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Abstract

The goal of a space surveillance system is to detect, track, and catalogue objects in Earth orbits. Many services of such
a system, like collision avoidance or re-entry prediction, rely on the catalogued information. The most comprehensive
system today is the US Space Surveillance Network (SSN) operated by USSTRATCOM, which provides public
information on more than 17,000 on-orbit objects via the Two-line elements (TLE) catalogue. In order to use TLE in
operational applications, however, one has to process the orbit information with SGP4, which is the analytical theory
providing the TLE. Switching to an alternative method, for example Special Perturbations and osculating states,
implies using the same method on the user side to recover the maximum achievable accuracy from the provided data.
In this paper, an approach is analysed, which allows to provide orbital information without being dependent on the
orbit theory used in the cataloguing system. The same idea has been already realized for a subset of objects: the Jet
Propulsion Laboratory (JPL) provides Chebyshev polynomial coefficients for solar system bodies for distinct time
intervals. That concept is applied in this paper to satellites in different Earth orbits to show how the selection of the
interpolation interval size and the polynomial degree given a certain accuracy threshold can be achieved. In addition,
a method to provide a polynomial for the envelope function of the variance-covariance matrix is proposed. It is shown
that data messages based on polynomials can achieve considerable compression ratios. Moreover, using polynomials
for states and covariances allow for an easy recovery using a simple Chebyshev processor.
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I INTRODUCTION

The exchange of information on objects in orbit us-
ing standardized formats is directly related to Space Sit-
uational Awareness (SSA) services, e.g. collision avoid-
ance or re-entry forecasts, becoming mature and pro-
vided to a wide range of different clients. The latter in-
clude agencies, satellite owner and/or operators (O/O),
public authorities, etc.

The Consultative Committee for Space Data Systems
(CCSDS) has been carefully designing and publishing
standardized data messages 1 with several of them being
adopted by the International Organization for Standard-
ization (ISO) in the recent years, for example [1]. A data
message specifically tailored to the conjuncation assess-
ment service is the Conjunction Data Message (CDM),

Email address: vitali.braun@esa.int (Vitali Braun)
1A comprehensive list of standardized formats can be found on the

CCSDS website: https://www.ccsds.org

which is distributed by the Joint Space Operations Cen-
ter (JSpOC) to satellite O/O upon the detection of a close
approach event by the US space surveillance system. Fi-
nally, a widely-used public source of orbit information
on more than 17 200 in-orbit objects2 is the US Two-line
Elements (TLE) catalogue.

All standardized orbit data messages come with a set
of metadata, containing general information on the ob-
ject, as well as a data section, which may contain an
ephemeris for a given epoch or even a set of tabulated
ephemerides in equidistant time steps for a certain span.
In addition, it may contain information on the uncer-
tainty associated with the ephemerides, referred to as the
covariance matrix. In general, ephemerides result from
an orbit determination process based on a certain orbit
theory. For example, TLE containing doubly-averaged
Keplerian elements are linked to the analytical Simpli-

2https://www.space-track.org, as of September 2015.
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fied General Perturbations (SGP) theory, while CDMs
provide cartesian coordinates for radius and velocity as
a result of applying a Special Perturbations (SP) tech-
nique. In order to recover the best possible results for
both interpolation (between two epochs in the data set)
and extrapolation (beyond the latest data set), the origi-
nal algorithm, that generated the ephemerides, has to be
used again. However, orbit propagation algorithms are
generally not distributed to the recipients of the associ-
ated data messages. And even if the software is avail-
able, as is the case for SGP4, another problem is the ver-
sion control between the operational version used to gen-
erate the data and the software employed by the users.

In view of the ongoing design process for standard-
ized orbit data messages and dedicated services becom-
ing available to a broad community, this paper aims at
highlighting a method for providing continuous ephe-
merides (as opposed to tabulated data) and to obviate
the need of having to distribute and maintain a related
software package for inter- and extrapolation across the
users. The idea, which is not new of course, is to have
the space surveillance system post-process ephemerides
for catalogued objects with the result being polynomi-
als representing an orbital arc of pre-defined length - a
process often referred to as ephemeris compression in
literature, e.g. [2, 3, 4]. The ephemeris compression
will be presented for Chebyshev polynomials, with the
theoretical background provided in Section II. The Jet
Propulsion Laboratory (JPL) is already using an ephe-
meris compression based on Chebyshev polynomials to
provide positions and velocities of solar system bodies
[5].

Being especially useful in the Collision Avoidance
(CA) process, one of the most important services a Space
Surveillance & Tracking (SST) system provides, it is
noteworthy that the only publicly available source of data
for all orbital regions, TLE, comes without any informa-
tion on the uncertainties. In the aftermath of the col-
lision between Cosmos-2251 and Iridium-33 in 2009,
USSTRATCOM, for the first time, started sharing Con-
junction Summary Messages (CSMs) with non-US Gov-
ernment USG entities in July 2010, especially with satel-
lite Owners and/or Operators (O/Os). The CSM was
replaced by the standardised CDM in April 2014, with
its format being defined by the CCSDS [6]. With the
main intention being to support CA operations, a CDM
provided by JSpOC comes with the variances and co-
variances of the radius vector for a specific conjunction
event at the time of closest approach (TCA). Being ad-
vantageous for the assessment of the conjunction event
by providing the means to compute a collision probabil-
ity, the full matrix information is not part of an opera-
tional CDM. This means that the covariance matrix can-

not be propagated from the Time of Closest Approach
(TCA).

