

Draft Recommendation for Space Data System Standards

RE-ENTRY DATA MESSAGE

PROPOSED STANDARD

CCSDS 000.0-W-41

WHITE BOOK JuneApril 2017

AUTHORITY

Issue:	White Book, Issue 43	
Date:	April 2017	
Location:	Not Applicable	
	11	

(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF AUTHORITY:)

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS documents is detailed in *Organization and Processes for the Consultative Committee for Space Data Systems* (CCSDS A02.1-Y-4), and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the address below.

This document is published and maintained by:

CCSDS Secretariat Space Communications and Navigation Office, 7L70 Space Operations Mission Directorate NASA Headquarters Washington, DC 20546-0001, USA

FOREWORD

This document is a Draft Standard for Re-entry Data Messages (RDM) and has been prepared by the CCSDS. The RDM described in this Draft Standard is intended for re-entry (prediction) information exchange between interested parties.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CCSDS shall not be held responsible for identifying any or all such patent rights.

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Recommended Standard is therefore subject to CCSDS document management and change control procedures, which are defined in *Organization and Processes for the Consultative Committee for Space Data Systems* (CCSDS A02.1-Y-4). Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were: Member Agencies

- Agenzia Spaziale Italiana (ASI)/Italy.
- Canadian Space Agency (CSA)/Canada.
- Centre National d'Etudes Spatiales (CNES)/France.
- China National Space Administration (CNSA)/People's Republic of China.
- Deutsches Zentrum für Luft- und Raumfahrt (DLR)/Germany.
- European Space Agency (ESA)/Europe.
- Federal Space Agency (FSA)/Russian Federation.
- Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
- Japan Aerospace Exploration Agency (JAXA)/Japan.
- National Aeronautics and Space Administration (NASA)/USA.
- UK Space Agency/United Kingdom.

Observer Agencies

- Austrian Space Agency (ASA)/Austria.
- Belgian Federal Science Policy Office (BFSPO)/Belgium.
- Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
- China Satellite Launch and Tracking Control General, Beijing Institute of Tracking and Telecommunications Technology (CLTC/BITTT)/China.
- Chinese Academy of Sciences (CAS)/China.
- Chinese Academy of Space Technology (CAST)/China.
- Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
- Danish National Space Center (DNSC)/Denmark.
- Departamento de Ciência e Tecnologia Aeroespacial (DCTA)/Brazil.
- European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.
- European Telecommunications Satellite Organization (EUTELSAT)/Europe.
- Geo-Informatics and Space Technology Development Agency (GISTDA)/Thailand.
- Hellenic National Space Committee (HNSC)/Greece.
- Indian Space Research Organization (ISRO)/India.
- Institute of Space Research (IKI)/Russian Federation.
- KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
- Korea Aerospace Research Institute (KARI)/Korea.
- Ministry of Communications (MOC)/Israel.
- National Institute of Information and Communications Technology (NICT)/Japan.
- National Oceanic and Atmospheric Administration (NOAA)/USA.
- National Space Agency of the Republic of Kazakhstan (NSARK)/Kazakhstan.
- National Space Organization (NSPO)/Chinese Taipei.
- Naval Center for Space Technology (NCST)/USA.
- Scientific and Technological Research Council of Turkey (TUBITAK)/Turkey.
- South African National Space Agency (SANSA)/Republic of South Africa.
- Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.
- Swedish Space Corporation (SSC)/Sweden.
- Swiss Space Office (SSO)/Switzerland.
- United States Geological Survey (USGS)/USA.

PREFACE

This document is a draft CCSDS Recommended Standard. Its 'White Book' status indicates that its contents are not stable, and several iterations resulting in substantial technical changes are likely to occur before it is considered to be sufficiently mature to be released for review by the CCSDS Agencies.

Implementers are cautioned **not** to fabricate any final equipment in accordance with this document's technical content.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

DOCUMENT CONTROL

Document	Title and Issue	Date	Status
CCSDS 000.0-W-0	Re-entry Data Message, Proposed Draft Recommended Standard, Issue 1	July 2016	Version sent before Rome meetings
CCSDS 000.0-W-0	Re-entry Data Message, Proposed Draft Recommended Standard, Issue 2		Internal version
CCSDS 000.0-W-0	Re-entry Data Message, Proposed Draft Recommended Standard, Issue 3	April 2017	Draft version for 2017 San Antonio meetingsCurrent draft version
<u>CCSDS</u> 000.0-W-4	Re-entryDataMessage,ProposedDraftRecommendedStandard,Issue4	<u>June 2017</u>	Current draft version

CONTENTS

Sect	tion	Page
1]	INTRODUCTION	
1	1.1 PURPOSE AND SCOPE	
1	1.2 APPLICABILITY	
1	1.3 DOCUMENT STRUCTURE	
1	1.4 CONVENTIONS AND DEFINITIONS	1-3 1-2
]	1.5 REFERENCES	
2	OVERVIEW	
	2.1 GENERAL	
-	2.2 RDM CONTENT	
3 1	RE-ENTRY DATA MESSAGE STRUCTURE AND CONTENT	
	3.1 GENERAL	
3	3.2 RDM HEADER	
3	3.3 RDM METADATA	
3	3.4 RDM DATA	
4]	RE-ENTRY DATA MESSAGE DATA AND SYNTAX	4-1
	4.1 OVERVIEW	
2	4.2 COMMON RDM SYNTAX	
2	4.3 THE RDM IN KVN	
2	4.4 THE RDM IN XML	4-4 4-5
1	INTRODUCTION	1-1
	1.1—PURPOSE AND SCOPE	1-1
	1.2 APPLICABILITY	
	1.3 DOCUMENT STRUCTURE	1-2
	1.4 CONVENTIONS AND DEFINITIONS	
	1.5 REFERENCES	
2	OVERVIEW	<u>2-1</u>
	2.1 GENERAL	2-1
	2.2 RDM CONTENT	
3_1	RE-ENTRY DATA MESSAGE STRUCTURE AND CONTENT	
	3.1 GENERAL	
4	3.2 RDM HEADER	
4	3.3 RDM METADATA	3-2
	3.4 RDM DATA	
4_1	RE-ENTRY DATA MESSAGE DATA AND SYNTAX	<u></u>
	4.1 OVERVIEW	4-1
_	4.2 COMMON RDM SYNTAX	4_1
2	4.3 THE RDM IN KVN	4-2
	4.4 THE RDM IN XML	4-4
AN	NEX A VALUES FOR TIME SYSTEM AND FRAME RELARED KEYW	ORDS
	(NORMATIVE)	
ANI	NEX B IMPLEMENTATION CONFORMANCE STATEMENT (ICS)	
	PROFORMA (NORMATIVE)	

ANNEX C RE-ENTRY DATA MESSAGE EXAMPLES (INFORMATIVE)
ANNEX D SECURITY, SANA, AND PATENT CONSIDERATIONS
(INFORMATIVE)
ANNEX E ABBREVIATIONS AND ACRONYMS (INFORMATIVE)
ANNEX F RATIONALE AND REQUIREMENTS FOR RE-ENTRY DATA
MESSAGES (INFORMATIVE)
ANNEX G RDM SUMMARY SHEET (INFORMATIVE)
ANNEX H RE-ENTRY INFORMATION DESCRIPTION (INFORMATIVE)3024
ANNEX I INFORMATIVE REFERENCES (INFORMATIVE)
ANNEX A VALUES FOR TIME SYSTEM AND FRAME RELARED KEYWORDS
(NORMATIVE)
ANNEX B IMPLEMENTATION CONFORMANCE STATEMENT (ICS)
PROFORMA (NORMATIVE)
ANNEX C RE-ENTRY DATA MESSAGE EXAMPLES (INFORMATIVE)
ANNEX D SECURITY, SANA, AND PATENT CONSIDERATIONS
(INFORMATIVE)
ANNEX E ABBREVIATIONS AND ACRONYMS (INFORMATIVE)
ANNEX F RATIONALE AND REQUIREMENTS FOR RE-ENTRY DATA
MESSAGES (INFORMATIVE) 19
ANNEX G RDM SUMMARY SHEET (INFORMATIVE)
ANNEX H RE-ENTRY INFORMATION DESCRIPTION (INFORMATIVE)
ANNEX I INFORMATIVE REFERENCES (INFORMATIVE)
<u>.</u>
P .

Figure

Figure C-1 Sample RDM in KVN using only mandatory keywords	20 16
Figure C-2 Sample RDM in KVN using optional keywords	22 17
Figure G-3 Example of medium term re-entry prediction data use	H-3
Figure C-1 Sample RDM in KVN using only mandatory keywords	14
Figure C-2 Sample RDM in KVN using optional keywords	
Figure G-3 Example of medium term re-entry prediction data use	H-3

Table

Table 3-1 RDM KVN Header	
Table 3-2 RDM KVN metadata	

Table 3-3 RDM KVN data	. 3-6
Table F-1 Re-entry Data Message requirements and rationale	<u>2621</u>
Table G-2 Relationship between RDM data blocks and optional metadata keywords 2	<u>2823</u>
Table 3-1 RDM KVN Header	.3-2
Table 3-2 RDM KVN metadata	.3-2
Table 3-3 RDM KVN data	
Table F-1 Re-entry Data Message requirements and rationale	<u> 19</u>
Table G-2 Relationship between RDM data blocks and optional metadata keywords	21

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

The Re-entry Data Message (RDM) Draft Standard specifies a standard message format to be used in the exchange of spacecraft (re-)entry information between <u>Space Situational</u> <u>Awareness (SSA) or Space Surveillance and Tracking (SST)¹ data providers, satellite owners/operators, and other parties. These messages can be used to inform spacecraft owners/operators of predicted re-entries or warn civil protection agencies about potential ground impacts.</u>

This standard will:

- a) facilitate interoperability and enable consistent warning between data providers who supply re-entry prediction data and the entities who use it;
- b) facilitate the automation of re-entry prediction processes; and
- c) provide critical information to enable timely re-entry decisions (e.g. a change in the controlled re-entry strategy).

The document also includes informative descriptions of the information needed for re-entry prediction.

1.2 APPLICABILITY

This standard is applicable to Space Surveillance and Tracking activities, spacecraft operations, and other "ground" based activities (e.g. civil protection, civil and military aviation) where re-entering space objects are concerns. It contains the specifications for an RDM designed for re-entry prediction (though it can be used post-facto as well) information exchange between originators of re-entry data and recipients. Re-entry data includes remaining orbital lifetime, start and end of the re-entry and impact windows, impact location, and object physical properties. Further information about the types of data exchanged can be found in section 3.

The RDM is suitable for both manual and automated interaction, and is suitable for machineto-machine interfaces due to the large amount of data present. The RDM is self-contained, but it can be paired with other Navigation Data Messages to enhance its functionality. For example an RDM could be paired with several OPMs to exchange state vectors at critical epochs (last orbit determination, current, re-entry, etc.) or with one OEM to give the trajectory for most of the re-entry. The presence of users defined keywords allows other information to be exchanged after being specified in an Interface Control Document (ICD);

¹ The SSA term is more commonly used in the US, while SST is preferred in Europe. This document shall use SST from now on.

ICDs are expected (especially if ODMs are to be exchanged for object position), but not necessary for most RDM exchanges.

It is desirable that RDM originators maintain consistency with respect to the optional keywords provided in their implementations; i.e., it is desirable that the composition of the RDMs provided not change on a frequent basis.[AM1]

This Recommended Standard is applicable only to the message format and content, but not to its transmission nor to the algorithms used to produce the data within. The method of transmitting the message between exchange partners is beyond the scope of this document and could be specified in an ICD. The methods used to predict re-entries and calculate the associated data (e.g. probability of ground impact and impact location) are also outside the scope of this standard.

1.3 DOCUMENT STRUCTURE

Section 2 provides a short overview of the CCSDS-draft RDM.

Section 3 describes the structure and content of the 'keyword = value' (KVN) version of the RDM.

[The XML version of the RDM].

Section 4 discusses the data and syntax of RDM messages, both the KVN and XML versions.

ANNEX A lists agreed values for some of the keywords in this standard [to be replaced by SANA registries in the future].

ANNEX B shows the Implementation Conformance Statement (ICS), listing all the requirements an RDM implementation should meet.

ANNEX C presents RDM examples.

ANNEX D discusses security, SANA and patent issues.

ANNEX E presents the abbreviations and acronyms used in this document.

ANNEX F shows the requirements this Draft Standard was designed to meet.

ANNEX G presents a summary sheet that shows which optional metadata entries should be present for the data blocks in the message.

ANNEX H describes the types of information exchanged in an RDM.

ANNEX I provides a list of informative references.

[Description of any other annexes to be added later.]

1.4 CONVENTIONS AND DEFINITIONS

1.4.1 UNIT NOTATION

The following conventions for unit notations apply throughout this Recommended Standard. Insofar as possible, an effort has been made to use units that are part of the International System of Units (SI); units are either SI base units, SI derived units, or units outside the SI that are accepted for use with the SI (see reference [1][1][1]). The units used within this document are as follows:

- km: kilometres;
- m: meters;
- d: days (86400 s);
- s: seconds of time;
- kg: kilograms
- W: watts;
- %: per cent.

