[bookmark: _Ref76480510][bookmark: _Toc140093756][bookmark: _Toc161745081][image:]
Draft Recommendation for
Space Data System Standards
	Mission Operations—Mission Planning and Scheduling Services

Draft Recommended Standard
CCSDS 529.1-R-1
Red Book

AUTHORITY

	
	
	
	

	
	Issue:
	Red Book,
	

	
	Date:
	
	

	
	Location:
	Not Applicable
	

	
	
	
	

(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF AUTHORITY:)
This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS documents is detailed in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4), and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the email address below.

This document is published and maintained by:

CCSDS Secretariat
National Aeronautics and Space Administration
Washington, DC, USA
Email: secretariat@mailman.ccsds.org
STATEMENT OF INTENT
(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF INTENT:)
The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of its members. The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed Recommended Standards and are not considered binding on any Agency.
This Recommended Standard is issued by, and represents the consensus of, the CCSDS members. Endorsement of this Recommendation is entirely voluntary. Endorsement, however, indicates the following understandings:
o	Whenever a member establishes a CCSDS-related standard, this standard will be in accord with the relevant Recommended Standard. Establishing such a standard does not preclude other provisions which a member may develop.
o	Whenever a member establishes a CCSDS-related standard, that member will provide other CCSDS members with the following information:
	--	The standard itself.
	--	The anticipated date of initial operational capability.
	--	The anticipated duration of operational service.
o	Specific service arrangements shall be made via memoranda of agreement. Neither this Recommended Standard nor any ensuing standard is a substitute for a memorandum of agreement.
No later than five years from its date of issuance, this Recommended Standard will be reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect the impact of new technologies, new requirements, or new directions; or (3) be retired or canceled.
In those instances when a new version of a Recommended Standard is issued, existing CCSDS-related member standards and implementations are not negated or deemed to be non-CCSDS compatible. It is the responsibility of each member to determine when such standards or implementations are to be modified. Each member is, however, strongly encouraged to direct planning for its new standards and implementations towards the later version of the Recommended Standard.
FOREWORD
Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Recommended Standard is therefore subject to CCSDS document management and change control procedures, which are defined in the Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4). Current versions of CCSDS documents are maintained at the CCSDS Web site:
http://www.ccsds.org/
Questions relating to the contents or status of this document should be sent to the CCSDS Secretariat at the email address indicated on page i.
At time of publication, the active Member and Observer Agencies of the CCSDS were:
Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.
· Canadian Space Agency (CSA)/Canada.
· Centre National d’Etudes Spatiales (CNES)/France.
· China National Space Administration (CNSA)/People’s Republic of China.
· Deutsches Zentrum für Luft- und Raumfahrt (DLR)/Germany.
· European Space Agency (ESA)/Europe.
· Federal Space Agency (FSA)/Russian Federation.
· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
· Japan Aerospace Exploration Agency (JAXA)/Japan.
· National Aeronautics and Space Administration (NASA)/USA.
· UK Space Agency/United Kingdom.
Observer Agencies
· Austrian Space Agency (ASA)/Austria.
· Belgian Science Policy Office (BELSPO)/Belgium.
· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
· China Satellite Launch and Tracking Control General, Beijing Institute of Tracking and Telecommunications Technology (CLTC/BITTT)/China.
· Chinese Academy of Sciences (CAS)/China.
· China Academy of Space Technology (CAST)/China.
· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
· Danish National Space Center (DNSC)/Denmark.
· Departamento de Ciência e Tecnologia Aeroespacial (DCTA)/Brazil.
· Electronics and Telecommunications Research Institute (ETRI)/Korea.
· Egyptian Space Agency (EgSA)/Egypt.
· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.
· European Telecommunications Satellite Organization (EUTELSAT)/Europe.
· Geo-Informatics and Space Technology Development Agency (GISTDA)/Thailand.
· Hellenic National Space Committee (HNSC)/Greece.
· Hellenic Space Agency (HSA)/Greece.
· Indian Space Research Organization (ISRO)/India.
· Institute of Space Research (IKI)/Russian Federation.
· Korea Aerospace Research Institute (KARI)/Korea.
· Ministry of Communications (MOC)/Israel.
· Mohammed Bin Rashid Space Centre (MBRSC)/United Arab Emirates.
· National Institute of Information and Communications Technology (NICT)/Japan.
· National Oceanic and Atmospheric Administration (NOAA)/USA.
· National Space Agency of the Republic of Kazakhstan (NSARK)/Kazakhstan.
· National Space Organization (NSPO)/Chinese Taipei.
· Naval Center for Space Technology (NCST)/USA.
· Netherlands Space Office (NSO)/The Netherlands.
· Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
· Scientific and Technological Research Council of Turkey (TUBITAK)/Turkey.
· South African National Space Agency (SANSA)/Republic of South Africa.
· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.
· Swedish Space Corporation (SSC)/Sweden.
· Swiss Space Office (SSO)/Switzerland.
· United States Geological Survey (USGS)/USA.
PREFACE
This document is a draft CCSDS Recommended Standard. Its ‘Red Book’ status indicates that the CCSDS believes the document to be technically mature and has released it for formal review by appropriate technical organizations. As such, its technical contents are not stable, and several iterations of it may occur in response to comments received during the review process.
Implementers are cautioned not to fabricate any final equipment in accordance with this document’s technical content.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
DOCUMENT CONTROL

	Document
	Title
	Date
	Status

	CCSDS 529.1-R-1
	Mission Operations—Mission Planning and Scheduling Services, Draft Recommended Standard, Issue 1
	May 2024
	Current draft

	
	
	
	

	
	
	
	

CONTENTS
Section	Page
1	Introduction	1-1
1.1	General	1-1
1.2	Purpose and Scope	1-2
1.3	Applicability	1-2
1.4	Rationale	1-3
1.5	Document Structure	1-3
1.6	Definitions	1-4
1.7	Nomenclature	1-8
1.8	Conventions	1-9
1.9	References	1-9
2	Overview	2-1
2.1	General	2-1
2.2	Mission Planning & Scheduling Concept	2-1
2.3	Relationship To Mission Operations Services	2-4
2.4	MPS Information Model Overview	2-6
2.5	MPS Services Overview	2-13
2.6	Optional Elements of the Recommended Standard	2-15
3	MPS Service Specifications	3-16
3.1	Overview	3-16
3.2	Optional Elements	3-16
3.3	Conventions	3-18
3.4	External Definitions	3-20
3.5	Service: Planning Request Service	3-20
3.6	Service: Plan Distribution Service	3-30
3.7	Service: Plan Execution Control Service	3-38
3.8	Service: Plan Information Management Service	3-58
3.9	Service: Plan Edit Service	3-66
4	MPS Information Model	4-1
4.1	Overview	4-1
4.2	Optional Elements	4-1
4.3	Conventions	4-3
4.4	External Definitions	4-5
4.5	MPS Service Objects	4-7
4.6	MPS Data Types	4-46
5	Error Codes	5-1
5.1	Overview	5-1
5.2	MPS-Specific MO Errors	5-1
5.3	Data Type: SecondaryErrorCodeEnum	5-3
6	Service Specification XML	6-1
6.1	Overview	6-1
6.2	XML Schema Definition (XSD) for MO Services	6-1
6.3	MAL XML	6-2
6.4	MPS XML	6-2
7	XML File Formats	7-1
7.1	Overview	7-1
7.2	XML Schema Namespace	7-1
7.3	XML Schema Encoding	7-1
7.4	XML Schema Structure	7-3
7.5	XML File Structure	7-5
7.6	Planning Request XML File Formats	7-7
7.7	Plan XML File Format	7-9
7.8	MPS XML File Format Schema Location	7-10

1	Introduction	1-1

1.1	General	1-1
1.2	Purpose and Scope	1-2
1.3	Applicability	1-2
1.4	Rationale	1-3
1.5	Document Structure	1-3
1.6	Definitions	1-4
1.7	Nomenclature	1-9
1.8	Conventions	1-9
1.9	References	1-14

2	Overview	2-1

2.1	General	2-1
2.2	Mission Planning & Scheduling Concept	2-1
2.3	Relationship To Mission Operations Services	2-4
2.4	MPS Information Model Overview	2-6
2.5	MPS Services Overview	2-13
2.6	Optional Elements of the Recommended Standard	2-20

3	MPS Service Specifications	3-1

3.1	Overview	3-1
3.2	Service: Planning Request	3-3
3.3	Service: Plan Distribution Service	3-15
3.4	Service: Plan Execution Control Service	3-25
3.5	Service: Plan Information Management Service	3-48
3.6	Service: Plan Edit Service	3-56

4	MPS Data Types	4-1

4.1	Overview	4-1
4.2	MPS Data Items	4-4
4.3	MPS Data Types	4-42

5	Error Codes	5-1

CONTENTS (continued)
Section	Page
6	Service Specification XML	6-1

6.1	Overview	6-1
6.2	XML Schema Definition (XSD) for MO Services	6-1
6.3	MAL XML	6-2
6.4	MPS XML	6-2

7	XML File Formats	7-1

7.1	Introduction	7-1
7.2	XML Schema Namespace	7-1
7.3	XML Schema Encoding	7-1
7.4	XML Schema Structure	7-4
7.5	XML File Structure	7-6
7.6	Planning Request XML File Formats	7-8
7.7	Plan XML File Format	7-10
7.8	MPS XML File Format Schema Location	7-11
ANNEX A Protocol Implementation Conformance Statement (PICS) Proforma (Normative)	A-1
ANNEX B Security, SANA, and Patent Considerations (Informative)	B-1
ANNEX C Definition of Acronyms (Informative)	C-1
ANNEX D Informative References (Informative)	D-1

ANNEX A	Protocol Implementation Conformance
Statement (PICS) Proforma (Normative)	A-1
ANNEX B Security, SANA, and Patent Considerations (Informative)	B-1
ANNEX C Definition of Acronyms (Informative)	C-1
ANNEX D Informative References (Informative)	D-1
ANNEX E Literal Formats In Expressions (Informative)	E-1
Figure
2-1	Functions involved in Mission Planning	2-1
2-2	Entities and Functions Involved in Mission Planning	2-3
2-3	MO MPS Services Generic Protocol Stack	2-5
2-4	MPS Data Items	2-7
2-5	MPS Data Items and their Constituent MO Objects	2-9
7-1	XML Schema Hierarchy	7-4
7-2	MPS XML File Structure	7-5

1-1	Example Sequence Diagram	1-10
2-1	Functions involved in Mission Planning	2-1
2-2	Entities and Functions Involved in Mission Planning	2-3
2-3	MO MPS Services Generic Protocol Stack	2-5
2-4	MPS Data Items	2-7
2-5	MPS Data Items and their Constituent MO Objects	2-9
3-1	Planning Request Submission Operations	3-4
3-2	Planning Request Feedback Operations	3-6
3-3	Plan Distribution Mandatory Operations	3-16
3-4	Plan Distribution Monitoring Operations	3-17
3-5	Plan Distribution Special Operations	3-18
3-6	Plan Execution Control Operations	3-27
CONTENTS (continued)
Figure	Page
3-7	Plan Execution Feedback Operations	3-28
3-8	SubPlan Execution Control Operations	3-30
3-9	Activity Execution Control Operations	3-31
3-10	Plan Information Management Operations for Generic Data Item	3-48
3-11	Plan Edit Operations for Generic Data Item (Activity or Event)	3-57
7-1	XML Schema Hierarchy	7-4
7-2	MPS XML File Structure	7-6
Table
3-1	Example Service Table	3-18
3-2	Example Operation Template	3-19
3-3	Example Error References Table	3-19
4-1	Mandatory and Optional Elements of the Information Model	4-2
4-2	Example Data Structure Table	4-3
4-3	Example Enumeration Table	4-4
4-4	MO Object Numbers	4-4
4-5	MO Object Numbers	4-68
4-6	MO Object Numbers	4-73
7-1	Mapping of MAL Attribute Types to XSD Types	7-2

1-1	Example Data Structure Table	1-11
1-2	Example Enumeration Table	1-12
1-3	Example Service Table	1-13
1-4	Example Operation Template	1-13
1-5	Example Error References Table	1-14
2-1	Planning Request Service Capability Sets and Operations	2-14
2-2	Plan Distribution Service Capability Sets and Operations	2-15
2-3	Plan Execution Control Service Capability Sets and Operations	2-16
2-4	Plan Information Management Service Capability Sets & Operations	2-18
2-5	Plan Edit Service Capability Sets and Operations	2-19
2-6	Mandatory and Optional Elements of the Information Model	2-21
2-7	Optional Service Capabilities	2-22
3-1	MPS Service Provider Standard Properties	3-2
4-1	MO Object Numbers	4-2
7-1	Mapping of MAL Attribute Types to XSD Types	7-2
E-1	MPS Expression Types	E-1

DRAFT CCSDS RECOMMENDED STANDARD FOR
MISSION OPERATIONS MISSION PLANNING AND SCHEDULING SERVICES

	Page 2-19ix	
[bookmark: _Ref186642353][bookmark: _Ref186642399][bookmark: _Toc186644288]Introduction
[bookmark: _Toc140093757][bookmark: _Toc161745082][bookmark: _Toc186644289]General
Mission planning is an activity that often requires interaction between multiple entities. This may be to support distributed planning, where the responsibility for different aspects of mission operations planning is spread over multiple entities, including the space segment. It may also be to facilitate collaboration between missions, or to allow the planning of payloads by multiple end-users or the planning of multiple payloads from different agencies hosted on the same spacecraft. Other missions, such as observatories, may make payloads available to a wider user community. Some planning responsibility may be delegated to the spacecraft itself and the corresponding capabilities hosted on board. Historically, these interoperable interfaces have typically been defined on a per-mission or per-agency basis.
This Recommended Standard has the objective of specifying generic, interoperable mission planning and scheduling interfaces, for all typical space mission use cases, including the ones identified above. These use cases are elaborated in the associated Informational Report (Green Book) (reference [D2][D2]) Mission Planning and Scheduling. This Recommended Standard focuses on the Mission Planning and Scheduling (MPS) Services identified for supporting interoperability and defines an information model that defines the data structures required by the operations of these services.
Mission planning and scheduling are integral parts of Mission Operations (MO) and closely related to the other aspects of the overall monitoring and control of space missions. This close relationship is recognized in the context of the CCSDS Mission Operations and Information Management (MOIMS) Area by the fact that the MPS services have been identified and included from the start among the envisaged MO services described in reference [D1][D1], Mission Operations Services Concept. This Recommended Standard defines the MO MPS services in conformance with the CCSDS Mission Operations service framework described therein.
The MPS services are a set of services that support:
1. interaction with a mission planning system and its users at the level of planning requests;	Comment by Quinten Van Woerkom: CNES-003
2. , distribution of the plans generated;
3. , and control of the execution of those plans.
 It is expected, but not required, that these are used in conjunction with other mission operations services, such as Monitoring & Control (reference [D4][D4]) and Automation, as identified in reference [D1][D1].
The MPS services are defined in terms of the Message Abstraction Layer (MAL) (see reference [2][2], Mission Operations Message Abstraction Layer), that is the core of the MO service framework.
[bookmark: _Toc140093758][bookmark: _Toc161745083][bookmark: _Ref186450541][bookmark: _Toc186644290]Purpose and Scope
This Recommended Standard defines, in an abstract manner, the MPS services in terms of:
a) service specifications that define the operations necessary to provide the services, together with their parameter data and required behaviour;
b) an information model that describes the structure of MPS data, including planning requests, plans, and supporting information objects that are referenced by the MPS services;
c) file-based message formats for the exchange of planning requests and plans, for use in mission deployments that do not requireopt not to make use of service-based interfaces.	Comment by Quinten Van Woerkom: CNES-004
Some parts of this Recommended Standard are optional; nNot all of its aspects of this Recommended Standard need to be applied in the context of a specific MPS system in order to support a conformant interface. Each service is optional and may include optional capability sets within it. Some aspects of the MPS information model are optional. A summary of the optional elements of the standard is provided in 2.62.6.	Comment by Quinten Van Woerkom: CNES-005
This Recommended Standard does not specify:
a) individual implementations or products;
b) the implementation of entities or interfaces within real systemsinternal implementation of planning systems;	Comment by Quinten Van Woerkom: DLR-021
c) the methods or technologies required for communications;
d) how required MPS service configuration data is made available to deployed MPS functions;
e) the expression language used for representation of conditions and calculations embedded within MPS data.
[bookmark: _Toc140093759][bookmark: _Toc161745084][bookmark: _Toc186644291]Applicability
This specification is applicable to any mission operations component that provides mission planning functionality or executes mission plans (schedules) and exposes mission planning and scheduling interfaces. This includes interfaces between:
· Mission users and the Mission Planning system;
· Hierarchical or distributed components of a Mission Planning system;
· Mission Planning and Plan Execution (Scheduler) components;
· Plan Execution and Mission Control.
Further detail is given in the associated Informational Report (Green Book) (reference [D2][D2]).
This Recommended Standard is intended to apply to interfaces wherever they may occur in a space system:
· between ground-based components across a terrestrial link;
· between ground-based and on-boardspace-based components across a space link;	Comment by Quinten Van Woerkom: DLR-023
· between space-based components across a space link;
· and potentially between on-board components across an on-board interface.
[bookmark: _Toc140093760][bookmark: _Toc161745085][bookmark: _Toc186644292]Rationale
The primary goal isThis standard was developed to fulfil the need to increase thefor mission planning level of interoperability for mission planning among agencies and space system users at the level of exchanged planning requests and plans. Additionally, it provides service specifications that facilitate interoperabilityThe service specifications can also be used between missions and systems within an agencyy and that to promote the development of re-usable infrastructure for space systems and interoperability between missions.	Comment by Quinten Van Woerkom: DLR-024	Comment by Quinten Van Woerkom: CNES-006
Various use case scenarios applicable to the mission planning and scheduling standardization process have been identified by performing a survey of a number of representative space missions of various CCSDS member agencies. The missions subject to the survey have been categorized into mission types, in an attempt to identify commonalities in the mission planning processes, for example, in the areas of planning cycles, execution feedback, navigation services, planning requests, resources, and constraints, and output of the planning phase. The full results of this survey, including the identified mission types, are described in the MPS Green Book (reference [D2]).
The use of the underlying MO framework enables abstract services to be implemented using appropriate encoding and information transfer technologies (file and/or message based) for the deployment context. An extensible set of MAL technology bindings exist to support:
· encoding of the service messages;
· binding of the service operations to a specific messaging technology.
It should be noted that security considerations are partly handled at the MO framework layer or below. This is described in annex B.
[bookmark: _Toc140093761][bookmark: _Toc161745086][bookmark: _Toc186644298]Document Structure
This Recommended Standard is organized in the following sections:
· Section 11—Introduction: provides purpose and scope, applicability, and rationale of this Recommended Standard and lists the definitions, conventions, and references used throughout the document;
· Section 22—Overview: describes the mission planning & scheduling concept and how this relates to MO services, as well as giving a high-level overview of both the MPS information model and the set of MPS services specified.
· Section 33—MPS Service Specifications: provides the formal specification of the MPS services.
· Section 4 4—MPS Data TypesInformation Model: provides the formal specification of MPS data itemservice objects, including MO objects, and other data structures that are contained in or referenced by MPS service messages.	Comment by Quinten Van Woerkom: DLR-008	Comment by Quinten Van Woerkom: DLR-008
· Section 54—Error Codes: provides the formal specification of MPS error codes.
· Section 66—Service Specification XML: specifies the internet location of the formal service specification eXtensible Markup Language (XML).
· Section 77—XML File Formats: specifies the internet location of the formal specification of XML file formats for the exchange of planning requests and plans.
Sections 13–7 contain the normative specification of the Recommended Standard; section 22 is purely informative; section 11 (this section) contains normative definitions and normative references, as well as some informative material related to the document itself.
[bookmark: _Toc140093762][bookmark: _Ref157524400][bookmark: _Toc161745087][bookmark: _Toc186644299]Definitions
For the purposes of this document, the following definitions apply.
NOTES
1 Abbreviations are to be found in annex C.
2 The terms plan and planning are used throughout this specification, but that these terms arethis intended toalso also encompasses schedule and scheduling, respectively.	Comment by Quinten Van Woerkom: DLR-027	Comment by Quinten Van Woerkom: NASA-017
3 The prefix ‘planning’ is used to disambiguate terms used in this specification from other more general uses of a term. This applies to planning activities, constraints, events, requests, and resources.
	[bookmark: Terms]

	action: A single executable task of an MO M&C service provider. A telecommand is an example of an action.

	activity definition: The definition element of a planning activity. It forms part of the planning configuration data.

	activity details: The information required to create an activity instance from an activity definition. It may be contained within a planning request to request inclusion of a planning activity, or within an activity definition (to specify child activities).

	activity instance: The instance element of a planning activity. Activity instances are contained within plans.

	area: A group of related MO services with an associated identifier and number. This Recommended Standard forms part of the MPS area, with the area number 5.

	argument: A run-time parameter provided to various control items on invocation. For example, arguments apply to planning requests, planning activities and planning events.

	constraint: (See planning constraint.)

	custom function: An ancillary MPS data itemservice object that allows access to built-in Boolean functions of a planning system, for example in the context of planning constraints (specifically a function constraint). The custom function must be pre-defined to be referenceable and the MPS custom function definition holds the declaration of an available function.

	definition: The statically declared information associated with an information object. This may, for example, include a description, set of defined arguments or any other information that applies to all occurrences of the information object. There may be multiple definitions [versions] over the mission lifetime associated with the same identity [definitionID].

	details: A data structure used to specify the information needed to create an instance from a definition for an information object that has multiple occurrences.

	direction: An MPS data type that is used to represent a pointing direction or attitude of a spacecraft, payload instrument, or other object.

	domain: A namespace that partitions separately addressable entities (e.g., planning activities, planning events, or planning resources) in the mission. The mission is decomposed into a hierarchy of domains within which entity identifiers are unique.

	effect: A type of planning constraint that is used in the context of modelling planning resources. It specifies the impact that executing a planning activity will have on a planning resource.

	event definition: The definition element of a planning event. It forms part of the planning configuration data.

	event instance: The instance element of a planning event. Event instances are contained within plans.

	expression: A calculation to be performed at run time that supplies a value of a defined data type. Expressions are specified as text strings, together with the identification of the expression language used. No standard expression language is specified in this document.

	full plan: A plan that contains the full contentdetails of a plan. Used to distinguish from a patch plan.	Comment by Quinten Van Woerkom: DLR-030

	identity: A unique identity associated with an MO object, which comprises:
· The domain of the object;
· The area of the object;
· The type of the object;	Comment by Quinten Van Woerkom: CNES-009
· A key (identifier) for the object, unique within domain, area and type;
· The version of the object [optional].

	information object: The set of information about a real-world entity that is exchanged across an interface. This may include static definitions, dynamic status and metadata.
NOTE	–	Mission planning information objects include: planning requests, plans, planning activities, planning events and planning resources.

	instance: A dynamically created object representing each new occurrence of an information object. This includes a unique instanceID of the occurrence and any unchanging data associated with it as a set of static attributefields. It also includes the current status of the object as a set of dynamic attributefields. An instance has a reference to its definition.

	key: Part of the identity of an MO object, the key is a unique identifier for the object within the scope of the domain, area and object type.

	MO dynamic item: A pattern of MO objects for an information object that has separate definition and instance objects, the latter representing an individual occurrence of the object with an evolving status. Updates reference the instance object. Instances reference the definition object.

	MO object: An entity defined within the information model of an MO compliant service specification that has a unique identity enabling it to be referenced by other MO objects and in the body of MO service messages. Information objects may comprise multiple MO objects, adhering to one of the following object patterns: MO static item, MO state and MO dynamic item.

	MO state: A pattern of MO objects for an information object that has a single element comprising both statically declared information and dynamically evolving status. Updates reference the definition object directly.

	MO static item: A pattern of MO objects for an information object that has a single element comprising statically declared information with no evolving status. Static items comprise only a definition object, with no corresponding updates.

	partial plan: A view into a selected subset of a plan. It contains only the activity instances of a plan that match a given set of criteria.	Comment by Quinten Van Woerkom: CNES-040

	patch plan: A plan that only contains the delta (changes) from a precursor plan. A patch plan must be merged with its precursor plan to generate the target plan.

	plan: The output of the planning process. It contains a set of selected planning activities associated with time, position, or planning event. A plan may contain additional related information.
NOTE	–	In the context of the mission planning and scheduling standardization activity, there is no distinction between the terms ‘plan’ and ‘schedule’ and only the term plan is used.

	plan execution: The process of executing plans on board or on the ground.

	plan revision: The set of changes that describe the difference between two plans. These changes can include creation, removal, or modification of activity and event instances.	Comment by Quinten Van Woerkom: DLR-034

	planning: The process of creating one or more plans (output) from planning requests (input).	Comment by Quinten Van Woerkom: CNES-011
NOTE	–	In the context of the mission planning and scheduling standardization activity, there is no distinction between the terms ‘planning’ and ‘scheduling’ and only the term planning is used.

	planning activity: A meaningful unit of what can be planned. The granularity of a planning activity depends on the use case;, it may be hierarchical. In other words, planning activities are the building blocks for planning.	Comment by Quinten Van Woerkom: CNES-012	Comment by Quinten Van Woerkom: ESA-076	Comment by Quinten Van Woerkom: ESA-065

	planning configuration data: The set of configuration data required by MPS service providers and consumers. It includes activity definitions, event definitions, resource definitions, request definitions, and MPS system configuration parameters.

	planning constraint: Something that limits or restricts the planning of planning activities. Different types of constraint exist, including: temporal constraints, sequential constraints between planning activities and/or planning events, resource constraints, and geometric constraints (position and pointing).

	planning event: The meeting of a condition that is external to planning. Planning events may be linked to related planning activities by means of relative timing or by passing arguments of the planning event on to planning activities.The meeting of a condition. Planning activities can be associated with a planning event and specify their start or end relative to the event time.	Comment by Quinten Van Woerkom: NASA-029

	planning request: An input to the planning process, which requests one or more planning activities. Each planning request contains all the information that the requester can provide.	Comment by Quinten Van Woerkom: DLR-032

	planning resource: An abstraction of a real-world resource, physical or virtual, that is represented as a quantity. The level of fidelity in the modelling of a resource only needs to be sufficient to support planning decisions. A planning resource may constrain or trigger the execution of planned activities, which may in turn have an effect on the value of the resource.	Comment by Quinten Van Woerkom: DLR-033

	planning user: Any entity that is responsible for submitting planning requests to a planning function and potentially receiving feedback on the status of planning requests and generated plans. For example, this could be an external Principal Investigator (PI) or a mission operations system or role.

	position: An MPS data type that is used to represent the physical location of a spacecraft, or other object.

	potential event: A type of planning event that is not predictable, but may still have a defined response within a plan.

	precursor plan: A plan from which the current plan represents an evolution through replanning or an iterative planning cycle. The current plan contains the specification of the changes from the precursor plan as a set of plan revisions.

	predicted event: A type of planning event that is expected to occur at a particular time or position that can be predicted as an input to planning and contained within a plan. Orbital events are an example of predicted events.

	procedure: In the context of MPS, an executable process that is invoked to fulfil the execution of a planned activity. Automated operations procedures, on-board control procedures, and procedures supported by an MO Automation service provider (see reference [D1][D1]) are examples of a procedure.

	repetition: A data structure used in the context of a planning request to request the repeated execution of planning activities. Various sub-types of repetition are defined to support the specification of repeat cycles by different criteria, such as time, position, or pointing.

	request definition: The optional definition element of a planning request that contains the specification of a re-usable planning request template. It forms part of the planning configuration data.

	request instance: The instance element of a planning request. This may change over time if the request is updated by the user, each comprising a separate version of the request.

	resource definition: The definition element of a planning resource. This may omit dynamic attributes of the resource (its value) and forms part of the planning configuration data.The definition element of a planning resource that specifies its static fields. It may omit dynamic fields of the resource (its value) and forms part of the planning configuration data.	Comment by Quinten Van Woerkom: DLR-035

	resource profile: Provision for the evolution of the value of a planning resource over time.

	slider: A relative position with respect to an MPS object, such as a planning activity, where 0 represents the start and 1 the end of the activity. The slider is a real number that can represent a specific point between these two extremes.

	sub-plan: A unique subset of activity instances, identified by a single sub-plan identifier. 	Comment by Quinten Van Woerkom: CNES-040
NOTE	–	This can be used to allow execution control over multiple distinct sub-plans within plans, as needed to support separate payloads, or individual spacecraft within a constellation.

	target plan: A full plan that is the result of applying a patch plan to its precursor plan.

	trigger: A construct that allows specification of the specific condition that marks the start or end of something. It is used in the context of both planning activities and plans to specify when an activity should start or end. Triggers may be defined in terms of time, position, pointing, or a planning event.

	update: A data structure used to report the changing value of dynamic attributefields and arguments of an MO object (including its status) at a specific point in time.

	version: Part of the identity of an MO object, typically of a definition object, that represents a defined set of values for its static attributefields. When a definition is updated, the version is incremented, but other elements of the object’s identity, including its key remain unchanged.