Irrespective of whether or not the provided informa-
tion on the covariance matrix will be extended in the fu-
ture (being an essential component in the tradeoff be-
tween ”transparency and security” [7]), one can imagine
a possibility to provide the covariance matrix in a sim-
ilar way as compared with the Chebyshev polynomials
obtained for the state vector. The goal should also be to
provide for a certain time span the covariance informa-
tion, so that propagation on the user’s side is not required
anymore.

After a short analysis of the application of the ephe-
meris compression to typical Earth orbits in Section IV.I
(similar to analyses already done, e.g., by [3]), a method
is proposed for the compression of the covariance matrix
as well, which is described in Section IV.II. Further-
more, operational considerations are discussed in Sec-
tion V, like the amount of data to be expected as com-
pared with currently used data formats, as well as a pro-
posed implementation in data messages being discussed
today.

II CHEBYSHEV POLYNOMIALS

The polynomial interpolation shall be based on Che-
byshev polynomials of the first kind, Tk ptq. The polyno-
mial Pn interpolates the to be approximated function at
n` 1 nodes:

Pn ptq “
n
ÿ

k“0

ck ¨ Tk ptq . (1)

The Chebyshev polynomials of the first kind satisfy
the following equation for degree n and argument t P
r´1, 1s:

Tn ptq “ cos pn ¨ arccos tq . (2)

In order to compute the polynomials of higher order, a
recurrence relation can be used [8]:

Tn`1 ptq “ 2tTn ptq ´ Tn´1 ptq . (3)

In the application, the interpolation nodes are repre-
sented by the ephemerides, the latter typically provided
equidistantly with respect to time. However, these nodes
do not coincide with the Chebyshev nodes, which re-
duce Runge’s phenomenon3 through the denser spacing
of nodes near the interval borders. The Chebyshev nodes
are the roots of the Chebyshev polynomials, thus result-
ing in:

tk “ cos
ˆˆ

k ` 1
2

˙

¨ π

n` 1

˙

, k “ 0, . . . , n. (4)

3Polynomials of high degree show oscillations and high interpola-
tion errors at interval borders for equidistant interpolation.[9]
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The ephemerides tables thus have to be interpolated first
to obtain the Chebyshev nodes. This is done by a simple
Lagrange interpolation of lower degree, with Runge’s
Phenomenon not being a problem in that case. As the
Chebyshev polynomials are defined for ´1 ď t ď 1
only, the independent variable has to be converted first,
using the following equation with the lower and upper
interval border of the ephemerides table given as a and
b, respectively:

t “ 2 ¨ t˚ ´ pa` bq
b´ a

. (5)

After the Chebyshev nodes have been computed, the
polynomial coefficients ck (Eq. 1) have to be determined.
This can be done by exploiting the orthogonality, an im-
portant property of the Chebyshev polynomials.

II.I. Orthogonality

The Chebyshev polynomials are orthogonal on the
interval ´1 ď t ď 1 with respect to a weight function
w ptq, as they satisfy the equation [8]:

1
ż

´1

Tn ptq ¨ Tm ptq ¨ w ptq dt “ 0, n ‰ m, (6)

with the weight function for Chebyshev polynomials of
the first kind being:

wT ptq “ 1?
1´ t2

. (7)

Substituting t by cos t in Eq. 2 and Eq. 7, the integral in
Eq. 6 evaluates to

π
ż

0

cos pntq ¨ cos pmtq dt “

$

’

&

’

%

0 : n ‰ m
π : n “ m “ 0
π
2 : n “ m ‰ 0.

(8)

For the purpose of polynomial interpolation, a discrete
orthogonality relation can be used for the Chebyshev
nodes tk (Eq. 4), which is similar to the definition for
continuous functions [10]:

n
ÿ

k“0

Tn ptkq ¨ Tm ptkq “

$

’

&

’

%

0 : n ‰ m
n` 1 : n “ m “ 0
n`1

2 : n “ m ‰ 0.
(9)

II.II. Computing Chebyshev polynomial coefficients

The orthogonality for the discrete case in Eq. 9 can
now be used to compute the coefficients of the polyno-
mial given in Eq. 1, given the fact that this polynomial

is equal to the ephemeris (function) value at the Cheby-
shev nodes, Pn ptkq “ f ptkq. Therefore, f ptkq is multi-
plied with a Chebyshev polynomial of the first kind and
summed over the n` 1 nodes [10]:

n
ÿ

k“0

f ptkq ¨ Tl ptkq “
n
ÿ

i“0

ci

n
ÿ

k“0

Ti ptkq ¨ Tl ptkq

“ n` 1
2

¨ cl, l ą 0 (10)

Thus, for l ą 0, the coefficients cl can be computed as

cl “ 2
n` 1

¨
n
ÿ

k“0

f ptkq ¨ Tl ptkq , l ą 0, (11)

and for l “ 0 (see Eq. 9):

c0 “ 1
n` 1

¨
n
ÿ

k“0

f ptkq ¨ Tl ptkq . (12)

II.III. Polynomial interpolation error

Having a method at hand to estimate the interpola-
tion error based on the selected polynomial degree, it is
possible to guarantee that a certain solution stays below
some pre-defined accuracy threshold. The Weierstrass
approximation theorem [11] states that for a continuous
function f pxq on the interval ra, bs, there exists a poly-
nomial p pxq, so that there for all x P ra, bs, the error is
smaller than | f pxq ´ p pxq|.