For compound units the following conventions are used:

- multiplication is denoted with a single asterisk, '*'(e.g. 'kg*s');
- division is denoted with a single forward slash, '/' (e.g. 'km/s');
- exponents are denoted with a double asterisk, '**' (e.g. 'km**2').

The usual mathematical conventions for operation order (e.g. exponents before multiplication) apply.

1.4.2 NOMENCLATURE

The following conventions apply to the normative specifications in this Draft Standard:

- a) the words 'shall' and 'must' imply a binding and verifiable specification;
- b) the word 'should' implies an optional, but desirable, specification;
- c) the word 'may' implies an optional specification;
- d) the words 'is', 'are' and 'will' denote statements of fact.
- NOTE These conventions do not apply to any text that is informative in nature (e.g. overview sections).

The following conventions applies when referring to Earth re-entry prediction simulations:

- a) short-term re-entry prediction refers to all simulations where the object's altitude is below 200 km, typically covering the last few days (up to a few weeks) before reentry;
- b) *long and medium term prediction* refers to simulations spanning from a few weeks to years before re-entry.

1.4.3 OTHER CONVENTIONS

The term 'ASCII' is generally used in this document to refer to the text character set defined in [2]

[2]

[2]. The term 'n/a' is used to mean 'not applicable' or 'not available'.

1.5 REFERENCES

The following publications contain provisions which, through reference in this text, constitute provisions of this document. At the time of publication, the editions indicated were valid. All publications are subject to revision, and users of this Recommended Standard are encouraged to investigate the possibility of applying the most recent editions of the publications indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS publications.

- [1] *The International System of Units (SI)*. 8th ed. Sèvres, France: BIPM, 2006, updated 2014.
- Information Technology—8-Bit Single-Byte Coded Graphic Character Sets—Part 1: Latin Alphabet No. 1. International Standard, ISO/IEC 8859-1:1998. Geneva: ISO, 1998.
- [3] Henry S. Thompson, et al., eds. *XML Schema Part 1: Structures*. 2nd ed. W3C Recommendation. N.p.: W3C, October 2004.
- [3]
- [4] Paul V. Biron and Ashok Malhotra, eds. *XML Schema Part 2: Datatypes.* 2nd ed. W3C Recommendation. N.p.: W3C, October 2004.
- [4]
- [5] *Time Code Formats*. Issue 4. Recommendation for Space Data System Standards (Blue Book), CCSDS 301.0-B-4. Washington, D.C.: CCSDS, November 2010.
- [5]
- [6] United Nations Register of Objects Launched into Outer Space. Available at

- http://www.unoosa.org/oosa/en/spaceobjectregister/index.html
- [7] <u>Space Assigned Number Authority (SANA) Registry for Conjunction Data Message</u> ORIGINATOR. Available at https://sanaregistry.org/r/cdm_originator
- [7]
- [8] Space Assigned Number Authority (SANA) Registry for Conjunction Data Message CATALOG_NAME. Available at https://sanaregistry.org/r/cdm_catalog
 [87] https://sanaregistry.org/r/cdm_catalog
- [<u>87</u>]http://sanaregistry.org/r/cdm_catalog/cdm_catalog.html
- [9] Space Assigned Number Authority (SANA) Registry for Organizations. Available at https://sanaregistry.org/r/organizations
- <u>9</u>

2 OVERVIEW

2.1 GENERAL

This section provides a high-level overview of the CCSDS RDM, a message format designed to help the exchange of re-entry data between originators of re-entry data, spacecraft operators, and other interested entities. The originators of re-entry data can be SST entities or even the spacecraft operators themselves (e.g. in the case of a controlled re-entry).

2.2 RDM CONTENT

The RDM is an ASCII format, encoded either as plain text (usually referred to as KVN) or XML (see [2][2],-[3][3][1] and, [4][4][3] and [4]). This Draft Standard describes both.

The RDM contains information about a single re-entry event:

- information about the message itself (creation date, originator, etc.);
- identification of the re-entering object (name, id);
- basic re-entry information (mandatory): remaining orbital lifetime, whether the reentry is controlled or not, and which celestial body the object is orbiting;
- more complex re-entry information (optional): re-entry and impact windows, impact location and probabilities, state vector, object properties, the OD process, and observations used to predict the re-entry.

The information is used by satellite operators, civil protection, or aviation authorities to assess the re-entry risk and plan any needed mitigation measures.

The RDM is not limited to man-made objects re-entering the Earth's atmosphere. It could be used for any entry/impact event by specified the appropriate CENTER_NAME, REF_FRAME and OBJECT_TYPE values (e.g. a space probe landing on Venus).

3 RE-ENTRY DATA MESSAGE STRUCTURE AND CONTENT

This section contains a description of the structure, content and keywords allowed in a Reentry Data Message.

3.1 GENERAL

3.1.1 The RDM shall be plain text consisting of re-entry (prediction) data for a single reentry event. It shall be easily readable by both humans and computers.

3.1.2 The RDM in KVN shall consist of digital data represented as ASCII text lines. The RDM shall contain the following:

- a) a header;
- b) a metadata section;
- c) a data section.

NOTES

- 1 KVN messages contain one keyword per line (see 4.3.1.4).
- 2 The standard order of keywords in the KVN representation is fixed by this Draft Standard (see 4.3.1.10).

3.1.3 The RDM file naming scheme should be agreed to on a case-by-case basis between the participating agencies, typically specified in an ICD. In general, the file name syntax and length must not violate computer constraints for those computing environments in use by Member Agencies for processing re-entry data.

3.1.4 The exchange method for RDMs shall be determined on a case-by-case basis and should be documented in an ICD.

3.2 RDM HEADER

The RDM header shall only consist of the KVN elements defined in <u>Table 3-1Table 3-1</u>Table 3-1, which specifies for each header item:

- a) the keyword to be used;
- b) a short description of the item;
- c) examples of allowed values;
- d) whether the item is mandatory (M) or optional (O).

Keyword	Description of values	Examples of values	M/O
CCSDS_RDM_VERS	Format version in the form of 'x.y', where 'y' is incremented for corrections and minor changes, and 'x' is incremented for major changes.	1.0	М
COMMENT	Comments (allowed in the RDM Header only immediately after the RDM version number).	COMMENT This is a comment	0
CREATION_DATE	File creation date and time in UTC. For format specification, see 4.3.2.5.	2001-11-06T11:17:33 2002-204T15:56:23	М
ORIGINATOR	Creating agency or operator (value should be taken from the [TBD] CDM originators[AM2] SANA registry [7][7][7]. The country of origin should also be provided where the originator is not a national space agency.	DLR ESOC	М
MESSAGE_ID	ID that uniquely identifies a message from a given originator. The format and content of the message identifier value are at the discretion of the originator.	201113719185	М

Table 3-1 RDM KVN Header

3.3 RDM METADATA

3.3.1 The RDM metadata shall only consist of the KVN elements defined in <u>Table</u> <u>3-2Table 3-2</u> which specifies for each metadata item:

- a) the keyword;
- b) a short description of the item;
- c) normative values or examples of values;
- d) whether the values are normative (N all values allowed are in the list in the third column) or examples of values allowed (E);
- e) whether the item is mandatory (M) or optional (O).

3.3.2 Mandatory items shall appear in every RDM Metadata Section. Items that are not mandatory may or may not appear, at the discretion of the data producer, based on the requirements of the data and its intended application (see ANNEX G for an RDM Summary Sheet that illustrates the relationships between data types and metadata).

Table 3-2 RDM KVN metadata

Keyword	Description	Examples of values	N/E	M/O	
---------	-------------	--------------------	-----	-----	--

Keyword		Description Example		les of values	N/E	M/O
COMMENT	Comments (allowed only at the beginning of RDM metadata)		COMMENT Thi comment	is is a	Е	0
General information iden information.	tifying the ob	ject, which celestial body it	is orbiting and the	e time system of all t	he epoch	
OBJECT_NAME		Spacecraft name for whic is provided. There is no C restriction on the value fo but it is recommended to the UN OOSA registry [6] [6], which includes Objec international designator o (see 4.2.3.3 for formatting	CSDS-based r this keyword, use names from] et name and f the participant	SENTINEL-1A GOCE ENVISAT BRIZ R/B DEBRIS UNKNOWN	Ε	М
INTERNATIONAL_DESIGNATOR		The full international designator (COSPAR ID) for the object. Values shall have the format YYYY-NNNP{PP}, where: YYYY = year of launch; NNN = three-digit serial number of launch (with leading zeros); P{PP} = At least one capital letter for the identification of the part brought into space by the launch. In cases where the object has no international designator, the value UNKNOWN should be (see 4.2.3.3 for formatting rules).		2010-012C 2016-001A 1985-067CD UNKNOWN	Е	М
CATALOG_NAME		The satellite catalog used for the object (see 4.2.3.3 for formatting rules). The name should be taken from the_appropriate SANA registry (see [8] [8][7]).		SATCAT ESA SST	Е	0
OBJECT_DESIGNATOR		The CATALOG_NAME satellite catalog designator for the object (see 4.2.3.3 for formatting rules).		37451 125387U	E	0
OBJECT_TYPE		The object type.		PAYLOAD ROCKET BODY DEBRIS UNKNOWN OTHER	N	0
OBJECT_OWNER		Owner or operator of the spacecraft (e.g. company, agency or country owning the satellite)[AM3]. The value should be taken from the SANA registry for organizations [9] [9] .		DLR INTELSAT ESA UNKNOWN	Е	0
OBJECT_OPERATOR		Operator of the spacecraft agency or country owning satellite)[AM4]. The value from the SANA registry f [9] [9].	<u>g the</u> should be taken	ESA EUMETSAT	E	<u>0</u>

Keyword		Description	Examp	les of values	N/E	M/O
CONTROLLED_REENTR	Y	Specify if the re-entry is c	controlled or not	YES NO UNKNOWN	N	М
CENTER_NAME[AM5]	ME[AM5] Celestial body orbited by to origin of reference frame, in atural solar system body asteroids, comets, and natural solar system baryces solar system barycenter, or spacecraft (in this case the 'CENTER_NAME' is sub rules as for 'OBJECT_NA'		which may be a (planets, ural satellites), center or the or another e value for oject to the same	EARTH EARTH BARYCENTRE MOON JUPITER	Е	М
TIME_SYSTEM		Time system for all data/r values other than those in documented in an ICD. If present, UTC shall be ass	A1 must be keyword is not	UTC TAI	Е	М
EPOCH_TZERO			Epoch from which the ORBIT_LIFETIME is calculated (see2001-11- 06T11:17:33 2002- 204T15:56:23		Е	М
The reference of frame of	f the orbit da	ta or the identifier of externa	l ODM files.			
REF_FRAME	Reference frame in which the (optional) orbit information will be provided. Use of values other than those in A2 must be documented in an ICD. The reference frame must be the same for all data elements, with the exception of the covariance matrix, for which a different reference frame may be specified. This keyword becomes mandatory if state vectors are provided in the data section.		ITRF-97 EME2000 ICRF		Е	0
REF_FRAME_EPOCH	Epoch of reference frame, if not intrinsic to the definition of the reference frame (see 4.3.2.5 for formatting rules).		2001-11-065 2002-204T15		Е	0
EPHEMERIS_NAME	Unique identifier of an external ephemeris file used or none.		NONE EPHEMERIS I	INTELSAT2	Е	0
The modeling used to det	ermine the re	e-entry data				
simu and harr shou		e gravity model used in the nulation. <u>The degree (D)</u> d order (O) of the spherical rmonic coefficients applied ould be given along with e name of the model.	EGM-96: 361 JGM-2: 41D		Е	0
ATMOSPHERIC_MODEL		e atmosphere model(s) ed in the simulation[AM7].	MSIS JACCHIA 70		Е	0

Keyword		Description	Examples of values	N/E	M/O	
			MSISE-90 NRLMSISE-00			
SOLAR_FLUX_PREDICTION		R_FLUX_PREDICTION The method used to predict the solar flux and geomagnetic indices.[AM8]		Ē	<u>0</u>	
N_BODY_PERTURBATIONS		List of other bodies used in the simulation	MOON, SUN JUPITER NONE	Е	0	
SOLAR_RAD_PRESSUR		Indicator on whether solar radiation pressure was used in the simulation. Specify model name, or NO if it was not used.	GSPM04 NO	Е	0	
EARTH_TIDES		Indicator on whether solid Earth and ocean tides were included. Specify model name, or NO if they were not used.	ESR NO	Е	0	
INTRACK_THRUST		Indication of whether in-track thrust modeling was used in the simulation.	YES NO	Ν	0	
RE_ENTRY_ DISINTEGRATION		Indication on what aspects of disintegration during re-entry were considered during simulations: none (the object was treated as a point mass), mass loss, break-ups or both. This is a coarse indication on whether the impact area in the date covers potential fragments as well.	NONE MASS-LOSS BREAK-UP MASS-LOSS & BREAK-UP	N	0	
IMPACT_LOCATION UNCERTAINTY[AM10]		Indication on how the confidence interval for the impact location was determined.	ANALYTICAL MONTE CARLO EMPIRICAL	<u>N</u>	<u>0</u>	
Information about the pre	vious and	l next messages to be issued				
PREVIOUS_MESSAGE_	ID	ID of the previous RDM issued for this spacecraft.	ESOC/2015-563892348	Е	0	
PREVIOUS_MESSAGE_:	EPOCH	UTC Epoch of the previous RDM issued for this spacecraft (see 4.3.2.5 for formatting rules).	2001-11-06T11:17:33	E	0 [AM11]	
NEXT_MESSAGE_EPOCH		Scheduled UTC epoch of the next RDM for the same object (see 4.3.2.5 for formatting rules). Use N/A if no other message is	2001-11-06T11:17:33 N/A	Е	0	

I

Keyword	Description		Examples of values	N/E	M/O
		scheduled.			