[bookmark: _Toc140093763][bookmark: _Toc161745088][bookmark: _Toc186644300]Nomenclature
[bookmark: _Toc140093764][bookmark: _Ref60920925]Normative Text
The following conventions apply for the normative specifications in this Recommended Standard:
a) the words ‘shall’ and ‘must’ imply a binding and verifiable specification;
b) the word ‘should’ implies an optional, but desirable, specification;
c) the word ‘may’ implies an optional specification;
d) the words ‘is’, ‘are’, and ‘will’ imply statements of fact.
NOTE	–	These conventions do not imply constraints on diction in text that is clearly informative in nature.
[bookmark: _Toc89084014][bookmark: _Toc95258271][bookmark: _Toc140093765]Informative Text
In the normative sections of this document, informative text is set off from the normative specifications either in notes or under one of the following subsection headings:
· Overview;
· Background;
· Rationale;
· Discussion.
[bookmark: _Toc140093766][bookmark: _Toc161745089][bookmark: _Toc186644301]Conventions	Comment by Quinten Van Woerkom: ESA-021: Per the CCSDS publication manual, the “Conventions” subsection of the Introduction shall be a short list - that was not the case here. Rather, (similar to section 5.2 of the CCSDS publication standard itself), it is fine to move “content-heavy” definitions into the normative part of the standard.
That is also what I have done here: I’ve moved the conventions describing operation definitions to section 3, and those describing data type definitions to section 4.	Comment by Quinten Van Woerkom: After removal of the interaction patterns, the reference to UML diagrams in the ‘diagrams’ conventions section no longer makes sense. Have removed it.
In this standard,
a) [bookmark: _Toc185341170]the notation <area>::<type name> is used to reference data types that are defined by other MO specifications. For example, ‘MAL::Boolean’ refers to the Boolean type defined within the MAL area.
b) [bookmark: _Toc185348661][bookmark: _Toc185427769][bookmark: _Toc185497410][bookmark: _Toc185498610][bookmark: _Toc185499810][bookmark: _Toc185501011][bookmark: _Toc185502216][bookmark: _Toc186030476][bookmark: _Toc186031682][bookmark: _Toc186032888][bookmark: _Toc186045386][bookmark: _Toc186456146][bookmark: _Toc186469791][bookmark: _Toc186644302]
[bookmark: _Ref74669709][bookmark: _Toc140093767]Diagrams
Unified Modeling Language (UML) notation (reference [3]) is used for diagrams illustrating the service specifications in section 3. Reference Architecture for Space Data Systems (RASDS) notation (reference [7]) is used for the MO protocol stack diagram in 2.3.	Comment by Quinten Van Woerkom: ESA-088
[bookmark: _Toc185341173][bookmark: _Toc185348664][bookmark: _Toc185427772][bookmark: _Toc185497413][bookmark: _Toc185498613][bookmark: _Toc185499813][bookmark: _Toc185501014][bookmark: _Toc185502219][bookmark: _Toc186030479][bookmark: _Toc186031685][bookmark: _Toc186032891][bookmark: _Toc186045389][bookmark: _Toc186456149][bookmark: _Toc186469794][bookmark: _Toc186644305]This section does not seek to provide a full description of the standard UML diagram types used, but defines the specific conventions applied in this document.	Comment by Quinten Van Woerkom: CNES-038
Sequence Diagrams
In the MPS service specifications, UML sequence diagrams are used to illustrate the sequence of operations and their constituent messages (following MAL interaction patterns).
Timelines show the service consumer and provider. Each service operation is shown as a set of messages, following the appropriate MAL interaction pattern, contained within a fragment box with the name of the operation. The fragment is of type ‘opt’ and greyed out if the operation is an optional element of the service (non-mandatory capability set). Where there is a logical sequence of operations this can be indicated on the diagram.
A broker timeline may also be shown, but is only relevant for publish-subscribe pattern operations. In this case the broker function is itself optional (together with all messages between broker and provider), as a valid implementation is for the provider to act as its own broker.
Messages are labelled with the operation name, followed by the MAL interaction pattern message name in block capitals and the message body fields shown in parentheses by type.
[image:]
[bookmark: _Toc185341180][bookmark: _Toc185348671][bookmark: _Toc185427779][bookmark: _Toc185497420][bookmark: _Toc185498620][bookmark: _Toc185499820][bookmark: _Toc185501021][bookmark: _Toc185502226][bookmark: _Toc186030486][bookmark: _Toc186031692][bookmark: _Toc186032898][bookmark: _Toc186045396][bookmark: _Toc186456156][bookmark: _Toc186469801][bookmark: _Toc186644312]Figure 1‑1	: Example Sequence Diagram
[bookmark: _Ref74670285][bookmark: _Toc140093768]Tables
The formal normative definitions of data structures, services and service operations are presented in an abstract tabular format in this document. This is consistent with that specified in the MO MAL Recommended Standard (reference [2]), but has a more compact layout. The table formats used are summarized here to aid in understanding their presentation in this document. A full description can be found in reference [2].
[bookmark: _Toc185341183][bookmark: _Toc185348674][bookmark: _Toc185427782][bookmark: _Toc185497423][bookmark: _Toc185498623][bookmark: _Toc185499823][bookmark: _Toc185501024][bookmark: _Toc185502229][bookmark: _Toc186030489][bookmark: _Toc186031695][bookmark: _Toc186032901][bookmark: _Toc186045399][bookmark: _Toc186456159][bookmark: _Toc186469804][bookmark: _Toc186644315]Purple cells (dark grey when printed on a monochrome printer) contain table headings, light
grey cells contain fields that are fixed for a pattern, and white cells contain values that
are specific to the operation or structure.
Where types are required from other MO specifications, the following notation
is used to denote the area in which the referenced definition resides:
<area>::<type name>
[bookmark: _Toc185341186][bookmark: _Toc185348677][bookmark: _Toc185427785][bookmark: _Toc185497426][bookmark: _Toc185498626][bookmark: _Toc185499826][bookmark: _Toc185501027][bookmark: _Toc185502232][bookmark: _Toc186030492][bookmark: _Toc186031698][bookmark: _Toc186032904][bookmark: _Toc186045402][bookmark: _Toc186456162][bookmark: _Toc186469807][bookmark: _Toc186644318]It should be noted that all tables described below constitute a normative part of the Recommended Standard, including the data structure tables that are contained within section 4.
Data Structures
Each data structure (or type) definition contained in section 4 contains a table following the standard structure outlined below.
Table 1‑1	: Example Data Structure Table
	Name
	<Data Structure name>
	Extends
	<Parent name>
	SFP
	<#>

[bookmark: _Toc185341197][bookmark: _Toc185348688][bookmark: _Toc185427796][bookmark: _Toc185497437][bookmark: _Toc185498637][bookmark: _Toc185499837][bookmark: _Toc185501038][bookmark: _Toc185502243][bookmark: _Toc186030503][bookmark: _Toc186031709][bookmark: _Toc186032915][bookmark: _Toc186045413][bookmark: _Toc186456173][bookmark: _Toc186469818][bookmark: _Toc186644329]
	[bookmark: _Toc185341198][bookmark: _Toc185348689][bookmark: _Toc185427797][bookmark: _Toc185497438][bookmark: _Toc185498638][bookmark: _Toc185499838][bookmark: _Toc185501039][bookmark: _Toc185502244][bookmark: _Toc186030504][bookmark: _Toc186031710][bookmark: _Toc186032916][bookmark: _Toc186045414][bookmark: _Toc186456174][bookmark: _Toc186469819][bookmark: _Toc186644330]Attribute
	Type
	Nullable
	Description

	<name>
	<data type>
	Yes¦No
	<Description>

	<name>
	<data type>
	Yes¦No
	<Description>

	…
	…
	…
	…

The first row of the table specifies the name of the MPS data structure (in bold), and that of the structure it extends, which may either be a MAL data type (typically MAL::Composite) or another MPS data type. The Short Form Part (SFP) gives the number used by the MAL to identify this structure within the area.
This is followed by a list of attributes or data fields that constitute the data structure. Inherited attributes may optionally be shown with a grey background. In this document this is only used for data structures of type MO Object to highlight the inherited identity attribute.	Comment by Quinten Van Woerkom: ESA-063
[bookmark: _Toc185341220][bookmark: _Toc185348711][bookmark: _Toc185427819][bookmark: _Toc185497460][bookmark: _Toc185498660][bookmark: _Toc185499860][bookmark: _Toc185501061][bookmark: _Toc185502266][bookmark: _Toc186030526][bookmark: _Toc186031732][bookmark: _Toc186032938][bookmark: _Toc186045436][bookmark: _Toc186456196][bookmark: _Toc186469841][bookmark: _Toc186644352]Attribute data types may either be a MAL::Attribute type, or another MPS data structure. In the case of the MAL::ObjectRef attribute type, two forms are supported:	Comment by Quinten Van Woerkom: DLR-039
MAL::ObjectRef[footnoteRef:2]	Reference is to an explicit object type (encoded within the reference) to an MO object of any type, subject to restrictions defined in the description field. [2:]

[bookmark: _Toc185341222][bookmark: _Toc185348713][bookmark: _Toc185427821][bookmark: _Toc185497462][bookmark: _Toc185498662][bookmark: _Toc185499862][bookmark: _Toc185501063][bookmark: _Toc185502268][bookmark: _Toc186030528][bookmark: _Toc186031734][bookmark: _Toc186032940][bookmark: _Toc186045438][bookmark: _Toc186456198][bookmark: _Toc186469843][bookmark: _Toc186644354]MAL::ObjectRef<T>	Reference is to an implicit object type (not encoded within the reference) and is restricted to the named concrete type T.
The nullable column indicates whether the attribute is allowed to contain a null value. A nullable field does not need to be provided by the consumer, but must be supported by the provider unless it is an optional element of the standard.
[bookmark: _Toc185341224][bookmark: _Toc185348715][bookmark: _Toc185427823][bookmark: _Toc185497464][bookmark: _Toc185498664][bookmark: _Toc185499864][bookmark: _Toc185501065][bookmark: _Toc185502270][bookmark: _Toc186030530][bookmark: _Toc186031736][bookmark: _Toc186032942][bookmark: _Toc186045440][bookmark: _Toc186456200][bookmark: _Toc186469845][bookmark: _Toc186644356]A default value may be specified in the description for a non-nullable attribute. This means that a value must be supplied in any service message ‘on the wire’, to avoid the need for a provider implementation to have knowledge of the default, but that in the context of a user (or Web-based) interface, the default value may be initially populated to avoid the need for the user to specify anything in the general case.
[bookmark: _Toc185341225][bookmark: _Toc185348716][bookmark: _Toc185427824][bookmark: _Toc185497465][bookmark: _Toc185498665][bookmark: _Toc185499865][bookmark: _Toc185501066][bookmark: _Toc185502271][bookmark: _Toc186030531][bookmark: _Toc186031737][bookmark: _Toc186032943][bookmark: _Toc186045441][bookmark: _Toc186456201][bookmark: _Toc186469846][bookmark: _Toc186644357]Attributes may also be a list of elements, represented as List<<element>>, where <element> can be of any MAL::Attribute or MPS data type. MAL lists are implicitly unbounded, ordered and may have zero elements and/or be nullable. A nullable list can be empty [0..*], otherwise it must contain at least one entry [1..*].
By convention data structure names start with an upper case letter. If the data structure is abstract (only used to define an inheritance hierarchy) then its name is italicized and the word ‘abstract’ is substituted in the SFP. Attribute names start with a lower case letter. In the context of MPS MO objects (definitions and instances), static and dynamic attributes are differentiated by underlining the name of the static attributes.
Enumerations
Enumerations are also contained in section 4 and defined using tables of the following format.
Table 1‑2	: Example Enumeration Table
Name
<Enumeration name>
SFP
<#>
[bookmark: _Toc185341234][bookmark: _Toc185341235][bookmark: _Toc185348725][bookmark: _Toc185427833][bookmark: _Toc185497474][bookmark: _Toc185498674][bookmark: _Toc185499874][bookmark: _Toc185501075][bookmark: _Toc185502280][bookmark: _Toc186030540][bookmark: _Toc186031746][bookmark: _Toc186032952][bookmark: _Toc186045450][bookmark: _Toc186456210][bookmark: _Toc186469855][bookmark: _Toc186644366]
Status
Value
Description
[bookmark: _Toc185341239]<STATE NAME>
<#>
<Description>
[bookmark: _Toc185341243]…
…
…
[bookmark: _Toc185341247]The set of allowed statuses/enumerations is listed together with their corresponding integer values and a description.
By convention the name of an enumeration ends with ‘Enum’, and the names of the statuses/enumerations are all in upper case.
Services
A summary table is provided for each service specification in section 3. This defines the area, service and version numbers used in MAL message headers, and lists the service operations together with their MAL interaction patterns, operation numbers, and the capability set to which they belong.
Table 1‑3	: Example Service Table
Area Identifier
Service Identifier
Area Number
Service Number
Area Version
[bookmark: _Toc185341258]MPS
<Service name>
5
<#>
<#>
[bookmark: _Toc185341264][bookmark: _Toc185341265][bookmark: _Toc185348750][bookmark: _Toc185427858][bookmark: _Toc185497499][bookmark: _Toc185498699][bookmark: _Toc185499899][bookmark: _Toc185501100][bookmark: _Toc185502305][bookmark: _Toc186030565][bookmark: _Toc186031771][bookmark: _Toc186032977][bookmark: _Toc186045475][bookmark: _Toc186456235][bookmark: _Toc186469880][bookmark: _Toc186644391]
Interaction Pattern
Operation Identifier
Operation Number
Capability Set
[bookmark: _Toc185341270]REQUEST
submitRequest
<#>
<#>
[bookmark: _Toc185341275]…
…
…
…
[bookmark: _Toc185341280]Service Operations
The definition of each MPS service operation in section 3 contains a table based on the appropriate interaction pattern template for the applicable MAL interaction pattern (see reference [2]).
Table 1‑4	: Example Operation Template
Operation Identifier
<Operation name>
[bookmark: _Toc185341286]Interaction Pattern
PUBLISH-SUBSCRIBE
[bookmark: _Toc185341289]Subscription Keys
planID : (MAL::Identifier)
precursor : (MAL::Identifier)
status : (MAL::UInteger)
originator : (MAL::Identifier)
[bookmark: _Toc185341295][bookmark: _Toc185341296][bookmark: _Toc185348775][bookmark: _Toc185427883][bookmark: _Toc185497524][bookmark: _Toc185498724][bookmark: _Toc185499924][bookmark: _Toc185501125][bookmark: _Toc185502330][bookmark: _Toc186030590][bookmark: _Toc186031796][bookmark: _Toc186033002][bookmark: _Toc186045500][bookmark: _Toc186456260][bookmark: _Toc186469905][bookmark: _Toc186644416]
Pattern Sequence
Message
Nullable
Body Signature
[bookmark: _Toc185341301]OUT
PUBLISH/NOTIFY
Yes¦No
[bookmark: _Toc185341305][bookmark: _Toc185348783][bookmark: _Toc185427891][bookmark: _Toc185497532][bookmark: _Toc185498732][bookmark: _Toc185499932][bookmark: _Toc185501133][bookmark: _Toc185502338][bookmark: _Toc186030598][bookmark: _Toc186031804][bookmark: _Toc186033010][bookmark: _Toc186045508][bookmark: _Toc186456268][bookmark: _Toc186469913][bookmark: _Toc186644424]List<Field name : (data type)>	Comment by Quinten Van Woerkom: DLR-043
[bookmark: _Toc185341306]…
…
…
…
[bookmark: _Toc185341311]The subscription keys row is only included in the case of a PubSub operation and lists the subscription key fields (name and type) specified for the operation.
The message direction denotes the direction of the message relative to the provider of the
service and is either IN or OUT. So all messages directed towards the provider are IN
messages, and all messages directed away from the provider are OUT messages.
The body signature contains a list of message fields, often a single field referencing an MPS data structure, but in some cases there may be a series of fields each identified by a field name and data type. The nullable column indicates whether each of the listed message fields is nullable or not.
Errors
Errors that may be returned by the operation are listed in a simple table, which references the error by name and the area in which it is defined. MPS errors are defined in section 4, together with the corresponding error number and the type and description of any ExtraInfo field. Standard MAL errors (not listed) may also be returned.
Table 1‑5	: Example Error References Table
Error
Area
[bookmark: _Toc185341320]<Error name>
<Area>
[bookmark: _Toc185341323]…
..
[bookmark: _Toc185341326][bookmark: _Ref138744327][bookmark: _Toc138744508][bookmark: _Toc140093769][bookmark: _Toc161745090][bookmark: _Toc186644441]RefReferences
The following publications contain provisions which, through reference in this text, constitute provisions of this document. At the time of publication, the editions indicated were valid. All publications are subject to revision, and users of this Recommended Standard are encouraged to investigate the possibility of applying the most recent editions of the publications indicated below. The CCSDS secretariat maintains a register of currently valid CCSDS publications.
[bookmark: R_520x1m1MoReferenceModel][1]	Mission Operations Reference Model. Issue 1. Recommendation for Space Data System Practices (Magenta Book), CCSDS 520.1-M-1. Washington, D.C.: CCSDS, July 2010.
[bookmark: R_521x0b3MoMal][2]	Mission Operations Message Abstraction Layer. Issue 3. Recommendation for Space Data System Standards (Blue Book), CCSDS 521.0-B-3. Washington, D.C.: CCSDS, March 2024.
[bookmark: R_UML][bookmark: R_formal20171205OMGUnifiedModelingLangua][3]	OMG® Unified Modeling Language (OMG® UML). Version 2.5.1. formal/2017-12-05. Needham, Massachusetts: Object Management Group, December 2017.
[bookmark: R_STD66LeeUniformResourceIdentifierURIGe][4]	T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic Syntax. STD 66. Reston, Virginia: ISOC, January 2005.
[bookmark: R_RFC7303ThompsonXmlMediaTypes][5]	H. Thompson and C. Lilley. XML Media Types. RFC 7303. Reston, Virginia: ISOC, July 2014.
[bookmark: R_313x0y3SanaRoleResponsibilitiesPolicie][6]	Space Assigned Numbers Authority (SANA)—Role, Responsibilities, Policies, and Procedures. Issue 3. CCSDS Record (Yellow Book), CCSDS 313.0-Y-3. Washington, D.C.: CCSDS, October 2020.
[bookmark: R_311x0m1ReferenceArchitectureforSpaceDa][7]	Reference Architecture for Space Data Systems. Issue 12. Recommendation for Space Data System Practices (Magenta Book), CCSDS 311.0-M-12. Washington, D.C.: CCSDS, September December 20082024.	Comment by Peter Van Der Plas: ESA-095
[bookmark: R_IEEE754FloatingPointArithmetic][8]	IEEE Standard for Floating-Point Arithmetic. 3rd ed. IEEE Std 754-2019. New York: IEEE, 2019.	Comment by Peter Van Der Plas: DLR-095
[bookmark: R_XmlPathLanguageXPath31XmlPathLanguageX][9]	XML Path Language (XPath). Version 3.1. https://www.w3.org/TR/xpath-31/. W3C, 21 March 2017.
[bookmark: R_509x0b1PointingRequestMessage][10]	Pointing Request Message. Issue 1, Technical Corrigendum 2. Recommendation for Space Data System Standards (Blue Book), CCSDS 509.0-B-1. Washington, D.C.: CCSDS, October 2023.

NOTE	–	Informative references are listed in annex D.

[bookmark: _Toc140093771][bookmark: _Ref146899770][bookmark: _Ref146899778][bookmark: _Toc161745091][bookmark: _Toc129154153]Overview
[bookmark: _Toc140093772][bookmark: _Toc161745092]General
This section introduces the concepts behind the MPS services. It has the following main sections:
· Mission Planning & Scheduling Concept;
· Relationship to Mission Operations Services;
· MPS Information Model Overview;
· MPS Services Overview;
· Optional Elements of the Recommended Standard.
[bookmark: _Toc140093773][bookmark: _Toc161745093]Mission Planning & Scheduling Concept
[bookmark: _Toc185348810][bookmark: _Toc185427918][bookmark: _Toc185497559][bookmark: _Toc185498759][bookmark: _Toc185499959][bookmark: _Toc185501160][bookmark: _Toc185502365][bookmark: _Toc186030625][bookmark: _Toc186031831][bookmark: _Toc186033037][bookmark: _Toc186045535][bookmark: _Toc186456295][bookmark: _Toc186469940][bookmark: _Toc186644451][image:]
Figure 2‑1	: Functions involved in Mission Planning
Mission planning & scheduling encompasses application level functions of a space mission system that may be distributed across multiple organizations and physical nodes, both in the space and ground segments. Standardization in this area concerns only the interaction between functions at the application level, and not the mission planning functions themselves.	Comment by Quinten Van Woerkom: CNES-014
The scope of standardization includes both the format/model of data exchanged, as well as the semantics of the interactions for their exchange, captured by the associated service level interfaces. A generalized view of the functions involved in mission planning and their interactions with other functions is given in figure 2‑1. The entities shown in blue are in the functional area of mission planning. The entities shown in different colours belong to other functional areas of mission operations, such as monitoring and control, navigation, and the ground station and communication network.
The following mission planning functions are identified:
· Planning User: a generic function that is responsible for submitting requests to the planning function. It may also receive feedback on the status of planning requests and the generated plans. It is not a planning function itself, but is a user of planning data and services. A deployment in an actual space mission may contain multiple types of planning user function, some of which correspond to other mission operations functions within the space mission system.
· Planning: the function responsible for performing mission planning. Internally it may be hierarchically organized and/or distributed. Planning requests are received from multiple Planning users (or other mission planning functions) and feedback on their status is provided. The output of the planning function is plans, which may be retrieved by planning users and submitted to plan execution functions. Planning may also control the execution of plans via the plan execution functions. Planning is itself a user of the navigation function and may receive predicted planning events, as a future standard Navigation Event Message (NEM) (reference [D5]) or in a custom format, that are related to orbital information, attitude, or slew times; and negotiates the scheduling of ground station support via Cross Support Services (CSS) services (reference [D7]).
· Plan Execution: the function responsible for executing a plan (or part of it). There may be multiple plan execution functions distributed between space and ground segments. It is not a planning function itself, but it does support a common model of the plan in its interface with planning. It receives or retrieves distributed plans; allows external control of the plan execution process; and provides feedback on execution status of the plan. Plan execution may use underlying mission control services to effect the execution of planned activities. Mission controllers may interact with plan execution functions to control the plan execution process and to edit plans. External functions may also edit plans, for example to update planning events or resources.
It should be noted that in an actual deployment, there may be multiple copies of all the functions identified in figure 2‑1.
[bookmark: _Toc185348819][bookmark: _Toc185427927][bookmark: _Toc185497568][bookmark: _Toc185498768][bookmark: _Toc185499968][bookmark: _Toc185501169][bookmark: _Toc185502374][bookmark: _Toc186030634][bookmark: _Toc186031840][bookmark: _Toc186033046][bookmark: _Toc186045544][bookmark: _Toc186456304][bookmark: _Toc186469949][bookmark: _Toc186644460]Figure 2‑1 shows MPS services as blue lines. Interactions supported by other CCSDS Recommended Standards are shown in other colours. The circle at one end indicates which function is the service provider: Planning is the service provider for Planning Request and Plan Distribution services. Plan execution is the service provider for Plan Execution Control and Plan Edit services. Both functions can provide the Plan Information Management service. These services are introduced in 2.5 below and formally defined in section 3.	Comment by Quinten Van Woerkom: ESA-002
[bookmark: _Toc185348820][bookmark: _Toc185427928][bookmark: _Toc185497569][bookmark: _Toc185498769][bookmark: _Toc185499969][bookmark: _Toc185501170][bookmark: _Toc185502375][bookmark: _Toc186030635][bookmark: _Toc186031841][bookmark: _Toc186033047][bookmark: _Toc186045545][bookmark: _Toc186456305][bookmark: _Toc186469950][bookmark: _Toc186644461]
The identified functions may be distributed over a number of distinct entities (organizations and systems) within a given space mission system. There is not a fixed set of such entities, but typical examples include:
· User Community / PIs;
· Science/Payload Operations Centre;
· Payload Processing Centre;
· Mission Operations Centre;
· Flight Dynamics / Navigation;
· Ground Tracking Network;
· Unmanned Spacecraft;	Comment by Quinten Van Woerkom: NASA-015
· Surface Lander / Rover;
· Manned Space Vehicle.	Comment by Quinten Van Woerkom: NASA-015
[bookmark: _Toc185348831][bookmark: _Toc185427939][bookmark: _Toc185497580][bookmark: _Toc185498780][bookmark: _Toc185499980][bookmark: _Toc185501181][bookmark: _Toc185502386][bookmark: _Toc186030646][bookmark: _Toc186031852][bookmark: _Toc186033058][bookmark: _Toc186045556][bookmark: _Toc186456316][bookmark: _Toc186469961][bookmark: _Toc186644472][image:]
Figure 2‑2	: Entities and Functions Involved in Mission Planning
As an example, figure 2‑2 illustrates potential deployment of each of the functions identified in figure 2‑1 to the entities listed above. The circles indicate where each of the functions are typically deployed in existing systems, or where they could potentially be deployed in the future. The arrows indicate the interactions in a typical current deployment, but the potential distribution of functions indicated by the circles shows that all the functional interfaces shown in figure 2‑1 can be exposed to the boundaries between entities. It is where the interactions between the functions are exposed across one or more boundaries between entities that there is a need for standardization within CCSDS as a potentially interoperable interface between agencies.
The interactions within the scope of mission planning and scheduling standardization can be grouped into five services:
· [bookmark: _Toc185348835][bookmark: _Toc185427943][bookmark: _Toc185497584][bookmark: _Toc185498784][bookmark: _Toc185499984][bookmark: _Toc185501185][bookmark: _Toc185502390][bookmark: _Toc186030650][bookmark: _Toc186031856][bookmark: _Toc186033062][bookmark: _Toc186045560][bookmark: _Toc186456320][bookmark: _Toc186469965][bookmark: _Toc186644476]Planning Request: submission of planning requests to a planning function, associated responses and their subsequent management and status feedback.
· [bookmark: _Toc185348836][bookmark: _Toc185427944][bookmark: _Toc185497585][bookmark: _Toc185498785][bookmark: _Toc185499985][bookmark: _Toc185501186][bookmark: _Toc185502391][bookmark: _Toc186030651][bookmark: _Toc186031857][bookmark: _Toc186033063][bookmark: _Toc186045561][bookmark: _Toc186456321][bookmark: _Toc186469966][bookmark: _Toc186644477]Plan Distribution: distribution and access to plans generated by the planning function.
· [bookmark: _Toc185348837][bookmark: _Toc185427945][bookmark: _Toc185497586][bookmark: _Toc185498786][bookmark: _Toc185499986][bookmark: _Toc185501187][bookmark: _Toc185502392][bookmark: _Toc186030652][bookmark: _Toc186031858][bookmark: _Toc186033064][bookmark: _Toc186045562][bookmark: _Toc186456322][bookmark: _Toc186469967][bookmark: _Toc186644478]Plan Execution Control: submission of plans to a plan execution function, management of the execution process, and status feedback.
· [bookmark: _Toc185348838][bookmark: _Toc185427946][bookmark: _Toc185497587][bookmark: _Toc185498787][bookmark: _Toc185499987][bookmark: _Toc185501188][bookmark: _Toc185502393][bookmark: _Toc186030653][bookmark: _Toc186031859][bookmark: _Toc186033065][bookmark: _Toc186045563][bookmark: _Toc186456323][bookmark: _Toc186469968][bookmark: _Toc186644479]Plan Information Management: access to planning data definitions.
· Plan Edit: direct manipulation of plans outside the planning process, either to update planning events and resources with the latest information or for emergency intervention.
A common MPS information model applies to the planning requests and plans transferred or Referenced by these services and also to the common configuration data required by service providers and consumers to interpret the planning requests and plans. This information model is introduced in 2.4 below and the associated data structures formally defined in section 4.
For those organizations that do not wish to standardize the service level interaction, but only to standardize the data format used for the exchange of planning requests and plans, standard XML-based file formats are defined in section 7.
[bookmark: _Toc140093774][bookmark: _Ref158029461][bookmark: _Toc161745094]Relationship To Mission Operations Services
The MO Services Concept provides a standard framework for the specification of end-to-end services between mission operations applications (reference [D1]). MO services are defined in terms of a MAL (reference [2]), which provides a means of specifying data and service interfaces in an implementation, encoding, and communication agnostic manner.
Figure 2‑3 is taken from the CCSDS Application and Support Layer Architecture (reference [D11]) and shows the generic protocol stack for the MPS services.
[bookmark: _Toc185348845][bookmark: _Toc185427953][bookmark: _Toc185497594][bookmark: _Toc185498794][bookmark: _Toc185499994][bookmark: _Toc185501195][bookmark: _Toc185502400][bookmark: _Toc186030660][bookmark: _Toc186031866][bookmark: _Toc186033072][bookmark: _Toc186045570][bookmark: _Toc186456330][bookmark: _Toc186469975][bookmark: _Toc186644486][image:]
Figure 2‑3	: MO MPS Services Generic Protocol Stack
The MO MAL defines:
· A set of MAL Attribute data types that can be used to represent the individual data fields of message structures;
· A set of MAL Interaction patterns that correspond to the message exchange behaviour of individual service operations.
The abstract specification of the service interfaces and data can be mapped to a concrete implementation through:
a) a technology binding that defines how the abstract messages (composed of a sequence of MAL attributes) are encoded in a concrete format (e.g., binary, XML, or ASCII);
b) a technology binding that defines how the resulting messages are carried over a concrete message transport protocol by mapping the standard MAL interaction patterns to that protocol;
c) a language binding that transforms the abstract service interface into a concrete API for a given programming language (e.g., Java, C++ or Python).
Figure 2‑3 illustrates a generic deployment of MPS services using the MO service framework with service consumer and provider functions hosted on different deployment nodes. MPS specific functions and protocol layers are shown in blue; elements of the ‘vanilla’ MO framework in yellow; and underlying communications infrastructure layers in tan (light orange). The application level MPS service interaction is shown by the direct interface between service provider and consumer functions, carrying MPS service messages defined in terms of data structures specified in the MPS information model.
Adopting a single MAL technology binding in any specific deployment ensures on-the-wire interoperability. Transfer protocol equates to the messaging or file transfer service used over the underlying Transport and physical Data Link Layers. The diagram illustrates how different language bindings can be used by provider and consumer for the service API, as this does not affect the wire level protocol.
It is noted that while the MAL may be implemented as a specific software layer for reasons of maintainability and reusability, it is not a requirement to do so. The MAL may be used as an abstract specification that enables transformation of the service specification by the applied technology bindings into a concrete implementation of that service with no distinct MAL layer. The MO MPS, MO MAL, and MAL technology binding layers in the diagram are effectively combined into a single software component. This is an important distinction for deployment contexts where the implementation is required to be both compact and efficient, such as on board a spacecraft.
An MO object is an entity defined within the information model of an MO compliant service specification that has a unique identity enabling it to be referenced by other MO objects and in the body of MO service messages. The identity of an MO object is defined by its type and unique key, scoped by its area, domain and optionally by a version. The specification of a service-specific MO object class includes a custom set of references to other MO objects that capture the relationships between those objects. In the context of the MPS services, MO objects are defined to represent planning requests, plans and the planning activities, planning events, and resources that they reference.
An MO application-level service specification comprises a set of operations that the service consumer may invoke on the service provider. Each operation is mapped to a standard interaction pattern defined by the MAL and provides the service-specific body of the constituent messages.	Comment by Quinten Van Woerkom: CNES-019
In addition to the MAL and technology bindings, the MO service framework includes a set of Common Services (reference [D3]) that can be used in conjunction with any MO application level service. These include a Directory, Login, and Configuration services.
[bookmark: _Ref60921134][bookmark: _Ref60921318][bookmark: _Ref60922188][bookmark: _Ref60925348][bookmark: _Toc140093775][bookmark: _Toc161745095]MPS Information Model Overview
[bookmark: _Toc140093776]General
The information exchanged across the interfaces supported by MPS services is complex. Requests for activities to be planned require the specification of the activities to be performed and any constraints on their execution. Plans express not only the planned activities they contain, but also what triggers their execution relative to time, position or planning events.
The MPS information model describes the information objects that are transferred or operated on by service operations and the relationships between them. It addresses both the content of the messages that constitute service operations and also the configuration data that both consumer and provider must have access to to interpret those messages.
This document contains the specification of data structures derived from the MPS information model that are used in the body of service messages or referenced by them. These data structure definitions are a normative part of the Recommended Standard and are expressed in the tabular format described in 1.8.2.
[image:]
Figure 2‑4	: MPS Data Items
A high-level overview of the MPS information model is given in figure 2‑4. This shows the principal MPS data items and their interrelationships using standard UML notation.
The rectangles in the diagram correspond to standard data items. The lines between them define the relationships between those data items. Data items are color-coded by functional area:
	Mission Planning data items defined in this document are shown in blue.
	Mission Control data items (red) correspond to CCSDS MO Monitoring & Control and the proposed MO Automation standards.
	Navigation data item (magenta) correspond to the CCSDS Navigation Event Message Recommended Standard.
	Cross Support Services data items (grey) correspond to CCSDS Cross Support Service Management Recommended Standards.
Relationships shown in black are within the scope of mission planning standardization, others are color-coded by their respective area.
The following principal MPS data items are shown in the diagram:
· Planning Requests;
· Plans;
· Planning Activities;
· Planning Events;
· Planning Resources.
These are introduced in the subsections below. Each of these data items comprises a set of MO objects with its own object identity, following one of the typical MO object patterns defined in 1.6.	Comment by Quinten Van Woerkom: DLR-031
The status of planning requests, plans, planning activities, and planning events can evolve over time and is reported through the defined MPS services. State models are associated with each of these data items in the full information model, but only the minimum set of states has been defined to work with the defined services: missions may effectively extend these with additional states using additional information fields.
Planning requests and plans are both container objects, whose content relates to a set of planning data items: planning events, planning activities, and planning resources. For each of these three types (or classes) of planning data, there is a defined set of items that can be referenced or instantiated within planning requests and plans. Together these definitions comprise the planning configuration data.
Planning constraints are not self-standing data items, but can be attached to planning requests and planning activities. They are defined in 4.3.7. Subsection 4.3 also includes the definition of other MPS supporting data types, including:
· MPS Position and Direction data types;
· Expressions;
· Arguments;
· Triggers;
· Repetitions.
Some aspects of the MPS information model are optional. These aspects are not required to be supported by a compliant MO MPS service provider, although this may limit the set of service capabilities and associated operations that can be supported. Optional aspects of the model include:
· Planning Resources;
· Functions;
· Planning Constraints, other than representation as a text expression using any defined expression syntax supported by the service provider;
· Position and Direction data types;
· Repetitions (the representation of repetitive occurrences of planning activities).
[bookmark: _Ref54003452][bookmark: _Toc140093777]MO Objects
Figure 2‑5 shows how each of the MPS Data Items comprises multiple MO objects following a 1-, 2-, or 3-element MO object pattern. MO objects are shown with a bold purple border.	Comment by Quinten Van Woerkom: DLR-031
[bookmark: _Toc185348897][bookmark: _Toc185428005][bookmark: _Toc185497646][bookmark: _Toc185498846][bookmark: _Toc185500046][bookmark: _Toc185501247][bookmark: _Toc185502452][bookmark: _Toc186030712][bookmark: _Toc186031918][bookmark: _Toc186033124][bookmark: _Toc186045622][bookmark: _Toc186456382][bookmark: _Toc186470027][bookmark: _Toc186644538][image:]	Comment by Quinten Van Woerkom: DLR-031]