The error εn ptq for an interpolation polynomial of de-
gree n, in general, can be computed for any t P ra, bs,
and a particular ξ in the same interval, via [10]:

ε ptq “ f ptq ´ Pn ptq
“ f n`1 pξq

pn` 1q! ¨
n
ź

i“0

pt ´ tiq . (13)

The interpolation error is a function of the nodes selected
for interpolation, as can be seen by looking at the prod-
uct term. An example for how the node selection af-
fects the error, is shown in Fig. I. It can be seen, that the
equidistant nodes tend to show Runge’s phenomenon,
with the error being largest near the interval borders.
Switching to Chebyshev nodes according to Eq. 4, it can
be seen, that the error at the interval borders can be re-
duced and is similar to errors for mid-interval values.

While the product term can be easily evaluated, the
main problem in using Eq. 13 is that one has to know
about the pn` 1q-th derivative of the continuous func-
tion f ptq, which is not available for ephemerides. There-
fore, another approach was selected in [12], using the
definition of the Chebyshev interpolation (Eq. 1), mak-
ing use of the fact that the maximum value of T ptq on
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Fig. I: Example showing the interpolation error for the product
term only (Eq. 13), for equidistant steps (dashed red line)
versus Chebyshev nodes (dotted blue line). Five nodes
have been selected on the interval r´1, 1s. For Chebyshev
nodes Eq. 4 was used.

the interval r´1, 1s is one, and estimating the maximum
error for the truncated part of the infinite series:

ε “
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“n`1

ck ¨ Tk ptq
ˇ

ˇ

ˇ

ˇ

ˇ

ď
8
ÿ

k“n`1

|ck| ¨ |Tk ptq| ď
8
ÿ

k“n`1

|ck| .

In [12] it is stated that a combination of a granule length
(interval length) and a polynomial degree n can be se-
lected so that |ck`1{ck| « 0.1 or less for k ě n, which
means that the maximum expected interpolation error is
about one tenth the magnitude of the highest retained co-
efficient cn [12].

II.IV. Clenshaw’s algorithm to evaluate Chebyshev poly-
nomials

An especially stable and efficient way of evaluating
Chebyshev polynomials (Eq. 1) is Clenshaw’s method
[13]. It is based on a recurrence relation:

bk ptq “ ck`2¨t¨bk`1 ptq´bk`2 ptq , k “ n, . . . , 1, (14)

when the final sum is

Pn ptq “ c0 ` t ¨ b1 ptq ´ b2 ptq . (15)

In order to start the recurrence relation, the terms bn`1
and bn`2 are set to zero. It is therefore not required to
first evaluate the Chebyshev polynomials, the solution
can be obtained directly, after the coefficients ck have
been determined.

In the context of a space surveillance system, the
evaluation would take place on the client side, as the
system would provide the Chebyshev polynomial coef-
ficients only. Therefore, the Clenshaw algorithm serves
only as an example of how the client’s software may look
like with respect to trajectory reconstruction.

III METHODOLOGY

The core element of a space surveillance catalogue
is the satellite catalogue which, nowadays, is maintained
by updating or adding new orbit data applying a numeri-
cal or SP orbit theory in the orbit determination process.
In this study, a numerical propagation tool called Nep-
tune4 was used to generate reference orbits for different
orbital regions. The initial conditions were taken from
real orbits for exemplary objects as shown in Tab. I.

Tab. I: Satellites selected for the examples in this section, with
doubly averaged perigee altitude hp, eccentricity e and in-
clination i from TLE. Osculating states were derived from
TLE and directly used as initial states in the numerical
propagation.

Name Short hp / km e i / deg

ATV-2 ATV 359.0 0.0019 51.6
Sentinel-1A S1A 695.0 0.000 14 98.2
Galileo-8 GL8 23 214.0 0.000 27 55.1
Ariane-5 R/B AR5 252.0 0.7282 5.9
Meteosat-10 M10 35 788.0 0.000 02 0.06

The propagator was configured to use a full force
model (24 ˆ 24 geopotential, NRLMSISE-00 drag, lu-
nisolar perturbations, solar radiation pressure in combi-
nation with a conical umbra/penumbra shadow model,
solid Earth and ocean tides), integrated by a Störmer-
Cowell method, which includes multi-step, variable-step
and double integration [14]. The propagation of the co-
variance matrix is based on a numerical integration of
the state transition matrix including J2 contributions to
the variational equations. As TLE do not come with any
uncertainty information, the examplary full covariance
matrix (diagonal and off-diagonal elements) was taken
from an operational case used by ESA’s Space Debris
Office collision avoidance service. Each orbit was prop-
agated for at least 14 revolutions.