3.4 RDM DATA

- **3.4.1** The RDM data section shall be formatted as logical blocks:
 - Atmospheric re-entry and ground impact data;
 - State vector (including epoch);
 - Position/velocity covariance matrix (associated with the state vector and at the same epoch);
 - Spacecraft parameters;
 - Orbit determination parameters;
 - User defined parameters.[AM12]

3.4.2 The logical blocks of the RDM data section shall consist of KVN lines defined in Table 3-3Table 3-3, which specifies:

- a) the keyword to be used;
- b) a description of the content;
- c) the units to be used
- d) whether the item is mandatory (M) or optional (O).

Table 3-3 RDM KVN data

Keyword		Description of values	Units	M/O
Atmospheric re-entry and ground	impact da	ata[AM13]		
COMMENT		COMMENT This is a comment	n/a	0
ORBIT_LIFETIME		Time until re-entry: from the EPOCH_TZERO epoch in the metadata (days –double precision values allowed; integer values assumed to be .0) to permanently crossing the altitude specified in REENTRY_ALTITUDE. If the NOMINAL_REENTRY_EPOCH keyword is present, its value is to be used for computations rather than the ORBIT_LIFETIME.	d	М

Keyword	Description of values	Units	M/O
LIFETIME_DISPERSION	Dispersion (1 sigma) of remaining orbit lifetime. <u>This is a coarse value for long-term</u> predictions, REENTRY_WINDOW_START and_END should be used for accurate results.	00	0
REENTRY_ALTITUDE	Defined re-entry altitude <u>over a spherical Earth</u> (radius of 6371 km) – once a spacecraft's altitude permanently drops below this value, it is considered to be captured by the central body's atmosphere.	km	М
NOMINAL_REENTRY_EPOCH [A	M14] Predicted epoch at which the object's altitude permanently drops below NOMINAL_REENTRY_ALTITUDE (see 4.3.2.5 for formatting rules).	n/a	0
REENTRY_WINDOW_START	Start epoch of the predicted atmospheric re- entry window (see 4.3.2.5 for formatting rules).	n/a	0
REENTRY_WINDOW_END[AM15]	End epoch of the predicted atmospheric re- entry window [AM16] (see 4.3.2.5 for formatting rules).	n/a	0
Ground impact and burn-up data			
COMMENT	COMMENT This is a comment	<u>n/a</u>	<u>0</u>
PROBABILITY_OF_IMPACT[A	M17] Probability of any fragment impacting the Earth (either land or sea).	n/a	0
PROBABILITY_OF_BURN-UP	Probability of the entire spacecraft and any fragments burning up during atmospheric re- entry (0 to 1).	<u>n/a</u>	<u>O</u>
PROBABILITY OF BREAK-UP	Probability of the spacecraft breaking up during re-entry (0 to 1).	<u>n/a</u>	<u>0</u>
PROBABILITY OF LAND IMP	PACT Probability of any fragment impacting solid ground (0 to 1).	<u>n/a</u>	<u>0</u>
PROBABILITY OF CASUALTY	Probability of the re-entry event causing any casualties (severe injuries or deaths $- 0$ to 1).	<u>n/a</u>	<u>0</u>
NOMINAL_IMPACT_EPOCH	Epoch of the predicted impact (see 4.3.2.5 for formatting rules).	n/a	0
IMPACT_WINDOW_START	Start epoch of the predicted impact window (see 4.3.2.5 for formatting rules).	n/a	0
IMPACT_WINDOW_END	End epoch of the predicted impact window (see 4.3.2.5 for formatting rules).	n/a	0
IMPACT_REF_FRAME[AM18]	Reference frame of the impact location data[AM19]	n/a	0
NOMINAL_IMPACT_LON	Longitude of the predicted impact location.	deg	0

Keyword	Description of values	Units	M/C
NOMINAL_IMPACT_LAT	Latitude of the predicted impact location.	deg	0
NOMINAL_IMPACT_ALT	Altitude of the impact location.	m	0
IMPACT 1_CONFIDENCE[AM20]	First (lowest) confidence interval for the impact location.	<u>8</u>	<u>0</u>
IMPACT_1 S _START_LON[AM21]	Longitude of the start of the <u>1-sigmafirst</u> confidence interval along the ground track.	deg	0
IMPACT_1 S _START_LAT	Latitude of the start of the <u>1-sigmafirst</u> confidence interval along the ground track.	deg	0
IMPACT_1 S _STOP_LON	Longitude of the end of the <u>1-sigmafirst</u> confidence interval along the ground track.	deg	0
IMPACT_1 S _STOP_LAT	Latitude of the end of the <u>1-sigmafirst</u> confidence interval along the ground track.	deg	0
IMPACT_1 S _CROSS_TRACK	Size of the cross-track <u>1-sigmafirst</u> confidence interval.	km	0
IMPACT 2 CONFIDENCE	Second confidence interval for the impact location.	<u>00</u>	<u>0</u>
IMPACT_2 <mark>S</mark> _START_LON	Longitude of the start of the 2-sigmasecond confidence interval along the ground track.	deg	0
IMPACT_2 <mark>S</mark> _START_LAT	Latitude of the start of the second 2-sigma confidence interval along the ground track.	deg	0
IMPACT_2 S _STOP_LON	Longitude of the end of the second2-sigma confidence interval along the ground track.	deg	0
IMPACT_2 <mark>\$</mark> _STOP_LAT	Latitude of the end of the <u>second</u> 2-sigma confidence interval along the ground track.	deg	0
IMPACT_2 <mark>\$</mark> _CROSS_TRACK	Size of the cross-track <u>second</u> 2-sigma confidence interval.	km	0
IMPACT_3_CONFIDENCE	Third (highest) confidence interval for the impact location.	<u>80</u>	<u>0</u>
IMPACT_3 <mark>S</mark> _START_LON	Longitude of the start of the <u>3-sigmathird</u> confidence interval along the ground track.	deg	0
IMPACT_3 <mark>S</mark> _START_LAT	Latitude of the start of the <u>third</u> 3-sigma confidence interval along the ground track.	deg	0
IMPACT_3 <mark>\$</mark> _STOP_LON	Longitude of the end of the third3-sigma confidence interval along the ground track.	deg	0
IMPACT_3 <mark>\$</mark> _STOP_LAT	Latitude of the end of the <u>third</u> 3-sigma confidence interval along the ground track.	deg	0
IMPACT_3 <mark>8</mark> _CROSS_TRACK	Size of the cross-track <u>third</u> 3-sigma confidence interval.	km	0

Keyword		Description of values	Units	M/O
State vector com	nponents	in the coordinate system specified in the metadata		
COMMENT	COM	COMMENT This is a comment		0
EPOCH	Epo rules	ch at which the state vector is given (see 4.3.2.5 for formatting s).	n/a	0
Х	x-co	mponent of the satellite state vector	km	0
Y	у-со	mponent of the satellite state vector	km	0
Z	z-co	mponent of the satellite state vector	km	0
X_DOT	x-co	mponent of the satellite state vector	km/s	0
Y_DOT	y-co	mponent of the satellite state vector	km/s	0
Z_DOT	z-co	mponent of the satellite state vector	km/s	0
		nce matrix (6x6 lower triangular form. None or all of the components be omitted if it is the same as the orbit reference frame)	s of the matrix must l	be given.
COMMENT	(COMMENT This is a comment	n/a	
COV_REF_FRAME		Reference frame for the covariance information. Omitted if it is the same as REF_FRAME. Use of values other than those in A3 must be documented in an ICD.	n/a	0
CX_X		covariance matrix [1,1]	km**2	0
CY_X	(covariance matrix [2,1]	km**2	0
CY_Y		covariance matrix [2,2]	km**2	0
CZ_X		covariance matrix [3,1]	km**2	0
CZ_Y		covariance matrix [3,2]	km**2	0
CZ_Z	covariance matrix [3,3]		km**2	0
CX_DOT_X	² _X covariance matrix [4,1]		km**2/s	0
CX_DOT_Y		covariance matrix [4,2]	km**2/s	0
CX_DOT_Z		covariance matrix [4,3]	km**2/s	0
CX_DOT_X_DOT		covariance matrix [4,4]	km**2/s**2	0
CY_DOT_X		covariance matrix [5,1]	km**2/s	0
CY_DOT_Y		covariance matrix [5,2]	km**2/s	0
CY_DOT_Z	(covariance matrix [5,3]	km**2/s	0
CY_DOT_X_DC	T	covariance matrix [5,4]	km**2/s**2	0

Keyword		Description of values	Units	M/O
CY_DOT_Y_DOT	covarian	ice matrix [5,5]	km**2/s**2	0
CZ_DOT_X covarian		ice matrix [6,1]	km**2/s	0
CZ_DOT_Y	covarian	ice matrix [6,2]	km**2/s	0
CZ_DOT_Z	covarian	ice matrix [6,3]	km**2/s	0
CZ_DOT_X_DOT	covarian	ice matrix [6,4]	km**2/s**2	0
CZ_DOT_Y_DOT	covarian	ice matrix [6,5]	km**2/s**2	0
CZ_DOT_Z_DOT	covarian	ice matrix [6,6]	km**2/s**2	0
Spacecraft parameters	AM22]			•
COMMENT		COMMENT This is a comment	n/a	0
MASS		Object mass	kg	0
SOLAR_RAD_AREA		Object area exposed to SRP	m**2	0
SOLAR_RAD_COEFF		Object radiation coefficient	n/a	0
DRAG_AREA		Object cross-sectional area	m**2	0
DRAG_COEFF		Object drag coefficient	n/a	0
RCS		Object radar cross section	m**2	0
BALLISTIC_COEFF		Object ballistic coefficient	kg/m**2	0
THRUST_ACCELERATION [AM23]		The object's acceleration due to in-track thrust used to propagate the state vector and covariance to RENTRY_EPOCH (if a controlled re-entry).	m/s**2	0
Orbit determination pa	rameters[A	M24]		
COMMENT		COMMENT This is a comment	n/a	0
TIME_LASTOB_START		The start of a time interval (in the time system specified in the metadata) that contains the time of the last accepted observation. For an exact time, the time interval is of zero duration (i.e., same value as that of TIME_LASTOB_END). See 4.3.2.5 for formatting rules.	n/a	0
TIME_LASTOB_END		The end of a time interval (in the time system specified in the metadata) that contains the time of the last accepted observation. For an exact time, the time interval is of zero duration (i.e., same value as that of TIME_LASTOB_START). See 4.3.2.5 for formatting rules.	n/a	0
RECOMMENDED_OD_SPAN		The recommended OD time span calculated for the object (double precision).	d	0

Keyword	Description of values	Units	M/O
ACTUAL_OD_SPAN	Based on the observations available and the RECOMMENDED_OD_SPAN, the actual time span used for the OD of the object (double precision).	d	0
OBS_AVAILABLE	Number of observations available for orbit determination of the object.	n/a	0
OBS_USED	Number of observations accepted by the OD system.	n/a	0
TRACKS_AVAILABLE	Number of sensor tracks available for OD of the object.	n/a	0
TRACKS_USED	Number of sensor tracks accepted by the OD system.	n/a	0
RESIDUALS_ACCEPTED	The percentage of residuals accepted in the OD of the object.	90 0	0
WEIGHTED_RMS	The weighted root mean square of the residuals from batch OD.	n/a	0
User defined parameters (all such	parameters must be described in an ICD)[AM25]		
COMMENT	COMMENT This is a comment	n/a	0
USER_DEFINED_x	User defined parameter, where x is replaced by a variable length user specified character string. Any number of user defined parameters may be included, if necessary to provide essential information that cannot be conveyed in COMMENT statements.	n/a	0

3.4.3 <u>Table 3-3Table 3-3</u> contains sevenix logical blocks, each of which has a descriptive heading. These descriptive headings shall not be included in an RDM, unless they appear in a properly formatted COMMENT statement.

3.4.4 COMMENT lines may be used at the beginning of each logical block of the data section.

3.4.5 If a ground impact location is given, the IMPACT_REF_FRAME keyword shall be mandatory and at least NOMINAL_IMPACT_LAT_and, NOMINAL_IMPACT_LON shall be present. NOMINAL_IMPACT_ALT may be given as well.