Figure 2‑5	: MPS Data Items and their Constituent MO Objects
Each MO object has a unique object identity, which includes an unchanging key (Identifier) and optionally a version. When a definition object is updated, it retains the same key, but its version is updated to uniquely identify a specific version of the definition. Planning request instances and plans also have an associated version.
The definition objects associated with planning activities, planning events, planning resources and planning requests all form part of the planning configuration data that must be available to both communicating parties that exchange planning requests and plans. Planning configuration data also includes a single MPS SystemConfig object that defines overall configuration parameters for the entire MPS system. Definition objects comprise only static attributes. The MPS services defined in this Recommended Standard do not address the bulk transfer of MPS configuration data between communicating parties, but individual definitions can be accessed using the Plan Information Management Service.
The instance objects associated with all MPS data items, are the live planning data created by and exchanged between communicating parties during planning and plan execution. Instance objects may comprise both static and dynamic attributes. For planning resources and MPS SystemConfig, the live instance has the same object identity as the associated definition, the only distinction being that the live instance may include dynamically updating attributes, such as the value of a planning resource.	Comment by Quinten Van Woerkom: CNES-023
Changes in state of the dynamic attributes of live planning data instance objects may be notified through an update structure exchanged through MPS service messages and optionally stored in planning history. These updates are not themselves MO objects, but reference the corresponding instance and the timestamp of the update as well as the value of dynamic attributes.
Planning requests may reference planning activities, planning events, and planning resources but do not contain instances of planning activities or planning events. Instead they specify the activity details for the requested planning activities.
Plans contain instances of planned activities, and optionally of planning events. They may also optionally contain planning resource profiles that express their planned evolution over time.
Planning Request
Planning requests are the main input to the planning function. A planning request is a container for the information needed to be exchanged between the requester and the planner. It supports the specification of a request to plan one or more planning activities. Alternatively, it can support a request to use an existing plan (already containing a number of planning activities) as an input to the planning process. It can constitute a one-off planning request, or request the repetitive planning of activities as a ‘standing order’.
The main characteristic of the planning request is that, being a container, it needs to hold references to, or instances of, the constituent information items that are required by the planner and agreed by the interacting parties for exchange at interface level. It has one or more planning activities as the basis of the request. In addition, the request may optionally reference planning events. Information about planning constraints on when a requested activity can or shall be planned may be exchanged as part of the planning request, by referencing constraints on the timing or position of planning activities, both absolute and relative to planning events or other planning activities, and on the state of planning resources.
[bookmark: _Ref54009443][bookmark: _Toc140093778]Plan
The plan is the output of a planning process. The plan is basically a container of one or more selected planning activities, optionally associated with planning events. In addition, the usage of planning resources may be contained in the plan. The plan may contain specific information from the planning process, which applies to the plan as a whole. In the hierarchical and distributed planning concepts, the output of one planning function could be the input of another one. As such, a planning request could refer to an entire plan.
Plans may be iterative, and therefore overlap with the previous plan. This introduces the notion that a plan may have an identified predecessor or precursor plan, and also that if a planning data item is contained in multiple iterations of the plan, then it should have the same unique identity, except for an updated version) in each successive iteration of the plan to avoid ambiguity and duplication.
Plans comprise the following main elements:
· Plan Information: header data relating to the plan as a whole;
· Planned Items: the set of contained planning activities and planning events;
· Plan Revisions [optional]: summaries of the changes between this version of the plan and another specified version of a plan, usually its precursor plan;
· Plan Resources [optional]: value profiles covering the period of the plan for a set of planning resources.
[bookmark: _Toc140093779]Planning Activity
A planning activity is the basic building block for the planning: a meaningful unit of what can be planned. As such, it has to be understood by the planning function. It could eventually be translated to something that can be executed by a plan execution function; this includes CCSDS MO M&C actions (reference [D4]) (that may represent telecommands) and CCSDS MO Automation procedures (reference [D1]) (that may represent any automated telecommand sequence, operational procedure, on-board control procedure, or function).
Planning activities support hierarchy: a planning activity may be composed of one or more subordinate planning activities. A planning activity may define arguments (parameters), which could be used to instantiate a specific planning activity in a plan, based on its generic definitions. Arguments of a planning request or planning event can be passed through to the arguments of planning activities resulting from these. Arguments can then similarly cascade down through a hierarchy of planning activities. A plan execution function may then flow down these arguments to any action or automated procedure initiated.
Planning constraints can also be associated with a planning activity, either generic constraints applicable to all occurrences (or instances) of the planning activity that are contained within its definition, or specific constraints associated with a particular instance that are defined in the context of the planning request. These planning constraints can be expressed in terms of the timing or position of a planning activity, both absolute and relative to planning events or other planning activities, and on the state of planning resources.
[bookmark: _Toc140093780]Planning Event
A planning event marks when a condition is being met, expressed in terms of time or position. They may be used to represent predicted or planned events, such as predicted orbital events or planned periods of contact with a spacecraft, that are typically received as an input by the mission planning function, from an external function, such as navigation.
Planning events may be grouped hierarchically to represent a compound event, such as the start and end of a satellite pass over a ground station (AOS/LOS), or a satellite passing through eclipse (penumbra entry, umbra entry, umbra exit, penumbra exit). A planning event may define arguments (parameters) to convey additional information relevant to the planning process.
Planning activities may be linked to a related planning event. The start or end of the planning activity can be relative to the planning event, and the arguments of the event can be flowed down to the planning activity. Planning requests may also reference planning events, associating them with requested planning activities.
Planning events may be classified as predicted events or potential events:
· Predicted events are those that are expected to occur at a particular time or position that is known at the time of planning and can be contained within a plan. Uncertainty in the timing of predicted events may be refined closer to their time of occurrence. This can either be handled by re-planning, or by updating the events within an executing plan.
· Potential events are not predictable, but may still have a defined response within a plan: virtual observatory Target Of Opportunity (TOO) events are an example. Such events can be inserted into an executing plan.
[bookmark: _Toc140093781]Planning Resource
A planning resource is an abstract status modelling the state of the system being planned. It may be necessary to model some aspects of system state in order to:
· trigger the execution of a planning activity;
· constrain the execution of a planning activity;
· define the effect that the execution of a planning activity has on the planning resource.
A planning resource is in effect a value of defined type that can evolve over time. A resource profile can be used to capture and communicate that evolution over time in the context of a plan.
If an event or constraint on a planning activity needs to be expressed in terms of the state of the system (rather than just time or position) then this corresponds to the state of planning resources. This is considered not internal to the planning function, if it forms part of the planning request or plan.
A planning resource could in principle be considered as information that is internal to the planning system. However, some resources may be shared across multiple planning entities. As such, information regarding a resource may need to be communicated between entities, and therefore has to be referenced as part of a planning request or of the plan, in terms of requested or consumed resources respectively. This may include the initialization or synchronization of planning resource values at specific points in the plan.
Planning resources are an optional element of the MPS information model. There is no requirement for a compliant MPS system to support them.
[bookmark: _Ref66950972][bookmark: _Toc140093782][bookmark: _Toc161745096]MPS Services Overview
[bookmark: _Toc140093783]General
This document specifies standards for the following MPS services, which are introduced in the following subsections:
· Planning Request Service (PRS);
· Plan Distribution Service (PDS);
· Plan Execution Control Service (PECS);
· Plan Information Management Service (PIMS);
· Plan Edit Service (PES).
A compliant MPS system may support only a subset of these services. None of the services is mandatory; any subset can be supported.
Each service comprises a set of service operations that the service consumer can invoke on the service provider. Service operations reference the MO objects defined in the MPS information model. Each service operation follows one of the standard MO MAL interaction patterns that may comprise multiple messages flowing in both directions between service consumer and provider. Where not fully defined within the MAL, the body of these messages forms part of the service specification and are defined in terms of MAL Attribute data types and/or data structures defined in the MPS information model.
[bookmark: _Toc184817169][bookmark: _Toc185335784][bookmark: _Toc185336617][bookmark: _Toc185341336][bookmark: _Toc185348946][bookmark: _Toc185428054][bookmark: _Toc185497695][bookmark: _Toc185498895][bookmark: _Toc185500095][bookmark: _Toc185501296][bookmark: _Toc185502501][bookmark: _Toc186030761][bookmark: _Toc186031967][bookmark: _Toc186033173][bookmark: _Toc186045671][bookmark: _Toc186456431][bookmark: _Toc186470076][bookmark: _Toc186644587]Service operations are grouped into capability sets. A compliant MPS system may only support a subset of capability sets for each supported service.
[bookmark: _Ref62235854][bookmark: _Toc140093784]Planning Request Service
The Planning Request Service is offered by the planning function of an MPS system to enable its users to submit, cancel, and modify planning requests, as well as to receive feedback on their status. The service may be used by another planning function in a hierarchical or distributed MPS system, or by an MPS system user.
Planning requests are defined in 4.2.5 and may include a set of requested planning activities or an existing plan (the output of a planning function in a hierarchical or distributed MPS system).
[bookmark: _Toc184817173][bookmark: _Toc185335788][bookmark: _Toc185336621][bookmark: _Toc185341340][bookmark: _Toc185348950][bookmark: _Toc185428058][bookmark: _Toc185497699][bookmark: _Toc185498899][bookmark: _Toc185500099][bookmark: _Toc185501300][bookmark: _Toc185502505][bookmark: _Toc186030765][bookmark: _Toc186031971][bookmark: _Toc186033177][bookmark: _Toc186045675][bookmark: _Toc186456435][bookmark: _Toc186470080][bookmark: _Toc186644591]If a Plan is used as the body of the request, this can either be embedded within the request, or passed by reference. If passed by reference, the Plan Distribution Service can be used to retrieve the Plan. In a hierarchical or distributed planning system, the domain can be used to identify where to retrieve it from.
The following capability sets and service operations are defined:
Table 2‑1	: Planning Request Service Capability Sets and Operations
	Capability Set
	Mandatory
	Description

	1
	Yes
	Submit Planning Request, obtain a list of Planning Request Summaries and retrieve Planning Request Status.

	2
	No
	Cancel Planning Request

	3
	No
	Update (modify) Planning Request

	4
	No
	Subscribe to Planning Request Status Updates

	5
	No
	Retrieve Planning Requests

[bookmark: _Toc184817200][bookmark: _Toc185335815][bookmark: _Toc185336648][bookmark: _Toc185341367][bookmark: _Toc185348977][bookmark: _Toc185428085][bookmark: _Toc185497726][bookmark: _Toc185498926][bookmark: _Toc185500126][bookmark: _Toc185501327][bookmark: _Toc185502532][bookmark: _Toc186030792][bookmark: _Toc186031998][bookmark: _Toc186033204][bookmark: _Toc186045702][bookmark: _Toc186456462][bookmark: _Toc186470107][bookmark: _Toc186644618]
	Operation
	Description
	 Capability Set

	submitRequest
	Send planning request to service provider, optionally based on a planning request definition. The identity of the planning request instance created is returned.
	1

	getRequestSummaries
	Request a list of available planning requests from the service provider, subject to a specified filter. The returned list is provided as a set of summaries comprising identity, descriptive header fields and status for each planning request instance passing the filter.
	

	getRequestStatus
	Obtain the current status of one or more specified planning requests. The response is a list of planning request status updates, containing the status and other dynamic attributes of each requested planning request instance.
	

	cancelRequest
	Send cancellation of a previously submitted planning request to service provider.
	2

	updateRequest
	Send update of a previously submitted planning request to service provider. A new version of the planning request instance is created and its identity is returned.
	3

	monitorRequestStatus
	Subscribe to receive planning request status updates for a filtered set of planning request instances. The consumer is notified of updates to the status and other dynamic attributes of subscribed planning request instances.
	4

	getRequest
	Retrieve the full content of one or more specified planning request instances.
	5

[bookmark: _Ref63533121][bookmark: _Toc140093785]Plan Distribution Service
The Plan Distribution Service is offered by the planning function of an MPS system to enable its users to obtain the plans output by it, as well as to receive feedback on their status. The service may be used by another planning function in a hierarchical or distributed MPS system, or by an MPS system user. Plans are defined in 4.2.6.
The service does not provide the capability to control the planning function itself or to generate plans. This capability can be supported if the planning function exposes a standard set of MO Monitoring & Control services. Submission of plans to a plan execution function is supported by the Plan Execution Control Service (see 2.5.4).
The following capability sets and service operations are defined:
Table 2‑2	: Plan Distribution Service Capability Sets and Operations
	Capability Set
	Mandatory
	Description

	1
	Yes
	List available Plans and their latest status, obtain specified Plans or their latest status.

	2
	No
	Subscribe to updates in Plan status.

	3
	No
	Subscribe to receive new Plans

	4
	No
	Query to retrieve filtered set of Plans

	5
	No
	Retrieve a partial Plan, based on specified criteria

[bookmark: _Toc184817260][bookmark: _Toc185335875][bookmark: _Toc185336708][bookmark: _Toc185341427][bookmark: _Toc185349037][bookmark: _Toc185428145][bookmark: _Toc185497786][bookmark: _Toc185498986][bookmark: _Toc185500186][bookmark: _Toc185501387][bookmark: _Toc185502592][bookmark: _Toc186030852][bookmark: _Toc186032058][bookmark: _Toc186033264][bookmark: _Toc186045762][bookmark: _Toc186456522][bookmark: _Toc186470167][bookmark: _Toc186644678]
	Operation
	Description
	Capability Set

	getPlanSummaries
	Request a list of available plans from the service provider, subject to a specified filter. The returned list is provided as a set of summaries comprising identity, descriptive header fields and status for each plan passing the filter.
	1

	getPlan
	Retrieve the full content of one or more specified plans.
	

	getPlanStatus
	Obtain the current status of one or more specified plans. The response is a list of plan updates, containing the status and other dynamic attributes of each requested plan.
	

	monitorPlanStatus
	Subscribe to receive plan updates for a filtered set of plans. The consumer is notified of updates to the status and other dynamic attributes of subscribed plans.
	2

	monitorPlan
	Subscribe to receive a filtered set of plans, receiving the full content of the plan when published by the provider.
	3

	queryPlan
	Query to receive a filtered set of plans, based on an extended set of filter criteria, including on the planning activities and events contained within a plan.
	4

	getPartialPlan
	Retrieve a subset of a plan, covering a more restricted period or only containing selected planning activities.
	5

[bookmark: _Ref54009391][bookmark: _Toc140093786]Plan Execution Control Service
The Plan Execution Control Service is offered by an MPS system’s plan execution function to enable its users to submit (and revoke) plans for execution; to control their execution at plan, sub-plan, and activity levels; and to receive feedback on their execution status.
The Plan Execution Control Service may be used by a planning function, or by an MPS system user responsible for mission operations.
Plans are defined in 4.2.6, including the state model for plans to which the operations of the service correlate.
Sub-plans are not defined as an MO object in the MPS information model, but are specified by an Identifier associated with the constituent ActivityInstances contained in a Plan. This can be used to sub-divide a Plan based on domain (spacecraft or subsystem), operational responsibility, or another criterion. Each ActivityInstance can only be associated with a single sub-plan. Control may be exercised via the service at the level of sub-plans.
The following capability sets and service operations are defined:
Table 2‑3	: Plan Execution Control Service Capability Sets and Operations
	Capability Set
	Mandatory
	Description

	1
	Yes
	Submit Plan for execution; revoke Plan previously submitted; and retrieve execution status of Plans.

	2
	No
	Activate and deactivate execution of Plans.

	3
	No
	Subscribe to receive execution status of Plans (at the level of the Plan).

	4
	No
	Subscribe to receive detailed execution status of Plans (at the level of contained planning activities, events and resources).

	5
	No
	Activate and deactivate execution of Sub-plans, and retrieve execution status of Sub-plans.

	6
	No
	Subscribe to receive execution status of Sub-plans.

	7
	No
	Suspend and resume execution of ActivityInstances.

	8
	No
	Retrieve a detailed report on the execution status of ActivityInstances.

[bookmark: _Toc184817334][bookmark: _Toc185335949][bookmark: _Toc185336782][bookmark: _Toc185341501][bookmark: _Toc185349111][bookmark: _Toc185428219][bookmark: _Toc185497860][bookmark: _Toc185499060][bookmark: _Toc185500260][bookmark: _Toc185501461][bookmark: _Toc185502666][bookmark: _Toc186030926][bookmark: _Toc186032132][bookmark: _Toc186033338][bookmark: _Toc186045836][bookmark: _Toc186456596][bookmark: _Toc186470241][bookmark: _Toc186644752]
	Operation
	Description
	Capability Set

	submitPlan
	Send a plan to a plan execution function, making it available for execution.
Note – A plan may be a patch plan.
	1

	revokePlan
	Instructs a plan execution function to revoke a previously submitted Plan, making it unavailable for execution.
	

	getPlanStatus
	Retrieve the current execution status of plans.
	

	activatePlan
	Enables the execution of specified plans.
	2

	deactivatePlan
	Disables the execution of a specified plans, subject to an implementation specific deactivationMode.
	

	monitorPlanExecution
	Subscribe to receive plan updates for a filtered set of plans. The consumer is notified of updates to the status and other dynamic attributes of subscribed plans.
	3

	monitorPlanExecutionDetail
	Subscribe to receive updates that report changes in the detailed execution status for a filtered set of plan contents at the level of planning activities, events and resources.
	4

	activateSubPlan
	Enables the execution of planning activities associated with specified sub-plans.
	5

	deactivateSubPlan
	Disables the execution of planning activities associated with specified sub-plans, subject to an implementation specific deactivationMode.
	

	getSubPlanStatus
	Retrieves the current status of sub-plans.
	

	monitorSubPlanExecution
	Subscribe to receive updates on execution status of sub-plans.
	6

	SuspendActivity
	Request suspension of the execution of selected activities in one or more plans without changing the state of the plan(s), subject to an implementation specific suspensionMode.
	7

	ResumeActivity	Comment by Quinten Van Woerkom: DLR-011
	Requests the resumption of previously suspended activities in one or more plans without changing the state of the plan(s).
	

	getActivityStatus
	Requests a detailed report on the status of activities at activity, sub-plan or tag level
	8

[bookmark: _Ref64313062][bookmark: _Toc140093787]Plan Information Management Service
The Plan Information Management Service is offered by the planning function of an MPS system to enable its users to list and retrieve available definitions for MPS data items, including: planning requests, planning events, planning activities, planning resources, and MPS system configuration data. The service may also be offered by a plan execution function.
The service does not support the transfer of planning configuration data to planning or plan execution functions, which is outside the scope of the current MPS services. Nor does it support the insertion or modification of MPS data item definitions.
The structure of the various MPS data item definitions is given in 4.2.
The following capability sets and service operations are defined, each pertaining to a specific type of MPS data item:
Table 2‑4	: Plan Information Management Service Capability Sets & Operations
	Capability Set
	Mandatory
	Description

	1
	No
	List and retrieve planning RequestDefinitions

	2
	No
	List and retrieve planning EventDefinitions

	3
	No
	List and retrieve planning ActivityDefinitions

	4
	No
	List and retrieve planning ResourceDefinitions

	5
	No
	Retrieve MPS system configuration data [MPSSystemConfig]

[bookmark: _Toc184817420][bookmark: _Toc185336035][bookmark: _Toc185336868][bookmark: _Toc185341587][bookmark: _Toc185349197][bookmark: _Toc185428305][bookmark: _Toc185497946][bookmark: _Toc185499146][bookmark: _Toc185500346][bookmark: _Toc185501547][bookmark: _Toc185502752][bookmark: _Toc186031012][bookmark: _Toc186032218][bookmark: _Toc186033424][bookmark: _Toc186045922][bookmark: _Toc186456682][bookmark: _Toc186470327][bookmark: _Toc186644838]
	Operation
	Description
	Capability Set

	listRequestDefs
	Request a filtered list of available RequestDefinitions.
	1

	getRequestDefs
	Retrieve a set of available RequestDefinitions.
	

	listEventDefs
	Request a filtered list of available EventDefinitions
	2

	getEventDefs
	Retrieve a set of available EventDefinitions.
	

	listActivityDefs
	Request a filtered list of available ActivityDefinitions
	3

	getActivityDefs
	Retrieve a set of available ActivityDefinitions.
	

	listResourceDefs
	Request a filtered list of available Resource definitions
	4

	getResourceDefs
	Retrieve a set of available Resource definitions
	

	getSystemConfig
	Retrieves system configuration data relating to the MPS system.
	5

[bookmark: _Ref64366932][bookmark: _Toc140093788]Plan Edit Service
The Plan Edit Service is offered by an MPS system’s plan execution function to enable its users to modify plans that have already been submitted for execution. It allows an external user or function to update the status of the plan; insert, modify, or delete planning activity and event instances; update the value of resources; and apply a time shift to a plan.
This may be used by expert mission operations users in a non-nominal operational scenario to modify a plan that is executing or about to execute in order to avert or recover from a failure. Where there is sufficient time, it is recommended to re-plan using the nominal planning process rather than to edit the plan directly, as this circumvents any constraint checking performed by the planning function.
Another use of the service is for a third party functions to update elements of the plan to reflect information available in near-real-time. Examples are:
· Update of the input arguments of a planned activity instance to fine tune its behaviour in response to currently observed status.
· Update of a predicted planning event instance that is already contained within a plan, with refined timing or other details.
· The injection of instances of planning events. These may be detected in real-time and correlate to potential (rather than predicted) events for which a planned response is available. An example is a ‘Target of Opportunity’ event that may be notified to an astronomical observatory mission.
· Update of a resource value by an external modelling function to more accurately reflect currently observed status.
Plans are defined in 4.2.6, while their constituent planned items are defined in 4.2.2 (planning activities), 4.2.3 (planning events) and 4.2.4 (planning resources).
The following capability sets and service operations are defined:
Table 2‑5	: Plan Edit Service Capability Sets and Operations
	Capability Set
	Mandatory
	Description

	1
	Yes
	Update Plan status.

	2
	[bookmark: _Toc184817477][bookmark: _Toc185336092][bookmark: _Toc185336925][bookmark: _Toc185341644][bookmark: _Toc185349254][bookmark: _Toc185428362][bookmark: _Toc185498003][bookmark: _Toc185499203][bookmark: _Toc185500403][bookmark: _Toc185501604][bookmark: _Toc185502809][bookmark: _Toc186031069][bookmark: _Toc186032275][bookmark: _Toc186033481][bookmark: _Toc186045979][bookmark: _Toc186456739][bookmark: _Toc186470384][bookmark: _Toc186644895]Yes
	Insert or Delete ActivityInstances or EventInstances.