Note that although the SGP4 force model does not
match the one of the numerical integration, using the os-
culating TLE states as initial state vectors for the propa-
gation was considered as viable for providing represen-
tative results.

After the generation of the reference trajectories, the
interpolation was applied component-wise for both, the
radius and the velocity vector. The difference (either
component-wise or by the geometrical range) between
the reference orbit and the interpolated one was com-
puted.

4Developed within the Networking/Partnering Initiative
(NPI) between TU-BS and ESA/ESOC under Contract No.
4000103850/11/D/JR
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For the covariance matrix, a pre-processing scheme
was developed, which allows to determine the envelope
function first, which is interpolated with the result being
ready to be distributed.

IV INTERPOLATION RESULTS

In this section, the interpolation results for both, the
ephemeris compression and the covariance matrix com-
pression shall be presented according to the scenarios
described above.

IV.I. Ephemeris compression

The theoretical background on Chebyshev polyno-
mials was presented in Section II. It is essential to prop-
erly select the interpolation interval length and the poly-
nomial degree in order to approximate the reference tra-
jectory with a given accuracy. As an example, the JPL
ephemerides of the Earth are segmented into 16 d in-
tervals with a polynomial degree of 12. Depending on
which Development Ephemerides (DE) model is used,
the interpolation error for all coordinate values might be
less than 0.5 mm [5]. This accuracy should not be con-
fused with the orbit determination residuals - the interpo-
lation error is always relative to the reference trajectory.

In presenting the transition from a General Perturba-
tions (GP) to an SP catalog, [4] states that an SST system
may provide compressed ephemerides with accepted in-
terpolation errors for the position vector of up to 100 m.

For this paper, three different accepted error levels
(AEL) were analyzed: 1 m, 10 m, and 100 m. An AEL
of 1 m can be thought of as corresponding to the refer-
ence trajectory. From an SST perspective, such a prod-
uct would be appropriate even for the collision avoidance
service. Providing interpolated SP vectors with residu-
als up to 100 m might still be sufficient for ground-based
tracking purposes.

The residuals presented in the following were com-
puted for the geometrical range at one minute steps in
the Geocentric Celestial Reference Frame (GCRF). The
first result is shown in Fig. II for the Low Earth Orbit
(LEO) region. The required polynomial degree is given
as a function of granule length and orbit altitude (circular
orbits assumed) for an AEL of 1 m. This result confirms
the applicability of Chebyshev interpolation to perturbed
orbits - even for very low altitude orbits with significant
drag contributions. For a granule length close to the or-
bital period (e.g. about 90 min for the ISS) the required
polynomial degree is about 20.

In Fig. III the relationship between polynomial de-
gree and granule length is shown for the different AELs
and the reference objects defined in Tab. I. It is quite

interesting to note that there is a linear relationship be-
tween both quantities. This allows for a simple approx-
imation of the number of required polynomial coeffi-
cients to cover a certain interpolation interval, as shown
in Tab. II, irrespective of the segmentation applied to the
entire propagation span. Note that for a complete orbit,
with the state vector containing six elements, the figures
given in Tab. II have to be multiplied by six. For ex-
ample, the orbit of Sentinel-1A (with an AEL of 100 m)
would require 34.9 coefficients per hour, or 5860 coeffi-
cients to cover a whole week.

While the results shown above were determined for
a maximum accepted error in range, as specified by the
AEL, the residuals in the single components, of course,
may be less than this threshold, even up to several or-
ders of magnitude. A selected example for Sentinel-1A
with a granule length of 300 min and an AEL of 10 m is
shown in Fig. IV. In this example, one segment contains
three orbital revolutions of Sentinel-1A. It can be seen
that the interpolation errors are higher for mid-interval
values and smaller at the interval edges, as a result of a
denser spacing of Chebyshev interpolation nodes.

Another interesting example is a high-eccentricity or-
bit as shown for the Ariane-5 upper stage in Fig. V. Here,
the errors near the perigee are clearly dominating. It can
also be seen that the residuals in single segments may be
orders of magnitude below the accepted error threshold
for the entire interval, while one single perigee pass may
be pivotal in the determination of the required polyno-
mial degree for the GTO.

So far, the interpolation was based on radius and ve-
locity vectors in the GCRF. Another idea is to inter-
polate osculating classical orbit elements. Again, the
same orbits were analyzed with the error threshold be-
ing the geometrical range. The only difference was that
the Chebyshev polynomial coefficients were determined
for the semi-major axis, eccentricity, inclination, right
ascension of the ascending node, argument of perigee,
and mean anomaly. However, it turned out that switch-
ing to Keplerian elements does not yield any advantage.
For example, the interpolation of the orbit of Sentinel-

Tab. II: Number of required coefficients per hour of interpola-
tion span, based on the results shown in Fig. III.

Coefficients per hour

AEL = 1 m 10 m 100 m

ATV-2 17.4 9.12 6.18
Sentinel-1A 15.1 7.08 5.82
Ariane-5 R/B 24.6 20.3 16.5
Galileo-8 0.713 0.674 0.653
Meteosat-10 0.503 0.402 0.380
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Fig. II: Polynomial degree as a function of orbit altitude and granule length in the LEO region. An inclination of 54° was used,
which is close to two of the exemplary missions shown, ISS and Globalstar. Two additional ESA missions (with higher
inclinations!) are provided for comparison. A full force model was used. The blue dots mark the orbit altitude and period.

