATA_START
1996-12-18T12:05:00.5555 -0.64585 0.018542 -0.23854 0.72501
< intervening records omitted here >
1996-12-28T21:28:00.5555 -0.25485 0.58745 -0.36845 0.67394
DATA_STOP
```

Figure D-4: AEM Example

<u>Figure D-5</u> is an example of an AEM describing a spinning spacecraft. Note that some attitude ephemeris lines were omitted.

```
CCSDS_AEM_VERS = 2.0
 CREATION_DATE = 2008-071T17:09:49
 ORIGINATOR
                                               = GSFC FDF
                                               = 7077456
MESSAGE ID
META_START
OBJECT_NAME = ST5-224
 OBJECT_ID
                                                 = 2006-224A
CENTER_NAME
                                               = EARTH
REF_FRAME_A
                                               = J2000
REF FRAME B
                                               = SC_BODY_1
TIME\_SYSTEM = UTC
                                               = 2006-090T05:00:00.071
 START_TIME
USEABLE_START_TIME = 2006-090T05:00:00.071
 USEABLE_STOP_TIME = 2006-090T05:00:00.946
STOP_TIME
                                            = 2006-090T05:00:00.946
 ATTITUDE TYPE = SPIN
META_STOP
DATA_START
 COMMENT
                                              Spin KF ground solution, SPINKF rates
      2006-090T05:00:00.821 2.6850631e+002 6.8340398e+001 7.7341548e+001 -1.0996317e+002
       2006 - 090T05 \colon 00 \colon 00.946 \quad 2.6843571 e + 002 \quad 6.8332398 e + 001 \quad 6.3662262 e + 001 \quad -1.0996304 e + 002 \quad -1.0996406 e + 002 \quad -1.0996406 e + 002 \quad -1.0996406 e + 002 \quad -
 DATA_STOP
```

Figure D-5: AEM Spinner Example

D3 ACM EXAMPLES

This section contains examples of Attitude Comprehensive Messages.

<u>Figure D-6</u> shows an example with a time history of attitude states; it constitutes a minimal content ACM.

Figure D-7Figure D-7 is an example of ACM which includes a maneuver with associated attitude history

Figure D-8 is an example of ACM which includes object's physical characteristics.

<u>Figure D-9</u> is an example with attitude state covariance time history and attitude determination data.

```
CCSDS_ACM_VERS = 2.0
CREATION_DATE = 1998-11-06T09:23:57
ORIGINATOR = JAXA
MESSAGE_ID = A7015Z_{\underline{4}}
META_START
OBJECT_NAME
              = EUROBIRD-4AGODZILLA 5
INTERNATIONAL_DESIGNATOR = 2000-052A
TIME_SYSTEM = UTC
EPOCH_TZERO = 1998-12-18T14:28:15.1172
META_STOP
ATT_START
REF_FRAME_A = J2000
REF_FRAME_B = SC_BODY
NUMBER_STATES = 4
ATT_TYPE = QUATERNION
< additional data records omitted here >
ATT_STOP
```

Figure D-6: Simple/Succinct ACM File example

I

```
CCSDS_ACM_VERS = 2.0
CREATION_DATE = 2017-12-01T00:00:00
ORIGINATOR = NASA
MESSAGE_ID = A7015Z5
META_START
OBJECT NAME
                  = SDO
INTERNATIONAL_DESIGNATOR = 2010-005A
TIME_SYSTEM = UTC
EPOCH_TZERO = 2017-12-26T19:40:00.000
META_START
ATT START
                  OBC Attitude and Bias during momentum management maneuver
COMMENT
REF_FRAME_B = J2000
REF_FRAME_B = SC_BODY
NUMBER_OF_STATES = 7
ATT_TYPE = QUATERNION
RATE_TYPE
                 = GYRO_BIAS
< intervening data records omitted here >
99.80183 0.1017 -0.1332 0.8806 0.4433 2.587e-06 8.769e-06 5.436e-06