	3
	No
	Update ActivityInstances or EventInstances.

	4
	No
	Update Resource value.

	5
	No
	Update Resource profile.

	6
	No
	Apply a time shift to a Plan.

[bookmark: _Toc184817496][bookmark: _Toc185336111][bookmark: _Toc185336944][bookmark: _Toc185341663][bookmark: _Toc185349273][bookmark: _Toc185428381][bookmark: _Toc185498022][bookmark: _Toc185499222][bookmark: _Toc185500422][bookmark: _Toc185501623][bookmark: _Toc185502828][bookmark: _Toc186031088][bookmark: _Toc186032294][bookmark: _Toc186033500][bookmark: _Toc186045998][bookmark: _Toc186456758][bookmark: _Toc186470403][bookmark: _Toc186644914]
	Operation
	Description
	Capability Set

	updatePlanStatus
	Update plan status or isAlternate flag.
	1

	insertActivity
	Insert a new ActivityInstance into a plan.
	2

	insertEvent
	Inject a new EventInstance into a plan.
	

	deleteActivity
	Delete a specified ActivityInstance from a plan.
	

	deleteEvent
	Delete a specified EventInstance from a plan.
	

	updateActivity
	Update a specified ActivityInstance in a plan.
	3

	updateEvent
	Update a specified EventInstance in a plan.
	

	updateResource
	Make a discrete update to the value of a specified Resource at a specified time.
	4

	updateResourceProfile
	Update the profile of a specified Resource over time.
	5

	applyTimeShift
	Apply a time shift to a specified plan or its sub-plans.
	6

[bookmark: _Ref68013881][bookmark: _Toc140093789][bookmark: _Toc161745097]Optional Elements of the Recommended Standard
The MPS services specification defines a substantial MPS information model and five services. Compliance of an individual mission planning system deployment to the MPS service specification does not imply that either the complete set of services specified here or the full MPS information model has to be supported.
The level of compliance of a specific deployment to the Recommended Standard can be selected as follows:
a) the set of MPS services supported;
b) the capability sets supported within each MPS service;
c) the optional elements of the MPS information model supported.
The supported capabilities of a service provider can be made available to consumers via the MO Common Directory Service (reference [D3]). An entry in the directory is made for each MPS service supported by each MPS service provided, which lists the supported capability sets for that service.
The elements of the MPS information model are grouped into element sets detailed in table 2‑6 below. Of these, only the Core Features are mandatory, subject to the further caveat that only those MPS information model elements exposed by supported capability sets of MPS services need to be implemented. Optional element sets are shown with a grey background.
At the interface level, a deployment must support all data structures that may appear within the messages of supported service operations. However, the deployment is not required to generate any data structure from an element set it does not support. If the deployment receives a message containing a data structure from an optional element set it does not support, it can either ignore it or reject the service operation with an UNSUPPORTED error.
It should be noted that support for Resource Constraints is dependent on support for Resources, and that support for Geometric Constraints is dependent on support for Position & Direction types.
The optional element sets of the MPS information model are orthogonal to the capability sets of the MPS services. For example, a Planning Request Service provider may support the submission of planning requests, but not the representation of Basic Constraints within those planning constraints.
[bookmark: _Toc184817548][bookmark: _Toc185336163][bookmark: _Toc185336996][bookmark: _Toc185341715][bookmark: _Toc185349325][bookmark: _Toc185428433][bookmark: _Toc185498074][bookmark: _Toc185499274][bookmark: _Toc185500474][bookmark: _Toc185501675][bookmark: _Toc185502880][bookmark: _Toc186031140][bookmark: _Toc186032346][bookmark: _Toc186033552][bookmark: _Toc186046050][bookmark: _Toc186456810][bookmark: _Toc186470455][bookmark: _Toc186644966]
Table 2‑6	: Mandatory and Optional Elements of the Information Model
	#
	Information Model Element Set
	MO Objects
	MPS Data Types
	Constraints

	1
	Core Features
(Mandatory)
	Planning Requests
Plans
Planning Activities
Planning Events
MPSSystemConfig
	Base Data Types (excl. Position & Direction)
Expressions
Additional MPS Data Types
Arguments
Time & Event Triggers
Time & Event Repetitions
	Constraint Expression

	2
	Basic Constraints
	[bookmark: _Toc184817564][bookmark: _Toc185336179][bookmark: _Toc185337012][bookmark: _Toc185341731][bookmark: _Toc185349341][bookmark: _Toc185428449][bookmark: _Toc185498090][bookmark: _Toc185499290][bookmark: _Toc185500490][bookmark: _Toc185501691][bookmark: _Toc185502896][bookmark: _Toc186031156][bookmark: _Toc186032362][bookmark: _Toc186033568][bookmark: _Toc186046066][bookmark: _Toc186456826][bookmark: _Toc186470471][bookmark: _Toc186644982]
	[bookmark: _Toc184817565][bookmark: _Toc185336180][bookmark: _Toc185337013][bookmark: _Toc185341732][bookmark: _Toc185349342][bookmark: _Toc185428450][bookmark: _Toc185498091][bookmark: _Toc185499291][bookmark: _Toc185500491][bookmark: _Toc185501692][bookmark: _Toc185502897][bookmark: _Toc186031157][bookmark: _Toc186032363][bookmark: _Toc186033569][bookmark: _Toc186046067][bookmark: _Toc186456827][bookmark: _Toc186470472][bookmark: _Toc186644983]
	Temporal Constraints
Sequential Constraint
Exclusion Constraint

	3
	Plan Revisions
	Patch Plans
	Plan Revisions
	[bookmark: _Toc184817572][bookmark: _Toc185336187][bookmark: _Toc185337020][bookmark: _Toc185341739][bookmark: _Toc185349349][bookmark: _Toc185428457][bookmark: _Toc185498098][bookmark: _Toc185499298][bookmark: _Toc185500498][bookmark: _Toc185501699][bookmark: _Toc185502904][bookmark: _Toc186031164][bookmark: _Toc186032370][bookmark: _Toc186033576][bookmark: _Toc186046074][bookmark: _Toc186456834][bookmark: _Toc186470479][bookmark: _Toc186644990]

	4
	Resources
	Resources
	Resource Profiles
Plan Resources
	[bookmark: _Toc184817578][bookmark: _Toc185336193][bookmark: _Toc185337026][bookmark: _Toc185341745][bookmark: _Toc185349355][bookmark: _Toc185428463][bookmark: _Toc185498104][bookmark: _Toc185499304][bookmark: _Toc185500504][bookmark: _Toc185501705][bookmark: _Toc185502910][bookmark: _Toc186031170][bookmark: _Toc186032376][bookmark: _Toc186033582][bookmark: _Toc186046080][bookmark: _Toc186456840][bookmark: _Toc186470485][bookmark: _Toc186644996]

	5
	Resource Constraints
(requires Resources)
	
	[bookmark: _Toc184817582][bookmark: _Toc185336197][bookmark: _Toc185337030][bookmark: _Toc185341749][bookmark: _Toc185349359][bookmark: _Toc185428467][bookmark: _Toc185498108][bookmark: _Toc185499308][bookmark: _Toc185500508][bookmark: _Toc185501709][bookmark: _Toc185502914][bookmark: _Toc186031174][bookmark: _Toc186032380][bookmark: _Toc186033586][bookmark: _Toc186046084][bookmark: _Toc186456844][bookmark: _Toc186470489][bookmark: _Toc186645000]
	Resource Constraints
Argument Constraint
Effects

	6
	Position & Direction
	[bookmark: _Toc184817587][bookmark: _Toc185336202][bookmark: _Toc185337035][bookmark: _Toc185341754][bookmark: _Toc185349364][bookmark: _Toc185428472][bookmark: _Toc185498113][bookmark: _Toc185499313][bookmark: _Toc185500513][bookmark: _Toc185501714][bookmark: _Toc185502919][bookmark: _Toc186031179][bookmark: _Toc186032385][bookmark: _Toc186033591][bookmark: _Toc186046089][bookmark: _Toc186456849][bookmark: _Toc186470494][bookmark: _Toc186645005]
	Position & Direction Types
Location, Pointing and Angle Triggers
Location, Pointing and Angle Repetitions
	[bookmark: _Toc184817589][bookmark: _Toc185336204][bookmark: _Toc185337037][bookmark: _Toc185341756][bookmark: _Toc185349366][bookmark: _Toc185428474][bookmark: _Toc185498115][bookmark: _Toc185499315][bookmark: _Toc185500515][bookmark: _Toc185501716][bookmark: _Toc185502921][bookmark: _Toc186031181][bookmark: _Toc186032387][bookmark: _Toc186033593][bookmark: _Toc186046091][bookmark: _Toc186456851][bookmark: _Toc186470496][bookmark: _Toc186645007]

	7
	Geometric Constraints
(requires Pos. & Dir.)
	
	[bookmark: _Toc184817593][bookmark: _Toc185336208][bookmark: _Toc185337041][bookmark: _Toc185341760][bookmark: _Toc185349370][bookmark: _Toc185428478][bookmark: _Toc185498119][bookmark: _Toc185499319][bookmark: _Toc185500519][bookmark: _Toc185501720][bookmark: _Toc185502925][bookmark: _Toc186031185][bookmark: _Toc186032391][bookmark: _Toc186033597][bookmark: _Toc186046095][bookmark: _Toc186456855][bookmark: _Toc186470500][bookmark: _Toc186645011]
	Geometric Constraints

	8
	Functions
	Functions
	[bookmark: _Toc184817599][bookmark: _Toc185336214][bookmark: _Toc185337047][bookmark: _Toc185341766][bookmark: _Toc185349376][bookmark: _Toc185428484][bookmark: _Toc185498125][bookmark: _Toc185499325][bookmark: _Toc185500525][bookmark: _Toc185501726][bookmark: _Toc185502931][bookmark: _Toc186031191][bookmark: _Toc186032397][bookmark: _Toc186033603][bookmark: _Toc186046101][bookmark: _Toc186456861][bookmark: _Toc186470506][bookmark: _Toc186645017]
	Function Constraint

The following table summarizes the optional capability sets and information model elements for all MPS services. Optional capabilities and elements are shown with a grey background. For each service capability set, applicability of information model element sets are shown as follows:
	Required;
O	Optional;
[bookmark: _Toc184817605][bookmark: _Toc185336220][bookmark: _Toc185337053][bookmark: _Toc185341772][bookmark: _Toc185349382][bookmark: _Toc185428490][bookmark: _Toc185498131][bookmark: _Toc185499331][bookmark: _Toc185500531][bookmark: _Toc185501732][bookmark: _Toc185502937][bookmark: _Toc186031197][bookmark: _Toc186032403][bookmark: _Toc186033609][bookmark: _Toc186046107][bookmark: _Toc186456867][bookmark: _Toc186470512][bookmark: _Toc186645023]-	Not Applicable.
If a service capability set is supported, then the information model element sets indicated with a must also be supported. If the service capability set operations include messages that contain data structures from optional element sets, then this is shown with an O. If the service operations do not contain data structures from optional element sets, then this is shown as not applicable. An indication is also given of which service specific data structures are relevant to the operations of each service capability set. It should be noted this is shown at the level of the MPS data items defined in 4.2: only the specific data structures used in the messages of the associated service operations are required.
Table 2‑7	: Optional Service Capabilities
	Services
	Information Model

	Service
	Capability Set
	Core Features
	Basic Constraints
	Plan Revisions
	Resources
	Position & Direction
	Functions
	MPS Data Items for which MO Objects or Service Data Structures are used in Service Operations

	PRS
	1: Submit Request / Status
	
	O
	-
	O
	O
	O
	Planning Request

	
	2: Cancel Request
	
	-
	-
	-
	-
	-
	[bookmark: _Toc184817638][bookmark: _Toc185336253][bookmark: _Toc185337086][bookmark: _Toc185341805][bookmark: _Toc185349415][bookmark: _Toc185428523][bookmark: _Toc185498164][bookmark: _Toc185499364][bookmark: _Toc185500564][bookmark: _Toc185501765][bookmark: _Toc185502970][bookmark: _Toc186031230][bookmark: _Toc186032436][bookmark: _Toc186033642][bookmark: _Toc186046140][bookmark: _Toc186456900][bookmark: _Toc186470545][bookmark: _Toc186645056]

	
	3: Update Request
	
	O
	-
	O
	O
	O
	Planning Request

	
	4: Subscribe to Status
	
	-
	-
	-
	-
	-
	Planning Request

	
	5: Retrieve Request
	
	O
	-
	O
	O
	O
	Planning Request

	PDS
	1: List & Obtain Plans
	
	O
	O
	O
	O
	O
	Plan

	
	2: Subscribe to Status
	
	-
	-
	-
	-
	-
	Plan

	
	3: Subscribe to Plans
	
	O
	O
	O
	O
	O
	Plan

	
	4: Query Plans
	
	O
	O
	O
	O
	O
	Plan

	
	5: Retrieve Partial Plan
	
	O
	O
	O
	O
	O
	Plan

	PECS
	1: Submit Plan / Status
	
	O
	O
	O
	O
	O
	Plan

	
	2: Plan Activation
	
	-
	O
	-
	-
	-
	Plan

	
	3: Subscribe to Status
	
	-
	-
	-
	-
	-
	Plan

	
	4: Subscribe to Detail
	
	-
	-
	O
	O
	-
	Planning Activity/Event/Resource

	
	5: SubPlan Activation
	
	-
	-
	-
	-
	-
	Plan (SubPlan)

	
	6: Subscribe to SubPlans
	
	-
	-
	-
	-
	-
	Plan (SubPlan)

	
	7: Activity Suspension
	
	-
	-
	-
	-
	-
	Planning Activity

	
	8: Activity Status
	
	-
	-
	-
	-
	-
	Planning Activity

	PIMS
	1: Request Definitions
	
	O
	-
	O
	O
	O
	Planning Request

	
	2: Event Definitions
	
	-
	-
	-
	-
	-
	Planning Event

	
	3: Activity Definitions
	
	O
	-
	O
	O
	O
	Planning Activity

	
	4: Resource Definitions
	
	-
	-
	
	-
	-
	Planning Resource

	
	5: MPSSystemConfig
	
	-
	-
	-
	O
	-
	MPSSystemConfig

	PES
	1: Update Plan Status
	
	-
	-
	-
	-
	-
	Plan

	
	2: Insert/Delete Activity/Event
	
	O
	-
	O
	O
	O
	Planning Activity/Event

	
	3: Update Activity/Event
	
	-
	-
	-
	O
	-
	Planning Activity/Event

	
	4: Update Resource
	
	-
	-
	
	-
	-
	Planning Resource

	
	5: Update Resource Profile
	
	-
	-
	
	-
	-
	Planning Resource

	
	6: Apply Time Shift
	
	-
	-
	-
	-
	-
	Plan

[bookmark: _Toc184817887][bookmark: _Toc185336502][bookmark: _Toc185337335][bookmark: _Toc185342054][bookmark: _Toc185349664][bookmark: _Toc185428772][bookmark: _Toc185498413][bookmark: _Toc185499613][bookmark: _Toc185500813][bookmark: _Toc185502014][bookmark: _Toc185503219][bookmark: _Toc186031479][bookmark: _Toc186032685][bookmark: _Toc186033891][bookmark: _Toc186046389][bookmark: _Toc186457149][bookmark: _Toc186470794][bookmark: _Ref66951037][bookmark: _Toc140093819][bookmark: _Toc186645305]
[bookmark: _Toc161745098][bookmark: _Ref165022284]
	Page 2-19ix	
[bookmark: _Toc165036568][bookmark: _Ref186642376][bookmark: _Ref186642389][bookmark: _Toc186645306]Overview
[bookmark: _Toc165036569][bookmark: _Toc186645307]General
This section introduces the concepts behind the MPS services. It has the following main sections:
· Mission Planning & Scheduling Concept;
· Relationship to Mission Operations Services;
· MPS Information Model Overview;
· MPS Services Overview;
· Optional Elements of the Recommended Standard.
[bookmark: _Toc165036570][bookmark: _Toc186645308]Mission Planning & Scheduling Concept
[image: A diagram of a plan

Description automatically generated]
[bookmark: _Ref186465349][bookmark: _Toc165036607][bookmark: _Toc186645511]Figure 2‑1	: Interfaces involved in Mission Planning
Mission Planning & Scheduling encompasses application level functions of a space mission system that may be distributed across multiple organizations and physical nodes, both in the space and ground segments. Standardization in this area concerns only the interaction between functions at the application level, and not the mission planning functions themselves.	Comment by Quinten Van Woerkom: CNES-014
The scope of standardization includes both the format/model of data exchanged, as well as the semantics of the interactions for their exchange, captured by the associated service level interfaces.
A generalized view of the functions involved in mission planning and their interactions with other functions is given in figure 2‑12‑12‑1, which is based on the Reference Architecture for Space Data Systems (RASDS) notation (see reference [7]).
The entities shown in blue are in the functional area of mission planning. The entities shown in different colours belong to other functional areas of mission operations, such as monitoring and control, navigation, and the ground station and communication network.
The following mission planning functions are identified:
· Planning User: a generic function that is responsible for submitting requests to the planning function. It may also receive feedback on the status of planning requests and the generated plans. It is not a planning function itself, but is a user of planning data and services. A deployment in an actual space mission may contain multiple types of planning user function, some of which correspond to other mission operations functions within the space mission system.
· Planning: the function responsible for performing mission planning. Internally it may be hierarchically organized and/or distributed. Planning requests are received from multiple Planning users (or other mission planning functions) and feedback on their status is provided. The output of the planning function is plans, which may be retrieved by planning users and submitted to plan execution functions or follow-up planning functions or entitities (via planning requests). Planning may also control the execution of plans via the plan execution functions. Planning is itself a user of the navigation function and may receive predicted planning events, as a future standard Navigation Event Message (NEM) (reference [D5]) or in a custom format, that are related to orbital information, attitude, or slew times; and negotiates the scheduling of ground station support via Cross Support Services (CSS) services (reference [D6]).
· Plan Execution: the function responsible for executing a plan (or part of it). There may be multiple plan execution functions distributed between space and ground segments. The plan execution function may represent actual or simulated execution of plans to support the planning function on-board or on the ground. It is not a planning function itself, but it does support a common model of the plan in its interface with planning. It receives or retrieves distributed plans, allows external control of the plan execution process, and provides feedback on execution status of the plan. Plan execution may use underlying mission control services to effect the execution of planned activities. Mission controllers may interact with plan execution functions to control the plan execution process and to edit plans. External functions may also edit plans, for example to update planning events or resources.
It should be noted that in an actual deployment, there may be multiple copies of all the functions identified in figure 2‑12‑1.
Figure 2‑12‑1 shows MPS services as blue lines. Interactions supported by other CCSDS Recommended Standards are shown in other colours. The circle at one end indicates which function is the service provider: Planning is the service provider for Planning Request and Plan Distribution services. Plan execution is the service provider for Plan Execution Control and Plan Edit services. Both functions can provide the Plan Information Management service. These services are introduced in section 2.5 below and formally defined in section 3.
The identified functions may be distributed over a number of distinct entities (organizations and systems) within a given space mission system. There is not a fixed set of such entities, but typical examples include:
· User Community / PIs;
· Science/Payload Operations Centre;
· Payload Processing Centre;
· Mission Operations Centre;
· Flight Dynamics / Navigation;
· Ground Tracking Network;
· Uncrewed Spacecraft;	Comment by Quinten Van Woerkom: NASA-015
· Surface Lander / Rover;
· Human Space Vehicle.	Comment by Quinten Van Woerkom: NASA-015
[image: A diagram of a mission control

Description automatically generated]	Comment by Quinten Van Woerkom: NASA-015
[bookmark: _Toc165036608][bookmark: _Toc186645512]Figure 2‑2	: Entities and Functions Involved in Mission Planning
As an example, figure 2‑22‑22‑22‑22‑22‑2 illustrates potential deployment of each of the functions identified in figure 2‑12‑1 to the entities listed above. The circles indicate where each of the functions are typically deployed in existing systems, or where they could potentially be deployed in the future. The arrows indicate the interactions in a typical current deployment, but the potential distribution of functions indicated by the circles shows that all the functional interfaces shown in figure 2‑12‑1 can be exposed to the boundaries between entities. It is where the interactions between the functions are exposed across one or more boundaries between entities that there is a need for standardization within CCSDS as a potentially interoperable interface between agencies.
The interactions within the scope of mission planning and scheduling standardization can be grouped into five services:
· Planning Request: submission of planning requests to a planning function, associated responses and their subsequent management and status feedback;
· Plan Distribution: distribution and access to plans generated by the planning function;
· Plan Execution Control: submission of plans to a plan execution function, management of the execution process, and status feedback;
· Plan Information Management: access to planning data definitions;
· Plan Edit: direct manipulation of plans outside the planning process, either to update planning events and resources with the latest information or for emergency intervention.
A common MPS information model applies to the planning requests and plans transferred or Referenced by these services and also to the common configuration data required by service providers and consumers to interpret the planning requests and plans. This information model is introduced in section 2.4 below and the associated data structures are formally defined in section 4.
For those organizations that do not wish to standardize the service level interaction, but only to standardize the data format used for the exchange of planning requests and plans, standard XML-based file formats are defined in section 7.
[bookmark: _Toc165036571][bookmark: _Toc186645309]Relationship To Mission Operations Services
The MO Services Concept provides a standard framework for the specification of end-to-end services between mission operations applications (reference [D1]). MO services are defined in terms of a MAL (reference [2]), which provides a means of specifying data and service interfaces in an implementation, encoding, and communication agnostic manner.
Figure 2‑32‑3 is based on the CCSDS Application and Support Layer Architecture (reference [D9]) and shows the generic protocol stack for the MPS services.
[image: A screenshot of a computer game

Description automatically generated]	Comment by Quinten Van Woerkom: CNES-018
[bookmark: _Toc165036609][bookmark: _Toc186645513]Figure 2‑3	: MO MPS Services Generic Protocol Stack
The MO MAL defines:
· A set of MAL data types that can be used to represent the individual data fields of message structures;
· A set of MAL Interaction patterns that correspond to the message exchange behaviour of individual service operations.
The abstract specification of the service interfaces and data can be mapped to a concrete implementation through:
d) a technology binding that defines how the abstract messages (composed of a sequence of MAL Attributes) are encoded in a concrete format (e.g., binary, XML, or ASCII);
e) a technology binding that defines how the resulting messages are carried over a concrete message transport protocol by mapping the standard MAL interaction patterns to that protocol;
f) a language binding that transforms the abstract service interface into a concrete API for a given programming language (e.g., Java, C++ or Python).
Figure 2‑32‑3 illustrates a generic deployment of MPS services using the MO service framework with service consumer and provider functions hosted on different deployment nodes. MPS specific functions and protocol layers are shown in blue; elements of the ‘vanilla’ MO framework in yellow; and underlying communications infrastructure layers in tan (light orange). The application level MPS service interaction is shown by the direct interface between service provider and consumer functions, carrying MPS service messages defined in terms of data structures specified in the MPS information model.
Adopting a single MAL technology binding in any specific deployment ensures on-the-wire interoperability. Transfer protocol equates to the messaging or file transfer service used over the underlying Transport and physical Data Link Layers. The diagram illustrates how different language bindings can be used by provider and consumer for the service API, as this does not affect the wire level protocol.
It is noted that while the MAL may be implemented as a specific software layer for reasons of maintainability and reusability, it is not a requirement to do so. The MAL may be used as an abstract specification that enables transformation of the service specification by the applied technology bindings into a concrete implementation of that service with no distinct MAL layer. The MO MPS, MO MAL, and MAL technology binding layers in the diagram are effectively combined into a single software component. This is an important distinction for deployment contexts where the implementation is required to be both compact and efficient, such as on board a spacecraft.
An MO object is an entity defined within the information model of an MO compliant service specification that has a unique identity enabling it to be referenced by other MO objects and in the body of MO service messages. The identity of an MO object is defined by its type and unique key, scoped by its area, domain and optionally by a version. The specification of a service-specific MO object class includes a custom set of references to other MO objects that capture the relationships between those objects. In the context of the MPS services, MO objects are defined to represent planning requests, plans and the planning activities, planning events, and resources that they reference.
An MO application-level service specification comprises a set of operations that the service consumer may invoke on the service provider. Each operation is mapped to a standard interaction pattern defined by the MAL and provides the service-specific body of the constituent messages.
[bookmark: _Toc165036572][bookmark: _Ref186047742][bookmark: _Ref186367722][bookmark: _Ref186642775][bookmark: _Toc186645310]MPS Information Model Overview
General
The information exchanged across the interfaces supported by MPS services is complex. Requests for activities to be planned require the specification of the activities to be performed and any constraints on their execution. Plans express not only the planned activities they contain, but also what triggers their execution relative to time, position or planning events.
The MPS information model describes the information objects that are transferred or operated on by service operations and the relationships between them. It addresses both the content of the messages that constitute service operations and also the configuration data that both consumer and provider must have access to to interpret those messages.
This document contains the specification of data structures derived from the MPS information model that are used in the body of service messages or referenced by them. These data structure definitions are a normative part of the Recommended Standard and are expressed in the tabular format described in 4.3.1.
[image:]
[bookmark: _Toc165036610][bookmark: _Toc186645514]Figure 2‑4	: MPS Service Objects
A high-level overview of the MPS information model is given in figure 2‑42‑4. This shows the principal MPS service objects and their interrelationships using standard UML notation (see reference [3]).
The rectangles in the diagram correspond to standard service objects. The lines between them define the relationships between those service objects. Service objects are color-coded by functional area:
	Mission Planning service objects defined in this document are shown in blue.
	Mission Control service objects (red) correspond to CCSDS MO Monitoring & Control and the proposed MO Automation standards.
	Navigation service object (magenta) correspond to the CCSDS Navigation Event Message Recommended Standard.
	Cross Support Services service objects (grey) correspond to CCSDS Cross Support Service Management Recommended Standards.
Relationships shown in black are within the scope of mission planning standardization, others are color-coded by their respective area.
The following principal MPS service objects are shown in the diagram:
· Planning Requests;
· Plans;
· Planning Activities;
· Planning Events;
· Planning Resources.
These are introduced in the subsections below. Each of these service objects comprises a set of MO objects with its own object identity.	Comment by Quinten Van Woerkom: Object patterns have been removed.
The status of planning requests, plans, planning activities, and planning events can evolve over time and is reported through the defined MPS services. State models are associated with each of these service objects in the full information model, but only the minimum set of states has been defined to work with the defined services: missions may effectively extend these with additional states using additional information fields.
Planning requests and plans are both container objects, whose content relates to a set of planning service objects: planning events, planning activities, and planning resources. For each of these three types (or classes) of planning data, there is a defined set of items that can be referenced or instantiated within planning requests and plans. Together these definitions comprise the planning configuration data.
Planning constraints are not self-standing service objects, but can be attached to planning requests and planning activities. They are defined in 4.6.7. Subsection 4.6 also includes the definition of other MPS supporting data types, including:
· MPS Position and Direction data types;
· Expressions;
· Arguments;
· Triggers;
· Repetitions.
Some aspects of the MPS information model are optional. These aspects are not required to be supported by a compliant MO MPS service provider, although this may limit the set of service capabilities and associated operations that can be supported. Optional aspects of the model include:
· Planning Resources;
· Functions;
· Planning Constraints, other than representation as a text expression using any defined expression syntax supported by the service provider;
· Position and Direction data types;
· Repetitions (the representation of repetitive occurrences of planning activities).
[bookmark: _Ref186193335]MO Objects
Figure 2‑52‑5 shows how each of the MPS Service Objects comprises multiple MO objects following a 1-, 2-, or 3-element MO object pattern. MO objects are shown with a bold purple border.
[image: A diagram of a data flow