1A was performed with polynomials of up to double the
polynomial degree compared to the results in Fig. III for
the same granule length. A reason for this is that the in-
terpolation has to be done for functions with higher fre-
quency components having significant amplitudes. An
example is shown in Fig. VI for the eccentricity inter-
polation of Sentinel-1A. Two examples for polynomials
with n “ 20 and n “ 40 are compared to the reference
trajectory. In this scenario, the required polynomial de-
gree was n “ 78 for a granule length of 300 min and an
AEL of 10 m.

IV.II. Covariance matrix compression

In Fig. VII an example is shown for the propagated
variances of the radius vector components in the object-
centered reference frame. One possible approach to-
wards a covariance compression is to compute an en-
velope function first, which is exemplarily shown for the
along-track (V) component in Fig. VII. The main advan-
tage of applying an interpolation algorithm on an enve-
lope is that the latter does not contain oscillations and,
by definition, is the supremum of the uncertainties in the
individual directions. This will always result in a conser-
vative estimate, for example in the computation of colli-
sion probabilities, which are not that sensitive to timing
uncertainties in that case.

Following the example in Fig. VII, it can be seen that
the envelope for both, the radial (U) and the normal (W)
component are trivial and result in a constant supremum.
Thus, the algorithm described hereafter will be shown
for the transversal component but is likewise valid for
the other directions.

Three different filters will be applied to the propa-
gated variance, which essentially is a discrete time se-
ries to be analyzed for the determination of the envelope
function E ptq. It is defined as the supremum of the vari-
ance in the along-track direction V ptq:

E ptq “ sup rV ptiqs , ti P rt0, ts (16)

IV.II.I. Determine extrema and keep maxima
The first step is to determine the extrema of the dis-

crete time series, keeping in mind that the ultimate goal
is to determine a set of points that can, in the end, be
used for the interpolation of the envelope. The extrema
are determined by evaluating finite differences:

• A local minimum is assumed at ti, if:

V pti`1q ´ V ptiq ą 0 ^ V ptiq ´ V pti´1q ă 0

• A local maximum is assumed at ti, if:

V pti`1q ´ V ptiq ă 0 ^ V ptiq ´ V pti´1q ą 0
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Fig. III: Polynomial degree as a function of the granule length. Results are shown for reference orbits as given in Tab. I, and three
different accepted error levels for the geometrical range. Note that the x-axis for the MEO/GEO plots are scaled by 104.
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Fig. IV: Example for residuals in the x-component of the ra-
dius vector (GCRF) of Sentinel-1A, with a granule length
of 300 minutes and an AEL of 10 m. Individual segments
are labeled in red.

• An inflection point is assumed at ti, if:

tV ptiq ´ 2V pti´1q ` V pti´2q ă 0^
V pti`2q ´ 2V pti`1q ` V ptiq ą 0u_
tV ptiq ´ 2V pti´1q ` V pti´2q ą 0^
V pti`2q ´ 2V pti`1q ` V ptiq ă 0u

The simple relations using finite differences are quickly
identifying the extrema, with the result for the along-
track component shown in Fig. VIII.

It is clear that not all extrema will be relevant for
the interpolation of the envelope function. Therefore,
the next filter step removes all identified local minima
from the set of identified points. An additional step was
to discard those inflection points which were detected
following a local maximum. Finally, the set of remaining
points having passed this filter step are shown in Fig. IX.

IV.II.II. Point shift filter
With the extrema being identified and filtered for the

relevant ones, the next filter will perform slight adjust-
ments by shifting the remaining points, if a point is ex-
pected to contribute to an improved interpolation result
of the envelope in the end. In order to evaluate which
individual points need to be shifted, the following algo-
rithm was used:

1. Perform linear interpolation for adjacent points,
providing a connecting line λ ptq.

2. For each pair of adjacent points at ti and ti`1, find
time tmax,i for maximum difference between V ptq
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Fig. V: Example for residuals in the x-component of the radius
vector (GCRF) for the Ariane-5 upper stage in a GTO,
with a granule length of 300 minutes and an AEL of 10
m.

and λ ptq:
tmax,i “ arg max pV ptq ´ λ ptqq , @ t P rti, ti`1s

3. If tmax,i ą 0, then shift either Vptiq or Vpti`1q, de-
pending on which one is closer to tmax,i.

By using the above formulation, there will be no shift, if
V ptq is always smaller than λ ptq between two points.

The results of this algorithm are shown in Fig. X.
The advantage of having this filter in place is not really
perceivable yet, but it becomes obvious after the next
filter has been applied to the set of the remaining points.

IV.II.III. Resolve clustering filter
The clustering of points, as can be seen in Fig. X,

for example at 6 h, may put additional emphasis on the
time interval comprising the cluster, to the disadvantage
of the other points in the interpolation span - especially
if a low-degree polynomial is used for the envelope.