< intervening data records omitted here >
599.80275 0.1152 -0.1423 0.8704 0.4571 2.48e-06 -4.350e-06 -3.779e-06
ATT_STOP
MAN_START
COMMENT
                    Momentum management maneuver
MAN_PURPOSE = MOM_DESAT

MAN_BEGIN = 100.0

MAN_DURATION = 450.0

ACTUATOR_USED = ATT-THRUSTER

TARGET_MOMENTUM = [1.30, -16.400, -11.350]
MAN_STOP
AD_START
                   SDO Onboard Filter
COMMENT
AD METHOD
                  = EKF
ATTITUDE_SOURCE = OBC
NUMBER_SENSORS_USED = 4
SENSORS_USED_1 = AST1
SENSORS_USED_2
                 = AST2
SENSORS_USED_3 = DSS
SENSORS_USED_4 = IMU
AD_STOP
```

Figure D-7: ACM example with Attitude State Time History, Maneuver Specification, and Attitude Determination Data

```
CCSDS_ACM_VERS = 2.0
CREATION_DATE = 1998-11-06T09:23:57
ORIGINATOR = JAXA
MESSAGE_ID = A7015Z6
ORIGINATOR_POC
                           = Ms. Rodgers, (719)555-5555, email@email.XXX
META_START
OBJECT_NAME = GODZILLA 5TEST_SAT
ORIGINATOR_POC = Ms. Rodgers, (719)555-5555, email@email.XXX
INTERNATIONAL_DESIGNATOR = 1998-999Z
TIME_SYSTEM = TAI

EPOCH_TZERO = 1998-12-18T14:28:15.1172

TAIMUTC_AT_TZERO —= 36 [s]
META_STOP
              Spacecraft PHy = 1916 [kg] = 752 [kg*m**2] = 1305 [kg*m**2] = 1490 [kg*m**2] = 81.1 [kg*m**2]
PHYS_START
COMMENT
                      Spacecraft Physical Parameters
MASS
IXX
IYY
IZZ
                     = 81.1 [kg*m**2]
= -25.7 [kg*m**2]
IXY
IXZ
                    = 74.1 [kg*m**2]
IYZ
                      = [0.04 -0.78 -0.023] [m]
PHYS_STOP
```

Figure D-8: Example Space Object Physical Characteristics

```
CCSDS_ACM_VERS = 2.0
CREATION_DATE = 2017-12-30T00:00:00
ORIGINATOR = NASA
MESSAGE_ID = A7015Z_7
META_START
OBJECT NAME
                 = LRO
INTERNATIONAL_DESIGNATOR = 2009-031A
TIME_SYSTEM = UTC
EPOCH_TZERO = 2017-12-30T00:00:00.0
ACM_DATA_ELEMENTS = COV, AD
META_STOP
COV START
COMMENT Diagonal Covariance for LRO Onboard Kalman Filter
ATT_BASIS = DETERMINED_OBC
COV_REF_FRAME = SC_BODY
             = ANGLE_GYROBIAS
COV_TYPE
       6.74E-11 8.10E-11 9.22E-11 1.11E-15 1.11E-15 1.12E-15
1.096694 6.74E-11 8.10E-11 9.22E-11 1.11E-15 1.11E-15 1.12E-15
< intervening data records omitted here >
59.896697 6.74E-11 8.10E-11 9.22E-11 1.11E-15 1.11E-15 1.12E-15
COV_STOP
AD START
COMMENT LRO Onboard Filter, A Multiplicative Extended Kalman Filter
AD_METHOD
                  = EKF
ATTITUDE_SOURCE = OBC
NUMBER_STATES
                   = 7
ATTITUDE_STATES = QUATERNION
            = ANGLE_GYROBIAS
= EME2000
COV_TYPE
REF_FRAME_A
REF_FRAME_A = EME2000
REF_FRAME_B = SC_BODY
RATE_STATES = GYRO_BIAS
NUMBER_SENSORS_USED = 3
SENSORS_USED_1 = AST1
SENSORS_USED_2 = AST2
SENSORS_USED_3 = IMU
AD_END
```

Figure D-9: ACM example with Attitude State Covariance Time History and Attitude Determination Data

ANNEX E

LIST OF CHANGES VERSUS ADM VERSION 1

(INFORMATIVE)

The present section gives the main changes between ADM 1.0 and ADM 2.0

Changes relative to all messages:

Keywords in version 1.0 could be "Obligatory" or "Optional". These words have been replaced by "Mandatory" and "Optional" because the Implementation Conformance Specification (ANNEX A) uses that wording, which is set by the CCSDS.

