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ABSTRACT. The Jet Propulsion Laboratory provides high-precision numerically integrated plan- 
etary and lunar ephemerides in support of spacecraft navigation and other activities relating to 
solar system bodies. Hundreds of users around the world have requested copies of the ephemerides. 
In the interests of compactness and utility, techniques have been developed for (1) the generation of 
the coefficients of an interpolating polynomial based on output from the integrator, and (2) trans- 
formation of the contents of an ephemeris file to a standard form usable on virtually any computer. 

1. Representation by Chebyshev Coefficients 

1.1. THE NEED FOR INTERPOLATION 

The numerical integration program carries the instantaneous state of the solar system as 
polynomials in the form of position, velocity, acceleration, and up to 14 modified divided 
backward differences of acceleration for each cartesian component of the nine planets 
and the Moon. Saving the difference arrays at every integration step would result in 
prohibitively large files. Most applications of the ephemeris require only the positions of 
designated bodies. Considerable economy of file size is achieved by obtaining polynomial 
representations of the positions valid over a certain time span. 

1.2. CHEBYSHEV POLYNOMIALS 

Chebyshev polynomials are the functions of choice for ephemeris representation: they 
are stable during evaluation, they give a near-minimax representation, and they provide 
a readily apparent estimate of neglected terms on interpolation error. For an extensive 
discussion of these polynomials, see Rivlin, 1974. 

The nth Chebyshev polynomial Tn(t) is defined by the recursion formula 

T,,(t) = 2 t T , , _ l ( t )  - T,,_2(t),  n = 2 ,  3, . . .  (1) 

with To(t) = 1 and 7'1 (t) = t. The applicable range of t for interpolation is - 1  <_ t <_ 1. 
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Any given function f(t) has an approximate Nth-degree expansion in Chebyshev poly- 
nomials: 

N 

f(t) -- ~ a, T,(t), 
n = 0  

(2) 

and, when differentiated, 
N 

](t) -- ~ a, T,(t), 
n = l  

(3) 

where the an are chosen in a manner appropriate for f(t) and ](t). In the present case, 
where f ( t j )  and /(t i)  denote a coordinate and its derivative computed at discrete times 
t 3. by the integrating program, the a ,  serve to define the function f(t) as a polyno- 
mial. The task becomes the determination of a set of a ,  that  provide interpolated values 
suitably approximating those available from the original backward-difference representa- 
tions carried by the integrator. The following section details the generation of the a ,  for 
ephemeris body coordinates. (It should be noted that  the use of Chebyshev polynomi- 
als to repesent ephemerides is not new. The Jet  Propulsion Laboratory has distributed 
Chebyshev-constructed files since 1974; the Connaissance des Temps has been available 
as Chebyshev polynomials since 1978, in both printed and machine-readable form.) 

1.3. CHEBYSHEV COEFFICIENT GENERATION 

The subroutine PVCH was developed to provide efficient generation of the Chebyshev 
polynomial coefficients representing the cartesian coordinates of the ephemeris bodies. 
The full span of, say, sixty years of an ephemeris file is segmented into contiguous intervals, 
or granules, of fixed length. (The actual length of a granule depends on the body; see 
Table 1 for details.) For each coordinate of an ephemeris body the Chebyshev coefficients 
a ,  tha t  define the interpolating polynomial valid over a given granule must be produced. 
There are as many sets of coefficients representing each coordinate as there are granules 
covering the ephemeris span. 

PVCH accepts a pair of position and velocity values from the integrator for a given 
granule at each of the nine (equally spaced) normalized times: 1, 3 / 4 ~ 1 / 2 ,  1/4, . . .  , --3/4 , --1. 
The output  is the set of a .  for the polynomial that  is an exact fit to the position values a~ 
the end points (t = 1, t = - 1 )  and a least-squares fit to the interior positions, and whose 
differentiated polynomial is an exact fit to the velocities at the end points and a least- 
squares fit to the interior velocities. This approach has the advantage that  interpolated 
position and velocity are continuous at the common end point of adjacent granules; it 
also minimizes the effects of noise that  would otherwise degrade the interpolated velocity 
obtained from differentiation of a polynomial based on position values alone. 

