

CCSDS 502.0-B-2/ISO 26900 Orbit Data Message

Center for Space Standards and Innovation

Dan Oltrogge

10 November 2014

Status

- Orbit Data Message (OEM, OPM, OMM) overview:
 - SC14/WG3 and CCSDS are partners in this; ODM = ISO 26900
 - Published Nov 2009
 - Now up for 5-year periodic review
- ODMs gaining acceptance across space ops community
 - OPMs used for state vectors and ΔVs = quick acceptance
 - OEMs on cusp of mass adoption
 - Want to enhance OEMs to be stand-alone & self-contained
 - OMMs not popular and may not be needed
- Observing sensor organizations, data fusion and analysis centers and satellite operators have new rqmts

ODM CUSTOMERS & USE CASES

Current and Anticipated ODM Uses

- Satellite operator data exchange
 - Space Data Association (SDA)
 - Conjunction assessment and collision avoidance
 - Planned: RF interference prediction, geolocation systems and RF interference mitigation
 - Space object tracking networks (e.g. ComSpOC, JSpOC)
 - Standardizes output product format, content
 - Internal sensor queuing
 - Enables multi-source orbit data fusion (seek most authoritative)
- Multi-participant mass deployment missions (eg QB50)

What is the Space Data Association?

The Space Data Association (SDA) is a not-for-profit association formed by satellite operators to provide reliable and efficient data-sharing critical to the safety of the space environment and the RF spectrum

SDA Executive Members:

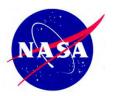
SDA Member Directors:

Chief Technology Adviser / SDC Operator:

The Space Data Association (SDA)

Multi-national, open to all space operators, in all orbital regimes

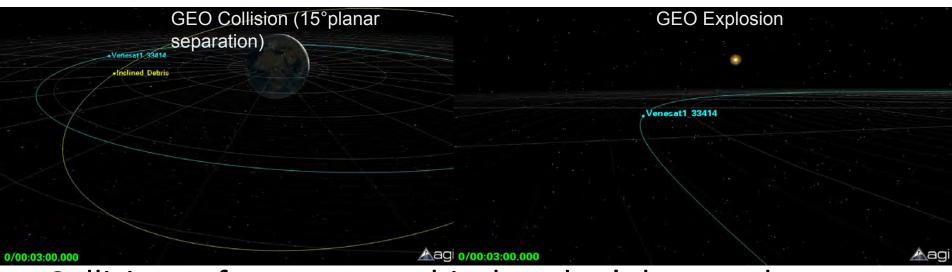
- 24 contributing operators
- 3 civil satellite operators



سهیل سات Es'hailSat

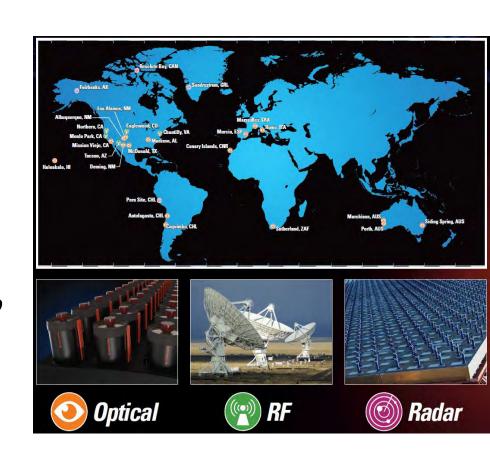
SDA Missions

- Increase safety of flight functions already operational
 - Automatic Conjunction Assessment (CA), using operator's ephemeris
 - Reduce false alarms, missed events
 - Minimize time and resources devoted to CA
 - Include planned maneuvers (unique capability)
- Deal with the growing problem of RFI under development
 - RFI Alerts to focused distribution
 - RFI historical event search: data support
 - Generation of geolocation data sets
 - Library of Reference Emitters
 - Carrier ID database
- Reliable contacts for satellite operators functions operational
- Encourage and promote operational best practices


SDA Enhances its Members' Satellite Operations

SDA Working to Prevent Debris in Space ...