Changes relative to APM:

Number	Description	Rationale for change	See section
1	The "*_DIR" keywords have been removed	Simplification of the standard.	3.2.4
2	The quaternion block is now optional.	Enable more flexibility if other data need to be exchanged.	3.2.4
3	Any block can now be present as many times as necessary.	Increased flexibility.	3.2.4, 3.2.4.4
4	The meaning of quaternion, Euler angles, spin data, is now clearly defined by the standard.	Avoid misuse of exchange data.	3.2.4, ANNEX C
5	Euler rotation sequences ("EULER_ROT_SEQ" keyword) are specified by letter (X, Y, Z) instead of number, e.g. XYX instead of 121.	Improvement as version 1 led to repeated keyword as X_ANGLE, Y_ANGLE, X_ANGLE.	3.2.4
6	The logical block "Euler angles" now contains angle derivatives rather than components of the angular velocity vector.	Better design of the standard.	3.2.4
7	A new block for the angular velocity vector has been added: ANGVEL.	Better design of the standard.	3.2.4

8	The keywords for the moments of inertia have changed: IXY instead of I12, etc	Consistency with other changes	3.2.4
9	Data block delimiters s-have been added. Data types such as quaternion, Euler angles are explicitly enclosed between QUAT_START QUAT_STOP, EULER_START EULER_STOP, etc delimiters.	Make the data easier to process, and the standard easier to extend in the future	3.2.4
10	A new keyword: "MESSAGE_ID" has been added.	Consistency with other standards	3.2.2
11	Frame related keywords have changed in APM version 2: keywords in version 1 such as Q_FRAME_*, SPIN_FRAME_*, etc (where * denotes "A" or "B") have been removed. The keywords in version 2 are REF_FRAME_*.	Increased simplicity	3.2.4
12	The keywords defining attitude direction (Q_DIR, EULER_DIR, SPIN_DIR) have been removed. The direction is always from A to B.	Simplicity of the standard	3.2.4

Changes relative to AEM:

Number	Description	Rationale for change	See section
1	Euler rotation sequences ("EULER_ROT_SEQ" keyword) are specified by letter (X, Y, Z) instead of number, e.g. XYX instead of 121.	Consistency with ADMAPM	4.2.4
2	A new value has been introduced for the "ATTITUDE_TYPE" keyword: EULER_ANGLE/DERIVATIVE	Consistency with ADMAPM	4.2.4
3	The order for quaternion components (real part first or last) is now imposed by the standard.	More Consistency between KVN and XML formatsSimplicity of the standard	4.2.4
4	The ATTITUDE_DIR keyword has been removed.	Consistency with ADMAPM	4.2.4
5	A new keyword: "MESSAGE_ID" has been added.	Consistency with ADM APM / Other standards	4.2.2

6	The keyword "QUATERNION_TYPE" has been removed. The order in the AEM is the same as in the APM: Q1, Q2, Q3, QC by convention. This change also makes the KVN and XML versions more consistent.	More Consistency between ADM APM and AEM, and simplicity of the standard, and also KVN and XML formats	4.2.4
7	Values for the "ATTITUDE_TYPE" keyword have changed: - QUATERNION/RATE and EULER_ANGLE/RATE have been removed - QUATERNION/ANGVEL and EULER_ANGLE/ANGVEL have been added	More consistency between ADM-APM and AEM (naming conventions)	4.2.4

Changes relative to ACM:

The Attitude Comprehensive Message (ACM) was added to provide symmetry with the Orbit Comprehensive Message (OCM) being added to the Orbit Data Messages standard. <u>See Section 5.</u>

ANNEX F

RATIONALE FOR ATTITUDE DATA MESSAGES

(INFORMATIVE)

F1 OVERVIEW

This annex presents the rationale behind the design of each message. It may help the application engineer to select a suitable message. Corrections and/or additions to these requirements are expected during future updates.