Description automatically generated]	Comment by Quinten Van Woerkom: CNES-043
[bookmark: _Toc165036611][bookmark: _Toc186645515]Figure 2‑5	: MPS Service Objects and their Constituent MO Objects
Each MO object has a unique object identity, which includes an unchanging key (Identifier) and optionally a version. When a definition object is updated, it retains the same key, but its version is updated to uniquely identify a specific version of the definition. Planning request instances and plans also have an associated version.
The definition objects associated with planning activities, planning events, planning resources and planning requests all form part of the planning configuration data that must be available to both communicating parties that exchange planning requests and plans. Definition objects comprise only static fields. The MPS services defined in this Recommended Standard do not address the bulk transfer of MPS configuration data between communicating parties, but individual definitions can be accessed using the Plan Information Management Service.
The instance objects associated with all MPS service objects are the live planning data created by and exchanged between communicating parties during planning and plan execution. Instance objects may comprise both static and dynamic fields. For planning resources, the live instance has the same object identity as the associated definition, the only distinction being that the live instance may include dynamically updating fields, such as the value of a planning resource.
Changes in state of the dynamic fields of live planning data instance objects may be notified through an update structure exchanged through MPS service messages and optionally stored in planning history. These updates are not themselves MO objects, but reference the corresponding instance and the timestamp of the update as well as the value of dynamic fields.
Planning requests may reference planning activities, planning events, and planning resources but do not contain instances of these items. Instead they specify the activity details for the requested planning activities.
Plans contain instances of planned activities, and optionally of planning events. They may also optionally contain planning resource profiles that express their planned evolution over time.
Planning Request
Planning requests are the main input to the planning function. A planning request is a container for the information needed to be exchanged between the requester and the planner. It supports the specification of a request to plan one or more planning activities. Alternatively, it can support a request to use an existing plan (already containing a number of planning activities) as an input to the planning process. It can constitute a one-off planning request, or request the repetitive planning of activities as a ‘standing order’.
The main characteristic of the planning request is that, being a container, it needs to hold references to, or instances of, the constituent information items that are required by the planner and agreed by the interacting parties for exchange at interface level. It has one or more planning activities as the basis of the request. In addition, the request may optionally reference planning events. Information about planning constraints on when a requested activity can or shall be planned may be exchanged as part of the planning request, by referencing constraints on the timing or position of planning activities, both absolute and relative to planning events or other planning activities, and on the state of planning resources.
Plan
The plan is the output of a planning process. The plan is basically a container of one or more selected planning activities, optionally associated with planning events. In addition, the usage of planning resources may be contained in the plan. The plan may contain specific information from the planning process, which applies to the plan as a whole. In the hierarchical and distributed planning concepts, the output of one planning function could be the input of another one. As such, a planning request could refer to an entire plan.
Plans may be iterative, and therefore overlap with the previous plan. This introduces the notion that a plan may have an identified predecessor or precursor plan, and also that if a planning service object is contained in multiple iterations of the plan, then it should have the same unique identity (except for an updated version) in each successive iteration of the plan to avoid ambiguity and duplication.
Plans comprise the following main elements:
· Plan Information: header data relating to the plan as a whole;
· Planned Items: the set of contained planning activities and planning events;
· Plan Revisions [optional]: summaries of the changes between this version of the plan and another specified version of a plan, usually its precursor plan;
· Plan Resources [optional]: value profiles covering the period of the plan for a set of planning resources.
Planning Activity
A planning activity is the basic building block for the planning: a meaningful unit of what can be planned. As such, it has to be understood by the planning function. It could eventually be translated to something that can be executed by a plan execution function; this includes CCSDS MO M&C actions (reference [D4]) (that may represent telecommands) and CCSDS MO Automation procedures (reference [D1]) (that may represent any automated telecommand sequence, operational procedure, on-board control procedure, or function).
Planning activities support hierarchy: a planning activity may be composed of one or more subordinate planning activities. A planning activity may define arguments (parameters), which could be used to instantiate a specific planning activity in a plan, based on its generic definitions. Arguments of a planning request or planning event can be passed through to the arguments of planning activities resulting from these. Arguments can then similarly cascade down through a hierarchy of planning activities. A plan execution function may then flow down these arguments to any action or automated procedure initiated.
Planning constraints can also be associated with a planning activity, either generic constraints applicable to all occurrences (or instances) of the planning activity that are contained within its definition, or specific constraints associated with a particular instance that are defined in the context of the planning request. These planning constraints can be expressed in terms of the timing or position of a planning activity, both absolute and relative to planning events or other planning activities, and on the state of planning resources.
Planning Event
A planning event marks when a condition is being met, expressed in terms of time or position. They may be used to represent predicted or planned events, such as predicted orbital events or planned periods of contact with a spacecraft, that are typically received as an input by the mission planning function, from an external function, such as navigation.
Planning events may be grouped hierarchically to represent a compound event, such as the start and end of a satellite pass over a ground station (AOS/LOS), or a satellite passing through eclipse (penumbra entry, umbra entry, umbra exit, penumbra exit). A planning event may define arguments (parameters) to convey additional information relevant to the planning process.
Planning activities may be linked to a related planning event. The start or end of the planning activity can be relative to the planning event, and the arguments of the event can be flowed down to the planning activity. Planning requests may also reference planning events, associating them with requested planning activities.
Planning events may be classified as predicted events or potential events:
· Predicted events are those that are expected to occur at a particular time or position that is known at the time of planning and can be contained within a plan. Uncertainty in the timing of predicted events may be refined closer to their time of occurrence. This can either be handled by re-planning, or by updating the events within an executing plan.
· Potential events are not predictable, but may still have a defined response within a plan: virtual observatory Target Of Opportunity (TOO) events are an example. Such events can be inserted into an executing plan.
Planning Resource
A planning resource is an abstract status modelling the state of the system being planned. It may be necessary to model some aspects of system state in order to:
· trigger the execution of a planning activity;
· constrain the execution of a planning activity;
· define the effect that the execution of a planning activity has on the planning resource.
A planning resource is in effect a value of defined type that can evolve over time. A resource profile can be used to capture and communicate that evolution over time in the context of a plan.
If an event or constraint on a planning activity needs to be expressed in terms of the state of the system (rather than just time or position) then this corresponds to the state of planning resources. This is considered not internal to the planning function, if it forms part of the planning request or plan.
A planning resource could in principle be considered as information that is internal to the planning system. However, some resources may be shared across multiple planning entities. As such, information regarding a resource may need to be communicated between entities, and therefore has to be referenced as part of a planning request or of the plan, in terms of requested or consumed resources respectively. This may include the initialization or synchronization of planning resource values at specific points in the plan.
Planning resources are an optional element of the MPS information model. There is no requirement for a compliant MPS system to support them.
[bookmark: _Toc165036573][bookmark: _Ref186047174][bookmark: _Ref186642564][bookmark: _Toc186645311]MPS Services Overview
General
This document specifies standards for the following MPS services, which are introduced in the following subsections:
· Planning Request Service (PRS);
· Plan Distribution Service (PDS);
· Plan Execution Control Service (PECS);
· Plan Information Management Service (PIMS);
· Plan Edit Service (PES).
A compliant MPS system may support only a subset of these services. None of the services is mandatory; any subset can be supported.
Each service comprises a set of service operations that the service consumer can invoke on the service provider. Service operations reference the MO objects defined in the MPS information model. Each service operation follows one of the standard MO MAL interaction patterns that may comprise multiple messages flowing in both directions between service consumer and provider. Where not fully defined within the MAL, the body of these messages forms part of the service specification and are defined in terms of MAL Attribute data types and/or data structures defined in the MPS information model.
Service operations are grouped into capability sets. A compliant MPS system may only support a subset of capability sets for each supported service.
[bookmark: _Ref185350330]Planning Request Service
The Planning Request Service is offered by the planning function of an MPS system to enable its users to submit, cancel, and modify planning requests, as well as to receive feedback on their status. The service may be used by another planning function in a hierarchical or distributed MPS system, or by an MPS system user.
Planning requests are defined in 4.5.5 and may include a set of requested planning activities or an existing plan (the output of a planning function in a hierarchical or distributed MPS system).
If a Plan is used as the body of the request, this can either be embedded within the request, or passed by reference. If passed by reference, the Plan Distribution Service can be used to retrieve the Plan. In a hierarchical or distributed planning system, the domain can be used to identify where to retrieve it from.
[bookmark: _Ref185350302]Plan Distribution Service
The Plan Distribution Service is offered by the planning function of an MPS system to enable its users to obtain the plans output by it, as well as to receive feedback on their status. The service may be used by another planning function in a hierarchical or distributed MPS system, or by an MPS system user. Plans are defined in 4.5.6.
The service does not provide the capability to control the planning function itself or to generate plans. This capability can be supported if the planning function exposes a standard set of MO Monitoring & Control services. Submission of plans to a plan execution function is supported by the Plan Execution Control Service (see 3.7).
[bookmark: _Ref185415329]Plan Execution Control Service
The Plan Execution Control Service is offered by an MPS system’s plan execution function to enable its users to submit (and revoke) plans for execution; to control their execution at plan, sub-plan, and activity levels; and to receive feedback on their execution status.
The Plan Execution Control Service may be used by a planning function, or by an MPS system user responsible for mission operations.
Plans are defined in 4.5.6, including the state model for plans to which the operations of the service correlate.
Sub-plans are not defined as an MO object in the MPS information model, but are specified by an Identifier associated with the constituent ActivityInstances contained in a Plan. This can be used to sub-divide a Plan based on domain (spacecraft or subsystem), operational responsibility, or another criterion. Each ActivityInstance can only be associated with a single sub-plan. Control may be exercised via the service at the level of sub-plans.
[bookmark: _Ref185415359]Plan Information Management Service
The Plan Information Management Service is offered by the planning function of an MPS system to enable its users to list and retrieve available definitions for MPS service objects, including: planning requests, planning events, planning activities, planning resources, and MPS system configuration data. The service may also be offered by a plan execution function.
The service does not support the transfer of planning configuration data to planning or plan execution functions, which is outside the scope of the current MPS services. Nor does it support the insertion or modification of MPS service object definitions.
The structure of the various MPS service object definitions is given in 4.5.
[bookmark: _Ref185415382]Plan Edit Service
The Plan Edit Service is offered by an MPS system’s plan execution function to enable its users to modify plans that have already been submitted for execution. It allows an external user or function to update the status of the plan; insert, modify, or delete planning activity and event instances; update the value of resources; and apply a time shift to a plan.
This may be used by expert mission operations users in a non-nominal operational scenario to modify a plan that is executing or about to execute in order to avert or recover from a failure. Where there is sufficient time, it is recommended to re-plan using the nominal planning process rather than to edit the plan directly, as this circumvents any constraint checking performed by the planning function.
Another use of the service is for a third party functions to update elements of the plan to reflect information available in near-real-time. Examples are:
· Update of the input arguments of a planned activity instance to fine tune its behaviour in response to currently observed status.
· Update of a predicted planning event instance that is already contained within a plan, with refined timing or other details.
· The injection of instances of planning events. These may be detected in real-time and correlate to potential (rather than predicted) events for which a planned response is available. An example is a ‘Target of Opportunity’ event that may be notified to an astronomical observatory mission.
· Update of a resource value by an external modelling function to more accurately reflect currently observed status.
Plans are defined in 4.5.6, while their constituent planned items are defined in 4.5.2 (planning activities), 4.5.3 (planning events) and 4.5.4 (planning resources).
[bookmark: _Ref185420077][bookmark: _Toc186645312]Optional Elements of the Recommended Standard
The MPS services specification defines a substantial MPS information model and five services. Compliance of an individual mission planning system deployment to the MPS service specification does not imply that either the complete set of services specified here or the full MPS information model has to be supported.
The level of compliance of a specific deployment to the Recommended Standard can be selected as follows:
d) the set of MPS services supported;
e) the capability sets supported within each MPS service;
f)
g) the optional elements of the MPS information model supported.
[bookmark: _Ref186047155][bookmark: _Toc186645313]MPS MPS Service Specifications
[bookmark: _Toc161745099][bookmark: _Toc186645314]Overview	Comment by Quinten Van Woerkom: After moving the normative subsections elsewhere (see relevant RIDs, e.g. ESA-005, regarding split of informative/normative text), only this subsection remained, so I’ve renamed “General” to “Overview”, since this makes more sense.
General
This section contains the service specifications for the MPS services. An overview of the services has been given previously in 2.52.5 above. Each of the following services is defined in a separate section below:
· Planning Request Service;
· Plan Distribution Service;
· Plan Execution Control Service;
· Plan Information Management Service;
· Plan Edit Service.
There is no requirement to implement all services. Any subset of the services may be supported by an MPS deployment.
Each service specification comprises the following parts:
a) SummaryOverview: a brief overview of the service.	Comment by Peter Van Der Plas: ESA-006
b) Definition: contains a table listing the service operations and grouping them into capability sets, and UML sequence diagrams illustrating the service operations.	Comment by Peter Van Der Plas: CNES-038
Sequence diagrams removed
c) MO ObjectsDiscussion: a more detailed description of the service and its operations, including identifies the set of MO MPS service objects (defined in section 4) that are operated on by the service or referenced by service operations.
d) High-Level Requirements: such as the set of configuration data required by the service.
e) Functional Requirements: specific requirements on the behaviour of the service provider and consumer.
f) Operations: specification of each service operation.
All services defined in this document are part of the MPS Area, which has the Area number 5.
[bookmark: _Toc140093821]Directory Service and Optional Elements
When using the Directory Service of the MO Common Services (reference [D3]), support for capability sets is indicated in the standard way in the ServiceCapability data structure using the supportedCapabilitySets field.
Support for optional element sets (see 2.6) of the MPS information model is represented in the Directory Service by the use of service provider properties as detailed in the following table:
Table 3‑1	: MPS Service Provider Standard Properties
[bookmark: _Ref185333173][bookmark: _Toc186645315]Optional Elements	Comment by Quinten Van Woerkom: DLR-012
Table 3-1 defines the optional capability sets and information model elements for all MPS services. Optional capabilities and elements are shown with a grey background. The set of operations of which each capability set is comprised is found in section 3.
For each service capability set, applicability of information model element sets are shown as follows:
	Required; if a service capability set is supported, then the information model element sets indicated by this symbol must also be supported.
O	Optional; this symbol is used to show that one or more service capability set operations include messages that contain data structures from the indicated optional element sets.
-	Not Applicable; indicates that none of the service capability set operations contain data structures from optional element sets.
An indication is also given of which service specific data structures are relevant to the operations of each service capability set. It should be noted this is shown at the level of the MPS service objects defined in 4.5: only the specific data structures used in the messages of the associated service operations are required.
Table 3‑1: Optional Service Capabilities
	Services
	Information Model

	Service
	Capability Set
	Core Features
	Basic Constraints
	Plan Revisions
	Resources
	Position & Direction
	Functions
	MPS Service Objects for which MO Objects or Service Data Structures are used in Service Operations

	PRS
	1: Submit Request / Status
	
	O
	-
	O
	O
	O
	Planning Request

	
	2: Cancel Request
	
	-
	-
	-
	-
	-
	Planning Request

	
	3: Update Request
	
	O
	-
	O
	O
	O
	Planning Request

	
	4: Subscribe to Status
	
	-
	-
	-
	-
	-
	Planning Request

	
	5: Retrieve Request
	
	O
	-
	O
	O
	O
	Planning Request

	PDS
	1: List & Obtain Plans
	
	O
	O
	O
	O
	O
	Plan

	
	2: Subscribe to Status
	
	-
	-
	-
	-
	-
	Plan

	
	3: Subscribe to Plans
	
	O
	O
	O
	O
	O
	Plan

	
	4: Query Plans
	
	O
	O
	O
	O
	O
	Plan

	
	5: Retrieve Partial Plan
	
	O
	O
	O
	O
	O
	Plan

	PECS
	1: Submit Plan / Status
	
	O
	O
	O
	O
	O
	Plan

	
	2: Plan Activation
	
	-
	O
	-
	-
	-
	Plan

	
	3: Subscribe to Status
	
	-
	-
	-
	-
	-
	Plan

	
	4: Subscribe to Detail
	
	-
	-
	O
	O
	-
	Planning Activity/Event/Resource

	
	5: SubPlan Activation
	
	-
	-
	-
	-
	-
	Plan (SubPlan)

	
	6: Subscribe to SubPlans
	
	-
	-
	-
	-
	-
	Plan (SubPlan)

	
	7: Activity Suspension
	
	-
	-
	-
	-
	-
	Planning Activity

	
	8: Activity Status
	
	-
	-
	-
	-
	-
	Planning Activity

	PIMS	Comment by Quinten Van Woerkom: CNES-043: Remove MPSSystemConfig
	1: Request Definitions
	
	O
	-
	O
	O
	O
	Planning Request

	
	2: Event Definitions
	
	-
	-
	-
	-
	-
	Planning Event

	
	3: Activity Definitions
	
	O
	-
	O
	O
	O
	Planning Activity

	
	4: Resource Definitions
	
	-
	-
	
	-
	-
	Planning Resource

	PES
	1: Update Plan Status
	
	-
	-
	-
	-
	-
	Plan

	
	2: Insert/Delete Activity/Event
	
	O
	-
	O
	O
	O
	Planning Activity/Event

	
	3: Update Activity/Event
	
	-
	-
	-
	O
	-
	Planning Activity/Event

	
	4: Update Resource
	
	-
	-
	
	-
	-
	Planning Resource

	
	5: Update Resource Profile
	
	-
	-
	
	-
	-
	Planning Resource

	
	6: Apply Time Shift
	
	-
	-
	-
	-
	-
	Plan

[bookmark: _Toc185342058][bookmark: _Toc185349668][bookmark: _Toc185428777][bookmark: _Toc185498418][bookmark: _Toc185499618][bookmark: _Toc185500819][bookmark: _Toc185502024][bookmark: _Toc185503230][bookmark: _Toc186031490][bookmark: _Toc186032696][bookmark: _Toc186033902][bookmark: _Toc186046400][bookmark: _Toc186457160][bookmark: _Toc186470805][bookmark: _Toc186645316]
	Property ID
	Property Type
	Description

	ES2_CONSTR
	BOOLEAN
	Flag indicating support for Basic Constraints

	ES3_REVISION
	BOOLEAN
	Flag indicating support for Plan Revisions

	ES4_RESOURCE
	BOOLEAN
	Flag indicating support for Planning Resources

	ES5_RESCONSTR
	BOOLEAN
	Flag indicating support for Resource Constraints

	ES6_POSDIR
	BOOLEAN
	Flag indicating support for Position and Direction Types

	ES7_GEOCONSTR
	BOOLEAN
	Flag indicating support for Geometric Constraints

	ES8_FUNCTION
	BOOLEAN
	Flag indicating support for Functions and Function Constraints

[bookmark: _Ref139886473][bookmark: _Toc140093822][bookmark: _Toc186645349]Conventions
Services
For each service specification, a summary table is provided. This defines the area, service and version numbers used in MAL message headers, and lists the service operations together with their MAL interaction patterns, operation numbers, and the capability set to which they belong.
[bookmark: _Toc186645531]Table 3‑2	: Example Service Table
	Area Identifier	Comment by Peter Van Der Plas: CNES-001
Using MAL BB colour, non-bold text, auto text colour (black)
Arial 9 pts as per CCSDS Publication Manual
	Service Identifier
	Area Number
	Service Number
	Area Version

	MPS
	<Service name>
	5
	<#>
	<#>

	Interaction Pattern	Comment by Peter Van Der Plas: CNES-001
	Operation Identifier
	Operation Number
	Capability Set

	REQUEST
	submitRequest
	<#>
	<#>

	…
	…
	…
	…

Service Operations
The definition of each MPS service operation in this section contains a table based on the appropriate interaction pattern template for the applicable MAL interaction pattern (see reference [2]).
[bookmark: _Toc186645532]Table 3‑3	: Example Operation Template
	Operation Identifier	Comment by Peter Van Der Plas: CNES-001
	<Operation name>

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	Subscription Keys
	planID : (MAL::Identifier)
precursor : (MAL::Identifier)
status : (MAL::UShort)
originator : (MAL::Identifier)

	Pattern Sequence
	Message
	Nullable
	Type Signature	Comment by Peter Van Der Plas: CNES-001

	OUT
	PUBLISH/NOTIFY
	Yes¦No
	Field name : (data type)	Comment by Quinten Van Woerkom: DLR-043

	…
	…
	…
	…

Light blue cells (grey when printed on a monochrome printer) contain table headings, light grey cells contain fields that are fixed for a pattern, and white cells contain values that
are specific to the operation.
The subscription keys row is only included in the case of a PubSub operation and lists the subscription key fields (name and type) specified for the operation.
The message direction denotes the direction of the message relative to the provider of the
service and is either IN or OUT. So all messages directed towards the provider are IN
messages, and all messages directed away from the provider are OUT messages.
The type signature contains a list of message fields, often a single field referencing an MPS data structure, but in some cases there may be a series of fields each identified by a field name and data type. The nullable column indicates whether each of the listed message fields is nullable or not.
Errors
Errors that may be returned by the operation are listed in a simple table, which references the error by name and the area in which it is defined. MPS errors are defined in section 5, together with the corresponding error number and the type and description of any ExtraInfo field. Standard MAL errors (not listed) may also be returned.
[bookmark: _Toc186645533]Table 3‑4	: Example Error References Table
	Error	Comment by Peter Van Der Plas: [CNES-001]
Keep columns left-justified in line with error table in section 5 and similar to the MPDS Blue Book by the SM&C WG.
Could be subject to further discussion.
	Area

	<Error name>
	<Area>

	…
	…

[bookmark: _Toc186645350]External Definitions
Interaction Patterns	Comment by Quinten Van Woerkom: With implementation of ESA-079, it became clearer to split the references to interaction patterns as general concept, which were previously found in what is now section 3.2.3 Publish-Subscribe Operations, into their own section.
The specifications of the operations supported by each service are given in terms of interaction patterns. These interaction patterns describe a standard message exchange pattern, such that these details need not be given for each operation individually. The standard MAL interaction patterns and their associated operation templates are used, both of which are defined in reference [2].
MO Errors	Comment by Quinten Van Woerkom: CNES-032
Operations that did not finish successfully may, depending on the failure mode, return an MO Error as defined in section 5 of reference [2]. All operations may return one of the MAL-specific MO Errors from reference [2]. In addition, some operations may return an MPS-specific MO Error; where this is applicable, this is indicated in the error table for that operation. The different types of MPS-specific MO Errors and the cases in which they shall be returned are specified in section 5 of this standard.
Publish-Subscribe Operations	Comment by Quinten Van Woerkom: ESA-079	Comment by Quinten Van Woerkom: DLR-048	Comment by Quinten Van Woerkom: CNES-027	Comment by Quinten Van Woerkom: CNES-038
The Publish-Subscribe operations defined in this standard follow the interaction pattern described in section 3.6.6 of reference [2]. Due to the use of a general-purpose MAL broker in its implementation, this interaction pattern does not support MPS Enum types as subscription filter keys. Instead, The defined Publish-Subscribe operations are based on the updated MAL specification which allows for a set of subscription keys (or filters) to be defined for each operation.
Subscription keys are defined in the service standard for each Publish-Subscribe pattern operation with a name and their associated MAL::Attribute type. This may be extended by a given deployment to support additional subscription keys.where a defined subscription key corresponds to an MPS enumerated value, the subscription key shall be defined with the type MAL::UShort, where the integer corresponds to the enumerated value.	Comment by Quinten Van Woerkom: ESA-005

NOTES
1 The broker filters updates by applying all the specified criteria (the domain and specified subscription key filters are ANDed by the broker). When multiple values are passed for a single subscription key filter, its option are ORed by the broker.
2 Where most MPS operations may return an INVALID error when invoked, that is explicitly not the case for any Publish-Subscribe operations; those operations interact with the MAL broker and are hence limited to only MAL-compatible errors (such as INVALID).
When the provider publishes an update, the message includes the following entity keys in addition to the update itself:
[bookmark: _Toc186457196][bookmark: _Toc186470841][bookmark: _Toc186645352]
[bookmark: _Hlk185321015]The broker filters updates by applying all the specified criteria (the domain and specified subscription key filters are ANDed by the broker). When multiple values are passed for a single subscription key filter, its option are ORed by the broker.domain		List<MAL::Identifier>[ordered];
[bookmark: _Toc186457198][bookmark: _Toc186470843][bookmark: _Toc186645354]
[bookmark: _Hlk185321038]subscriptionKeys	List<MAL::NamedValue>.	Comment by Quinten Van Woerkom: ESA-018
[bookmark: _Toc186457200][bookmark: _Toc186470845][bookmark: _Toc186645356]
A value must be provided for each of the specified subscription keys and any deployment specific keys for the operation. The domain may be omitted if the provider only supports a single domain.
When the consumer subscribes to receive updates, the subscription filter within the Register message has the following structure:
· domain		List<MAL::Identifier> [ordered] [*=wildcard];
· filters			List<SubscriptionKey>.
SubscriptionKey:
· Name		MAL::Identifier;
· Values		List<MAL::Attribute>.
The domain field may be omitted where all available domains are required, or where the provider only supports a single domain. A wildcard may be used at any point in the domain hierarchy, for example: if the domain hierarchy is <mission>.<spacecraft>.<subsystem> then specifying MyMission.*.Power would subscribe to updates to the Power subsystem for all spacecraft in MyMission.
The consumer specifies a list of subscription key filters to restrict the set of updates returned. It is not required to supply a filter for every subscription key; all updates are returned for omitted filter criteria. Each filter comprises the name of the subscription key, followed by a list of required values for that key. If any one of the supplied values is met for a given update, then the filter is passed (the values are ORed by the broker).
[bookmark: _Toc184817899][bookmark: _Toc185336548][bookmark: _Toc185337381][bookmark: _Toc185342102][bookmark: _Toc185349712][bookmark: _Toc185428821][bookmark: _Toc185498462][bookmark: _Toc185499662][bookmark: _Toc185500863][bookmark: _Toc185502068][bookmark: _Toc185503274][bookmark: _Toc186031534][bookmark: _Toc186032740][bookmark: _Toc186033946][bookmark: _Toc186046444][bookmark: _Toc186457210][bookmark: _Toc186470855][bookmark: _Toc186645366]The broker filters updates by applying all the specified criteria (the domain and specified subscription key filters are ANDed by the broker).
[bookmark: _Toc184817900][bookmark: _Toc185336549][bookmark: _Toc185337382][bookmark: _Toc185342103][bookmark: _Toc185349713][bookmark: _Toc185428822][bookmark: _Toc185498463][bookmark: _Toc185499663][bookmark: _Toc185500864][bookmark: _Toc185502069][bookmark: _Toc185503275][bookmark: _Toc186031535][bookmark: _Toc186032741][bookmark: _Toc186033947][bookmark: _Toc186046445][bookmark: _Toc186457211][bookmark: _Toc186470856][bookmark: _Toc186645367]For each publish-subscribe operation defined in this Recommended Standard, the set of subscription keys is defined. It should be noted that in addition to defined subscription keys, the domain may also be specified as a subscription filter.
Where a defined subscription key corresponds to an MPS enumerated value, the subscription key is defined with the type MAL::UInteger, where the integer corresponds to the enumerated value. The MPS Enum type cannot be used directly as it is unknown to the MAL broker.
[bookmark: _Toc140093823]Service Operations Using Domain As a Filter
Some service operations have a message field ‘domain’ that is used to filter or restrict the scope of the operation by domain. In this context, the domain field is equivalent to that in the subscription filter of a publish-subscribe pattern operation (see 3.1.3 above). The domain field is an ordered list of identifiers representing a domain hierarchy, any node of which can use ‘*’ as a wildcard (meaning any domain identifier at that level of the hierarchy):
· domain			List<MAL::Identifier> [ordered] [*=wildcard]
If a filtered set of domains is required that cannot be represented through the use of wildcards, then the operation will need to be repeated using different domain filters.
[bookmark: _Toc89084069][bookmark: _Toc95258328][bookmark: _Ref68799757][bookmark: _Ref68799907][bookmark: _Toc140093824][bookmark: _Toc161745100][bookmark: _Toc186645373]Service: Planning Request Service
[bookmark: _Toc140093825]SummaryOverview
The Planning Request Service, introduced in 2.5.22.5.2, is provided by a planning function and enables its consumers to manage the submission of planning requests and to receive feedback on their status. It comprises the following operations defined below, of which only those in capability set 1 are mandatory.
In the context of a hierarchical or federated planning system, the Planning Request Service submitRequest operation can be used to submit a Plan (4.5.64.2.6.1) to a planning function, either embedding the Plan in the request itself or passing it by reference. If passed by reference, the Plan can be retrieved using the Plan Distribution Service (3.63.3). Patch plans are not permitted in the context of a planning request.
Definition	Comment by Peter Van Der Plas: ESA-006
Similar for all next instances