The idea used to resolve the clusters is based on the
median time separation mt between two points each for
the entire interpolation span. All points i ` 1 are re-
moved, which follow with:

∆t “ ti`1 ´ ti ă mt{2. (17)

The result of this filter is shown in Fig. XI. It can be
seen that the remaining points are now well distributed
across the envisaged interpolation interval. Also, the ad-
vantage of the point shift filter from the previous step
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Fig. VI: Example for Sentinel-1A eccentricity interpolation.
The reference trajectory is compared to polynomials of
degree n “ 20 and n “ 40. The granule length was
300 min. For an AEL of 10 m, the required polynomial
degree was n “ 78.
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Fig. VII: Example for the propagation of a full covariance ma-
trix, showing how the position variances in an object-
centered frame evolve. A sun-synchronous LEO was
used here, with a typical initial covariance matrix.

becomes clear: If there would not have been any shifts,
connecting lines between the remaining points would, in
some cases still show intersections with V ptq, which are
not desirable. In fact, the optimum solution, in view of
the envelope computation, is to have all connecting lines
being tangent to V ptq.

IV.II.IV. Final optimization and interpolation
In principle, the interpolation can already be done on

the resulting set of points shown in Fig. XI. However,
it turned out that a second run of all three previously
described filters looked promising and worked out well
in this example. After removing two additional points,
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Fig. VIII: Along-track error with extrema being identified.
Linear interpolation for adjacent extrema, shown with
purple line, will be used in subsequent filter steps.
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Fig. IX: Along-track error with filtered extrema being identi-
fied. Linear interpolation for adjacent extrema, shown
with purple line, will be used in subsequent filter steps.

the final result was obtained by using a 5th degree Che-
byshev interpolation for the envelope. It is shown in
Fig. XII.

While the results appear promising, as the same ap-
proach also worked for the radial and normal compo-
nent, a detailed analysis for a full justification of the
method is still in progress. Several problems have to be
adressed:

• What if there are no extrema - which could be the
case for the along-track component, if the initial
radial error is high? One possible solution is to
use freely selected points distributed accordingly
for the Chebyshev interpolation.

• What is the behaviour for even shorter time inter-
vals? In practice, this may not be a problem, as,
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Fig. XI: Along-track error after resolving clusters.
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Fig. XII: Final result for the interpolated envelope of the along-
track error.

for example, a collision avoidance service would
likely screen for several days.

• Is there an optimum polynomial degree to be used
for a certain set of orbits? Ideally, it should be of
lower degree to prevent oscillations in the enve-
lope.

V OPERATIONAL CONSIDERATIONS

V.I. Data messages

The exchange of orbital information between differ-
ent parties presupposes explicitly defined interfaces or
data message formats. Besides the TLE data, which
is a format well known and widely used by the com-
munity for decades now, more elaborate data messages
have been defined in the recent years. In particular, the
CCSDS has developed several tailored message formats
serving different purposes. For the exchange of orbital
information, the CCSDS Blue Book ”Orbit Data Mes-
sages” [15] defines the Orbit Ephemeris Message (OEM),
Orbit Mean-Element Message (OMM) and Orbit Param-
eter Message (OPM), respectively. In 2012, ISO adopted
this standard as ISO 26900:2012 [1]. The OEM provides
the means to exchange state vector and covariance infor-
mation for different epochs as well as detailed additional
information about the reference frame, object proper-
ties, etc. Also, a set of keywords (or tags for the XML
realization) related to interpolation are defined. Users
of this data message thus receive information on per-
missible time intervals in the ephemeris file that can be
used for interpolation as well as on the recommended
interpolation method and polynomial degree. Being al-
ready a good option to provide Chebyshev polynomials
for state and covariance information, a direct provision
of the polynomial coefficients is not possible. This may,
however, be overcome with the new Orbit Hybrid Mes-
sage (OHM), which is currently being prepared for im-
plementation in a future revision of the Orbit Data Mes-
sages Blue Book. The OHM aims at providing more
flexibility through the combination and extension of the
OEM, OMM and OPM in a single message. One solu-
tion could be to use the envisaged USER DEFINED x
keyword, where x is to be replaced by any user-specified
string. A combination of these keywords could thus be
used to include polynomial coefficients into the OHM.
Being still in a draft status, one could continue to dis-
cuss whether it makes sense to actually have dedicated
keywords to directly provide polynomials for state and
covariance information. In Lis. 1 an example is shown
for how an OHM might be used to provide polynomial
coefficients. The header provides some general infor-
mation, including the originator and the version of the
data file. The message body contains several segments,
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<ohm>

<header>

...

</header>

<body>

<segment>

<metadata>

...

<useable_start_time>...</useable..>

<useable_stop_time>...</useable..>

...

</metadata>

<data>

<prx1>3.456e-2</prx1>

<pry1>7.890e-1</pry1>

...

<pvz1>1.234e-5</pvz1>

...

<pvzN>5.678e-6</pvzN>

</data>

</segment>

<segment>

...

</segment>

...

Lis. 1: Example of how an OHM (in XML format) might be
used to provide polynomials of degree N for the radius
and velocity components of the state vector.

which are defined by the start and stop time of the indi-
vidual interpolation intervals. Both, begin and end epoch
for each segment are identified by the useable start time
and useable stop time, respectively, which are part of
the metadata section within the segment. On the user’s
side, nothing more needs to be done than reading this
file, taking care of selecting the right segment for the
epoch under consideration and let the polynomials be-
ing reconstructed using a standard Chebyshev polyno-
mial processor. However, there is still a problem to be
adressed on the data center’s side regarding the segmen-
tation, as the latter may result in discontinuities, which
shall be discussed next.