A specification of requirements agreed to by all parties is essential to focus design and to ensure the product meets the needs of the Member Agencies. There are many ways of organizing requirements, but the categorization of requirements is not as important as the agreement to a sufficiently comprehensive set. In this annex the requirements are organized into three categories:

- a) Primary Requirements: These are the most elementary and necessary requirements. They would exist no matter the context in which the CCSDS is operating, i.e., regardless of pre-existing conditions within the CCSDS or its Member Agencies.
- b) Heritage Requirements: These are additional requirements that derive from preexisting Member Agency requirements, conditions, or needs. Ultimately these carry the same weight as the Primary Requirements. This Recommended Standard reflects heritage requirements pertaining to some of the technical participants' home institutions collected during the preparation of the document; it does not speculate on heritage requirements that could arise from other Member Agencies.
- c) Desirable Characteristics: These are not requirements, but they are felt to be important or useful features of the Recommended Standard.

F2 REQUIREMENTS ACCEPTED BY THE ATTITUDE DATA MESSAGES

Table F-1: Primary Requirements

Requirement	<u>Requirement</u>	Accepted for APM?	Accepted for AEM?	Accepted for ACM?
PR- 1Data must be provide d in digital form (compu ter file).	Data must be provided in digital form (computer file).	Y	Y	Y
PR-2The file specification must not require of the receiving agency the separate e application of, or modeling of, spacecraft dynamics or gravitational force models, or integration or propagation.	The file specification must not require of the receiving agency the separate application of, or modeling of, spacecraft dynamics or gravitational force models, or integration or propagation.	N	Y	Y

PR- 3The interfac e must facilitat	The interface must facilitate the receiver of the message to generate an attitude state at any required epoch.	Y	Y	Y
e the receive r of the messag e to				
generat e an attitude state at any				
require d epoch.				
PR- 4Attitu de state inform ation must be provide d-in-a referen ce frame that-is elearly identifi ed-and unambi guous.	Attitude state information must be provided in a reference frame that is clearly identified and unambiguous.	Y	Y	Y
PR- 5Identi fication of the object must be clearly identifi ed and unambi guous.	Identification of the object must be clearly identified and unambiguous.	Y	Y	Y

Identifi	Time measurements (time stamps, time tags, or epochs) must be provided in a commonly used, clearly specified system.	N	N	N
eation of the	provided in a commonly used, clearly specified system.			
center				
of				
attitude				
motion				
must				
be				
clearly				
identifi ed and				
eu anu unambi				
guous. NOTE				
,012				

1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		

PR- 6Time measur	The time bounds of the attitude ephemeris must be unambiguously specified.	Y	Y	Y
ements				
(time				
stamps,				
time				
tags, or				
epochs				
) must				
be				
provide				
d in a				
commo				
nly				
used,				
elearly				
specifi				
ed				
system.				
PR-	The standard must provide for clear specification of units of	N	Y	Y
7 The	measure.	11	1	1
time				
bounds				
of the				
attitude				
ephem				
eris				
must				
be				
unambi				
guousl				
y				
specifi				
ed.				
PR-	Files must be readily ported between, and useable within, all	Y	Y	Y
8The	Member Agency computational environments that could be		*	_
standar	used to exchange Attitude Data Messages.			
d must				
provide				
for				
clear				
specifi				
cation				
of units				
of				
measur				
e .				