3.4.6 If <u>one</u> confidence intervals <u>isare</u> present then all the values associated with <u>one that n-sigma</u> valueinterval shall be present: <u>IMPACT_n_CONFIDENCE</u>, <u>(e.g.</u> IMPACT_<u>n+S</u>_START_LON, IMPACT_<u>n+S</u>_START_LAT, IMPACT_<u>n+S</u>_STOP_LON, IMPACT_<u>n+S</u>_STOP_LAT, and IMPACT_<u>n+S</u>_CROSS_TRACK).

3.4.7 If only one confidence interval is present then the IMPACT_1 * keywords shall be used.

3.4.8 If two confidence intervals are present then the IMPACT 1 * and IMPACT 2 * keywords shall be used.

3.4.63.4.9 If more than one confidence interval is present, then IMPACT 1_CONFIDENCE shall be smaller than IMPACT 2_CONFIDENCE, which in turn shall be smaller than IMPACT 3_CONFIDENCE, if it is present.

3.4.10 If the RE_ENTRY_DISINTEGRATION keyword in the metadata indicates that break-up was simulated, then the ground impact location keywords refer to all potential fragments related to the event, i.e. the NOMINAL_IMPACT_LAT and _LON will correspond to the highest probability of any fragment impacting there, the <u>1-sigmaconfidence</u> intervals will apply to all fragments, etc.

3.4.73.4.11 The probability of ground impact at the following four points: the start and end of the confidence interval in the along-track direction, and the nominal impact location \pm the cross-track confidence interval should be within 5 % [TBC] for each confidence interval given.

3.4.83.4.12 The state vector and covariance data are at the epoch specified by the EPOCH keyword in the data section. There are no restrictions on which epoch this is supposed to be (orbit determination epoch, message creation epoch, re-entry epoch, etc.). If the covariance block is present then the state vector shall be present as well.

3.4.93.4.13 If the state vector block is present then all elements in the block have to be present, with the exception of the comment line. No partial state vectors are allowed in an RDM. State vector values shall be expressed in standard double precision as related in 4.2.3.2.

3.4.103.4.14 Values in the covariance matrix shall be expressed in the applicable reference frame (COV_REF_FRAME keyword if used, or REF_FRAME keyword if not), and shall be presented sequentially from upper left [1,1] to lower right [6,6], lower triangular form, row by row left to right. If the covariance block is present in the message, all covariance matrix elements need to be present. Variance and covariance values shall be expressed in standard double precision as related in 4.2.3.2.

3.4.113.4.15 Since re-entry prediction services are still in their infancy and some might need to provide information that is not foreseen, a section of User Defined Parameters is allowed at the end of the data section. In principle, this provides flexibility, but also introduces complexity, non-standardization, potential ambiguity, and potential processing errors. Accordingly, if used, the keywords and their meanings must be described in an ICD. User Defined Parameters, if included in an RDM, should be used as sparingly as possible; their use is not encouraged.

4 RE-ENTRY DATA MESSAGE DATA AND SYNTAX

4.1 OVERVIEW

This section details the syntax requirements for the RDM using both the KVN and XML formats.

4.2 COMMON RDM SYNTAX

4.2.1 OVERVIEW

This subsection details the syntax requirements that are common to both KVN and XML formats.

4.2.2 RDM LINES

4.2.2.1 Each RDM line must not exceed 254 ASCII characters and spaces (excluding line termination character[s]).

4.2.2.2 Only printable ASCII characters and blanks shall be used. Control characters (such as TAB, etc.) shall not be used, with the exception of the line termination characters specified below.

4.2.2.3 Blank lines may be used at any position within the file. Blank lines shall have no assignable meaning, and may be ignored.

4.2.2.4 The first header line must be the first non-blank line in the file.

4.2.2.5 All lines shall be terminated by a single Carriage Return or a single Line Feed, or a Carriage Return/Line Feed pair or a Line Feed/Carriage Return pair.

4.2.3 RDM VALUES

4.2.3.1 A nonempty, valid value must be specified for each mandatory keyword.

4.2.3.2 Non-integer numeric values may be expressed in either fixed-point or floating-point notation.

4.2.3.3 Text value fields must be constructed using only all uppercase ("_", "-", blank spaces, and digits are permitted as well). An exception is made for comment values (see 4.2.5 for formatting rules).

4.2.3.4 Blanks shall not be permitted within numeric values and time strings.

4.2.4 RDM UNITS

4.2.4.1 If units are applicable, as specified in <u>Table 3-3Table 3-3</u> they must be displayed and they must exactly match the units specified in each table (including case). (See 1.4.1 for units conventions and operations).

- **4.2.4.2** The notation '[n/a]' shall not appear in an RDM as a units designator.
- NOTE Some of the items in <u>Table 3-3Table 3-3</u> are dimensionless (e.g. DRAG_COEFF). For such items, the table shows a unit value of 'n/a', which in this case means that there is no applicable units designator for those items.

4.2.5 RDM COMMENTS

4.2.5.1 Comment lines shall be optional in the RDM.

4.2.5.2 Comments shall be placed as specified in tables in section 3 describing the keywords. In the places where comments are allowed any number of comments may appear.

4.2.5.3 Comment text may be in any case desired by the user.

4.3 THE RDM IN KVN

4.3.1 RDM LINES IN KVN

4.3.1.1 Each RDM file shall consist of a set of RDM lines. Each RDM line shall be one of the following:

- Header line;
- Metadata line;
- Data line; or
- Blank line.

4.3.1.2 The first header line must be the first non-blank line in the file.

4.3.1.3 All header, metadata, and data lines shall use 'keyword = value' notation. For this purpose, only those keywords shown in <u>Table 3-1Table 3-1</u>, <u>Table 3-2</u>, <u>Table 3-2</u>, and <u>Table 3-3Table 3-3</u>, shall be used in an RDM.

4.3.1.4 Only a single 'keyword = value' assignment shall be made on a line.

4.3.1.5 Keywords must be uppercase and must not contain blanks.

4.3.1.6 Any white space immediately preceding or following the keyword shall not be significant.

4.3.1.7 Any white space immediately preceding or following the 'equals' sign shall not be significant.

4.3.1.8 Any white space immediately preceding or following the units shall not be significant.

4.3.1.9 Any white space immediately preceding the end of line shall not be significant.

4.3.1.10 The order in which obligatory and optional KVN assignments appear shall be fixed as shown in the tables in section 3 that describe the RDM keywords.

4.3.2 RDM VALUES IN KVN

4.3.2.1 Integer values shall consist of a sequence of decimal digits with an optional leading sign ('+' or '-'). If the sign is omitted, '+' shall be assumed. Leading zeroes may be used. The range of values that may be expressed as an integer is:

$$-2,147,483,648 \le x \le +2,147,483,647$$
 (i.e. $-2^{31} \le x \le 2^{31} - 1$)

NOTE – The commas in the range of values above are thousands separators and are used only for readability.

4.3.2.2 Non-integer numeric values expressed in fixed-point notation shall consist of a sequence of decimal digits separated by a period ('.') as a decimal point indicator, with an optional leading sign ('+' or '-'). If the sign is omitted, '+' shall be assumed. Leading and trailing zeroes may be used. At least one digit shall appear before and after a decimal point. The number of digits shall be 16 or fewer.

4.3.2.3 Non-integer numeric values expressed in floating point notation shall consist of a sign, a mantissa, an alphabetic character indicating the division between the mantissa and exponent, and an exponent, constructed according to the following rules:

- a) The sign may be '+' or '-'. If the sign is omitted, '+' shall be assumed.
- b) The mantissa must be a string of no more than 16 decimal digits with a decimal point ('.') in the second position of the ASCII string, separating the integer portion of the mantissa from the fractional part of the mantissa.
- c) The character used to denote exponentiation shall be 'E' or 'e'. If the character indicating the exponent and the following exponent are omitted, an exponent value of zero shall be assumed (yielding a fixed point value).
- d) The exponent must be an integer, and may have either a '+' or '-' sign; if the sign is omitted, then '+' shall be assumed.
- e) The maximum positive floating point value is approximately $1.798 \cdot 10^{308}$, with 16 significant decimal digits precision. The minimum positive floating point value is approximately $4.94 \cdot 10^{-324}$, with 16 significant decimal digits precision.

4.3.2.4 In value fields that are text, an underscore shall be equivalent to a single blank. Individual blanks shall be retained (shall be significant), but multiple contiguous blanks shall be equivalent to a single blank. This does not apply to leading or trailing blanks, as per 4.3.1.7, 4.3.1.8, and 4.3.1.9.

4.3.2.5 In value fields representing a time tag or epoch, the following two formats shall be used:

yyyy-mm-ddThh:mm:ss[.d\rightarrowd][Z]

or

yyyy-dddThh:mm:ss[.d\rightarrowd][Z]

where 'yyyy' is the year, 'mm' is the two-digit month, 'dd' is the two-digit day of the month, and 'ddd' is the three-digit day of the year, separated by hyphens; 'T' is a fixed separator between the date and time portions of the string; and 'hh:mm:ss[.d \rightarrow d]' is the time in hours, minutes, seconds, and fractional seconds, separated by colons. As many 'd' characters to the right of the period as required may be used to obtain the required precision, up to the maximum allowed for a fixed-point number. All fields require leading zeros. (See reference [5]

<u>[5]</u>

[5], ASCII Time Code A or B.)

4.3.3 RDM UNITS IN KVN

When units are displayed:

- a) there must be at least one blank character between the value and the units;
- b) units shall be in the correct case (e.g. lowercase for km, uppercase for K or W), as indicated in Table 3-3Table 3-3Table 3-3;
- c) the units must be enclosed within square brackets (e.g., '[kg]').

4.3.4 RDM COMMENTS IN KVN

All comment lines shall begin with the 'COMMENT' keyword followed by at least one space. This keyword must appear on every comment line, not just the first such line. The remainder of the line shall be the comment value. White space shall be retained (shall be significant) in comment values.

4.4 THE RDM IN XML

[To be added in a future draft]

ANNEX A

VALUES FOR TIME_SYSTEM AND FRAME RELARED KEYWORDS [AM26] (NORMATIVE)

The values in this annex represent the set of acceptable values for the TIME_SYSTEM, REF_FRAME, and COV_REF_FRAME, and IMPACT_REF_FRAME keywords in the RDM. For details on these keywords, please see [11][11][11][11].

A1 TIME_SYSTEM METADATA KEYWORD

TIME_SYSTEM value	meaning
GMST	Greenwich Mean Sidereal Time
GPS	Global Positioning System (time)
TAI	International Atomic Time
ТСВ	Barycentric Coordinate Time
TDB	Barycentric Dynamical Time
TCG	Geocentric Coordinate Time
ТТ	Terrestrial Time
UT1	Universal Time
UTC	Coordinated Universal Time

A2 REF_FRAME METADATA KEYWORD

REF_FRAME value	meaning
EME2000	Earth Mean Equator and Equinox of J2000
GCRF	Geocentric Celestial Reference Frame
GRC	Greenwich Rotating Coordinates
ICRF	International Celestial Reference Frame
ITRF2000	International Terrestrial Reference Frame 2000
ITRF-93	International Terrestrial Reference Frame 1993
ITRF-97	International Terrestrial Reference Frame 1997
MCI	Mars Centered Inertial
TDR	True of Date, Rotating

TOD	True of Date

A3 COV_REF_FRAME DATA KEYWORD

TIME_SYSTEM value	meaning
RSW Another name for 'Radial, Transverse, Normal'	
RTN	Radial, Transverse, Normal
TNW	A local orbital coordinate frame that has the T-axis along the velocity vector, W along the orbital angular momentum vector, and N completes the right handed system.

A4 IMPACT_REF_FRAME DATA KEYWORD

IMPACT_REF_FRAME value	meaning
WGS84	World Geodetic System 84

ANNEX B

IMPLEMENTATION CONFORMANCE STATEMENT (ICS) PROFORMA

(NORMATIVE)

B1 INTRODUCTION

B1.1 OVERVIEW

This annex provides the Implementation Conformance Statement (ICS) Requirements List (RL) for an implementation of a Re-entry Data Message. The ICS for an implementation is generated by completing the RL in accordance with the instructions below. An implementation claiming conformance must satisfy the mandatory requirements referenced in the RL.

B1.2 ABBREVIATIONS AND CONVENTIONS

The RL consists of information in tabular form. The status of features is indicated using the abbreviations and conventions described below.

Item Column

The item column contains sequential numbers for items in the table.

Feature Column

The feature column contains a brief descriptive name for a feature. It implicitly means "Is this feature supported by the implementation?"

Status Column

The status column uses the following notations:

- M mandatory;
- O optional;
- C conditional;
- X prohibited;
- I out of scope;
- N/A not applicable.

Support Column Symbols

The support column is to be used by the implementer to state whether a feature is supported by entering Y, N, or N/A, indicating:

- Y Yes, supported by the implementation.
- N No, not supported by the implementation.
- N/A Not applicable.

The support column should also be used, when appropriate, to enter values supported for a given capability.