	[bookmark: _Hlk68611562]Area Identifier
	Service Identifier
	Area Number
	Service Number
	Area Version

	MPS
	PlanningRequest
	5
	1
	1

	Interaction Pattern
	Operation Identifier
	Operation Number
	Capability Set

	REQUEST
	submitRequest
	1
	1

	REQUEST
	getRequestSummaries
	2
	

	PROGRESS
	getRequestStatus
	3
	

	SUBMIT
	cancelRequest
	4
	2

	REQUEST
	updateRequest
	5
	3

	PUBSUB
	monitorRequestStatus
	6
	4

	PROGRESS
	getRequest
	7
	5

[image:]	Comment by Peter Van Der Plas: ESA-006
Similar for all next instances
Discussion
General	Comment by Peter Van Der Plas: ESA-006
Similar for all next instances
Figure 3‑1	: Planning Request Submission Operations
Three of the operations are concerned with the submission and subsequent management of planning requests, enabling a service consumer to submit a planning request, and (where supported) to update or cancel that request. The interaction sequence for these operations is illustrated in figure 3‑1 above.
The submitRequest operation results in the creation of a new PlanningRequestInstance, returning its identity in the response message. The updateRequest operation results in a new version of an existing PlanningRequestInstance, returning its identity (key and version) in the response message. The cancelRequest operation stops the referenced PlanningRequestInstance being considered in the generation of future Plans, but does not imply that it is immediately deleted by the provider.	Comment by Quinten Van Woerkom: ESA-077	Comment by Quinten Van Woerkom: ESA-077	Comment by Quinten Van Woerkom: ESA-077
[image:]
Figure 3‑2	: Planning Request Feedback Operations
The remaining operations are concerned with obtaining feedback on the status or content of planning requests. The interaction sequence for these operations is illustrated in figure 3‑2 above.
The getRequestSummaries operation requests a list of available planning requests based on a supplied filter. It returns a list of RequestSummaryStatuses that contain the identity, header information and status for each available RequestInstance that matches the filter.
A consumer may already holds the identity (and static content) of RequestInstances, either because it has submitted planning requests, or previously performed a getRequestSummaries operation. It can then request an update of their dynamic status using the getRequestStatus operation. The request lists references to RequestInstances and the response provides a corresponding list of RequestStatusUpdates.	Comment by Quinten Van Woerkom: DLR-051	Comment by Quinten Van Woerkom: ESA-066
Where supported, consumers may also subscribe to receive RequestStatusUpdates as they become available via the monitorRequestStatus. This uses the standard MAL publish-subscribe pattern and notifies the consumer with RequestStatusUpdates corresponding to the specified subscription keys as they are published by the provider.
The getRequest operation, where supported, enables a consumer to retrieve the full content of one or more planning requests. This is similar to the getRequestStatus operation, but instead of returning RequestStatusSummaries it returns RequestInstances. It should be noted that this is not an archive service, only planning requests currently being managed by the provider can be returned.
[bookmark: _Toc140093826]MPS Data ItemService Objects
MPS data itemservice objects relevant to the planning request service and their relationships are defined within the MPS information model in 4.54.2.
The following MO objects are directly applicable to the service:
· RequestDefinition;
· RequestInstance.
RequestDefinitions are configuration data that provide re-usable templates for planning requests, but are not required for the submission of an ad-hoc planning request. Their identity comprises both key and version.
RequestInstances are created in response to the submission of a planning request and contain both static data and dynamic status information. As planning requests can be updated, their identity comprises both key and version assigned by the service provider. The planning request submitted by the service consumer contains only the static data needed to specify the planning request in the form of a PlanningRequestDetails structure. If the planning request is derived from a RequestDefinition, this is referenced in the PlanningRequestDetails and the RequestInstance created from it.
As the RequestInstance is unknown at the time of submitting a planning request, the consumer may provide a user reference. This is returned by the provider together with the identity of the RequestInstance in the response to the planning request submission.
Updates to the dynamic status information associated with a RequestInstance are reported by the service provider to the service consumer using the RequestStatusUpdate structure. The RequestSummaryStatus structure is used to provide the identity, descriptive header fields, and current status of available RequestInstances.
The following MO objects may be referenced in the context of the planning request service:
· PlanningUser: the user responsible for submitting the planning request;	Comment by Quinten Van Woerkom: CNES-030
· ActivityDefinition: the activities specified to be planned in the form of ActivityDetails structures in the body of the planning request;
· EventDefinition and EventInstance: references to planning events can be contained within ActivityDetails and Constraints contained in the body of the planning request;
· Resource [Optional]: references to planning resources can be contained within the Constraints contained in the body of the planning request;
· Plan: a Plan or reference to a Plan can be used as the body of a planning request. Once the planning request has been planned, a reference to the resulting output Plan may also be included in the RequestInstance.
[bookmark: _Toc140093827]High-Level Requirements
The following set of mission planning configuration data shall be available to both provider and consumers in any deployment of the planning request service:
a) Planning Request Definitions (as RequestDefinition objects [4.5.5.14.2.5.1]);
b) Planning Activity Definitions (as ActivityDefinition objects [4.5.2.14.2.2.1]);
c) Planning Event Definitions (as EventDefinition objects [4.5.3.14.2.3.1]);
d) Planning Resource Definitions (as Resource objects [4.5.4.24.2.4.2]) [Optional];
e) MPS System Configuration Data (as an MPSSysConfig object [4.2.7]).
[bookmark: _Toc140093828]Functional Requirements
In response to a submitRequest operation, the service provider shall create a corresponding RequestInstance object, set its creationTimeDate and return its identity (key and version) to the consumer.	Comment by Quinten Van Woerkom: ESA-033
In response to an updateRequest operation, if supported, the service provider shall create a new version of the referenced RequestInstance object, set its creationTimeDate and return its identity (key and version) to the consumer.	Comment by Quinten Van Woerkom: ESA-033
The service provider shall only consider the latest version of a RequestInstance in the generation of future Plans, following a successful updateRequest operation.
In response to a cancelRequest operation, if supported, the service provider shall set the requestStatus of the referenced RequestInstance object to ‘CANCELLED’ and stops it being considered in the generation of future Plans.
In response to internal planning and feedback from external plan execution processes, the service provider shall model the status of RequestInstance objects in accordance with the planning request state model (4.5.5.24.2.5.2).
[bookmark: _Hlk183431970]NOTE	–	Following a successful updateRequest operation, it is implementation dependent what the status of the previous version of the RequestInstance is set to. Previous versions may already have been incorporated into Plans.
If a service consumer generates a planning request based on an existing planning request definition, then the PlanningRequestDetails submitted shall:
a) Reference the source RequestDefinition (key and version) in the definition field;
b) Contain a matching set of arguments (name and type) to the RequestDefinition in the arguments field;
c) Have a matching value to the RequestDefinition in the standingOrder field.
NOTE	–	While typically the PlanningRequestDetails will also have matching content to the RequestDefinition in the activities and constraints fields it is allowed to add and remove individual activities and constraints.
In the context of a planning request that contains or references an existing Plan, the Plan shall be a full plan, patch plans are not permitted.
Following successful inclusion of a planning request in a generated Plan, the service provider shall update the outputPlanRef attributefield of the RequestInstance with the identity of the Plan (key and version).
NOTE	–	The consumer may then use the reference to the output Plan to retrieve the Plan or its status using the PlanDistributionService. Where the planning request has been incorporated into multiple alternate plans, these will be listed in the outputPlanRef attributefield.
[bookmark: _Toc140093829]Operation: submitRequest
Overview
The submitRequest operation sends a planning request to the provider, which then creates a corresponding RequestInstance object and returns its identity to the consumer.
Definition

	Operation Identifier
	submitRequest

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature	Comment by Peter Van Der Plas: CNES-001

	IN
	REQUEST
	No
	requestDetails : (PlanningRequestDetails)

	OUT
	RESPONSE
	No
	requestResponse : (PlanningRequestResponse)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	UNSUPPORTED
	MPS

[bookmark: _Toc140093830]Operation: getRequestSummaries
Overview
The getRequestSummaries operation allows consumers to obtain a filtered list of currently available RequestInstances. The request uses the RequestFilter structure to select the set of planning requests of interest, using the following keys:
· Domain of the RequestInstance;
· Instance ID (key and version) of the RequestInstance;
· Creation date-time of the RequestInstance version (as a time range);
· Definition ID (key and version) of the RequestInstance (the RequestDefinition from which it was created);
· User ID of the PlanningUser who inmitiated the RequestInstance;	Comment by Quinten Van Woerkom: CNES-031	Comment by Quinten Van Woerkom: DLR-037	Comment by Quinten Van Woerkom: DLR-052
· User Reference supplied by the User when submitting the RequestInstance.
The response returns a list of RequestSummaryStatus structures containing the identity (key and version), descriptive header fields, and status of the RequestInstances that match the filter.
Definition

	Operation Identifier
	getRequestSummaries

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	TypeBody Signature

	IN
	REQUEST
	No
	requestFilter : (RequestFilter)

	OUT
	RESPONSE
	No
	requestSummaries : (List <RequestSummaryStatus>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.	Comment by Quinten Van Woerkom: CNES-037

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093831]Operation: getRequestStatus
Overview
The getRequestStatus operation is used to obtain the current status of one or more known RequestInstances. The operation uses the Progress interaction pattern, to allow the response to be spread across multiple messages.
Definition

	Operation Identifier
	getRequestStatus

	Interaction Pattern
	PROGRESS

	Pattern Sequence
	Message
	Nullable
	TypeBody Signature

	IN
	PROGRESS
	No
	requestRefs : (List <MAL::ObjectRef <RequestInstance>>)

	OUT
	ACK
	No
	Empty

	OUT
	UPDATE
	No
	requestStatuses : (List <RequestStatusUpdate>)

	OUT
	RESPONSE
	No
	Empty

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093832]Operation: cancelRequest
Overview
The cancelRequest operation is used by a consumer to cancel a previously submitted planning request. The service provider acknowledges the cancellation of the RequestInstance or returns an error.
Definition

	Operation Identifier
	cancelRequest

	Interaction Pattern
	SUBMIT

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	SUBMIT
	No
	requestRef : (MAL::ObjectRef <RequestInstance>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	CANCEL_FAILED
	MPS

If it was not possible to cancel the RequestInstance, for example because the resultant activities have already been executed or activated within a plan execution function, then the CANCEL_FAILED error shall beis returned.	Comment by Quinten Van Woerkom: DLR-053
[bookmark: _Toc140093833]Operation: updateRequest
Overview
The updateRequest operation may be used to modify the PlanningRequestDetails associated with a previously submitted planning request. This results in the creation of a new version of the RequestInstance (with the same key) by the service provider, which returns the identity (key and version) of the new version to the consumer.
Definition

	Operation Identifier
	updateRequest

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
No
	requestRef : (MAL::ObjectRef <RequestInstance>)
requestDetails : (PlanningRequestDetails)

	OUT
	RESPONSE
	No
	requestResponse : (PlanningRequestResponse)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	UNSUPPORTED
	MPS

	UPDATE_FAILED
	MPS

If it was not possible to update the RequestInstance, for example because the resultant activities have already been executed or activated within a plan execution function, then the UPDATE_FAILED error shall beis returned.	Comment by Quinten Van Woerkom: DLR-053
[bookmark: _Toc140093834]Operation: monitorRequestStatus
Overview
The monitorRequestStatus operation is used to subscribe to status updates for a filtered set of planning RequestInstances. The operation uses the Publish-Subscribe interaction pattern, with the body of the notification message comprising a RequestStatusUpdate for a subscribed RequestInstance.	Comment by Quinten Van Woerkom: ESA-088
Definition
	[bookmark: _Hlk118539589]Operation Identifier
	monitorRequestStatus

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	Subscription Keys
	instanceID : (MAL::Identifier)
definitionID : (MAL::Identifier)
userID : (MAL::Identifier)
userReference : (MAL::Identifier)
status : (MAL::UIntegerUShort)	Comment by Quinten Van Woerkom: DLR-049
outputPlanID : (MAL::Identifier)

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	OUT
	PUBLISH/NOTIFY
	No
	requestStatusUpdate : (RequestStatusUpdate)

Other messages of the Publish-Subscribe pattern are fully defined by the MAL.	Comment by Peter Van Der Plas: ESA-005
StructuresRequirements
The monitorRequestStatus subscription shall be based on the provision of the following keys in addition to the domain of the required RequestInstances in the Register message, all of which are nullable:
a) InstanceID: instance key as MAL::Identifier;
b) DefinitionID: definition key as MAL::Identifier;
c) UserID: user key as MAL::Identifier;
d) UserReference: userReference of subscribed RequestInstances as MAL::Identifier;
e) Status: status as MAL::UInteger UShort [RequestStatusEnum];	Comment by Quinten Van Woerkom: DLR-049
f) OutputPlanID: outputPlanRef key as MAL::Identifier.
NOTE	–	For Status, the enumerated value associated with the RequestStatusEnum must be used, and not the associated string.
Errors
This operation returns no errors in addition to the standard MAL errors.In addition to standard MAL Errors, the operation may return the following MPS Errors:	Comment by Quinten Van Woerkom: ESA-018

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093835]Operation: getRequest
Overview
The getRequest operation is used to obtain the full content of one or more known RequestInstances. The operation uses the Progress interaction pattern, to allow the response to be spread across multiple messages.
Definition

	Operation Identifier
	getRequest

	Interaction Pattern
	PROGRESS

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	PROGRESS
	No
	requestRefs : (List <MAL::ObjectRef <RequestInstance>>)

	OUT
	ACK
	No
	Empty

	OUT
	UPDATE
	No
	requestInstances : (List <RequestInstance>)

	OUT
	RESPONSE
	No
	Empty

Errors
In addition to standard MAL Errors, the operation may return the following MPS Errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Ref68800723][bookmark: _Toc140093836][bookmark: _Toc161745101][bookmark: _Toc186645374]Service: Plan Distribution Service
[bookmark: _Toc140093837]SummaryOverview
The Plan Distribution Service, introduced in 2.5.3 2.5.3, is provided by a planning function and enables its consumers to access generated plans and to receive updates on their status. It comprises the following operations defined below, of which only those in capability set 1 are mandatory.
Definition

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Area Version

	MPS
	PlanDistribution
	5
	2
	1

	Interaction Pattern
	Operation Identifier
	Operation Number
	Capability Set

	REQUEST
	getPlanSummaries
	1
	1

	PROGRESS
	getPlan
	2
	

	REQUEST
	getPlanStatus
	3
	

	PUBSUB
	monitorPlanStatus
	4
	2

	PUBSUB
	monitorPlan
	5
	3

	PROGRESS
	queryPlan
	6
	4

	REQUEST
	getPartialPlan
	7
	5

Discussion
General
NOTE	–	The getPlanStatus, with the exception of the service number, is identical to the operation of the same name in the Plan Execution Control Service.
[image:]
Figure 3‑3	: Plan Distribution Mandatory Operations
The mandatory operations of capability set 1 allow a service consumer to access plans, or the status of plans, generated by a planning function.
To retrieve a Plan, the consumer needs to have the identity of that Plan (key and optionally version). A reference to the output Plan associated with a planning request may have been received through planning request service feedback. Otherwise, the consumer must use the getPlanSummaries operation to discover available plans.
The getPlanSummaries operation returns PlanSummaries for the set of currently available plans that meet the specified filter criteria. These give the identity of the plans, the associated plan information (context and descriptive fields) and the current status of the Plan, but do not include the full content of the plans.
The getPlan operation returns the full content of the referenced Plan(s).
The getPlanStatus operation returns only the current status of the referenced Plan (s) as PlanUpdates.	Comment by Quinten Van Woerkom: DLR-054
[image:]
Figure 3‑4	: Plan Distribution Monitoring Operations
Where supported, the monitorPlanStatus operation enables the consumer to subscribe to automatic notification of changes in status of plans as PlanUpdates. Similarly the monitorPlan operation forwards new Plans matching the subscription to the consumer.
[image:]
Figure 3‑5	: Plan Distribution Special Operations
Two further non-mandatory operations allow more complex selection of plans.
The queryPlan operation allows the consumer to request plans based on multiple query criteria, including various header attributefields and on whether the Plan includes specific planning activities or events.
The getPartialPlan operation allows the consumer to request a subset of a Plan, based on the domain, subPlan allocation, or tags associated with the contained planning activities, as well as a period of the plan based on time, position, or events.
[bookmark: _Toc140093838]MPS Data ItemService Objects
MPS data itemservice objects relevant to the plan distribution service and their relationships are defined within the MPS information model in 4.54.2.
The following MO objects are directly applicable to the service:
· Plan.
The identity of Plans comprises both key and version. Plans are created by a planning function as an output that may be passed to a plan execution function, or to another planning function in a distributed or hierarchical planning system. Where a Plan is updated due to replanning, a new version of the Plan with the same key may be created.
Plans may be stand-alone or reference a defined precursor with which they may overlap. In the latter case, a patch plan may be created which only contains the differences from the precursor plan, and includes a reference to the target Plan which results from applying these changes to the precursor Plan.
A selected subset of a Plan can be extracted as a PartialPlan. This is specified as a shorter period covered by the plan, or by the domain, SubPlan, or tags associated with its contained planning activities.
The following MO objects may be referenced in the context of the planning request service:
· ActivityDefinition and ActivityInstance: the ActivityInstances contained within a plan may be referenced in service operations by their associated ActivityDefinition;
· EventDefinition and EventInstance: the EventInstances contained within a plan may be referenced in service operations by their associated EventDefinition;
· Resources may be contained within a Plan;
· RequestInstance: the ActivityInstances contained within a Plan reference their source planning request.
[bookmark: _Toc140093839]High-Level Requirements
The following set of mission planning configuration data shall be available to both provider and consumers in a any deployment of the plan distribution service:
a) Planning Activity Definitions (as ActivityDefinition objects [4.5.2.14.2.2.1]);
b) Planning Event Definitions (as EventDefinition objects [4.5.3.14.2.3.1]);
c) Planning Resource Definitions (as Resource objects [4.5.4.24.2.4.2]) [Optional];
d) MPS System Configuration Data (as an MPSSysConfig object [4.2.7]).
[bookmark: _Toc140093840]Functional Requirements
If no Plan version 0 is specified in the getPlan and getPlanStatus operations, then the service provider shall assume the latest version of the Plan is required.	Comment by Quinten Van Woerkom: DLR-055
In response to internal planning and feedback from external plan execution processes, the service provider shall model the status of Plan objects in accordance with the plan state model (see 4.5.6.2(4.2.6.2).
NOTE	–	A planning function that is a service provider is not required to support real-time provision of Plan status changes. Feedback from plan execution functions may only be processed periodically by the planning function as part of a planning cycle.
[bookmark: _Toc140093841]Operation: getPlanSummaries
Overview
The getPlanSummaries operation allows consumers to obtain a filtered list of currently available Plans. The request uses the PlanFilter structure to select the set of plans of interest, using the following keys:
· Domain of the Plan;
· planID (key and version) of the Plan;
· precursorPlan of the Plan;
· status of the Plan;
· originator of the Plan;
· validity period of the Plan as a time window.
The response returns a list of PlanSummaryStatus structures containing the identity (key and version), descriptive header fields, and status of the Plans that match the filter.
Definition

	Operation Identifier
	getPlanSummaries

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	planFilter : (PlanFilter)

	OUT
	RESPONSE
	No
	planSummaries : (List <PlanSummaryStatus>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093842]Operation: getPlan
Overview
The getPlan operation is used to obtain the full content of one or more known Plans. The operation uses the Progress interaction pattern, to allow the response to be spread across multiple messages.
Definition

	Operation Identifier
	getPlan

	Interaction Pattern
	PROGRESS

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	PROGRESS
	No
	planRefs : (List <MAL::ObjectRef <Plan>>)

	OUT
	ACK
	No
	Empty

	OUT
	UPDATE
	No
	retrievedPlan : (Plan)

	OUT
	RESPONSE
	No
	Empty

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093843]Operation: getPlanStatus
Overview
The getPlanStatus operation is used to obtain the current status of one or more known Plans. The operation uses the Request interaction pattern.
Definition

	Operation Identifier
	getPlanStatus

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	planRefs : (List <MAL::ObjectRef <Plan>>)

	OUT
	RESPONSE
	No
	responsePlans : (List <PlanUpdate>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093844]Operation: monitorPlanStatus
Overview
The monitorPlanStatus operation is used to subscribe to status updates for a filtered set of Plans. The operation uses the Publish-Subscribe interaction pattern, with the body of the notification message comprising a PlanUpdate for a subscribed Plan.	Comment by Quinten Van Woerkom: ESA-088
Definition

	Operation Identifier
	monitorPlanStatus

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	Subscription Keys
	planID : (MAL::Identifier)
precursor : (MAL::Identifier)
status : (MAL::UIntegerUShort)	Comment by Quinten Van Woerkom: DLR-049
originator : (MAL::Identifier)

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	OUT
	PUBLISH/NOTIFY
	No
	planUpdate : (PlanUpdate)

Other messages of the Publish-Subscribe pattern are fully defined by the MAL.
StructuresRequirements
The monitorPlanStatus subscription shall be based on the provision of the following keys in addition to the domain of the required Plans in the Register message, all of which are nullable:
a) PlanID: key of subscribed Plan as MAL::Identifier;
b) Precursor: key of precursorPlan as MAL::Identifier;
c) Status: status as MAL::UInteger UShort [PlanStatusEnum];	Comment by Quinten Van Woerkom: DLR-049
d) Originator: originator of subscribed Plan as MAL::Identifier.
NOTE	–	For Status, the enumerated value associated with the PlanStatusEnum must be used, and not the associated string.
Errors
In addition to standard MAL errors, the operation may return the following MPS errors:This operation returns no errors in addition to the standard MAL errors.	Comment by Quinten Van Woerkom: ESA-018

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093845]Operation: monitorPlan
Overview
The monitorPlan operation is used by a consumer to subscribe to receive new Plans, or new versions of Plans, as they published. The operation uses the Publish-Subscribe interaction pattern, with the body of the notification message comprising a Plan.
Definition

	Operation Identifier
	monitorPlan

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	Subscription Keys
	planID : (MAL::Identifier)
precursor : (MAL::Identifier)
status : (MAL::UShortUInteger)	Comment by Quinten Van Woerkom: DLR-049
originator : (MAL::Identifier)

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	OUT
	PUBLISH/NOTIFY
	No
	plan : (Plan)

StructuresRequirements
The monitorPlan subscription shall be based on the provision of the following keys in addition to the domain of the required Plans in the Register message, all of which are nullable:
a) PlanID: key of subscribed Plan as MAL::Identifier;
b) Precursor: key of precursorPlan as MAL::Identifier;
c) Status: status as MAL::UInteger UShort [PlanStatusEnum];	Comment by Quinten Van Woerkom: DLR-049
d) Originator: originator of subscribed Plan as MAL::Identifier.
NOTE	–	For Status, the enumerated value associated with the PlanStatusEnum must be used, and not the associated string.
Errors
This operation returns no errors in addition to the standard MAL errors.In addition to standard MAL errors, the operation may return the following MPS errors:	Comment by Quinten Van Woerkom: ESA-018

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093846]Operation: queryPlan
Overview
The queryPlan operation enables a consumer to retrieve a filtered set of plans, based on an extended set of filter criteria, including relevant fields of the plan information sections of the plan, as well as the type of planning activities and planning events contained within the plan.
Definition

	Operation Identifier
	queryPlan

	Interaction Pattern
	PROGRESS

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	PROGRESS
	No
	query : (PlanQuery)

	OUT
	ACK
	No
	Empty

	OUT
	UPDATE
	No
	queriedPlan : (Plan)

	OUT
	RESPONSE
	No
	Empty

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093847]Operation: getPartialPlan
Overview
The getPartialPlan operation enables a consumer to extract a subset of a Plan that meets the supplied partialPlanFilter. The filter can select the partial plan content based on:
a) a shorter period than that covered by the plan, specified by time, position, or events;
b) a subset of contained ActivityInstances, based on their domain, associated SubPlan or tags.
The PartialPlan returned includes the filter criteria and a version of the plan containing only the ActivityInstances that match those criteria. It is implementation dependent what is returned in terms of events and resources, but it may be assumed that any related events and resources would be included in the returned partial plan.
Definition

	Operation Identifier
	getPartialPlan

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	partialPlanFilter : (PartialPlanFilter)

	OUT
	RESPONSE
	No
	partialPlan : (PartialPlan)

StructuresRequirements
The PartialPlan returned shall include all ActivityInstances contained in the source Plan that pass the specified PartialPlanFilter criteria.
The PartialPlan returned should include all EventInstances and ResourceProfiles in the source Plan that lie within the specified period for the partial plan and which are related to the included ActivityInstances.
Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Ref68801472][bookmark: _Toc140093848][bookmark: _Toc161745102][bookmark: _Toc186645375]Service: Plan Execution Control Service
[bookmark: _Toc140093849]SummaryOverview
General
The Plan Execution Control Service, introduced in 2.5.42.5.4, is provided by a plan execution function and enables its consumers to submit (and revoke) Plans for execution; to control their execution at plan, sub-plan, and activity levels; and to receive feedback on their execution status. .
It comprises the following operations defined below, of which only those in capability set 1 are mandatory.
Definition

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Area Version

	MPS
	PlanExecutionControl
	5
	3
	1

	Interaction Pattern
	Operation Identifier
	Operation Number
	Capability Set

	SUBMIT
	submitPlan
	1
	1

	SUBMIT
	revokePlan
	2
	

	REQUEST
	getPlanStatus
	3
	

	REQUEST
	activatePlan
	4
	2

	REQUEST
	deactivatePlan
	5
	

	PUBSUB
	monitorPlanExecution
	6
	3

	PUBSUB
	monitorPlanExecutionDetail
	7
	4

	REQUEST
	activateSubPlan
	8
	5

	REQUEST
	deactivateSubPlan
	9
	

	REQUEST
	getSubPlanStatus
	10
	

	PUBSUB
	monitorSubPlanExecution
	11
	6

	REQUEST
	suspendActivity
	12
	7

	REQUEST
	resumeActivity
	13
	

	REQUEST
	getActivityStatus
	14
	8

NOTE	–	The getPlanStatus, with the exception of the service number, is identical to the operation of the same name in the Plan Distribution Service.
Discussion
General
Plan Level Execution Control Operations
Four of the service operations are concerned with submission and subsequent management of plans, submitPlan, and revokePlan being mandatory operations in capability set 1.
The submitPlan operation delivers a Plan to the service provider, making it available for execution. The revokePlan operation makes a previously submitted Plan unavailable for execution. Typically the service provider deletes any local copy of the Plan.
Execution of a Plan is normally a two-stage operation: first the Plan is submitted, then once it has been received by the service provider it can be activated. If the service implementation is restricted to capability set 1, then there is effectively no activation step before a plan is executed: either the plan is activated locally or is immediately activated on submission by the service provider. If an activation step is required, then capability set 2 should also be implemented.
The activatePlan operation enables execution of one or more Plans by the service provider, subject to the scheduling constraints (time, position, or event-based) associated with contained planning activities in each plan.
It is only possible to activate a Plan within its stated validity period and providing the specified start of the Plan is in the future.
The deactivatePlan operation disables the execution of the specified Plans, specifying a deactivation mode for the case where execution has already started.
If a Plan is deactivated before the start of the Plan, then it remains available to the service provider, its status returning to ‘submitted’., an dIt can be re-activated using the activatePlan operation. Any new ActivityInstances and EventInstances belonging to the deactivated Plan are removed from the active plan.	Comment by Quinten Van Woerkom: DLR-002
If a Plan is deactivated after the start of the Plan, then its status and that of all contained ActivityInstances and EventInstances that have not completed transition to the ‘terminated’ state with the status information ‘Cancelled’.
[image:]
Figure 3‑6	: Plan Execution Control Operations
[image:]
Figure 3‑7	: Plan Execution Feedback Operations
Three service operations provide feedback on the execution of Plans, of these only the getPlanStatus operation is mandatory in capability set 1. In order to ensure provision of feedback on the execution of a plan at a sufficiently detailed level to enable feedback for planning requests, it is recommended that capability sets 2 and 3 are implemented.
The getPlanStatus operation returns the current status of the referenced plan(s) as PlanUpdates. It is equivalent to the service operation of the same name in the Plan Distribution Service, but only reports those plan statuses relevant to the plan execution function.
Where supported, the monitorPlanExecution operation enables the consumer to subscribe to automatic notification of changes in status of plans as PlanUpdates. It is equivalent to the monitorPlanStatus operation of the Plan Distribution Service.
The monitorPlanExecutionDetail operation enables the consumer to subscribe to automatic notification of changes in status of the ActivityInstances, EventInstances, and Resources contained within Plans, provided as ActivityUpdates, EventUpdates, and ResourceUpdates respectively. It should be noted that as resource profiles are an optional element of a Plan, ResourceUpdates are only provided where they are supported.
SubPlan Level Execution Control Operations
Support for SubPlans is optional, but where supported an additional 4 service operations enable control at the level of SubPlans.
Planning ActivityInstances contained within a Plan may be associated with a single SubPlan ID. This can be used as a mechanism to identify multiple sub-plans within plans, for example to support individual spacecraft within a constellation, or separate payloads. SubPlan IDs are not unique to an individual Plan, but apply globally to a mission planning system. SubPlan operations apply to all activated Plans managed by the service provider. Individual ActivityInstances are only executed if both their container Plan and associated SubPlan are in the ACTIVATED state.
The activateSubPlan operation enables execution of one or more SubPlans by the service provider. It is implementation dependent whether it is initially assumed that all SubPlans are active, in which case the operation would only be needed to re-enable execution following a deactivateSubPlan operation.
The deactivateSubPlan operation disables execution of one or more SubPlans by the service provider.
The getSubPlanStatus operation returns the current status of the referenced SubPlans as SubPlanUpdates.
Where supported, the monitorSubPlanExecution operation enables the consumer to subscribe to automatic notification of changes in status of SubPlans as SubPlanUpdates.
[image:]
Figure 3‑8	: SubPlan Execution Control Operations
Activity Level Execution Control Operations
[image:]
Figure 3‑9	: Activity Execution Control Operations
Optional support for execution control at the level of ActivityInstances is provided by an additional 3 service operations.
Selected ActivityInstances are identified by Plan, instance ID, and/or tag. The use of tags[footnoteRef:3] allows arbitrary (and overlapping) groups of ActivityInstances to be managed together. [3: Tags are used in the MPS information model to capture the equivalent concept to subschedules of PUS service 11 in the ECSS Packet Utilization Standard (reference [D7]).]