		1	ı	1
PR-	Files must have means of being uniquely identified and clearly	Y	Y	Y
9Files	annotated. The file name alone is considered insufficient for this	1	1	
must	purpose.			
be	purpose.			
readily				
ported				
betwee				
n, and				
useable				
within,				
all				
Membe				
r				
Agenc				
y				
comput				
ational				
environ				
ments				
that				
could				
be used				
to				
exchan				
ge				
Attitud				
Attitud e Data				
e Data Messa				
e Data Messa ges.				
e Data Messa ges.	File name syntax and length must not violate computer	Y	Y	Y
e Data Messa ges. PR- 10Files	constraints for those Member Agency computing environments	Y	Y	Y
e Data Messa ges. PR- 10Files must		Y	Y	Y
e Data Messa ges. PR- 10Files	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have	constraints for those Member Agency computing environments	Y	Y	Y
PR-10Files must have means of	constraints for those Member Agency computing environments	Y	Y	Y
PR-10Files must have means of	constraints for those Member Agency computing environments	Y	Y	Y
PR-10Files must have means of being	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed—and	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed—and elearly	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed—and elearly annotat	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed—and clearly annotat ed. The	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed—and elearly annotat ed. The file	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed—and elearly annotat ed. The file name	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed—and clearly annotat ed. The file name alone is	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed and clearly annotat ed. The file name alone is conside	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed and clearly annotat ed. The file name alone is conside red	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed—and clearly annotat ed. The file name alone is conside red insuffic	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed and clearly annotat ed. The file name alone is conside red insuffic ient for	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed—and clearly annotat ed. The file name alone is conside red insuffic	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed and clearly annotat ed. The file name alone is conside red insuffic ient for this	constraints for those Member Agency computing environments	Y	Y	Y
PR- 10Files must have means of being uniquel y identifi ed and clearly annotat ed. The file name alone is conside red insuffic ient for	constraints for those Member Agency computing environments	Y	Y	Y

PR-	Data must be provided in digital form (computer file).	Y	Y	Y
11File				
name				
syntax				
and				
length				
must				
not				
violate				
comput				
er				
constra				
ints for				
those				
Membe				
r				
Agene				
y				
comput				
ing				
environ				
ments				
that				
could				
be used				
to				
exchan				
ge				
Attitud				
e Data				
Messa				
ges.				
<u> </u>				

Table F-2: Heritage Requirements

Requirement	Accepted for APM?	Accepted for AEM?	Accepted for ACM?
A complete attitude ephemeris, not subject to integration or propagation by the customer, must be provided.	N	¥	¥
The standard is, or includes, an ASCH format.	¥	¥	¥
The standard does not require software supplied by other agencies.	¥	¥	¥

	<u>Requirement</u>	Accepted for APM?	Accepted for AEM?	Accepted for ACM?
<u>HR-1</u>	A complete attitude ephemeris, not subject to integration or propagation by the customer, must be provided.	<u>N</u>	<u>Y</u>	<u>Y</u>
<u>HR-2</u>	The standard is, or includes, an ASCII format.	<u>Y</u>	<u>Y</u>	<u>Y</u>
HR-3	The standard does not require software supplied by other agencies.	Y	<u>Y</u>	Y

Table F-3: Desirable Characteristics

Requirement	Accepted for APM?	Accepted for AEM?	Accepted for ACM?
The standard applies to non-traditional objects, such as landers, rovers, balloons, and natural bodies (asteroids, comets).	¥	¥	¥
The standard allows attitude states to be provided in other than the traditional EME2000 inertial reference frame; one example is the International Astronomical Union (IAU) Mars body fixed frame. (In such a case, provision or ready availability of supplemental information needed to transform data into a standard frame must be arranged.)	¥	¥	¥
The standard is extensible with no disruption to existing users or uses.	¥	¥	¥
The standard is consistent with, and ideally a part of, attitude products and processes used for other space science purposes.	N	N	N
The standard is as consistent as reasonable with any related CCSDS attitude standards used for earth to spacecraft or spacecraft to spacecraft applications.	¥	¥	¥
The standard allows for the specification of the accuracy of the attitude solution.	¥	¥	¥

	<u>Requirement</u>	Accepted for APM?	Accepted for AEM?	Accepted for ACM?