B1.3 INSTRUCTIONS FOR COMPLETING THE RL

An implementer shows the extent of compliance to the RDM Draft Standard by completing the RL; that is, the state of compliance with all mandatory requirements and the options supported are shown. The resulting completed RL is called an ICS. The implementer shall complete the RL by entering appropriate responses in the support or values supported column, using the notation described in B1.2. If a conditional requirement is inapplicable, N/A should be used. If a mandatory requirement is not satisfied, exception information must be supplied by entering a reference X_i , where *i* is a unique identifier, to an accompanying rationale for the noncompliance.

B2 ICS PROFORMA FOR RDM

B2.1 GENERAL INFORMATION

B2.1.1 Identification of ICS

Date of Statement (DD/MM/YYYY)	
ICS serial number	
System Conformance statement cross-reference	

B2.1.2 Identification of Implementation Under Test

Implementation Name	
Implementation Version	
Special Configuration	
Other Information	

B2.1.3 Identification of Supplier

Supplier	
Contact Point for Queries	
Implementation Name(s) and Versions	
Other information necessary for full identification, e.g., name(s) and version(s) for machines and/or operating systems;	
System Name(s)	

B2.1.4 Identification of Specification

[CCSDS Document Number]					
Have any exceptions been required?	Yes[]	No []			
NOTE – A YES answer means that the implementation does not conform to the Recommended Standard. Non-supported mandatory capabilities are to be identified in the ICS, with an explanation of why the implementation is non- conforming.					

B2.2 REQUIREMENTS LIST [AM27]

1	Feature	Keyword	Reference	Status	Support
2	RDM Header	N/A	<u>Table</u> <u>3-1Table 3-1Table</u> 3-1	М	
3	RDM version	CCSDS_RDM_VERS	<u>Table</u> <u>3-1Table 3-1Table</u> 3-1	М	
4	Comment	COMMENT	<u>Table</u> <u>3-1Table 3-1Table</u> 3-1	0	
5	Message creation date/time	CREATION_DATE	<u>Table</u> <u>3-1Table 3-1Table</u> 3-1	М	

6	Message originator	ORIGINATOR	$\frac{\text{Table}}{3-1\text{Table}}$ $\frac{3-1\text{Table}}{3-1\text{Table}}$ $\frac{3-1}{3-1}$	М
7—	Spacecraft name	MESSAGE_FOR	Table 3-1	M
8 7	Unique message identifier	MESSAGE_ID	<u>Table</u> <u>3-1Table</u> <u>3-1</u> Table <u>3-1</u>	М
9 <u>8</u>	RDM Metadata	N/A	Table 3-2 Table 3-2Table 3-2	М
<u>109</u>	Comment	COMMENT	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2\text{Table}}$ $\frac{3-2}{3-2}$	0
++ <u>10</u>	General information about the re-entering object	N/A	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2}$	М
12<u>11</u>	Spacecraft name	OBJECT_NAME	<u>Table</u> <u>3-2Table</u> <u>3-2</u> Table <u>3-2</u>	М
13<u>12</u>	Spacecraft international designator	INTERNATIONAL_DESIGNATOR	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2\text{Table}}$ $\frac{3-2}{3-2}$	М
<u>13</u>	Object catalogue used	CATALOG_NAME	Table 3-2	<u>0</u>
<u>14</u>	Spacecraft ID in the catalogue	OBJECT_DESIGNATOR	Table 3-2	<u>0</u>
44 <u>15</u>	Spacecraft type	OBJECT_TYPE	<u>Table</u> <u>3-2Table</u> <u>3-2</u> Table 3-2	М
45 <u>16</u>	Spacecraft owner	OBJECT_OWNER	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2\text{Table}}$ $\frac{3-2}{3-2}$	0
<u>17</u>	Spacecraft operator	OBJECT_OPERATOR	Table 3-2	<u>0</u>
16<u>18</u>	Controlled re-entry	CONTROLLED_REENTRY	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2}$	М
17<u>19</u>	Celestial body orbited by	ORBIT_CENTER_NAME	Table	М

		l		<u> </u>
	the object		<u>3-2Table</u> <u>3-2</u> Table <u>3-2</u>	
<u>1820</u>	Time system user for the data in the metadata and data sections	TIME_SYSTEM	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2\text{Table}}$ $\frac{3-2}{3-2}$	0
<u>21</u>	<u>Reference epoch to which</u> orbit lifetime is computed	EPOCH_TZERO	<u>Table 3-2</u>	M
19<u>22</u>	Information about any provided orbit data for the object/spacecraft	N/A	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2}$	0
20<u>23</u>	Reference frame	REF_FRAME	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2}$	0
21<u>24</u>	Reference frame epoch	REF_FRAME_EPOCH	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2}$	0
22<u>25</u>	External ephemeris file identifier	EPHEMERIS_NAME	<u>Table</u> <u>3-2Table 3-2Table 3-2</u>	0
23<u>26</u>	Information about the orbit propagator used for re-entry prediction and orbit determination	N/A	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2\text{Table}}$ $\frac{3-2}{3-2}$	0
24<u>27</u>	gGravity model used	GRAVITY_MODEL	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2\text{Table}}$ $\frac{3-2}{3-2}$	0
25<u>28</u>	<u>a</u> Atmospheric model used	ATMOSPHERIC_MODEL	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2\text{Table}}$ $\frac{3-2}{3-2}$	0
<u>29</u>	method used to estimate the solar flux indices for the atmospheric model	SOLAR FLUX PREDICTION	Table 3-2	<u>0</u>
26<u>30</u>	n-body perturbations considered	N_BODY_PERTURBATIONS	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2\text{Table}}$ $\frac{3-2}{3-2}$	0
<u>2731</u>	solar rad pressure	SOLAR_RAD_PRESSURE	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2\text{Table}}$ $\frac{3-2}{3-2}$	0

28<u>32</u>	earth tides	EARTH_TIDES	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2}$ $\frac{3-2}{3-2}$	0
29<u>33</u>	any thrust from the spacecraft	INTRACK_THRUST	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2}$	0
<u>34</u>	any accounting for break- up and demise	RE ENTRY DISINTEGRATION	<u>Table 3-2</u>	<u>0</u>
<u>35</u>	method used to determine the uncertainty in the ground impact location	IMPACT_LOCATION_ UNCERTAINTY	<u>Table 3-2</u>	<u>0</u>
30<u>36</u>	Previous and next related RDM	N/A	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2}$	0
31<u>37</u>	Identifier of the previous RDM	PREVIOUS_MESSAGE_ID	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2}$	0
32<u>38</u>	Epoch of the previous RDM (predicted)	PREVIOUS_MESSAGE_EPOCH	<u>Table</u> <u>3-2Table</u> <u>3-2</u> Table <u>3-2</u>	0
33 39	Time at which the next RDM will be issued (predicted)	NEXT_MESSAGE_EPOCH	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2}$	0
34<u>40</u>	RDM Data	N/A	Table 3-3Table 3-3Table 3-3	М
35<u>41</u>	Atmospheric Rre- entry/impact information	N/A	Table 3-3Table 3-3Table 3-3	М
36 42	Comment	COMMENT	Table 3-3Table 3-3Table 3-3	0
37<u>43</u>	Remaining orbit lifetime	ORBIT_LIFETIME	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	М
38<u>44</u>	Dispersion of remaining orbit lifetime	LIFETIME_DISPERSION	Table 3-3Table 3-3Table	0

			3-3	
45	Defined re-entry altitude	REENTRY_ALTITUDE	Table 3-3	M
39<u>46</u>	Predicted re-entry epoch	NOMINAL_REENTRY_EPOCH	$\frac{Table}{3-3Table}$ $\frac{3-3}{3-3}$	0
40 <u>47</u>	Re-entry window	REENTRY_WINDOW_START	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$ $\frac{3-3}{3-3}$	0
<u>4148</u>		REENTRY_WINDOW_END	<u>Table</u> <u>3-3Table</u> <u>3-3</u> Table <u>3-3</u>	0
<u>49</u>	Ground impact information	<u>N/A</u>	Table 3-3	<u>0</u>
<u>50</u>	Comment	COMMENT	Table 3-3	<u>0</u>
51	Probability any re-entry fragments reach the Earth surface	PROBABILITY OF IMPACT	Table 3-3	<u>0</u>
52	<u>Probability all re-entry</u> fragments suffer total demise	PROBABILITY OF BURN-UP	Table 3-3	<u>0</u>
<u>53</u>	Probability fragments are generated during re-entry	PROBABILITY OF BREAK-UP	Table 3-3	<u>0</u>
42 <u>54</u>	Land impact probability	PROBABILITY_OF_LAND_IMPACT [AM28]	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3\text{Table}}$ $\frac{3-3}{3-3}$	0
55	Probabilities of casualties occurring due to the re- entry	PROBABILITY OF CASUALTY	Table 3-3	<u>0</u>
4 <u>356</u>	Predicted (ground) impact epoch	NOMINAL_IMPACT_EPOCH	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$ $\frac{3-3}{3-3}$	0
44 <u>57</u>	Predicted (ground) impact window	IMPACT_WINDOW_START	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$ $\frac{3-3}{3-3}$	0
4 <u>558</u>		IMPACT_WINDOW_END	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
46 <u>59</u>	Reference frame of (ground) impact location	IMPACT_REF_FRAME[AM29]	<u>Table</u> <u>3-3Table</u>	0

			<u>3-3</u> Table 3-3	
47 <u>60</u>	Impact location	IMPACT_LON	<u>Table</u> <u>3-3Table</u> <u>3-3</u> Table 3-3	0
48 <u>61</u>		IMPACT_LAT	<u>Table</u> <u>3-3Table</u> <u>3-3</u> Table 3-3	0
49 <u>62</u>		IMPACT_ALT	<u>Table</u> <u>3-3Table</u> <u>3-3</u> Table 3-3	0
50<u>63</u>	Impact dispersion	IMPACT 1_CONFIDENCE CNORTH_ NORTH	<u>Table</u> <u>3-3Table</u> <u>3-3</u> Table 3-3	0
51<u>64</u>		IMPACT 1_START_LON CNORTH_E AST	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
52<u>65</u>		IMPACT 1_START_LATCEAST_EA ST	Table 3-3 Table <u>3-3</u> Table 3-3	0
<u>66</u>		IMPACT 1_STOP_LON	<u>Table 3-3</u>	<u>0</u>
<u>67</u>		IMPACT 1_STOP_LAT	<u>Table 3-3</u>	<u>0</u>
<u>68</u>		IMPACT 1_CROSS_TRACK	Table 3-3	<u>0</u>
<u>69</u>		IMPACT 2 CONFIDENCE	<u>Table 3-3</u>	<u>0</u>
70		IMPACT 2_START_LON	Table 3-3	<u>0</u>
<u>71</u>		IMPACT_2_START_LAT	Table 3-3	<u>0</u>
72		IMPACT 2_STOP_LON	<u>Table 3-3</u>	<u>0</u>
73		IMPACT_2_STOP_LAT	<u>Table 3-3</u>	<u>0</u>
<u>74</u>		IMPACT 2_CROSS_TRACK	<u>Table 3-3</u>	<u>0</u>
75		IMPACT 3_CONFIDENCE	<u>Table 3-3</u>	<u>0</u>
<u>76</u>		IMPACT 3_START_LON	<u>Table 3-3</u>	<u>0</u>
77		IMPACT_3_START_LAT	<u>Table 3-3</u>	<u>0</u>
<u>78</u>		IMPACT 3 STOP LON	<u>Table 3-3</u>	<u>O</u>

<u>79</u>		IMPACT 3 STOP LAT	Table 3-3	<u>0</u>
<u>80</u>		IMPACT_3_CROSS_TRACK	Table 3-3	<u>0</u>
53<u>81</u>	Spacecraft state vector section	N/A	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3\text{Table}}$	0
5 4 <u>82</u>	Comment	COMMENT	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
55<u>83</u>	State vector epoch	EPOCH	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
56<u>84</u>	Position and velocity vectors	X	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3\text{Table}}$ $\frac{3-3}{3-3}$	0
57<u>85</u>		У	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
58 86		Ζ	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
59<u>87</u>		X_DOT	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
60<u>88</u>		Y_DOT	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
61<u>89</u>		z_dot	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
<u>6290</u>	Spacecraft state vector covariance information	N/A	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
<u>6391</u>	Comment	COMMENT	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3\text{Table}}$ $\frac{3-3}{3-3}$	0
<u>6492</u>	Covariance reference	COV_REF_FRAME	Table	0

	frame		<u>3-3Table</u> <u>3-3</u> Table <u>3-3</u>	
<u>6593</u>	6x6 position/velocity covariance matrix elements	cx_x	Table <u>3-3Table</u> <u>3-3</u> Table 3-3	0
<u>6694</u>		CY_X	<u>Table</u> <u>3-3Table</u> <u>3-3Table</u> <u>3-3</u>	0
<u>6795</u>		СҮ_Ү	<u>Table</u> <u>3-3Table</u> <u>3-3Table</u> 3-3	0
<u>6896</u>		cz_x	<u>Table</u> <u>3-3Table</u> <u>3-3Table</u> <u>3-3</u>	0
<u>6997</u>		CZ_Y	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3\text{Table}}$ $\frac{3-3}{3-3}$	0
70<u>98</u>		CZ_Z	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3\text{Table}}$ $\frac{3-3}{3-3}$	0
71<u>99</u>		CX_DOT_X	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
72<u>100</u>		CX_DOT_Y	Table 3-3Table 3-3Table 3-3	0
73<u>101</u>		CX_DOT_Z	<u>Table</u> <u>3-3Table</u> <u>3-3</u> Table 3-3	0
74 <u>102</u>		CX_DOT_X_DOT	Table <u>3-3Table</u> <u>3-3</u> Table <u>3-3</u>	0
75<u>103</u>		CY_DOT_X	$\frac{\text{Table}}{3-3\text{Table}}\\\frac{3-3\text{Table}}{3-3\text{Table}}\\\frac{3-3}{3-3}$	0
76 104		CY_DOT_Y	Table	0