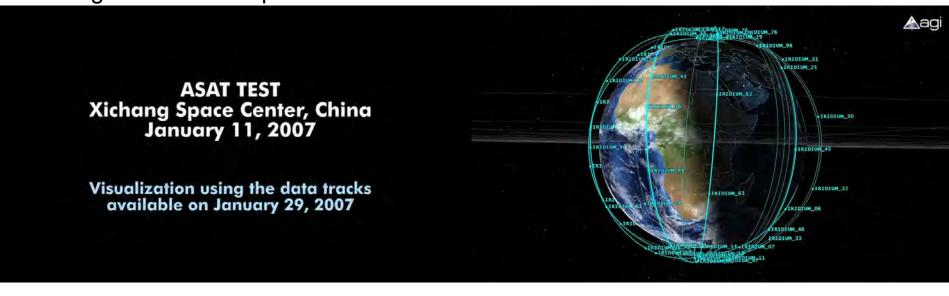
ODM data sharing helps prevent fragmentation events


Collisions often catastrophic, but don't have to be:

What is the Commercial Space Operations Center (ComSpOC™)?

- A <u>commercial</u> facility that fuses and processes measurements from a commercial network of <u>telescopes</u>, <u>radars</u> and RF antennas
- Provides analysis and space object characterization on all tracked RSOs
- Produces and serves a summary of all known information on objects > 5cm* to SpaceBook™
- Target markets:
 - Commercial satellite owner/operators
 - Government space operation centers

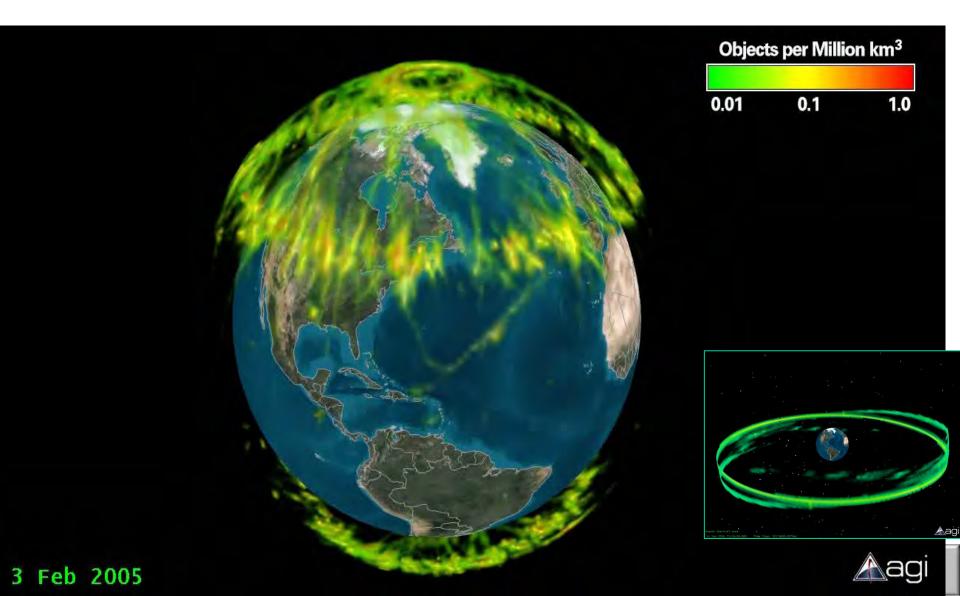
OPERATIONAL REALITIES OF TODAY'S SPACE DEBRIS POPULATION



Space debris population driven by 2 events:

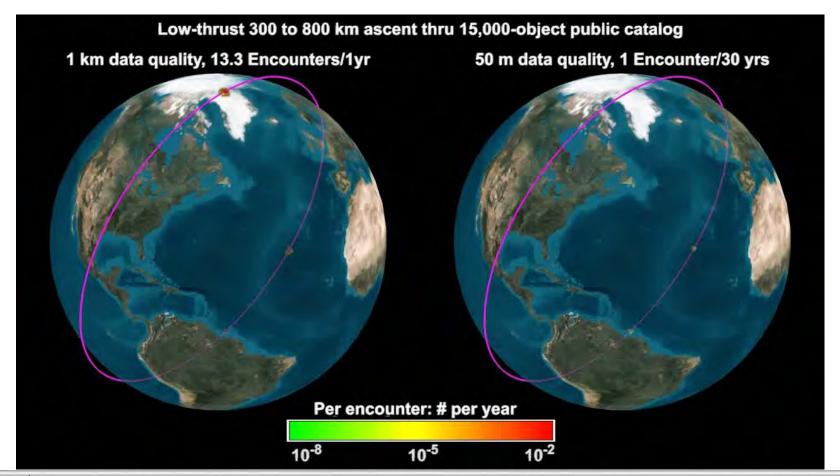
FengYun 1C intercept on 11 Jan 2007

Iridium 33/Cosmos 2251 10 Feb 2009



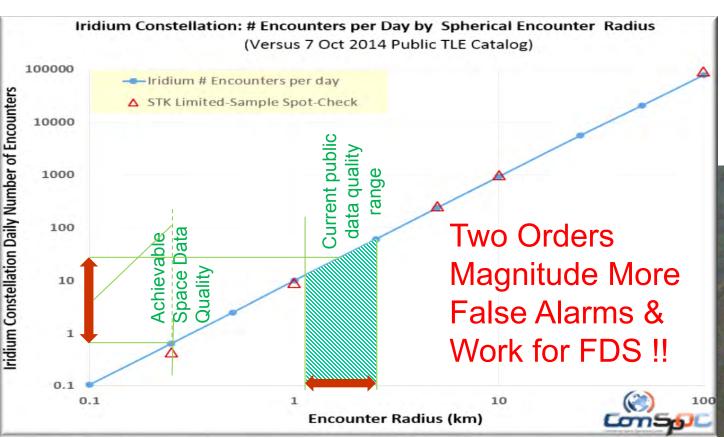
- Median debris track introduction date is 2002
 - As many debris objects since 2001 as all of 1950s thru 2001!!
- As ISS depiction in ASAT video shows, debris-generating events impinge on all other space operators

Space debris volumetric evolution (2005-2014) CENTER FOR SPACE



New low thrust ascent requires better SSA

- Can launch two GEO satellites for price of one!
 - But requires 1-2 mo and transits ALL orbit regimes



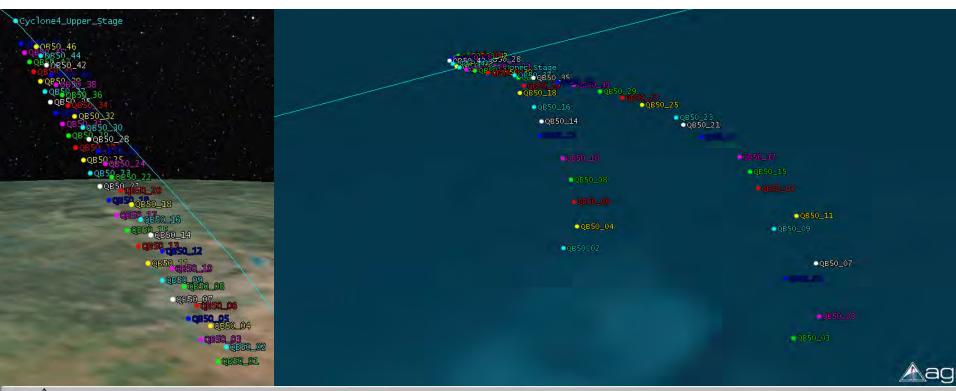
Sample: Iridium Encounter Rates

- New long-term encounter rate algorithm
 - MANY Iridium encounters (conjunctions) identified!

Satellite Flight
Dynamics Staff Gets
Overwhelmed ...