V.II. Segmentation

In Sec. IV.I it was explained that in order to keep
the residuals to the reference trajectory within desired
bounds, the polynomial degree and the granule or inter-
val length cannot be selected independently. Therefore,
in order to provide data files covering several days of an
orbit, the means to perform a segmentation of the full
time span into manageable time intervals are required.
The subdivision of the time span into several granules
and the interpolation of each of them independently can
be easily accomplished and included in a data message
as shown in Lis. 1. However, it is not guaranteed that

the transition of one segment to the subsequent one is
continuous (and differentiable) in the different compo-
nents. An example illustrates the problem for a typical
sun-synchronous orbit, shown in Fig. XIII. For this ex-
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Fig. XIII: Example for the position or range error for two over-
lapping interpolation intervals g1 and g2, showing the
effect of a discontinuity of subsequent intervals. The
orbit of Sentinel-1A was used, with a granule length of
90 min and a maximum accepted error of 1 m for each
radius component wrt. the reference trajectory.

ample, the Sentinel-1A orbit was used, with the granule
length set to 90 min, and the maximum allowed position
error for the individual components was set to 1 m. By
letting the two adjacent intervals g1 and g2 overlap, it is
possible to compute the difference between the two poly-
nomials for a given epoch. The overlap was selected as
10 min in this example.

As can be seen in Fig. XIII the discontinuity caused
by the segmentation process introduces an additional er-
ror resulting in an RMS of 19 cm for the residuals. In
this example, this translates to 19 % of the maximum
accepted error of 1 m.

One idea to overcome this problem is to post-process
the first interpolation result for adjacent segments using
a weight function for a pre-defined time span ts centered
at the interval transition time tτ between g1 and g2. Such
a weight function would give full weight to g1 and g2 at
t1 “ tτ ´ ts{2 and t2 “ tτ ` ts{2, respectively. Letting
the weights of the two segments decline according to a
cosine law, the following formulation can be used for the
correction of the individual components xi of the state
vector:

xi ptq “ 1
2
¨ pwi,1 ` wi,2q (18)

wi,1 “ xi,g1

„

1` cos
ˆ

t ´ t1
ts

π

˙

(19)

wi,2 “ xi,g2

„

1` cos
ˆ

t2 ´ t
ts

π

˙

(20)
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Of course, adapting the state vector components at the
begin and the end of an interval of a segment will ren-
der the polynomial coefficients of the original interpo-
lation invalid. Therefore, a second interpolation can be
performed for the same segments, in order to update the
polynomial coefficients, which will then correspond to
the solution with a smooth and continuous transition for
adjacent segments. For the same example from above,
the second interpolation results are shown in Fig. XIV
for the residuals of the interpolation results with respect
to the reference trajectory. Although the second inter-
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Fig. XIV: Difference in range error between uncorrected (first
interpolation without weight function) and corrected
(second interpolation after weight function was ap-
plied) interpolation with the segment transition epoch
being centered.

polation is computed on the set of data points from the
first interpolation polynomial - as opposed to the first in-
terpolation, which is based on the reference trajectory -
it can be seen that notable differences between the two
interpolations occur only in the region where the weight
function was applied. However, the range error is still
bounded in this example and significantly below the max-
imum accepted error of 1 m.

In addition, due to the denser sampling of data points
at the interval edges, the Chebyshev interpolation already
comes with a reduced error in this area when compared
to mid-interval values. This provides additional stability
for the application of the weight function.

It is also important to look at the velocity errors at the
interval transition. In the context of conjunction assess-
ment, in particular, the estimation of a collision proba-
bility is sensitive to the velocity vector, so that it has to
be assured that the velocity errors in the individual com-
ponents are in an acceptable regime.

The velocity vector component errors (after the sec-
ond, corrected interpolation) are shown, for the same
Sentinel-1A example, in Fig. XV. For an AEL of 1 m,
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Fig. XV: Errors in the individual velocity components (final
result after second interpolation with weight function)
with the segment transition epoch being centered.

the velocity errors are on the order of a few mm s´1.
More importantly, the transition from the first to the sec-
ond interval looks quite smooth, so that it can be con-
cluded that also the velocity results are credible at the
interval transitions, at least in this example.

VI DATA MESSAGE SIZE AND UPDATE CYCLES

The data compression ratio rc shall be defined as fol-
lows:

rc “ Ephemerides-based message size
Polynomial-based message size

(21)

Assuming that the number of digits for each number
provided in both, the ephemerides-based as well as the
polynomial-based message, is the same, one can simply
derive a formula for the compression ratio, which only
depends on the time interval used for the ephemerides
and the coefficients-per-hour figures given in Tab. II. The
message size for the ephemerides-based message, sm,E ,
considering a k-dimensional state vector and a nˆ n co-
variance matrix (with n˚ elements being stored), can be
computed as:

sm,E “ k ` n˚

∆τ
∆t, (22)

where ∆τ is the step size of the ephemerides in the file
an ∆t is the time interval covered by the message. Note
that only the data part of the message is considered,
as header and metadata sections are assumed to be of
the same size for both messages. For the size of the
polynomial- based message, sm,P one obtains:

sm,P “ pkcS ` n˚cCq∆t, (23)

where cS are the coefficients for the state vector polyno-
mials from Tab. II, while cC is the equivalent coefficient
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for the covariance matrix elements. The compression ra-
tio can now be written as:

rc “ k ` n˚

∆τ pkcS ` n˚cCq . (24)