The suspendActivity operation requests suspension of the execution of selected activities, in one or more plans, without changing the state of those plans. The response gives the resulting ActivitySuspensionStatus of each referenced ActivityInstance.
The resumeActivity operation requests the resumption of previously suspended activities in one or more plans without changing the state of those plans. The response gives the resulting ActivitySuspensionStatus of each referenced ActivityInstance.
The getActivityStatus operation returns the status of ActivityInstances, as ActivityUpdates, at activity, sub-plan, or tag level.
[bookmark: _Toc140093850]MPS Data ItemService Objects
MPS data itemservice objects relevant to the plan execution control service and their relationships are defined within the MPS information model in 4.54.2.
The following MO objects are directly applicable to the service:
· Plan;
· ActivityInstance;
· EventInstance;
· Resource.
The identity of Plans comprises both key and version. Plans are submitted to a plan execution function for execution.
Plans contain ActivityInstances and EventInstances, the same instance of which may occur in multiple overlapping Plans or versions of Plans. Plans may also optionally contain ResourceProfiles referencing Resources.
The plan execution control service does not result in the creation of new MO objects.
The following MO objects may be referenced by the ActivityInstances and EventInstances contained within a Plan:
· ActivityDefinition;
· EventDefinition;
· RequestInstance.
[bookmark: _Toc140093851]High-Level Requirements
The following set of mission planning configuration data shall be available to both provider and consumers in a any deployment of the plan execution control service:
a) Planning Activity Definitions (as ActivityDefinition objects [4.5.2.14.2.2.1]);
b) Planning Event Definitions (as EventDefinition objects [4.5.3.14.2.3.1]);
c) Planning Resource Definitions (as Resource objects [4.5.4.24.2.4.2]) [Optional];
d) MPS System Configuration Data (as an MPSSysConfig object [4.2.7]).
[bookmark: _Toc140093852]Functional Requirements
In response to a submitPlan operation, the service provider shall make the submitted Plan available for execution.
If the service does not support plan activation (capability set 2), the service provider shall provide an internal mechanism to activate submitted Plans.
NOTE	–	This may be as simple as to automatically activate Plans on submission.
In response to a revokePlan operation, the service provider shall make the submitted Plan unavailable for execution. If this is not possible (for example, if the plan has already executed), then a REVOKE_FAILED error shall be returned.	Comment by Quinten Van Woerkom: DLR-053
In response to internal plan execution processes, the service provider shall model the status of Plans in accordance with the plan state model (see 4.5.6.24.2.6.2).
In response to an activatePlan operation, or internal plan activation where not supported, the service provider shall enable the execution of the referenced Plans and the ActivityInstances contained within them, subject to the scheduling constraints specified within the Plans.
In response to an activatePlan operation, if a referenced Plan overlaps with its already activated precursor Plan, then the service provider should merge plan revisions into the currently active Plan.
NOTE	–	It is implementation dependent whether overlapping Plans are supported and how this is managed internally by the plan execution function. However, it is common for successive iterations of a Plan to overlap, for example with a Plan being generated daily for the coming week. In this case, the same ActivityInstance may appear in the overlap period of both Plans, and may be unchanged, modified or deleted in the successor Plan. New ActivityInstances may also be inserted in the overlap period or in the extended period covered by the successor Plan. It is anticipated that when the successor Plan is activated, then its predecessor is superseded from the start point of the successor Plan with any revisions applicable to the overlap period being applied. Only the latest revision of the ActivityInstance is executed.
In response to an activatePlan operation, if a referenced Plan is a target or Patch Plan, then the service provider shall also activate the associated precursor Plan.
NOTES
1 It is implementation dependent whether the target Plan is reconstituted prior to activation, or the precursor is activated and the Patch Plan merged into this.
2 If the precursor Plan is already activated, then the Patch Plan can be merged into the currently active Plan. If the precursor Plan is not available, then the operation cannot be performed.
It shall not be possible to activate a Plan if it is outside the validity period of the Plan, or if the start of the Plan period has already passed. In this case, the activatePlan operation shall fail.
In response to a deactivatePlan operation, if supported, the service provider shall disable the execution of the referenced Plans and the ActivityInstances contained within them, subject to the specified deactivationMode.
NOTE	–	Supported deactivationModes are specific to the implementation of the service provider.
If no Plan version 0 is specified in the getPlanStatus, monitorPlanExecution, and monitorPlanExecutionDetail operations, then the service provider shall assume the latest version of the Plan is required.	Comment by Quinten Van Woerkom: DLR-055
If the monitorPlanExecutionDetail operation (or activity level operations) are supported, then in response to internal plan execution processes, the service provider shall model the status of ActivityInstances and EventInstances in accordance with their respective state models (4.5.2.24.2.2.2 and 4.5.3.24.2.3.2).
If the monitorPlanExecutionDetail operation is supported, the service provider may model the evolving value of planning Resources in accordance with the ResourceProfiles (4.5.4.44.2.4.3) defined within Plans and any Effects (4.6.7.4.7.34.3.7.3) associated with ActivityInstances.
If SubPlans are supported, the service provider shall maintain the current status of SubPlans as ACTIVATED or DEACTIVATED.
NOTE	–	The status of SubPlans is independent to that of Plans and a change in their activation status has no impact on the status of the Plan. It may impact the status of individual ActivityInstances, which can be observed using the monitorPlanExecutionDetail operation.
In response to an activateSubPlan operation, if supported, the service provider shall activate the referenced SubPlans and enable the execution of ActivityInstances that are contained in activated Plans and allocated to activated SubPlans.
NOTE	–	It is implementation dependent whether SubPlans are initially ACTIVATED and therefore do not require activation unless previously deactivated.
In response to a deactivateSubPlan operation, if supported, the service provider shall deactivate the referenced SubPlans and disable the execution of ActivityInstances that are contained in activated Plans and allocated to deactivated SubPlans, subject to the specified deactivationMode.
NOTE	–	Supported deactivationModes are specific to the implementation of the service provider.
In response to a suspendActivity operation, if supported, the service provider shall suspend the execution of referenced ActivityInstances, subject to the specified suspensionMode.
NOTE	–	Supported suspensionModes are specific to the implementation of the service provider.
In response to a resumeActivity operation, if supported, the service provider shall resume the execution of the referenced ActivityInstances where it is safe to do so.
[bookmark: _Toc140093853]Operation: submitPlan
Overview
The submitPlan operation is used to send a plan to a plan execution function (the service provider), making it available for execution. The service provider acknowledges the reception of the plan or returns an error.
NOTE	–	The submitted plan may be a full plan or a patch plan.
Definition

	Operation Identifier
	submitPlan

	Interaction Pattern
	SUBMIT

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	SUBMIT
	No
	plan : (Plan)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	SUBMIT_FAILED	Comment by Quinten Van Woerkom: ESA-092
	MPS

	UNSUPPORTED
	MPS

[bookmark: _Toc140093854]Operation: revokePlan
Overview
The revokePlan operation is used to request a plan execution function to revoke a previously submitted Plan, making it unavailable for execution. The service provider acknowledges the revocation of the Plan or returns an error.
Definition

	Operation Identifier
	revokePlan

	Interaction Pattern
	SUBMIT

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	SUBMIT
	No
	planRef : (MAL::ObjectRef <Plan>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	REVOKE_FAILED
	MPS

[bookmark: _Toc140093855]Operation: getPlanStatus
Overview
The getPlanStatus operation is used to obtain the current status of one or more known Plans that have been previously submitted to a plan execution function.
Definition

	Operation Identifier
	getPlanStatus

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	planRefs : (List <MAL::ObjectRef <Plan>>)

	OUT
	RESPONSE
	No
	planStatus : (List <PlanUpdate>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093856]Operation: activatePlan
Overview
The activatePlan operation is used to request the execution of specified Plans that have previously been submitted to a plan execution function. The service provider enables the execution of the referenced Plans and the ActivityInstances contained within them, subject to the scheduling constraints specified within the Plans. It is not possible to activate a Plan outside its validity period, or after the start of the Plan period. In this case, the operation will return an ACTIVATE_FAILED error.
NOTES
1 Multiple plans with a common precursor may have been submitted to a plan execution function. Usually only one of these is considered the nominal plan, the other alternative or contingency plans having the isAlternate flag set. It is implementation dependent whether the service provider will allow activation of Plans that have the isAlternate flag set, but this may be blocked for operational safety. Where this is the case, the plan edit service can be used to change the state of the isAlternate flag prior to activation (see 3.9.53.6.4).
2 In order to activate a patch Plan, the precursor Plan on which it is based must also be activated. It is recommended that the activatePlan operation references the target Plan (the result of merging the patch Plan with its precursor), rather than the patch Plan itself (although this is allowed). It is implementation dependent how it is achieved (merge patch with precursor prior to activation, or activate precursor and then merge patch), but if the precursor Plan is not already activated, then activating a target or patch Plan implies that the precursor is also activated. If the precursor plan has not previously been submitted to the service provider (or has been revoked), then it is not possible to activate the target or patch Plan.
Definition

	Operation Identifier
	activatePlan

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	planRefs : (List <MAL::ObjectRef <Plan>>)

	OUT
	RESPONSE
	No
	activationStatus : (List <PlanActivationStatus>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	ACTIVATE_FAILED
	MPS

[bookmark: _Toc140093857]Operation: deactivatePlan
Overview
The deactivatePlan operation is used to request deactivation of specified Plans that have previously been activated. The service provider disables the execution of the referenced Plans and the ActivityInstances contained within them, where it is possible to do so.
The deactivationMode argument allows selection of the deactivation behaviour. For example:
· Orderly (ceases execution of any new activities, but allows those already initiated to complete);
· Rapid (ceases execution of the Plan, but allows activities already initiated to continue until their next defined breakpoint);
· Immediate (ceases execution of the Plan and all activities currently in progress).
It should be noted that it is dependent on the service provider implementation which deactivationModes are supported, and that the above list is not exhaustive.
The service provider returns a list of PlanActivationStatus data structures comprising Plan status and activationInfo as a String for each Plan in the deactivation list. The activationInfo allows the return of deployment specific details on the deactivation, such as the deactivation mode applied or reasons for a failure to deactivate.
If a Plan is deactivated prior to any of its constituent ActivityInstances being executed (or before the specified planPeriodStart), then all new ActivityInstances and EventInstances contained in the Plan are unloaded or removed, and the status of the Plan reverts to SUBMITTED.
If a Plan is deactivated after any of its constituent ActivityInstances have been executed (or after the specified planPeriodStart), then the status of the Plan and the status of all contained ActivityInstances and EventInstances that will not be executed are set to TERMINATED with the additional statusInfo ‘CANCELLED’.
Definition
	Operation Identifier
	deactivatePlan

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
No
	planRefs : (List <MAL::ObjectRef <Plan>>)
deactivationMode : (MAL::StringIdentifier)	Comment by Quinten Van Woerkom: CNES-042

	OUT
	RESPONSE
	No
	activationStatus : (List <PlanActivationStatus>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.
	Error
	Area

	INVALID
	MPS

	DEACTIVATE_FAILED	Comment by Peter Van Der Plas: ESA-092
	MPS

[bookmark: _Toc140093858]Operation: monitorPlanExecution
Overview
The monitorPlanExecution operation is used to subscribe to status updates for a filtered set of Plans that have been submitted to a plan execution function. The operation uses the Publish-Subscribe interaction pattern, with the body of the notification message comprising a PlanUpdate for a subscribed Plan.
The operation is equivalent to the monitorPlanStatus operation of the Plan Distribution Service, but only reports the status of plans currently being managed by a plan execution function.
Definition

	Operation Identifier
	monitorPlanExecution

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	Subscription Keys
	planID : (MAL::Identifier)
precursor : (MAL::Identifier)
status : (MAL::UIntegerUShort)	Comment by Quinten Van Woerkom: DLR-049
originator : (MAL::Identifier)

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	OUT
	PUBLISH/NOTIFY
	No
	planUpdate : (PlanUpdate)

StructuresRequirements
The monitorPlanExecution subscription shall be based on the provision of the following keys in addition to the domain of the required Plans in the Register message, all of which are nullable:
a) PlanID: key of subscribed Plan as MAL::Identifier;
b) Precursor: key of precursorPlan as MAL::Identifier;
c) Status: status as MAL::UInteger UShort [PlanStatusEnum];	Comment by Quinten Van Woerkom: DLR-049
d) Originator: originator of subscribed Plan as MAL::Identifier.
NOTE	–	For Status, the enumerated value associated with the PlanStatusEnum must be used, and not the associated string.
Errors
This operation returns no errors in addition to the standard MAL errors.In addition to standard MAL errors, the operation may return the following MPS errors:	Comment by Quinten Van Woerkom: ESA-018

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093859]Operation: monitorPlanExecutionDetail
Overview
The monitorPlanExecutionDetail operation is used to subscribe to updates that report changes in the detailed execution status for a filtered set of Plan contents at the level of planning activities, events and resources. A planning function requires feedback at the level of planning activities and events to be able to reconstitute the status of planning requests, as well to support re-planning. The operation uses the Publish-Subscribe interaction pattern.
It is implementation dependent which details are reported on, but this may be any combination of planning activities, events, and resources. The notification message body comprises a single structure of the abstract class PlanDetailUpdate, which corresponds to one of the concrete classes ActivityUpdate, EventUpdate, or ResourceUpdate.
Definition

	Operation Identifier
	monitorPlanExecutionDetail

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	Subscription Keys
	planID : (MAL::Identifier)
subPlan : (MAL::Identifier)
tags : (MAL::String)	Comment by Quinten Van Woerkom: DLR-057
type : (MAL::Identifier)

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	OUT
	PUBLISH/NOTIFY
	No
	detailUpdate : (PlanDetailUpdate)

NOTE	–	Due to limitations of the MAL broker (see reference [2]), a PlanDetailUpdate can only be published for one tag at a time. If it is desirable for a PlanDetailUpdate to match multiple tags, the provider implementation must publish it multiple times, once under each tag.	Comment by Quinten Van Woerkom: DLR-057
StructuresRequirements
The monitorPlanExecutionDetail subscription shall be based on the provision of the following keys in addition to the domain of the required Plans in the Register message, all of which are nullable:
a) PlanID: key of subscribed Plan as MAL::Identifier;
b) SubPlan: subPlan of subscribed ActivityInstances as MAL::Identifier;
c) Tags: tags of subscribed ActivityInstances as MAL::String;
d) Type: type of the MO object to which the PlanDetailUpdate relates as MAL::Identifier. This must be one of ActivityInstance, EventInstance, or Resource.
The service provider shall publish a combination of ActivityUpdates, EventUpdates, and ResourceUpdates.
[bookmark: _Hlk184050157]NOTE	–	It is implementation dependent which types of update are supported by the service provider.
If the subscription includes subPlan or tags keys, then the consumer shall only be notified of updates to ActivityInstances associated with the specified subPlan or keystag. If the service provider supports EventUpdates and/or ResourceUpdates then these should be notified irrespective of subscription by subPlan or tag.	Comment by Quinten Van Woerkom: DLR-058
If the subscription includes Type keys, then the consumer shall only be notified with updates to the specified MO object types (ActivityInstance, EventInstance, or Resource).
Errors
This operation returns no errors in addition to the standard MAL errors.In addition to standard MAL errors, the operation may return the following MPS errors:	Comment by Quinten Van Woerkom: ESA-018

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093860]Operation: activateSubPlan
Overview
The activateSubPlan operation is used to request that the service provider activates the referenced SubPlans and enables the execution of ActivityInstances that are contained in activated Plans and allocated to activated SubPlans.
NOTE
1 It is implementation dependent whether SubPlans are initially ACTIVATED and therefore do not require activation unless previously deactivated.
2 Where the operation is directly supported by the service provider there is little reason for the activation to fail, but if the operation is delegated, for example to an on-board scheduler, there is the potential for the operation to fail.
Definition

	Operation Identifier
	activateSubPlan

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	subPlanIDs : (List <MAL::Identifier>)

	OUT
	RESPONSE
	No
	activationStatus : (List <SubPlanActivationStatus>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	ACTIVATE_SUBPLAN_FAILED
	MPS

[bookmark: _Toc140093861]Operation: deactivateSubPlan
Overview
The deactivateSubPlan operation is used to request that the service provider deactivates the referenced SubPlans and disables the execution of ActivityInstances that are contained in activated Plans and allocated to the deactivated SubPlans, where it is possible to do so.
The deactivationMode argument allows selection of the deactivation behaviour. For example:
· Orderly (ceases execution of any new activities, but allows those already initiated to complete);
· Rapid (ceases execution of the Sub-plan, but allows activities already initiated to continue until their next defined breakpoint);
· Immediate (ceases execution of the Sub-plan and all activities currently in progress).
It should be noted that it is dependent on the service provider implementation which deactivationModes are supported, and that the above list is not exhaustive.
The service provider returns a list of SubPlanActivationStatus data structures comprising sub-plan status and activationInfo as a String for each sub-plan in the deactivation list. The activationInfo allows the return of deployment specific details on the deactivation, such as the deactivation mode applied or reasons for a failure to deactivate.
NOTE	–	Where the operation is directly supported by the service provider there is little reason for the deactivation to fail, but if the operation is delegated, for example to an on-board scheduler, there is the potential for the operation to fail.
Definition

	Operation Identifier
	deactivateSubPlan

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
No
	subPlanIDs : (List <MAL::Identifier>)
deactivationMode : (MAL::String)

	OUT
	RESPONSE
	No
	activationStatus : (List <SubPlanActivationStatus>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	DEACTIVATE_SUBPLAN_FAILED
	MPS

[bookmark: _Toc140093862]Operation: getSubPlanStatus
Overview
The getSubPlanStatus operation is used to obtain the current status of one or more SubPlans.
Definition

	Operation Identifier
	getSubPlanStatus

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	subPlanIDs : (List <MAL::Identifier>)

	OUT
	RESPONSE
	No
	subPlanStatus : (List <SubPlanUpdate>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093863]Operation: monitorSubPlanExecution
Overview
The monitorSubPlanExecution operation is used to subscribe to status updates for a filtered set of SubPlans. The operation uses the Publish-Subscribe interaction pattern, with the body of the notification message comprising a SubPlanUpdate for a subscribed sub-plan.
Definition

	Operation Identifier
	monitorSubPlanExecution

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	Subscription Keys
	subPlan : (MAL::Identifier)

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	OUT
	PUBLISH/NOTIFY
	No
	subPlanUpdate : (SubPlanUpdate)

StructuresRequirements
The monitorSubPlanExecution subscription shall be based on the provision of the following keys in addition to the domain of the required SubPlans in the Register message, all of which are nullable:
SubPlan: subPlan ID as MAL::Identifier
Errors
This operation returns no errors in addition to the standard MAL errors.In addition to standard MAL errors, the operation may return the following MPS errors:	Comment by Quinten Van Woerkom: ESA-018

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093864]Operation: suspendActivity
Overview
The suspendActivity operation is used to request suspension of the execution of selected activities in one or more plans, without changing the state of the plan(s).
The suspenstionMode argument allows selection of the suspension behaviour. For example:	Comment by Quinten Van Woerkom: DLR-059
· Orderly (suspends execution of any new activities, but allows those already initiated to complete);
· Rapid (suspends execution of any new activities, but allows any activities and their sub-activities already initiated to continue until their next defined breakpoint);
· Immediate (suspends execution of all activities, including those currently in progress).
It should be noted that it is dependent on the service provider implementation which deactivationModes are supported, and that the above list is not exhaustive.
The service provider responds with a list of ActivitySuspensionStatus data structures comprising activity status and suspensionInfo (as a String) for each activity subject to the suspension request.
The suspensionInfo allows the return of deployment specific details on the suspension, such as the suspension mode applied or reasons for a failure to suspend.
Definition

	Operation Identifier
	suspendActivity

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	YesNo	Comment by Quinten Van Woerkom: DLR-060
Yes
Yes
No
	planRefs : (List <MAL::ObjectRef <Plan>>)
activityRefs : (List <MAL::ObjectRef <ActivityInstance>>)
tags : (List <MAL::String>)
suspensionMode : (MAL::String)

	OUT
	RESPONSE
	No
	suspensionStatus : (List <ActivitySuspensionStatus>)

StructuresRequirements
The ActivityInstances to be suspended shall be specified in the request message of the suspendActivity operation, by the following filter fields, each of which is nullable:
a) planRefs;
b) activityRefs;
c) tags (associated with ActivityInstances to be suspended).
NOTE	–	As for other filters, the planRefs, activityRefs, and tags filters are ANDed together, but multiple items within each filter are ORed. This also applies to the tag filter, where if an ActivityInstance has any one of the listed tag values, it passes the filter. activityRefs and tags filters would not normally be used in conjunction.
Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093865]Operation: resumeActivity
Overview
The resumeActivity operation is used to request resumption of the execution of selected activities in one or more plans, without changing the state of the plan(s).
The service provider responds with a list of ActivitySuspensionStatus data structures comprising activity status and suspensionInfo (as a String) for each activity subject to the resumption request.
The suspensionInfo allows the return of deployment specific details on the resumption, such as the reasons for a failure to resume.
Definition
	Operation Identifier
	resumeActivity

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	NoYes	Comment by Quinten Van Woerkom: DLR-060
Yes
	Comment by Quinten Van Woerkom: DLR-061
Yes
	planRefs : (List <MAL::ObjectRef <Plan>>)
activityRefs : (List <MAL::ObjectRef <ActivityInstance>>)
tags : (List <MAL::String>)

	OUT
	RESPONSE
	No
	suspensionStatus : (List <ActivitySuspensionStatus>)

StructuresRequirements
The ActivityInstances to be resumed shall be specified in the request message of the resumeActivity operation, by the following filter fields, each of which is nullable:
a) planRefs;
b) activityRefs;
c) tags (associated with ActivityInstances to be resumed).
NOTE	–	As for other filters, the planRefs, activityRefs, and tags filters are ANDed together, but multiple items within each filter are ORed. This also applies to the tag filter, where if an ActivityInstance has any one of the listed tag values, it passes the filter. activityRefs and tags filters would not normally be used in conjunction.
Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.
	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093866]Operation: getActivityStatus
Overview
The getActivityStatus operation is used to request a detailed report from the service provider on the current status of ActivityInstances, selected at activity, sub-plan, or tag levels.
Definition

	Operation Identifier
	getActivityStatus

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	YesNo	Comment by Quinten Van Woerkom: DLR-060
Yes

Yes
Yes
	planRefs : (List <MAL::ObjectRef <Plan>>)
activityRefs : (List <MAL::ObjectRef <ActivityInstance>>)
subPlans : (List <MAL::Identifier>)
tags : (List <MAL::String>)

	OUT
	RESPONSE
	No
	activityStatus : (List <ActivityUpdate>)

StructuresRequirements
The ActivityInstances whose status is to be reported shall be specified in the request message of the getActivityStatus operation, by the following filter fields, each of which is nullable:
a) planRefs;
b) activityRefs;
c) subPlans (associated with ActivityInstances to be reported);
d) tags (associated with ActivityInstances to be reported).
NOTES
1 It is implementation dependent what is reported if none of the above are provided (all ActivityInstances or none).
2 As for other filters, the planRefs, activityRefs, subPlans, and tags filters are ANDed together, but multiple items within each filter are ORed. This also applies to the tag filter, where if an ActivityInstance has any one of the listed tag values, it passes the filter. activityRefs would not normally be used in conjunction with subPlans or tags filters.
Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.
	Error
	Area

	INVALID
	MPS

[bookmark: _Ref68802075][bookmark: _Toc140093867][bookmark: _Toc161745103][bookmark: _Toc186645376]Service: Plan Information Management Service
OverviewOverview	Comment by Quinten Van Woerkom: ESA-006
The Plan Information Management Service, introduced in 2.5.52.5.5, is provided by a planning function and enables its consumers to list and retrieve available MPS configuration data. This includes definitions for planning requests, planning activities, planning events and planning resources, and also MPS system configuration data. The service may also be provided by a plan execution function (excluding planning request definitions). It comprises the following operations defined below, none of which are mandatory.
Definition

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Area Version

	MPS
	PlanInformationManagement
	5
	4
	1

	Interaction Pattern
	Operation Identifier
	Operation Number
	Capability Set

	PROGRESS
	listRequestDefs
	1
	1

	REQUEST
	getRequestDefs
	2
	

	PROGRESS
	listEventDefs
	3
	2

	REQUEST
	getEventDefs
	4
	

	PROGRESS
	listActivityDefs
	5
	3

	REQUEST
	getActivityDefs
	6
	

	PROGRESS
	listResourceDefs
	7
	4

	REQUEST
	getResourceDefs
	8
	

	REQUEST
	getSystemConfig
	9
	5

[image:]
Discussion
General
Figure 3‑10	: Plan Information Management Operations for Generic Data Item
Each of the first four capability sets corresponds to a particular type of MPS data itemservice object and comprises two operations:
a) listDefs: request a list of available definitions, filtered by domain and/or key;
b) getDef: obtain the full definitions for a specified set of definition IDs.
The first enables a consumer to discover which definitions are available, and the second enables their retrieval.
The fifth capability set comprises a single operation to retrieve the MPS system configuration data: MPSSystemConfig.
[bookmark: _Toc140093869]DISCUSSION—MPS Data ItemService Objects
MPS data itemservice objects relevant to the plan information management service and their relationships are defined within the MPS information model in section 4, and specifically identified as planning configuration data in 4.5.74.2.7.
The following MO objects are applicable to the service:
· RequestDefinition;
· ActivityDefinition;
· EventDefinition;
· Resource [Definition];
· MPSSystemConfig.
Each definition has its own identity (key and version). It should be noted that for MPSSystemConfig, as a singleton object, no key is required.
In the case of planning Resources, the definition can omit the value attributefield, although it can also be used to provide a default or initial value.
[bookmark: _Toc140093870]High-Level Requirements
The following set of mission planning configuration data shall be available to the provider in a any deployment of the plan information management service:	Comment by Quinten Van Woerkom: DLR-062
a) Planning Request Definitions (as RequestDefinition objects [4.5.5.14.2.5.1]);
b) Planning Activity Definitions (as ActivityDefinition objects [4.5.2.14.2.2.1]);
c) Planning Event Definitions (as EventDefinition objects [4.5.3.14.2.3.1]);
d) Planning Resource Definitions (as Resource objects [4.5.4.24.2.4.2]) [Optional];
e) MPS System Configuration Data (as an MPSSysConfig object [4.2.7]).
[bookmark: _Toc140093871]Functional Requirements
If no version 0 is specified for the definition to be retrieved in a list[Item]Defs or operation then the service provider shall list all available versions of the definition.	Comment by Quinten Van Woerkom: DLR-055
If no version 0 is specified for the definition to be retrieved in a get[Item]Defs or getSystemConfig operation then the service provider shall return the latest available version of the definition.	Comment by Quinten Van Woerkom: DLR-055
[bookmark: _Toc140093872]Operation: listRequestDefs
Overview
The listRequestDefs operation is used to obtain a list of available RequestDefinitions (key and version) together with their descriptions. The list can be filtered by domain or restricted to specified definition IDs. All available versions are listed.
The domain field is an ordered list of identifiers representing a domain hierarchy, any node of which can use ‘*’ as a wildcard (meaning any domain identifier at that level of the hierarchy). If a set of domains is required that cannot be represented through the use of wildcards, then the operation will need to be repeated using different domain filters.
Definition
	Operation Identifier
	listRequestDefs