PVCH uses a set of multipliers ck to obtain the a ,  as a linear combination of the input 
positions and velocities: 

= Cx (N)PC1)  + c 2 ( N ) v ( 1 )  + c3(N)pCff4) + c4(N)vCff4)  

�9 �9 �9 c17 r) p C - i )  + c18 r) v ( - 1 )  

The ck(N) are unique for each an and for each polynomial degree N. In the application 
of the following steps the ck(N) were formed and encoded as DATA statements  intended 
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for PVCH. That  subroutine is subsequently used to form the entire set of Chebyshev 
coefficients consti tuting an ephemeris file. The ok(N) w e r e  obtained as follows: from 
Eq. (2) there are 18 conditions on the an:  

N N 

p(1) = E an Tn(1) v(1) : ~ an Tn(1) 
n - - 0  n = 0  

N N 

.=o .=o (4) 

N N 

p ( - 1 )  = ~ a,~ T,,,(-1) v ( - 1 )  = E an T, . , ( -1 )  
n = 0  n - - 0  

This system can be expressed in matrix and vector notat ion as Ta  = f, or 

To(l) T1(1) T2(1) . . .  TN(1) 
$ �9 $ �9 

T0(1) TI(1) T2(1) . . .  TN(1) 

To(%) TI(~A) T~(~A)... TN(~A) 
T0(~A) T,(~A) T~(~/~).-. ~'N(%) 

�9 " " " T N -  i 
�9 �9 �9 �9 o 

T0(-1)  T I ( - 1 )  T , ( - 1 )  . . .  - 1 )  

To(-1) T1(-1) T2( -1 ) . . .  TN(--1) 

m 

ao 

a l  

aN 

p(1) 
v(1) 

p(~A) 
,,(3/4) 

p(-x)  
v ( - 1 )  

(5) 

The matr ix  T is 18 x (N + 1), implying that  the system is overdetermined for N < 17 and 
must  be solved by a least-squares method. In addition the requirement that  the end-point 
positions and velocities be reproduced exactly imposes four constraints on the system. 

1.4. S O L U T I O N  W I T H  L A G R A N G E  M U L T I P L I E R S  

We want to minimize the Euclidean norm II T~ - f II ~, ~ubj~t to the four constraints 

N N 

g l ( a )  -- ~ a .  Tn(1)  - p(1)  -- 0, g3(a)  - ~ a .  T ~ ( - 1 )  - p ( - 1 )  -- 0, 
n = O  n--O ~ (6) 

g2(a)  -- ~ a .  ~/'n(1) - v(1)  -- 0, g4(a)  -- ~ a .  ~ h . ( - 1 )  - v ( - 1 )  --  0. 
n - -0  n - - 0  

Following the s tandard use of Lagrange multipliers, for each an we have 

i - - I  

(7) 
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Differentiating with respect to each of the a~ separately yields N + 1 equations in N + 
5 unknowns (the)~i must be included). Appending the four constraint equations (6) 
produces the (N + 5) • (N + 5) system: 

T*WT 

, T o ( l ) T o ( l )  To(-1) T.'o ( -  1) 
I I TI(1) TI(1) TI(-  1) TI(- 1) 

a �9 �9 �9 

�9 �9 �9 # 

I 
, TN(1) TN(1) TN(--1) ~'N(--1) 
I 

To(1) T1(1) 

2bo(1) ~bl (1) 

To(-1) TI ( -1 )  

5/o(-1) ~/'1 ( -  1) 

�9 �9 �9 

�9 �9 @ 

T * W  

1 0 0 . . .  

0 1 0 . . .  

0 0 0 . . .  

0 0 0 . . -  

0 0 

0 0 

0 1 

0 0 

T (1) 0 0 0 0 

5bN(1 ) 0 0 0 0 

TN(--1) 0 0 0 0 

TN(-1)  0 0 0 0 

D 

p(1) 

p( A) 

0 

0 

0 p ( -1)  

1 _v(-X) 

a0 

a l  

a N  

)~1 

A4 (8) 

The notation T* denotes the transpose of T. The matrix W is a diagonal weighting matrix, 
included to allow control of the relative effects of position and velocity values. It was found 
experimentally that the best results are obtained with velocity weighted at .4 relative to 
position, giving W the form diag(1.0, 0.16, 1.0, 0.16, . . .  ). 

The above matrix equation (8) can be written as Cla~ = C2f, where a~ is the vector 
a augmented by the )~. The solution is a~ = (C~ -1 C2)f. Row n + 1 of the product 
matrix (C~ -1 C2) contains the multipliers ck(g) for each an(N). It is these ck(N) that are 
formatted for the DATA statements in PVCH. 