For a message containing only state vector information
(n˚ “ 0), Eq. 24 can be further simplified:

rc,S “ 1
cS ∆τ

. (25)

With both, the coefficients-per-hour ratio and the step
size being both in the denominator in Eq. 25, it is clear
that the compression ratio will increase for decreasing
step sizes in the ephemerides-based message as well as
for decreasing coefficients cS , the latter being a function
of the AEL and the orbit. An example for an AEL of 1 m
is shown in Fig. XVI, also depicting typical step sizes
for Precision Orbit Ephemeris (POE) which can be ac-
cessed online. The compression ratio is well above one
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Fig. XVI: Compression rates for messages containing only
state vector data as a function of the step size between
subsequent ephemerides. An AEL of 1 m was used for
the polynomials. Also shown are step sizes exemplarily
for POEs available online.

for LEOs and GTOs for ephemeris step sizes of a few
minutes. Setting the AEL to 10 m is further improving
this ratio, as shown in Fig. XVII.

Using the method for the covariance matrix compres-
sion in Section IV.II would improve the situation even
more. In that example, the covariance matrix is provided
with six polynomial coefficients for a time span of about
8 h. This means that the compression ratio is above one
for step sizes above 80 min. This can be easily verified
by setting k “ 0 in Eq. 24.
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Fig. XVII: Compression rates for messages containing only
state vector data as a function of the step size between
subsequent ephemerides. An AEL of 10 m was used
for the polynomials. Also shown are step sizes exem-
plarily for POEs available online.

It is thus likely to achieve a compression ratio above
one with polynomial-based data messages. More im-
portant, however, are at least two other properties of
the presented methods: First, polynomials provide an
easy way of obtaining state vectors and uncertainties for
any epoch, while ephemeris-based messages have to be
propagated or interpolated to obtain intermediate values.
Second, the proposed method of having the envelope
function provided as a polynomial comes with the ad-
vantage of easily forecasting the uncertainties. One can
even think of providing the polynomials for the radial,
along-track and cross-track components only, which is
sufficient for classical algorithms used for computing col-
lision probabilities - while a propagation of the covari-
ance matrix including the numerical integration of the
state transition matrix requires a full covariance matrix.

The envelope function is also useful in estimating
when the next update will be required. In [16], a de-
tailed analysis of design drivers for a space surveillance
and tracking system was performed. The authors also
provided a justified method to specify update cycles for
state vectors and covariances. A so-called covariance
envelope was introduced (not to be mixed up with the
envelope function introduced here). The updates are sup-
posed to occur as soon as the uncertainties are above a
given threshold. Using the envelope function, one can
easily determine the validity time span of a data set.
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VII CONCLUSION

An alternative approach to provide state vector and
covariance matrix information was presented. Cheby-
shev polynomials allow to easily recover the position,
the velocity, and the associated uncertainties without hav-
ing to process ephemerides with a dedicated propagation
tool. While methods for ephemeris compression have
already been presented by different authors, the goal of
this paper was to show how such an approach can be in-
tegrated into one of the standardized data messages. The
OHM, currently under discussion, may be suited to sup-
port the provision of polynomials.

For the covariance matrix, a method was proposed to
determine the envelope function first, which is then in-
terpolated and ready to be included in a data message.
It was shown in an example, that a fifth degree polyno-
mial is sufficient to describe the envelope for more than
8 h for a typical LEO. Besides the considerable compres-
sion ratios that can be achieved in polynomial-based data
messages, the main advantage is that there is no need for
a dedicated propagation or inter-/extrapolation tool on
the user side anymore: The recovery is achieved for any
point in time using a simple Chebyshev processor.

It was shown that different accepted error levels can
be achieved - which may benefit different services with
differing accuracy requirements. As a single polynomial
is typically not covering a time span of several days, e.g.
as required for screening orbits in operational collision
avoidance, segmentation will be required. It was shown
that this is possible and a simple method to ensure con-
tinuity at the transition was presented. Even more in-
teresting is the fact that the relation between required
polynomial degree and granule length (interval size) is
linear, which means that the segmentation does not af-
fect the file size: Files with a high level of segmentation
will contain lower-degree polynomials, while low seg-
mentation comes with higher-degree polynomials.

For future work, the proposed covariance compres-
sion method has to be analysed in a more statistical man-
ner to reveal its properties and suitability for different
Earth orbits. Also, it would be interesting to analyze
the benefits in computational cost when using polyno-
mials in the operational collision avoidance service as
opposed to numerical propagation of state and covari-
ance for a multitude of objects. Finally, in this study
the same polynomial degree was used for all state vector
elements. Preliminary analysis showed that this is not
required - hence, one can expect to reduce the required
data amount even further by allowing for a non-equal
polynomial degree across the elements.
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