			1	
			<u>3-3Table</u> <u>3-3</u> Table 3-3	
77<u>105</u>		CY_DOT_Z	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
78<u>106</u>		CY_DOT_X_DOT	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
79<u>107</u>		CY_DOT_Y_DOT	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
80<u>108</u>		CZ_DOT_X	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
81<u>109</u>		CZ_DOT_Y	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
<u>82110</u>		CZ_DOT_Z	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
83<u>111</u>		CZ_DOT_X_DOT	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
<u>84112</u>		CZ_DOT_Y_DOT	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
<u>85113</u>		CZ_DOT_Z_DOT	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
86<u>114</u> 5	Spacecraft properties	N/A	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3\text{Table}}$ $\frac{3-3}{3-3}$	0
<u>87115</u>	Comments	COMMENT	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0

			$\frac{3-3\text{Table}}{\frac{3-3\text{Table}}{3-3}}$	
89<u>117</u>	Solar radiation area	SOLAR_RAD_AREA	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
90<u>118</u>	Solar radiation coefficient	SOLAR_RAD_COEFF	Table 3-3Table 3-3Table 3-3	0
91<u>119</u>	Drag area	DRAG_AREA	Table <u>3-3Table</u> <u>3-3</u> Table <u>3-3</u>	0
92<u>120</u>	Coefficient of drag	DRAG_COEFF	Table <u>3-3Table</u> <u>3-3</u> Table 3-3	0
93<u>121</u>	Radar Cross-Section	RCS[AM30]	Table <u>3-3Table</u> <u>3-3</u> Table 3-3	0
94<u>122</u>	Ballistic coefficient	BALLISTIC_COEFF	Table <u>3-3Table</u> <u>3-3</u> Table 3-3	0
95 —	Specific Energy Dissipation Rate	SEDR	Table 3-3	θ
96<u>123</u>	Object's acceleration used in OD and propagation	THRUST_ACCELERATION[AM31]	Table 3-3Table 3-3Table 3-3	0
97<u>124</u>	Orbit determination information	N/A	Table 3-3Table 3-3Table 3-3	0
98<u>125</u>	Comment	COMMENT	Table 3-3Table <u>3-3</u> Table 3-3	0
99<u>126</u>	Interval during which the last accepted observation occurred	TIME_LASTOB_START	Table 3-3Table <u>3-3</u> Table 3-3	0
100<u>12</u>′		TIME_LASTOB_END	<u>Table</u> <u>3-3Table</u> 3-3Table	0

			3-3	
101<u>12</u>	Recommend timespan for OD and actual timespan used	RECOMMENDED_OD_SPAN	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
102<u>12</u>		ACTUAL_OD_SPAN	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
103<u>13</u>(Total number of observations available and used	OBS_AVAILABLE	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
<u>10413</u>		OBS_USED	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
105<u>13</u>:	Total number of sensor tracks available and used	TRACKS_AVAILABLE	$\frac{\frac{\text{Table}}{3-3\text{Table}}}{\frac{3-3\text{Table}}{3-3}}$	0
106<u>13</u>;		TRACKS_USED	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	0
107<u>13</u>.	Percentage of residuals accepted in OD	RESIDUALS_ACCEPTED	$\frac{\frac{\text{Table}}{3-3\text{Table}}}{\frac{3-3\text{Table}}{3-3}}$	0
108<u>13</u>:	Weighted RMS of the OD residuals	WEIGHTED_RMS	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3\text{Table}}$ $\frac{3-3}{3-3}$	0

ANNEX C

RE-ENTRY DATA MESSAGE EXAMPLES

(INFORMATIVE)

<u>Figure C-1Figure C-1</u>-and <u>Figure C-2</u>Figure C-2 show examples of RDM messages in KVN. The former only includes mandatory keywords, while the latter uses optional keywords. <u>Figure C-1Figure C-1</u>Figure C-1 presents a very basic RDM, the kind a Member Agency (or any other group) would make available to the interested public (e.g. amateur astronomers wishing to observe a re-entry) for long-term re-entry prediction and containing only the remaining orbital lifetime. <u>Figure C-2Figure C-2</u>Figure C-2 shows a more complex message, containing the state vector, position/velocity covariance matrix, the kind of information two Member Agencies might exchange with each other for short-term re-entry predictions.

CCSDS RDM VERS	= 1.00.1	
CREATION DATE	= 201 <mark>85</mark> -04-22T09:31:34.00	
ORIGINATOR	= ESA	
MESSACE FOR	- SPACEOBJECT	
MESSAGE ID	= ESA/201 <mark>85</mark> 0422-001	
_	—	
OBJECT NAME	= SPACEOBJECT	
INTERNATIONAL DESIGNATOR	= 2018-099B	
OBJECT TYPE	= ROCKET BODY	
CONTROLLED REENTRY	= NO	
CENTER NAME	= EARTH	
TIME SYSTEM	= UTC	
EPOCH TZERO	= 201 <mark>85</mark> -04-22T00:00:00.00	
_	—	
ORBIT LIFETIME	= 23.0	[d]
REENTRY_ALTITUDE	= 150.0	[km]

Figure C-1 Sample RDM in KVN using only mandatory keywords

CCSDS_RDM_VERS= $1.00.1$ CREATION_DATE= $20185-04-22T09:31:34.00$ ORIGINATOR= ESAMESSAGE_FOR= SPACEOBJECTMESSAGE_ID= ESA/201850422-001OBJECT_NAME= SPACEOBJECTINTERNATIONAL_DESIGNATOR= 2018-099BCATALOG_NAME= SATCATOBJECT_DESIGNATOR= 81594OBJECT_TYPE= ROCKET BODY
ORIGINATOR= ESAMESSAGE_FOR= SPACEOBJECTMESSAGE_ID= ESA/201850422-001OBJECT_NAME= SPACEOBJECTINTERNATIONAL_DESIGNATOR= 2018-099BCATALOG_NAME= SATCATOBJECT_DESIGNATOR= 81594
MESSAGE_FOR= SPACEOBJECTMESSAGE_ID= ESA/201850422-001OBJECT_NAME= SPACEOBJECTINTERNATIONAL_DESIGNATOR= 2018-099BCATALOG_NAME= SATCATOBJECT_DESIGNATOR= 81594
MESSAGE_ID= ESA/201850422-001OBJECT_NAME= SPACEOBJECTINTERNATIONAL_DESIGNATOR= 2018-099BCATALOG_NAME= SATCATOBJECT_DESIGNATOR= 81594
OBJECT_NAME=SPACEOBJECTINTERNATIONAL_DESIGNATOR=2018-099BCATALOG_NAME=SATCATOBJECT_DESIGNATOR=81594
INTERNATIONAL_DESIGNATOR= 2018-099BCATALOG_NAME= SATCATOBJECT_DESIGNATOR= 81594
CATALOG NAME= SATCATOBJECT DESIGNATOR= 81594
OBJECT_DESIGNATOR = 81594
OBJECT TYPE = ROCKET BODY
OBJECT_OWNER = ESA
CONTROLLED_REENTRY = NO
CENTER NAME = EARTH
TIME SYSTEM = UTC
EPOCH_TZERO = 2015-04-22T09:00:00.00
REF_FRAME = EME2000
GRAVITY_MODEL = EGM-96: 36D 360
ATMOSPHERIC_MODEL = MSISE-90NRLMSISE-00

N_BODY_PERTURBATIONS SOLAR_RAD_PRESSURE	= MOON	
SOLAR_RAD_PRESSURE	= NO	
EARTH TIDES	= ESR	
INTRACK THRUST	= NO	
RE_ENTRY_DISINTEGRATION	= MASS-LOSS & BREAK-UP	
PREVIOUS MESSAGE ID	- ESTEC/20150/21-007	
NEXT_MESSAGE_EPOCH	= 2015 - 04 - 23109:00:00	
COMMENT Short term re-entry	prediction results	
ORBIT LIFETIME	= 5	[d]
—	= 80.0	[km]
	= 2018 5 -04-27T11:45:33	[]]
REENTRY_WINDOW_START	= 20105 - 04 - 27111 : 45 : 55	
REENTRY_WINDOW_END	= 2018 - 04 - 27122 : 12 : 56	
PROBABILITY_OF_IMPACT	$= 0 \cdot 0$	
PROBABILITY_OF_IMPACT PROBABILITY_OF_BURN-up	= 1.0	
COMMENT State vector at the	last OD enoch	
	= 20185 - 04 - 22T09:30:12	
EPOCH		
X	= 4000.000000	[km]
Y	= 4000.000000	[km]
Z	= 4000.000000	[km]
X DOT	= 7.000000	[km/s]
Y DOT	= 7.000000	[km/s]
_	= 7.000000	[km/s]
Z_DOT	- 7.000000	[KIII/S]
COMMENT Position/velocity c	ovariance matrix at last OD epoc	h
COV REF FRAME	= RTN	
CX X -	= 0.10000	[km**2]
CYX	= 0.10000	[km**2]
CY Y	= 0.10000	[km**2]
—		
CZ_X	= 0.10000	[km**2]
CZ_Y	= 0.10000	[km**2]
CZ_Z	= 0.10000	[km**2]
CX DOT X	= 0.02000	[km**2/s]
CX DOT Y	= 0.02000	[km**2/s]
CX DOT Z	= 0.02000	[km**2/s]
CX DOT X DOT	= 0.00500	[km**2/s**2]
CY_DOT_X	= 0.02000	[km**2/s]
CY_DOT_Y	= 0.02000	[km**2/s]
CY_DOT_Z	= 0.02000	[km**2/s]
CY DOT X DOT	= 0.00600	[km**2/s**2]
CY_DOT_Y_DOT	= 0.00600	[km**2/s**2]
CZ DOT X	= 0.02000	[km**2/s]
	= 0.02000	[km**2/s]
CZ_DOT_Y		
CZ_DOT_Z	= 0.02000	[km**2/s]
CZ_DOT_X_DOT	= 0.00400	[km**2/s**2]
CZ_DOT_Y_DOT	= 0.00400	[km**2/s**2]
CZ DOT Z DOT	= 0.00400	[km**2/s**2]
COMMENT Spacecraft paramoto	ers used in OD and re-entry predi	ction
MASS		
	= 3582	[kg]
DRAG_AREA	= 23.3565	[m**2]
DRAG_COEFF	= 2.2634	
COMMENT OD parameters from	batch orbit determination	
ACTUAL OD SPAN	= 3.4554	[d]
OBS AVAILABLE	= 137	[~]
_		
OBS_USED	= 129	
TRACKS_AVAILABLE	= 18	
TRACKS_USED	= 17	

Figure C-2 Sample RDM in KVN using optional keywords

ANNEX D

SECURITY, SANA, AND PATENT CONSIDERATIONS

(INFORMATIVE)

D1 SECURITY CONSIDERATIONS

This subsection presents the results of an analysis of security considerations applied to the technologies specified in this Recommended Standard.

D1.1 SECURITY CONCERNS WITH RESPECT TO THE CCSDS DOCUMENT

D1.1.1 Data Privacy

Privacy of data formatted in compliance with the specifications of this Recommended Standard should be assured by the systems and networks on which this Recommended Standard is implemented.

D1.1.2 Data Integrity

Integrity of data formatted in compliance with the specifications of this Recommended Standard should be assured by the systems and networks on which this Recommended Standard is implemented.

D1.1.3 Authentication of Communicating Entities

Authentication of communicating entities involved in the transport of data which complies with the specifications of this Recommended Standard should be provided by the systems and networks on which this Recommended Standard is implemented.

D1.1.4 Control of Access to Resources

Control of access to resources should be managed by the systems upon which originator formatting and recipient processing are performed.

D1.1.5 Auditing of Resource Usage

Auditing of resource usage should be handled by the management of systems and networks on which this Recommended Standard is implemented.