<u>DC-1</u>	The standard applies to non-traditional objects, such as landers, rovers, balloons, and natural bodies (asteroids, comets).	<u>Y</u>	<u>Y</u>	<u>Y</u>
DC-2	The standard allows attitude states to be provided in other than the traditional EME2000 inertial reference frame; one example is the International Astronomical Union (IAU) Mars body-fixed frame. (In such a case, provision or ready availability of supplemental information needed to transform data into a standard frame must be arranged.)	Y	Y	Y
DC-3	The standard is extensible with no disruption to existing users or uses.	<u>Y</u>	<u>Y</u>	<u>Y</u>

<u>DC-4</u>	The standard is consistent with, and ideally a part of, attitude products and processes used for other space science purposes.	<u>N</u>	<u>N</u>	<u>N</u>
<u>DC-5</u>	The standard is as consistent as reasonable with any related CCSDS attitude standards used for earth-to-spacecraft or spacecraft-to-spacecraft applications.	Y	<u>Y</u>	Y
DC-6	Identification of the center of attitude motion must be clearly identified and unambiguous. NOTE — The specification of a center name is not required for the unambiguous specification of attitude but may be provided if desired.	N	N	N
<u>DC-7</u>	The standard allows for the specification of the accuracy of the attitude solution.	<u>Y</u>	<u>Y</u>	<u>Y</u>

F3 APPLICABILITY OF CRITERIA TO MESSAGE OPTIONS

The selection of one particular message will depend on the optimization criteria in the given application. Table <u>F-4</u>F-4 compares the three recommended messages in terms of the relevant selection criteria identified by the CCSDS:

Table F-4: Applicability of the Criteria to Attitude Data Messages

Criteria	Definition	Applicable to APM?	Applicable to AEM?	Applicable to ACM?
Modeling Fidelity	Permits modeling of any dynamic perturbation to the attitude.	N	Y	Y
Human Readability	Provides easily readable message corresponding to widely used attitude representations.	Y	Y	Y
Remote Body Extensibility	Permits use for assets on remote solar system bodies.	Y	Y	Y
Lander/Rover Compatibility	Permits exchange of non-orbit attitudes.	Y	Y	Y

F4 SERVICES RELATED TO THE DIFFERENT ATTITUDE DATA MESSAGE FORMATS

The different attitude data messages have been distinguished by their self-interpretability. Both All attitude data messages provide for recognizing the boundaries of the attitude data fields and thus can transfer each field, as a block, to another location. The different services that can be achieved without special arrangements between users of the CCSDS attitude data messages are listed in table F-5F-5.

Table F-5: Services Available with Attitude Data Messages

Service	Definition	Applicable to APM?	Applicable to AEM?	Applicable to ACM?