The solutions for the )~i are also part of the result. However, they have no useful 
interpretation in this context and are ignored�9 

1.5. INTERPOLATION ERROR AND POLYNOMIAL DEGREE 

It is essential to have a quantitative estimate of the maximum error expected from the 
interpolation process when the polynomials described above are used to extract coordinate 
values at arbitrary times�9 (It should be noted that  the term "error" here refers to the 
difference between interpolated and integrator-supplied values; it does not indicate the 
degree of accuracy to which the original integrated ephemeris represents the dynamical 
state of the solar system.) 

The Chebyshev polynomials provide a convenient and reliable estimate of interpola- 
tion error. An arbitrary function has the exact representation as an infinite Chebyshev 
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expansion 
OO 

/ ( t )  = . .  T . ( t )  
n - - O  

(9) 

The maximum value of Tn(t) is unity on the interval [ -1 ,  1], the domain of validity for 
interpolation. Therefore, when a function is approximated by an Nth-degree polynomial, 
as in Eqn. (2), the maximum error e arising from the omit ted remainder of the series has 
the upper bound 

O 0  O 0  O 0  

e--[ ~ an Tn(t)l ~_ ~ lanl ITs(t)[ (_ 
n--N+l n=N+l n'-N+l 

la.]. (10) 

Investigation has shown that  the granule length and the polynomial degree N can be 
chosen so that  la,,+l/anl ~ 0.1 or less for n > N,  implying that  the maximum expected 
interpolation error is about one tenth the magni tude of the highest retained coefficient 

aN. 
The accuracy criterion for s tandard JPL ephemerides is tha t  the interpolation error for 

all coordinate values must be less than 0.5 millimeters. (The DE102 ephemeris covers 4400 
years; in the interests of providing a significantly compressed file the interpolation-error 
criterion was relaxed by defining polynomials of a given degree tha t  span granules of twice 
the length of those on other JPL ephemerides [Newhall et al., 1983].) The minimum degree 
N of the interpolating polynomial is 3, as the requirement tha t  the end-point position and 
velocity values be matched exactly yields four constraints; the 18 combined position and 
velocity values permit  a maximum degree of 17. Table 1 lists the granule length and 
polynomial degree for each body on the JPL ephemeris files. 

Table 1 . Granule Length and Polynomial Degree for the 

Granule Polynomial 
Body Length (days) Degree N Body 

11 Ephemeris Bodies 

Granule 
Length (days} 

Polynomial 
Degree N 

Mercury 8 13 Saturn 32 6 
Venus 16 9 Uranus 32 5 
Earth-Moon 16 12 Neptune 32 5 
Barycenter Pluto 32 5 
Mars 32 10 Moon 4 12 
Jupiter 32 7 Sun 16 10 

2. Exporting the Ephemeris 

2.1. PORTABILITY 

Because of the accuracy requirments of space navigation the JPL ephemerides are suffient 
to satisfy the most stringent demands of any application. Hundreds of users from all 
over the world, representing virtually every type of computer  available, have requested a 
copy of the ephemerides. It is essential tha t  a thoroughly portable,  machine-independent 
version of the files and software be produced. 
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2.2. DATA REPRESENTATION 

The JPL ephemeris files consist of character, integer, and double-precision floating point 
da ta  types. The files are originally produced on a Univac 1100/91 computer. When 
transformed for an export tape the file contents are writ ten on a tape in what amounts 
to a formatted dump of the file. Character data  are writ ten as CHARACTER*6 variables; 
integers are writ ten as integers. 

Double-precision data  present a problem. Fortran floating point printed numbers are 
in general not exact representations of the binary quantities. On the Univac, floating 
point numbers are represented as a sign bit, an l l -b i t  biased exponent of 2, and a 60-bit 
mantissa,  with the binary point assumed to be at the left of the mantissa. (The exponent 
bias is 102410, or 2000s.) In the export format each double-precision number is written 
as three integers: N1 - the exponent k with the bias removed, followed by the mantissa 
expressed as two 30-bit integers N2 and N3. When reconstructed on the receiving machine, 
the formula is 

Double-precision number - N2 x 2 N1-3~  -b N3 • 2 N1-6~  

As an illustrative example, on DE200 the conversion factor between AU's and kilometers 
is 149597870.66. It has the octal floating-point representation 

2034 4352535272 5075341217. 

When converted to export format the three-integer representation becomes 

N1 = 28 

N2 = 598391482 

N3 -- 687194767 

( :  34s) 
( :  4352535272s) 

( :  5075341217s) 

2.3. THE EXPORT SOFTWARE 

The software package on the export tape sent to users contains a program for decoding 
the tape and creating a direct-access file on mass storage. It also includes subroutines for 
subsequent reading and interpolating the ephemeris file. 
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