D1.2 POTENTIAL THREATS AND ATTACK SCENARIOS

Potential threats or attack scenarios include, but are not limited to, (a) unauthorized access to the programs/processes that generate and interpret the messages, (b) unauthorized access to the messages during transmission between exchange partners, and (c) modification of the messages

between partners. Protection from unauthorized access during transmission is especially important if the RDM provider and users utilize open ground networks, such as the Internet, to exchange data formatted in compliance with this Recommended Standard. It is strongly recommended that potential threats or attack scenarios applicable to the systems and networks on which this Recommended Standard is implemented be addressed by the management of those systems and networks.

D1.3 CONSEQUENCES OF NOT APPLYING SECURITY TO THE TECHNOLOGY

The consequences of not applying security to the systems and networks on which this Recommended Standard is implemented could include potential loss, corruption, and theft of data. The orbit data included in the RDM could allow an unintended recipient to track a reentering spacecraft, and the ground impact data could allow them to collect any debris.

D2 SANA CONSIDERATIONS

[See CCSDS 313.0-Y-1, Space Assigned Numbers Authority (SANA)—Role, Responsibilities, Policies, and Procedures (Yellow Book, Issue 1, July 2011).]

The following RDM related items will be registered with the SANA Operator:

- The RDM XML templates

The following RDM elements should be taken from the appropriate SANA registry:

- The RDM originator should be taken from the SANA Organizations registry.
- The catalog name should be taken from the SANA CDM catalog name registry.

The registration rule for new entries in the registry is the approval of new requests by the CCSDS Area or Working Group responsible for the maintenance of the PRM at the time of the request. New requests for this registry should be sent to SANA (mailto:info@sanaregistry.org).

D3 PATENT CONSIDERATIONS

The recommendations of this Draft Standard have no patent issues.

ANNEX E

ABBREVIATIONS AND ACRONYMS

(INFORMATIVE)

ASCII	American Standard Code for Information Interchange
CCSDS	Consultative Committee for Space Data Systems
COSPAR	Committee on Space Research
<u>CDM</u>	Conjunction Data Message
ICD	Interface Control Document
ICS	Implementation Conformance Statement
KVN	Keyword Value Notation
NDM	Navigation Data Message
OD	Orbit Determination
OEM	Orbit Ephemeris Message
OPM	Orbit Parameter Message
RDM	Re-entry Data Message
RL	Requirements List
SANA	Space Assigned Numbers Authority
SI	International System of Units
SRP	Solar Radiation Pressure
SSA	Space Situational Awareness
SST	Space Surveillance and Tracking
<u>UN OOSA</u>	United Nations Office for Outer Space Affairs
UTC	Coordinated Universal Time
XML	eXtensible Markup Language

ANNEX F

RATIONALE AND REQUIREMENTS FOR RE-ENTRY DATA MESSAGES

(INFORMATIVE)

This annex presents the rationale and requirements behind the design of the Re-entry Data Message. <u>Table F-1Table F-1</u> shows the RDM requirements':

- requirement identifier;
- requirement text;
- rationale behind the requirement
- traceability to sections of this Draft Standard
- whether the requirement is mandatory (M) (shall) or optional (O), but desirable (should).

#	Requirement	Rationale	Trace	M/O
RDM-0010	The RDM shall be provided in digital form.	To facilitate automatic interaction	section 2.2	М
RDM-0020	The RDM shall be provided in platform-independent data structures.	The CCSDS objective of promoting interoperability is best met by avoiding proprietary data formats.	section 3	М
RDM-0030	The RDM shall provide a means of uniquely identifying each message.	The file name is not sufficient for these purposes and a unique ID facilitates exchange.	$\frac{\text{Table}}{3-1\text{Table}}$ $\frac{3-1\text{Table}}{3-1}$	М
RDM-0040	The RDM shall clearly identify the object predicted to (re)enter.	Any ambiguity in the object reduces the usefulness of the message.	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2}$	М
RDM-0050	The RDM shall provide the remaining orbit lifetime of the object.	This information is needed to determine the timeliness of any needed mitigation measures.	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3}$	М
RDM-0055	The RDM shall specify whether the re-entry is controlled or not.	To determine if/what mitigation measures are needed. Unknown is a valid value as well.	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2}$	М
RDM-0060	The RDM shall provide time measurements in the accepted CCSDS timecode formats.	To fulfill the CCSDS' objective of promoting interoperability and to make them easier to read and understand by humans	$\frac{Table}{3-2Table}$ $\frac{3-2}{2}Table 3-2}$	М
RDM-0070	The RDM shall provide the units used for all the	To promote interoperability and reduce confusion.	Table <u>3-3Table</u>	М

Table F-1 Re-entry Data Message requirements and rationale

	measurements.		<u>3-3</u> Table 3-3	
RDM-0080	The RDM shall allow the exchange of (re-)entry information for objects orbiting and arbitrary body.	Allows the use of the standard for Moon/Mars/Jupiter atmospheric entry besides Earth, further promoting the use of this standard.	<u>Table</u> <u>3-2Table 3-2Table 3-2</u>	М
RDM-0090	The information in the RDM shall be usable without the need to model any (re-)entry spacecraft dynamics by the receiving entity.	There are several situations in which this is useful, such as remaining orbit lifetime is too short for modeling or the receiving entity is a civil protection agency without those capabilities.	<u>Table</u> <u>3-3Table</u> <u>3-3</u> Table 3-3	М
RDM-0100	The RDM should be extensible, without disrupting existing uses	Some users might need other parameters and they should be able to use them with user defined lines specified in an ICD.	Table <u>3-3Table</u> <u>3-3</u> Table 3-3	0
RDM-0110	The RDM should be consistent with the other CCSDS messages.	To facilitate use and improve readability.	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2\text{Table}}3-2$	0
RDM-0120	The RDM shall allow for the object owner/operator to be specified.	Can help with mitigation measures.	<u>Table</u> <u>3-2Table</u> <u>3-2</u> Table 3-2	0
RDM-0130	The RDM shall allow the exchange of one spacecraft position/velocity state vector and associated information.	Allows the message to be self-contained and not rely on ODMs (which might require an ICD).	<u>Table</u> <u>3-3Table</u> <u>3-3</u> Table 3-3	0
RDM-0140	The RDM shall allow the exchange of covariance information for the position/velocity state vector.	To allow the uncertainty in the state vector to be exchanged as well.	<u>Table</u> <u>3-3Table</u> <u>3-3</u> Table 3-3	0
RDM-0150	The RDM should allow the modeling used to determine the data to be specified.	Necessary if the data is to be verified by the received agency.	$\frac{\text{Table}}{3-2\text{Table}}$ $\frac{3-2\text{Table}}{3-2\text{Table}}3-2$	0
RDM-0160	The RDM shall contain information about the previous and next messages for the same spacecraft.	Due to modeling uncertainties it is expected that RDMs for the same spacecraft would be published regularly.	<u>Table</u> <u>3-2Table 3-2Table 3-2</u>	0
RDM-0170	The RDM shall specify the predicted ground impact location and epoch for the object.	Important information if ground impact is predicted.	<u>Table</u> <u>3-3Table</u> <u>3-3</u> Table 3-3	0
RDM-0180	The RDM shall contain the spacecraft parameters used in OD and re-entry prediction.	Allows verification and independent orbit propagation.	<u>Table</u> <u>3-3Table</u> <u>3-3</u> Table 3-3	0
RDM-0190	The RDM shall contain information about the observations used in OD.	Allows the receiving agency to ascertain how reliable the data is.	$\frac{\text{Table}}{3-3\text{Table}}$ $\frac{3-3\text{Table}}{3-3\text{Table}}3-3$	0

ANNEX G

RDM SUMMARY SHEET

(INFORMATIVE)

This annex is intended to provide a helpful guide (see <u>Table G-2Table G-2</u>Table G-2) in determining which optional metadata keywords (from <u>Table 3-2Table 3-2</u>) and data blocks (from <u>Table 3-3Table 3-3</u>Table 3-3) should be present for each block in the data section (from <u>Table 3-3Table 3-3</u>Table 3-3).

Table G-2 Relationship between RDM data blocks and optional metadata keywords

Data block	Required metadata optional keywords	Required data blocks
long-term atmospheric re-entry	required: none	required: none (only mandatory keywords)
	recommended: GRAVITY_MODEL ATMPSPHERIC_MODEL SOLAR_FLUX_PREDICTION	recommended: spacecraft parameters
short-term atmospheric re-entry- and ground impact data	none-required: none recommended: GRAVITY_MODEL ATMPSPHERIC_MODEL N_BODY_PERTURBATIONS	required: none
	recommended: GRAVITY_MODEL ATMPSPHERIC_MODEL SOLAR_FLUX_PREDICTION N_BODY_PERTURBATIONS	recommended: NOMINAL REENTRY EPOC REENTRY WINDOW START REENTRY WINDOW END
ground impact data	required: RE_ENTRY_DISINTEGRATION	required: ground impact and burn-up data
	recommended: same as short-term atmospheric re-entry, and: IMPACT_LOCATION_UNCERTAINTY	recommended: same as short- term atmospheric re-entry
object state vector	REF_FRAME	none
position/velocity covariance matrix	none	object state vector
spacecraft parameters	none	none
orbit determination parameters	GRAVITY_MODEL ATMOSPHERIC_MODEL SOLAR_FLUX_PREDICTION N_BODY_PERTURBATIONS SOLAR_RAD_PRESSURE[AM32] EARTH_TIDES	spacecraft parameters

INTRACK_THRUST	

ANNEX H

RE-ENTRY INFORMATION DESCRIPTION

(INFORMATIVE)

H1 RE-ENTRY PREDICTION

As of April 2017, slightly more than 24000, or 56 % of all catalogued objects, have decayed and re-entered the atmosphere and several more re-enter every month. Re-entries can pose risk to ground based infrastructure and population, either due to the large mass of the spacecraft (e.g. Mir, Skylab or the Salyut space stations), or due to hazardous materials (e.g. Cosmos 954).

Predicting and simulating re-entries covers:

- long and medium term re-entry predictions (several years to a few weeks before reentry);
- short term re-entry predictions (last days/weeks before re-entry; altitude below 200 km);
- break-up and survival (out of scope of the RDM standard);
- ground impact and on-ground risk (mostly-partially out of scope of the RDM standard, due to limitations in break-up and survival estimations).

The following subsections describe re-entry simulations and modeling for the Earth, but similar considerations apply to other celestial bodies. For more details, please see chapter 9 of [I2], which describes re-entry simulations and how they applied to the Mir re-entry. Details on ESA's contributions to IADC (Inter-Agency Debris Coordination committee) re-entry campaigns can be found in [I3] and [I4].

The estimation of the orbit lifetime is covered by an ISO standard, 27852 [I5]. The standard focuses on long- and medium-term predictions and contains useful information to determine which mathematical models (e.g. gravity and atmospheric models) are appropriate in most situations. ISO is also working on a standard on atmospheric modelling, but as of the writing of this document, it has not been completed.

H1.1 LONG AND MEDIUM TERM RE-ENTRY PREDICTIONS

In the context of re-entry predictions, long and medium term means several years to a few weeks of orbital lifetime remaining. The current <u>typical</u> approach for these simulations is to use singly averaged perturbation equations integrated over a time step between 0.1 and 5 orbits. The perturbations accounted for by existing modeling software are: non-spherical Earth gravitation potential, dynamic <u>oblate</u> Earth atmosphere, luni-solar gravity perturbations, and solar radiation pressure combined with and oblate cylindrical Earth shadow. The end goal of these simulations is to estimate the remaining orbital lifetime.

Long and medium term re-entry predictions require simulating the decrease in the orbit's semimajor axis. For nearly circular orbits the rate of change of the semi-major axis w.r.t. time can be approximated by:

$$\frac{da}{dt} \approx -C_D \frac{A}{m} \rho a v_a$$

where v_a is the velocity with respect to the atmosphere. While v_a and the atmospheric density can be estimated using Earth atmosphere models and orbit dynamics, the ballistic coefficient cannot. Uncontrolled objects tumble, so their angle of attack_a and hence aerodynamic cross-section and drag coefficient are not constant. One approach to this issue is to retro-fit the simulated semimajor axis time history over observed values over a period of time by adjusting the ballistic parameter.

Besides the ballistic parameter, other sources of uncertainty in the results are atmospheric density modeling (both the models themselves and unexpected space weather events) and the orbit state. A standard deviation of ± 20 % for the remaining orbital lifetime is a good estimate for all the above in nominal conditions. More complex uncertainty modeling is also possible, e.g. accounting for orbit covariance and ballistic coefficient fit residuals.

H1.2 SHORT-TERM RE-ENTRY PREDICTIONS AND IMPACT

When the orbit altitude drops below ~ 200 km, the assumptions used in long term predictions (perturbation effects are small, no cross-coupling effects) no longer hold and more accurate modeling is needed. A numerical solution to the perturbed Newton equations is used, typically accounting for: Earth gravity, luni-solar attraction, solar radiation pressure with umbra and penumbra transits, and atmospheric drag.