Absolute Attitude Interpretation	State availability at specific times for use in additional computations (geometry, event detection, etc.).	Y	Y	Y
Relative Attitude Interpretation	Trajectory comparison and differencing for events based on the same time source.	Only at time specified at Epoch	Y	Y

ANNEX G

ITEMS FOR AN INTERFACE CONTROL DOCUMENT

(INFORMATIVE)

In several places in this document there are references to items which should be specified in an ICD between agencies participating in an exchange of attitude data. The ICD should be jointly produced by both agencies participating in a cross-support activity involving the transfer of attitude data. This annex compiles those recommendations into a single list.¹

Table G-1: Items Recommended for an ICD

	ICD Item	Section Trace
1	Definition of attitude accuracy requirements pertaining to data in an ADM as well as attitude dynamics modeling.	1.2.1
2	Method of exchanging ADMs (transmission).	1.2.2 3.1.4 4.1.2
<u>2</u> 3	Whether the format of the ADM will be KVN or XML.	1.2.3
<u>3</u> 4	APDM, AEM, and ACM, and ACM_file naming conventions.	3.1.4 4.1.2 <u>5.1.3</u>
<u>4</u> 5	Specific APM, AEM and/or ACM version numbers that will be exchanged.	3.2.2.1 4.2.2.1 5.2.3.1
<u>5</u> 6	Description of User-Defined Parameters.	5.2.10.1
<u>6</u> 7	If the chosen angle units are radians (which is outside the standard).	7.7.1
<u>7</u> 8	If floating-point numbers in extended-single or extended-double precision are to be used, then discussion of implementation-specific attributes is required.	7.7.5
<u>8</u> 9	Information which must appear in comments for any given ADM exchange.	7.9.1.3
9 1 0	Values used for those keywords listed in annex B when those values are different from those given in annex B.	ANNEX B
10 11	Provisions that are made to ensure information security.	ANNEX J

¹ The greater the amount of material specified via ICD, the lesser the utility/benefit of the ADM (custom programming will be required to tailor software for each ICD).

ANNEX H

ABBREVIATIONS AND ACRONYMS

(INFORMATIVE)

ASCII	American Standard Code for Information Interchange
ACM	Attitude Comprehensive Message
ADM	Attitude Data Message
AEM	Attitude Ephemeris Message
APM	Attitude Parameter Message
AST	Autonomous Star Tracker
CCSDS	Consultative Committee for Space Data Systems
COSPAR	Committee for Space Research
CP	Center of Pressure
CSS	Coarse Sun Sensor
DSS	Digital Sun Sensor
EKF	Extended Kalman Filter
EME2000	Earth Mean Equator and Equinox of J2000 (Julian Date 2000)
GPS	Global Positioning System
IAU	International Astronomical Union
ICD	Interface Control Document
<u>ICF</u>	Implementation Conformance Statement
ICRF	International Celestial Reference Frame
IEC	International Electrotechnical Commission
<u>IEEE</u>	Institute of Electrical and Electronics Engineers
IMU	Inertial Measurement Unit
ISO	International Organization for Standardization
ITRF	International Terrestrial Reference Frame
KVN	Keyword = Value Notation
LVLH	Local Vertical Local Horizontal
NDM	Navigation Data Message
NTW	Normal, Tangential (to velocity vector) and Normal to Orbit Plane
OCM	Orbit Comprehensive Message
ODM	Orbit Data Message
OEM	Orbit Ephemeris Message

OPM	Orbit Parameter Message
QSW	Same as RTN
RL	Requirements List
RTN	Radial, Tangential, Normal
RWA	Reaction Wheel Assembly
TAI	International Atomic Time
TCB	Barycentric Coordinated Time
TDB	Barycentric Dynamical Time
TOD	True Equator and Equinox of Date
TT	Terrestrial Dynamical Time URL Uniform Resource Locator
UTC	Coordinated Universal Time
XML	eXtensible Markup Language

ANNEX I

INFORMATIVE REFERENCES

(INFORMATIVE)

- [I1] Organization and Processes for the Consultative Committee for Space Data Systems, CCSDS A02.1-Y-4. Yellow Book. Issue 4. Washington, D.C.: CCSDS, April 2014.
- [I2] Navigation Data—Definitions and Conventions. Report Concerning Space Data System Standards, CCSDS 500.0-G-43. Green Book. Issue 43. Washington, D.C.: CCSDS, May November 20190.
- [I3] Fundamentals of Spacecraft Attitude Determination and Control. F. Landis Markley and John L. Crassidis. New York, Springer, 2014.
- [10] F. Landis Markley and John L. Crassidis. Fundamentals of Spacecraft Attitude

 Determination and Control. New York, New York, Springer, 2014.

NOTE – Normative references are provided in 1.5.