Desirement: Would like ODMs to convey en masse deployments (e.g. QB50, Planet Labs)

- Imperative to easily convey large deployment
- Bad deployment schemes more easily identified/fixed



Likely QB50 Deployment STK Scenario

- Cyclone-4 along-velocity thrusting scenario created
 - Contains all 50 QB50 satellites plus the Cyclone-4 Upper Stage
 - AGI providing authoritative STK scenario to all QB50 participants and relevant tracking entities

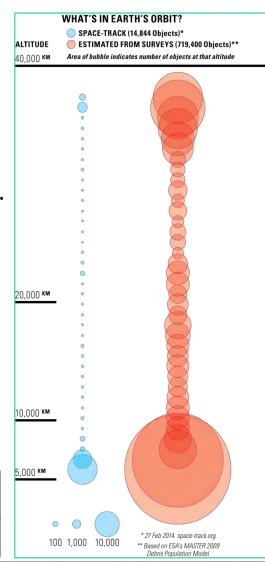
Likely QB50 Deployment STK Scenario

Deployment scenario still evolving... but likely to be:

ODM Enhancements Sought

- ISO WG3 & User Community Seek ODM Enhancements
 - Additional maneuver information for OPMs and OEMs
 - Make orbit-relative frame options more visible for users
 - Re-add Julian Date to OPMs, OEMs for ease of use and file size considerations
 - Generalize OPM Keplerian Elements to be any 6-element set
 - Define parent/child ΔVs for en masse deployment scenarios
 - Specify epoch of leap second introduction (if/when)
 - Allow covariances to be provided as positional (only) as 3x3s
 - Include recognition that covariances also derive from MCs
 - Launch traj can even have 7 x 7 matrices, with time the 7th param

OEM Enhancements Sought


- Modify OEM to encapsulate all relevant data to be exchanged
 - Add ΔV-based (impulsive and w/duration) and finite burn (thrust, Isp)
- Re-add Julian Date for ease of use, efficiency and file size
 - 3+ definitions of Modified Julian Date, e.g. 2000/01/01 00:00:00z is ESA MJD = 18262.0, classic definition = 51544.0, Telesat MJD = 11544.0
 - But we can either adopt uncontroversial JD or simply define MJD
- Specify epoch of leap second introduction (if/when)
- Origin of COMMENT fields vs "non-obligatory"? Latter better.
- Allow covariances to be provided as positional (only) as 3x3s
- Modify descriptive language to "emulate propagation results" too

The OEM Bandwidth Problem

- Operators already sharing fleet twoweek ephemerides every two hours
 - Current & new operators have 100s of S/C
 - Iridium, Intelsat, Planet Labs & proposed constel.
 - Need > 90 points per orbit; LEO 15 revs/day
- Space debris presents a problem:
 - Only tracking 1/35th of objects > 1cm !
- Improved tracking and large LEO constellations strain bandwidth, CPU

720K	14 days pts	(Eth- Pr)	1 bytes	1Kb
RSOs>1cm	Ephem 1 day 1 rev		line	1024 bytes

Bandwidth problem

- Networks pushed to limit now
 - Transmittal of ephemerides, covariances, maneuvers
 - Inter-operator, between operators and fusion centers
 - High-availability systems require geographic diversity and DB synchronization
 - Encryption slows things down
 - Layer 7 threat screening slows things down
 - Data storage is cheap, but backups (more data = more time)
 - Amount of data drives need for archival

OPM Enhancements Sought

- Add finite burn maneuver specification (thrust, Isp)
- Generalize current Keplerian osculating element set to contain any specified 6-element set plus an optional control param (retro vs prograde)
- Parent/child ΔVs for en masse deployment scenarios
- Re-add Julian Date for ease of use
- Allow covariances to be provided as positional (only) as 3x3s
- New solar & geomag indices - how best to accommodate?

OMM Enhancements Sought

- Unsure of utility of current OMM message
 - Doesn't include maneuvers; if OMM retained, should add maneuvers and covariances (incl. 3 x 3 positional)
 - Many definitions of mean elements; this addresses only TLEs
 - TLE already in super-compact format with very little size/bandwidth waste
 - Mean element formulations based on other elements too
 - If OMM retained, should generalize to other mean element sets and formulations
 - In my opinion, OPM could readily be generalized to OMMs
 - OPM already contains maneuvers and is being adopted

Conclusions

- ODMs becoming popular in space operator community
- On cusp of huge demand for ODMs
 - Anticipate substantially growing catalog
 - Operator data sharing for CA & RFI mitigation ever-increasing
- Want to enhance ODMs to meet valid operator needs
- Can assist in defining and implementing such enhancements as efficiently as possible