Below ~120 km atmospheric drag becomes the dominating force, and properly accounting for the change in drag coefficient between free-molecular flow, transitional, and continuum conditions is critical. For example, the drag coefficient of the Mir space station decreased from 2.21 in the free-molecular flow regime to 1.18 in the continuum sub-sonic regime. Atmospheric drag steepens the flight path, making the orbit more eccentric. At some point the re-entering object will achieve equilibrium free fall, leading to an impact velocity:

$$v_{impact} \approx \sqrt{\frac{2mg_0}{c_D A \rho_0}}$$

Dispersion in the impact location of a re-entry survivor object is driven by uncertainties in the area-to-mass ratio, aerodynamic coefficients (drag, lift₂ and side-force), air density₂ and initial orbit and attitude state and it is given in the along- and cross-track directions. Monte Carlo simulations are needed to determine a geographic probability distribution. The probability density function in a given area can be computed as the fraction of impact in said area over total

number of simulations. The PDF in the along-track direction is distorted 2D Gaussian, further complicating matters.

Simpler approaches are sometimes used. Analytical formulae allow the computation of dispersion due to aerodynamic forces, based on lift, drag₂ and side-force coefficients and the ratio of lift and side-force, but they can be difficult to use and do not account for the main sources of uncertainty. An alternative is to assume a standard Gaussian distribution, compute the along-track dispersion by varying the aerodynamic drag term (ρ ·B) and use an empirical value for the cross-track dispersion (e.g. a 1- σ value of 20 km).

H1.3 SURVIVAL AND BREAK-UP DURING RE-ENTRY

During re-entry aerodynamic braking and aerothermal heating can lead to:

- disintegration the object breaks up into multiple fragments or losses external parts (e.g. solar panels, thermal shielding);
- mass loss heating leads to melting and ablative mass loss;
- total demise the object burns up completely and there is no impact.

The heat flux due to aerothermal heating depends on the flow conditions (free molecular, transitional, continuum super- $_{2}$ and subsonic), hence on object velocity and atmospheric density. How to estimate this flux is beyond the scope of this informative annex. The heat flux into the object leads to an increase in internal temperature, melting (once temperature is high enough), and radiating heat away from the object. Assuming a uniform composition leads to the following equations:

$$\dot{Q} = \rho c_p V \dot{T} + \epsilon \sigma A T^4, \qquad T < T_m$$

 $\dot{Q} = -\rho h_m \dot{V} + \epsilon \sigma A T^4, \qquad T = T_m$

Until the object's surface reaches the melting temperature, the heat flux in is equal to the heat absorbed by increasing internal temperature and the heat radiated away. Once the surface reaches the melting temperature, the heat flux is equal to the heat lost by mass ablation and the heat radiated away. This leads to two ways in which an object can survive re-entry: absorb the re-entry heat without reaching the melting temperature or radiate the heat away efficiently. If the analysis is restricted to solid metallic spheres, very small objects (smaller than ~ 1 cm), can do the latter, while very large objects (larger than ~ 10 cm) can do the former. Object in between (e.g. most nuts and bolts used in spacecraft assembly) will suffer total demise.

Simulating disintegration and mass loss for complex object is multi-disciplinary process, since spacecraft have complex shapes and contain a multitude of materials. The SCARAB tool, for example, can simulate it by dividing the spacecraft into basic elements, each with

consistent material properties and each element into multiple voxels (volume elements). The simulation accounts for the forces acting on each element/voxel (as in H1.2) and computes heat fluxes, temperatures, and normal and shear stresses for a thermal and structural analysis. This determines break-ups (when stresses exceed the ultimate tensile or shear stress in the structure) and ablative mass loss.

Exchanging the information needed to accurately replicate these types of simulations is beyond the scope of the RDM. Furthermore, the tools needed to replicate the results are not widely available, which restricts usefulness. Break-ups during re-entry tend to happen at around 80 km altitude, when the combined aerodynamic and thermal loads are highest, but without knowing the structure of the object nothing more can be said.

H2 ATMOSPHERIC RE-ENTRY AND GROUND IMPACT DATA KEYWORDS

ORBIT_LIFETIME: The remaining time in orbit of the object, in days, from the EPOCH_TZERO keyword in the metadata. This is intended to be a coarse estimation, useful for long and medium term (more than a few days) re-entry prediction. The orbit lifetime is considered to end when the altitude permanently drops below the REENTRY_ALTITUDE. This keyword has two roles:

- Specify whether long/medium or short term re-entry simulations were used for the object (e.g. a high value means a long term simulation was performed).
- Give an estimate of the remaining orbit lifetime, especially for long term predictions, with appropriate accuracy.

LIFETIME_DISPERSION: The uncertainty time window associated with the ORBIT_LIFETIME keyword and meant for long term re-entry predictions. A value of 20 % provides an acceptable estimate for nominal conditions, accounting for uncertainties in the ballistic coefficient, atmospheric density, and orbit parameters.

Figure G-3Figure G-3 shows the type of information that can be generated from mediumterm re-entry prediction RDMs. It assumes a new RDM containing an updated orbital lifetime prediction and uncertainty (fixed at 20 %) is issues every couple of days. The predicted re-entry date (orbit lifetime + epoch t_zero) is plotted against the date at which the simulation was run (creation date), with the 20 % dispersion plotted as well.

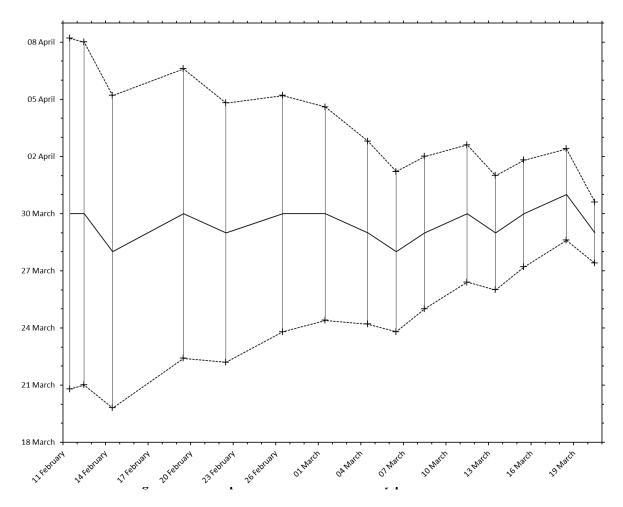


Figure G-3 shows the type of information that can be generated from medium-term re-entry prediction RDMs. It assumes a new RDM containing an updated orbital lifetime prediction and uncertainty (fixed at 20 %) is issues every couple of days. The predicted re-entry date (orbit lifetime + epoch t_zero) is plotted against the date at which the simulation was run (creation date), with the 20 % dispersion plotted as well.

REENTRY_ALTITUDE: The altitude at which the orbit lifetime ends and at which re-entry is defined. Depending on the particular re-entry event, different values can be specified, e.g. 150 km for "object captured by the Earth's atmosphere", 70 km for "object likely to break-up at this altitude", or simply the altitude limit at which the re-entry simulation stops.

NOMINAL_REENTRY_EPOCH: Predicted re-entry epoch, providing much greater precision for short term (last couple of days before re-entry, when altitude is below 200 km) re-entry predictions.

REENTRY_WINDOW_START and **REENTRY_WINDOW_END**: Allow the RDM originator to specify a re-entry time window, which does not have to be symmetric around the nominal re-entry epoch. They can account for uncertainties in the modeling (atmospheric

density, drag coefficient, attitude influence) or for under/over performance of thrusting maneuvers in a controlled re-entry.

PROBABILITY_OF_IMPACT: Probability of the object or **any** resulting fragments impacting the Earth (land or sea). This is the first step in assessing any casualty probability, in conjunction with population density mapping.

PROBABILITY OF BURN-UP: Total demise probability for the object and/or any resulting fragments.

PROBABILITY_OF_BREAK-UP: Probability of fragments being generated during reentry, both "shedding" of parts (e.g. solar panels, heat shields) and fragmentation of the main structure.

PROBABILITY_OF_LAND_IMPACT: Probability of the object or **any** resulting fragments impacting solid land. This is the first step in assessing any casualty probability, in conjunction with population density mapping.

NOMINAL_IMPACT_EPOCH: The nominal (predicted) epoch at which the object hits the surface of the Earth (either solid land or ocean).

IMPACT_WINDOW_START and **IMPACT_WINDOW_END**: The same as REENTRY_WINDOW_START and _END, but for the impact epoch.

IMPACT_REF_FRAME, **NOMINAL_IMPACT_LON**, **_LAT**, **_ALT**: Allow the specification of the nominal (predicted) impact location in geodetic coordinates.

IMPACT n CONFIDENCE, IMPACT nS_START_LON, <u>STOP,</u> <u>LAT,</u> **IMPACT n START LAT, IMPACT n STOP LON, IMPACT n STOP LAT, IMPACT_nS_CROSS_TRCK**: Uncertainties in the ground impact location are expressed in the along-track and cross-track directions, which means the (predicted) ground track needs to be known. Since the probability distribution is skewed, the method is chosen to deal with these two issues is:

- <u>—</u>Give the coordinates corresponding to the maximum probability, with the NOMINAL_IMPACT_LON and _LAT keywords.
- Define up to three confidence intervals.
- Give the coordinates of the two points on the ground track corresponding to the start and end of the <u>1/2/3-sigma(up to) three</u> confidence intervals.
- Depending on how many pairs of points are given, a polynomial interpolation can be performed, so a good estimate of the ground track is provided<u>As long as at least three</u> points are provided the ground track can be estimated as one or more segments of a great circle.-

- The cross-track confidence intervals (in km) can be used to determine the swaths of impact probability, which can then be used together with population density mapping to determine the casualty probability.

The ground impact location and uncertainties are supposed to cover all eventual re-entry fragments (fragments generated during re-entry, not before). For example, iIf the re-entry data is obtained through Monte Carlo simulations, NOMINAL_IMPACT_LON, _LAT would correspond to the bin with the most impacts₂, the firstthe __swath would cover IMPACT 1_CONFIDENCE1-sigma swath would cover roughly 47 % (for a rectangle, less for an ellipse) of the impacts, and so on. If analytical formulae are used for the 1-sigma confidence interval, IMPACT 1_CONFIDENCE should be 47 % (for rectangular, rather than elliptical areas), the IMPACT 1_START/STOP_LAT/LON values can be determined from the formulae and the ground track, and IMPACT 1_CROSS_TRACK from the formula used.

H3 ORBIT DETERMINATION KEYWORDS

To promote consistency and ease implementation, the orbit determination keywords are the same as in the Conjunction Data Message. These keywords are present to give the consumer of the message an idea of the quality of the data provided and when was the re-entering object last observed.

Observation: Unique measurement of a satellite's location from a single sensor at a single time (e.g., azimuth from a single sensor at a single time).

TIME_LASTOB_START and **TIME_LASTOB_END**: The start and end of a time interval that contains the time of the last accepted observation. For an exact time, the time interval is of zero duration (i.e., TIME_LASTOB_START = TIME_LASTOB_END).

RECOMMENDED_OD_SPAN: How many days of observations were recommended for the OD of the object.

ACTUAL_OD_SPAN: The actual time span used for the OD of the object based on the observations available and the RECOMMENDED_OD_SPAN.

OBS_AVAILABLE: The number of observations, for the recommended time span, that were available for the OD.

OBS_USED: The number of observations, for the recommended time span, that were accepted for the OD.

Sensor Track: A set of at least three observations for the same object, observed by the same sensor, where each observation is within a specified number of minutes (which is dependent on the orbit regime of the object) of the other observations in the track.

TRACKS_AVAILABLE: The number of sensor tracks, for the recommended time span, that were available for the OD. This provides information about the independence of the observational data used in the OD.

TRACKS_USED: The number of sensor tracks, for the recommended time span, that were accepted for the OD. This provides information about the independence of the observational data used in the OD.

WIGHTED_RMS:

Weighted RMS =
$$\sqrt{\frac{\sum_{i=1}^{N} w_i (y_i - y_{i,estimated})}{N}}$$

Where:

 y_i is the *i*th observation;

 $y_{i,estimated}$ is the estimated value (from the resulting orbit) of y_i ;

 w_i is the weighting of the observation; and

N is the total number of observations.

This is a value that can generally identify the quality of the most recent orbit update, and is used by the analyst in evaluating the OD process.

ANNEX I

INFORMATIVE REFERENCES

(INFORMATIVE)

- [I1] Navigation data Definitions and Conventions. Issue 3. Informational report for Space Data Systems Standards (Green Book), CCSDS 500.0-G-3. Washington, D.C.: CCSDS, May 2010
- [I2] Klinkrad, H. *Space debris*. John Wiley & Sons, Ltd, 2010.
- [I3] Virgili, B.B., Flohrer, T., Lemmens, S. and Krag, H., 2014. *GOCE Re-entry Campaign*. In Proceedings of the fifth international GOCE user workshop.
- [I4] Virgili, B.B., Lemmens, S., Siminski, J. and Funke, Q., 2017. Practicalities of reentry Predictions – the Vega-01 AVUM case. In Proceedings of the 7th European Conference on Space Debris.
- [I5] ISO 27852:2016, *Space Systems Determining Orbit Lifetime*. International Organization for Standardization, Geneva, Switzerland (2016).