ANNEX J

SECURITY, SANA, AND PATENT CONSIDERATIONS

(INFORMATIVE)

J1 SECURITY CONSIDERATIONS

J1.1 ANALYSIS OF SECURITY CONSIDERATIONS

This subsection presents the results of an analysis of security considerations applied to the technologies specified in this Recommended Standard.

J1.2 CONSEQUENCES OF NOT APPLYING SECURITY TO THE TECHNOLOGY

The consequences of not applying security to the systems and networks on which this Recommended Standard is implemented could include potential loss, corruption, and theft of data. Because these messages are used in spacecraft attitude analyses and potential maneuvers, the consequences of not applying security to the systems and networks on which this Recommended Standard is implemented could include compromise or loss of the mission if malicious tampering of a particularly severe nature occurs.

J1.3 POTENTIAL THREATS AND ATTACK SCENARIOS

Potential threats or attack scenarios include, but are not limited to, (a) unauthorized access to the programs/processes that generate and interpret the messages, and (b) unauthorized access to the messages during transmission between exchange partners. Protection from unauthorized access during transmission is especially important if the mission utilizes open ground networks, such as the Internet, to provide ground-station connectivity for the exchange of data formatted in compliance with this Recommended Standard. It is strongly recommended that potential threats or attack scenarios applicable to the systems and networks on which this Recommended Standard is implemented be addressed by the management of those systems and networks.

J1.4 DATA PRIVACY

Privacy of data formatted in compliance with the specifications of this Recommended Standard should be assured by the systems and networks on which this Recommended Standard is implemented.

J1.5 DATA INTEGRITY

Integrity of data formatted in compliance with the specifications of this Recommended Standard should be assured by the systems and networks on which this Recommended Standard is implemented.

J1.6 AUTHENTICATION OF COMMUNICATING ENTITIES

Authentication of communicating entities involved in the transport of data which complies with the specifications of this Recommended Standard should be provided by the systems and networks on which this Recommended Standard is implemented.

J1.7 DATA TRANSFER BETWEEN COMMUNICATING ENTITIES

The transfer of data formatted in compliance with this Recommended Standard between communicating entities should be accomplished via secure mechanisms approved by the Information Technology Security functionaries of exchange participants.

J1.8 CONTROL OF ACCESS TO RESOURCES

Control of access to resources should be managed by the systems upon which originator formatting and recipient processing are performed.

J1.9 AUDITING OF RESOURCE USAGE

Auditing of resource usage should be handled by the management of systems and networks on which this Recommended Standard is implemented.

J1.10 UNAUTHORIZED ACCESS

Unauthorized access to the programs/processes that generate and interpret the messages should be prohibited in order to minimize potential threats and attack scenarios.

J1.11 DATA SECURITY IMPLEMENTATION SPECIFICS

Specific information-security interoperability provisions that may apply between agencies and other independent users involved in an exchange of data formatted in compliance with this Recommended Standard could be specified in an ICD.

J2 SANA CONSIDERATIONS

The following ADM related items will be registered with the SANA Operator. The registration rule for new entries in the registry is the approval of new requests by the CCSDS Area or Working Group responsible for maintenance of the ADM at the time of the request. New requests for this registry should be sent to SANA (mailto:info@sanaregistry.org).

- The ADM XML schema
- A transform from the ADM XML to the ADM KVN version

- Values for various keywords or conventions from the following SANA registries:
 - o https://sanaregistry.org/r/time_systems
 - o https://sanaregistry.org/r/orbit_centers
 - o https://sanaregistry.org/r/celestial_body_reference_frames
 - o https://sanaregistry.org/r/orbit_relative_reference_frames
 - o https://sanaregistry.org/r/spacecraft_body_reference_frames
 - o https://sanaregistry.org/r/attitude_and_spacecraft_conventions
 - o https://sanaregistry.org/r/organzations

J3 PATENT CONSIDERATIONS

The recommendations of this document have no patent issues.