	Interaction Pattern
	PROGRESS

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	PROGRESS
	Yes
Yes
	domain : (List <MAL::Identifier>)
requestDefs : (List <MAL::ObjectRef <RequestDefinition>>)

	OUT
	ACK
	No
	Empty

	OUT
	UPDATE
	No
	requestDefs : (List <DefListEntry>)

	OUT
	RESPONSE
	No
	Empty

StructuresRequirements
The RequestDefinitions to be listed shall be specified in the request message of the listRequestDefs operation, by the following fields, each of which is nullable:
a) domain;
b) requestDefs.
Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.
	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093873]Operation: getRequestDefs
Overview
The getRequestDefs operation is used to retrieve one or more available RequestDefinitions, whose identity is known to the consumer.
Definition
	Operation Identifier
	getRequestDefs

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	requestDefs : (List <MAL::ObjectRef <RequestDefinition>>)

	OUT
	RESPONSE
	No
	definitions : (List <RequestDefinition>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.
	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093874]Operation: listEventDefs
Overview
The listEventDefs operation is used to obtain a list of available EventDefinitions (key and version) together with their descriptions. The list can be filtered by domain or restricted to specified definition IDs. All available versions are listed.
The domain field is an ordered list of identifiers representing a domain hierarchy, any node of which can use ‘*’ as a wildcard (meaning any domain identifier at that level of the hierarchy). If a set of domains is required that cannot be represented through the use of wildcards, then the operation will need to be repeated using different domain filters.
Definition
	Operation Identifier
	listEventDefs

	Interaction Pattern
	PROGRESS

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	PROGRESS
	Yes
Yes
	domain : (List <MAL::Identifier>)
eventDefs : (List <MAL::ObjectRef <EventDefinition>>)

	OUT
	ACK
	No
	Empty

	OUT
	UPDATE
	No
	eventDefs : (List <DefListEntry>)

	OUT
	RESPONSE
	No
	Empty

StructuresRequirements
The EventDefinitions to be listed shall be specified in the request message of the listEventDefs operation, by the following fields, each of which is nullable:
a) domain;
b) eventDefs.
Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093875]Operation: getEventDefs
Overview
The getEventDefs operation is used to retrieve one or more available EventDefinitions, whose identity is known to the consumer.
Definition

	Operation Identifier
	getEventDefs

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	eventDefs : (List <MAL::ObjectRef <EventDefinition>>)

	OUT
	RESPONSE
	No
	definitions : (List <EventDefinition>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093876]Operation: listActivityDefs
Overview
The listActivityDefs operation is used to obtain a list of available ActivityDefinitions (key and version) together with their descriptions. The list can be filtered by domain or restricted to specified definition IDs. All available versions are listed.
The domain field is an ordered list of identifiers representing a domain hierarchy, any node of which can use ‘*’ as a wildcard (meaning any domain identifier at that level of the hierarchy). If a set of domains is required that cannot be represented through the use of wildcards, then the operation will need to be repeated using different domain filters.
Definition

	Operation Identifier
	listActivityDefs

	Interaction Pattern
	PROGRESS

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	PROGRESS
	Yes
Yes
Yes
	domain : (List <MAL::Identifier>)
activityDefs : (List <MAL::ObjectRef <ActivityDefinition>>)
defaultTags : (List <MAL::String>)

	OUT
	ACK
	No
	Empty

	OUT
	UPDATE
	No
	activitytDefs : (List <DefListEntry>)

	OUT
	RESPONSE
	No
	Empty

StructuresRequirements
The ActivityDefinitions to be listed shall be specified in the request message of the listActivityDefs operation, by the following fields, each of which is nullable:
a) domain;
b) activityDefs;
c) defaultTags (associated with ActivityDefinitions to be included).
Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093877]Operation: getActivityDefs
Overview
The getActivityDefs operation is used to retrieve one or more available ActivityDefinitions, whose identity is known to the consumer.
Definition

	Operation Identifier
	getActivityDefs

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	activityDefs : (List <MAL::ObjectRef <ActivityDefinition>>)

	OUT
	RESPONSE
	No
	definitions : (List <ActivityDefinition>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093878]Operation: listResourceDefs
Overview
The listResourceDefs operation is used to obtain a list of available Resources (key and version) together with their descriptions. The list can be filtered by domain or restricted to data types. All available versions are listed.
The domain field is an ordered list of identifiers representing a domain hierarchy, any node of which can use ‘*’ as a wildcard (meaning any domain identifier at that level of the hierarchy). If a set of domains is required that cannot be represented through the use of wildcards, then the operation will need to be repeated using different domain filters.
Definition

	Operation Identifier
	listResourceDefs

	Interaction Pattern
	PROGRESS

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	PROGRESS
	Yes
Yes
	domain : (List <MAL::Identifier>)
dataType : (List <MAL::AttributeType>)

	OUT
	ACK
	No
	Empty

	OUT
	UPDATE
	No
	resourceDefs : (List <DefListEntry>)

	OUT
	RESPONSE
	No
	Empty

StructuresRequirements
The Resources to be listed shall be specified in the request message of the listResourceDefs operation, by the following fields, each of which is nullable:
a) domain;
b) dataType: list of Resource data types to be included.
Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093879]Operation: getResourceDefs
Overview
The getResourceDefs operation is used to retrieve the definition of one or more available Resources, whose identity is known to the consumer.
It should be noted that this operation is designed to retrieve the resource definition and not the current value of the resource (the value field may contain a default value for the resource).
Definition

	Operation Identifier
	getResourceDefs

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	resources : (List <MAL::ObjectRef <Resource>>)

	OUT
	RESPONSE
	No
	definitions : (List <Resource>)

Errors
In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.
	Error
	Area

	INVALID
	MPS

Errors
[bookmark: _Toc185349724][bookmark: _Toc185428833][bookmark: _Toc185498474][bookmark: _Toc185499674][bookmark: _Toc185500875][bookmark: _Toc185502080][bookmark: _Toc185503286][bookmark: _Toc186031546][bookmark: _Toc186032752][bookmark: _Toc186033958][bookmark: _Toc186046456][bookmark: _Toc186457222][bookmark: _Toc186470867][bookmark: _Toc186645378]In addition to standard MAL errors, the operation may return the following MPS errors:
[bookmark: _Toc185349725][bookmark: _Toc185428834][bookmark: _Toc185498475][bookmark: _Toc185499675][bookmark: _Toc185500876][bookmark: _Toc185502081][bookmark: _Toc185503287][bookmark: _Toc186031547][bookmark: _Toc186032753][bookmark: _Toc186033959][bookmark: _Toc186046457][bookmark: _Toc186457223][bookmark: _Toc186470868][bookmark: _Toc186645379]
	Error
	Area

	INVALID
	MPS

[bookmark: _Toc140093880]Operation: getSystemConfig
Overview
The getSystemConfig operation is used to retrieve system configuration data relating to the MPS system.
[bookmark: _Toc185342116][bookmark: _Toc185349735][bookmark: _Toc185428844][bookmark: _Toc185498485][bookmark: _Toc185499685][bookmark: _Toc185500886][bookmark: _Toc185502091][bookmark: _Toc185503297][bookmark: _Toc186031557][bookmark: _Toc186032763][bookmark: _Toc186033969][bookmark: _Toc186046467][bookmark: _Toc186457233][bookmark: _Toc186470878][bookmark: _Toc186645389]
	Operation Identifier
[bookmark: _Toc185349737][bookmark: _Toc185428846][bookmark: _Toc185498487][bookmark: _Toc185499687][bookmark: _Toc185500888][bookmark: _Toc185502093][bookmark: _Toc185503299][bookmark: _Toc186031559][bookmark: _Toc186032765][bookmark: _Toc186033971][bookmark: _Toc186046469][bookmark: _Toc186457235][bookmark: _Toc186470880][bookmark: _Toc186645391]
	getSystemConfig

	Interaction Pattern
	REQUEST

[bookmark: _Toc185342123][bookmark: _Toc185349743][bookmark: _Toc185428852][bookmark: _Toc185498493][bookmark: _Toc185499693][bookmark: _Toc185500894][bookmark: _Toc185502099][bookmark: _Toc185503305][bookmark: _Toc186031565][bookmark: _Toc186032771][bookmark: _Toc186033977][bookmark: _Toc186046475][bookmark: _Toc186457241][bookmark: _Toc186470886][bookmark: _Toc186645397]
	Pattern Sequence
	Message
	Nullable
	Body Signature

	IN
	REQUEST
	No
	version : (MAL::UInteger)

	OUT
	RESPONSE
	No
	systemConfig : (MPSSystemConfigDetails)

Structures
The version field of the getSystemConfig operation request message body shall reference the required version of the MPSSystemConfig object.
Errors
[bookmark: _Toc185342142][bookmark: _Toc185349762][bookmark: _Toc185428871][bookmark: _Toc185498512][bookmark: _Toc185499712][bookmark: _Toc185500913][bookmark: _Toc185502118][bookmark: _Toc185503324][bookmark: _Toc186031584][bookmark: _Toc186032790][bookmark: _Toc186033996][bookmark: _Toc186046494][bookmark: _Toc186457260][bookmark: _Toc186470905][bookmark: _Toc186645416]In addition to standard MAL errors, the operation may return the following MPS errors:
[bookmark: _Toc185342143][bookmark: _Toc185349763][bookmark: _Toc185428872][bookmark: _Toc185498513][bookmark: _Toc185499713][bookmark: _Toc185500914][bookmark: _Toc185502119][bookmark: _Toc185503325][bookmark: _Toc186031585][bookmark: _Toc186032791][bookmark: _Toc186033997][bookmark: _Toc186046495][bookmark: _Toc186457261][bookmark: _Toc186470906][bookmark: _Toc186645417]
	Error
	Area

	INVALID
	MPS

[bookmark: _Ref68802237][bookmark: _Toc140093881][bookmark: _Toc161745104][bookmark: _Toc186645424]Service: Plan Edit Service
OverviewOverview	Comment by Quinten Van Woerkom: ESA-006
The Plan Edit Service, introduced in 2.5.62.5.6, is provided by a plan execution function and enables its consumers to modify Plans that have already been submitted for execution. It allows an external user or function to update the status of the Plan; insert, modify, or delete its constituent ActivityInstances and EventInstances; update the value of Resources; and apply a time shift to a Plan. It comprises the following operations defined below, of which those in capability sets 1 and 2 are mandatory.
In some deployments, the Plan Edit Service could also be provided by a planning function to enable users to make adjustments to their planned activities prior to submission of the plan for execution.
Definition

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Area Version

	MPS
	PlanEdit
	5
	5
	1

	Interaction Pattern
	Operation Identifier
	Operation Number
	Capability Set

	SUBMIT
	updatePlanStatus
	1
	1

	REQUEST
	insertActivity
	2
	2

	REQUEST
	insertEvent
	3
	

	SUBMIT
	deleteActivity
	4
	

	SUBMIT
	deleteEvent
	5
	

	SUBMIT
	updateActivity
	6
	3

	SUBMIT
	updateEvent
	7
	

	SUBMIT
	updateResourceValue	Comment by Quinten Van Woerkom: DLR-014
	8
	4

	SUBMIT
	updateResourceProfile
	9
	5

	SUBMIT
	applyTimeShift
	10
	6

Discussion
General
The updatePlanStatus operation allows the service consumer to modify the status of a previously submitted Plan, including the isAlternate flag.
[image:]
Figure 3‑11	: Plan Edit Operations for Generic Data Item (Activity or Event)
For planning activities and events, three operations are defined for each item type to insert, optionally to update, and to delete an ActivityInstance or EventInstance in a referenced Plan that has previously been submitted to a plan execution function (the service provider). The insert operation results in the creation by the service provider of a new ActivityInstance or EventInstance in the specified Plan. A reference to the new instance (key and version) is returned in the response message.
For planning resources, if supported, it is only possible to update the value of the Resource. This is supported in two ways, as two distinct operations:
· updateResourceValue: a discrete update to a specified value at a specified instant of time;	Comment by Quinten Van Woerkom: DLR-014
· updateResourceProfile: a revised profile covering a period of time.
The applyTimeShift operation is a special operation that allows the timings contained in an entire Plan, or selected SubPlans to be shifted by a specified offset.
[bookmark: _Toc140093883]Discussion—MPS Data ItemService Objects
MPS data itemservice objects relevant to the plan edit service and their relationships are defined within the MPS information model in 4.54.2.
The following MO objects are directly applicable to the service:
· Plan;
· ActivityInstance;
· EventInstance;
· Resource.
The identity of Plans comprises both key and version. Plans must have been previously submitted to a plan execution function for execution (using the plan execution control service).
Plans contain ActivityInstances and EventInstances, the same instance of which may occur in multiple overlapping Plans or versions of Plans. Plans can also optionally contain ResourceProfiles referencing Resources.
The insertActivity and insertEvent operations of the plan edit service result in creation of new ActivityInstances and EventInstances respectively. Deletion of ActivityInstances and EventInstances does not necessarily result in their removal from the plan execution function, but rather their transition to a terminated state.
The following MO objects can be referenced by the ActivityInstances and EventInstances contained within a Plan and plan edit service operations:
· ActivityDefinition;
· EventDefinition.
[bookmark: _Toc140093884]High-Level Requirements
The following set of mission planning configuration data shall be available to both provider and consumers in a any deployment of the plan edit service:
a) Planning Activity Definitions (as ActivityDefinition objects [4.5.2.14.2.2.1]);
b) Planning Event Definitions (as EventDefinition objects [4.5.3.14.2.3.1]);
c) Planning Resource Definitions (as Resource objects [4.5.4.24.2.4.2]) [Optional];
d) MPS System Configuration Data (as an MPSSysConfig object [4.2.7]);
e) [bookmark: _Toc140093885]Functional Requirements.
In response to an updatePlanStatus operation, the service provider shall update the isAlternate flag of the Plan accordingly and apply any change to Plan status consistently with the plan state model (see 4.5.6.24.2.6.2).
NOTE	–	It is implementation dependent what the service provider does in the event of a Plan status change when the Plan has executing ActivityInstances. It is recommended that the plan execution control service is used to manage Plan deactivation in an orderly manner.
In response to an insertActivity operation, the service provider shall create a new ActivityInstance in the referenced Plan and return its identity to the consumer.
In response to an insertEvent operation, the service provider shall create a new EventInstance in the referenced Plan and return its identity to the consumer.
In response to a deleteActivity operation, the service provider shall transition the referenced ActivityInstance to the TERMINATED state.
NOTE	–	If the ActivityInstance is in the EXECUTING state, then it is implementation dependent what action is taken by the service provider.
In response to a deleteEvent operation, the service provider shall transition the referenced EventInstance to the TERMINATED state.
NOTE	–	This may also affect any ActivityInstances whose start or end trigger is linked to the deleted EventInstance as a terminated event will not result in the activity being triggered.
In response to an updateActivity operation, the service provider shall apply the changes contained in the ActivityUpdate to the referenced ActivityInstance.
In response to an updateEvent operation, the service provider shall apply the changes contained in the EventUpdate to the referenced EventInstance.
In response to an updateResourceValue operation, the service provider shall apply the changes contained in the ResourceUpdate to the referenced Resource.	Comment by Quinten Van Woerkom: DLR-014
In response to an updateResourceProfile operation, the service provider shall apply the supplied ResourceProfile to the referenced Resource.
In response to an applyTimeShift operation, the service provider shall apply the specified time shift to the unexpired (future) content, or the specified time period of the referenced Plan or its SubPlan(s), including temporal start and end triggers on ActivityInstances.
NOTE	–	It is implementation dependent whether any other elements of the Plan are time shifted, particularly with regard to the eventTime of EventInstances and, where supported, the start and end times on resource ProfileSegments and the times on Profile Entries.
[bookmark: _Toc65060338][bookmark: _Ref64452173][bookmark: _Toc140093886]Operation: updatePlanStatus
Overview
The updatePlanStatus operation may be used to modify the status of a previously submitted Plan. Directly modifying the status field of a Plan may be used by a third party function to autonomously terminate (or activate) a Plan, but the operation also allows the isAlternate flag to be set or cleared.
It is implementation dependent what action the service provider takes in response to a change of Plan status. The service provider may not permit certain state changes (for example to modify the status of a TERMINATED plan, which is inconsistent with the plan status model), in which case an UPDATE_FAILED error shall beis returned.	Comment by Quinten Van Woerkom: DLR-053
A set of Plans with a common precursor may be submitted to a plan execution function to cater for alternative or contingency scenarios. All but one of these Plans should have the isAlternate flag set, to inform the plan execution function (and the mission operations team) which is the nominal Plan. It is implementation dependent whether a plan execution control service provider will allow a Plan to be activated with the isAlternate flag set, but for operational safety reasons this may be blocked. In a contingency scenario, the updatePlanStatus operation can be used to set the flag on the nominal Plan, and reset the flag on the required contingency Plan, making it operational.
Definition

	Operation Identifier
	updatePlanStatus

	Interaction Pattern
	SUBMIT

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	SUBMIT
	No
No
No
	planRef : (MAL::ObjectRef <Plan>)
status : (PlanStatusEnum)
isAlternate : (MAL::Boolean)

StructuresRequirements
The status and isAlternate fields of the updatePlanStatus submit message shall both be nullable, but one must be present.
Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	UPDATE_FAILED
	MPS

[bookmark: _Toc140093887]Operation: insertActivity
Overview
The insertActivity operation sends an InsertedActivityDetails structure (an ActivityDetails structure with Plan reference and start/end triggers) to the provider, which then creates a corresponding ActivityInstance object in the referenced Plan and returns its identity to the consumer. It is up to the planning system, how to manage concurrent access to the plan.
Insertion may fail if the Plan is already in the TERMINATED state, in which case an INSERT_FAILED error shall beis returned.	Comment by Quinten Van Woerkom: DLR-053
Definition

	Operation Identifier
	insertActivity

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	activityDetails : (InsertedActivityDetails)

	OUT
	RESPONSE
	No
	activityRef : (MAL::ObjectRef <ActivityInstance>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	UNSUPPORTED
	MPS

	INSERT_FAILED
	MPS

[bookmark: _Toc140093888]Operation: insertEvent
Overview
The insertEvent operation sends an InsertedEventDetails structure, which includes a Plan reference, to the provider, which then creates a corresponding EventInstance object in the referenced Plan and returns its identity to the consumer. It is up to the planning system, how to manage concurrent access to the plan.
Insertion may fail if the Plan is already in the TERMINATED state, in which case an INSERT_FAILED error shall beis returned.	Comment by Quinten Van Woerkom: DLR-053
Definition
	Operation Identifier
	insertEvent

	Interaction Pattern
	REQUEST

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	REQUEST
	No
	eventDetails : (InsertedEventDetails)

	OUT
	RESPONSE
	No
	eventRef : (MAL::ObjectRef <EventInstance>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.
	Error
	Area

	INVALID
	MPS

	INSERT_FAILED
	MPS

[bookmark: _Toc140093889]Operation: deleteActivity
Overview
The deleteActivity operation requests that a specified ActivityInstance within a Plan is deleted by the service provider. In practice, the activity is not removed, but transitioned to the TERMINATED state with deletion indicated in the statusInfo field. The ActivityInstance is not subsequently executed by the service provider, but it is implementation dependent what action is taken by the service provider if the ActivityInstance is in the EXECUTING state. It is up to the planning system, how to manage concurrent access to the plan.
Deletion may fail if the referenced Plan or ActivityInstance is already in the TERMINATED state, in which case the DELETE_FAILED error shall beis returned.	Comment by Quinten Van Woerkom: DLR-053
Definition
	Operation Identifier
	deleteActivity

	Interaction Pattern
	SUBMIT

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	SUBMIT
	No
No
	planRef : (MAL::ObjectRef <Plan>)
activityRef : (MAL::ObjectRef <ActivityInstance>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	DELETE_FAILED
	MPS

[bookmark: _Toc140093890]Operation: deleteEvent
Overview
The deleteEvent operation requests that a specified EventInstance within a Plan is deleted by the service provider. In practice, the event is not removed, but transitioned to the TERMINATED state with deletion indicated in the statusInfo field. The EventInstance is not subsequently triggered by the service provider. It is up to the planning system, how to manage concurrent access to the plan.
Deletion may fail if the referenced Plan or EventInstance is already in the TERMINATED state, in which case the DELETE_FAILED error shall beis returned.	Comment by Quinten Van Woerkom: DLR-053
Definition

	Operation Identifier
	deleteEvent

	Interaction Pattern
	SUBMIT

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	SUBMIT
	No
No
	planRef : (MAL::ObjectRef <Plan>)
eventRef : (MAL::ObjectRef <EventInstance>)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	DELETE_FAILED
	MPS

[bookmark: _Toc140093891]Operation: updateActivity
Overview
The updateActivity operation may be used to modify an ActivityInstance in a Plan that has already been submitted to the service provider. The consumer submits an ActivityUpdate structure which is applied by the service provider to the referenced ActivityInstance. It is up to the planning system, how to manage concurrent access to the plan.
Update may fail if the referenced Plan or ActivityInstance is already in the TERMINATED state, in which case the UPDATE_FAILED error shall beis returned.	Comment by Quinten Van Woerkom: DLR-053
Definition

	Operation Identifier
	updateActivity

	Interaction Pattern
	SUBMIT

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	SUBMIT
	No
No
	planRef : (MAL::ObjectRef <Plan>)
activityUpdate : (ActivityUpdate)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	UPDATE_FAILED
	MPS

[bookmark: _Toc140093892]Operation: updateEvent
Overview
The updateEvent operation may be used to modify an EventInstance in a Plan that has already been submitted to the service provider. The consumer submits an EventUpdate structure which is applied by the service provider to the referenced EventInstance. It is up to the planning system, how to manage concurrent access to the plan.
Update may fail if the referenced Plan or EventInstance is already in the TERMINATED state, in which case the UPDATE_FAILED error shall beis returned.	Comment by Quinten Van Woerkom: DLR-053
Definition
	Operation Identifier
	updateEvent

	Interaction Pattern
	SUBMIT

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	SUBMIT
	No
No
	planRef : (MAL::ObjectRef <Plan>)
eventUpdate : (EventUpdate)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.
	Error
	Area

	INVALID
	MPS

	UPDATE_FAILED
	MPS

[bookmark: _Toc140093893]Operation: updateResourceValue	Comment by Quinten Van Woerkom: DLR-014
Overview
The updateResourceValue operation may be used to modify the value of a Resource at the specified point in time, in a Plan that has already been submitted to the service provider. The consumer submits an ResourceUpdate structure which is applied by the service provider to the referenced Resource. It is up to the planning system, how to manage concurrent access to the plan.	Comment by Quinten Van Woerkom: DLR-014	Comment by Quinten Van Woerkom: ESA-067
Update may fail if the referenced Plan is already in the TERMINATED state, in which case the UPDATE_FAILED error shall beis returned.	Comment by Quinten Van Woerkom: DLR-053
Definition
	Operation Identifier
	updateResourceValue	Comment by Quinten Van Woerkom: DLR-014

	Interaction Pattern
	SUBMIT

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	SUBMIT
	No
No
	planRef : (MAL::ObjectRef <Plan>)
resourceUpdate : (ResourceUpdate)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	UNSUPPORTED
	MPS

	UPDATE_FAILED
	MPS

[bookmark: _Toc140093894]Operation: updateResourceProfile
Overview
The updateResourceProfile operation may be used to modify the value of a Resource over a period of time, in a Plan that has already been submitted to the service provider. The consumer submits an ResourceProfile structure which is applied by the service provider to the referenced Resource. It is up to the planning system, how to manage concurrent access to the plan.
Update may fail if the referenced Plan is already in the TERMINATED state, in which case the UPDATE_FAILED error shall beis returned.	Comment by Quinten Van Woerkom: DLR-053
Definition

	Operation Identifier
	updateResourceProfile

	Interaction Pattern
	SUBMIT

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	SUBMIT
	No
No
	planRef : (MAL::ObjectRef <Plan>)
resourceProfile : (ResourceProfile)

Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	UNSUPPORTED
	MPS

	UPDATE_FAILED
	MPS

[bookmark: _Toc140093895]Operation: applyTimeShift
Overview
The applyTimeShift operation may be used to request a shift in the timing by a fixed offset of the ActivityInstances, EventInstances, and ResourceProfiles contained within a Plan that has previously been submitted to a plan execution function. The operation may also be restricted to one or more SubPlans within the referenced Plan and/or to a specified time period within the Plan. The service provider applies the time shift to the timing of ActivityInstances, EventInstances, and ResourceProfiles contained within the Plan or SubPlan(s).
The time shift may fail if the referenced Plan is already in the TERMINATED state, in which case the UPDATE_FAILED error shall beis returned.	Comment by Quinten Van Woerkom: DLR-053
The operation is designed to support backward compatibility[footnoteRef:4] with simple time-based on-board schedules, and may not be appropriate for use with plans that include event or position-based triggers and resource profiles. What is shifted within the Plan is implementation dependent, but shall include time-based start and end triggers on ActivityInstances. EventInstances may also be shifted, but it is noted that some EventInstances correspond to predicted orbital events that cannot meaningfully be shifted. Similarly, where supported, resource profiles may reflect the ActivityInstances contained within the Plan and if those are shifted, the corresponding changes in Resource value should also be shifted. [4: For example, the operation is equivalent to the ECSS PUS Service 11 Time Shift operation (15). Service 11 is for the management of on-board time-based schedules (also known as on-board queues or mission timelines).]

NOTE	–	ActivityInstances have duration which means they may overlap the start or end of the specified TimeWindow for the applicability of the time shift. It is implementation dependent how this is managed, but a reasonable assumption is that the start time of the ActivityInstances must be within the specified TimeWindow. Given the potential to introduce inconsistencies into a Plan, it must be assumed that users of this service operation understand both its operational implications and its specific implementation.
Definition

	Operation Identifier
	applyTimeShift

	Interaction Pattern
	SUBMIT

	Pattern Sequence
	Message
	Nullable
	Body Type Signature

	IN
	SUBMIT
	No
Yes
No
No
	planRef : (MAL::ObjectRef <Plan>)
subPlans : (List <MAL::Identifier>)
timePeriod : (TimeWindow)
offset : (MAL::Duration)

StructuresRequirements
The subPlans and timePeriod fields of the applyTimeShift submit message shall both be nullable.
Errors
In addition to standard MAL errors, the operation may return the following MPS errors:In addition to the standard MAL errors, the operation may return the MPS-specific MO Errors defined below. The cases in which these errors are returned are defined in section 5.

	Error
	Area

	INVALID
	MPS

	UPDATE_FAILED
	MPS

[bookmark: _Ref56507059][bookmark: _Toc140093790][bookmark: _Toc161745105][bookmark: _Ref99714469][bookmark: _Toc140093896][bookmark: _Ref186642441][bookmark: _Toc186645425]MPS Data TypesInformation Model	Comment by Quinten Van Woerkom: DLR-008
[bookmark: _Toc161745106][bookmark: _Toc186645426]Overview
General
This section defines the data types (MO objects and other data classes) applicable to the Mission Planning and Scheduling Recommended Standard. An overview of the MPS information model has been given in 2.42.4 above.
The MPS information model has been defined in terms of the CCSDS Mission Operations (MO) framework, specifically the MO Message Abstraction Layer (MAL) (see reference [2]) and the associated set of MAL Attribute types. This is to enable the specification of MO compliant data formats and services that reference elements of the information model.
In the case of the MPS File Formats defined in section 7, an explicit XML encoding of MAL Aattribute types is used, which means the implementation dependency on the MAL is removed, although data structures defined in the MAL are used.
It This section describes both the data actively exchanged by MPS Services as well as the data that are either referenced by or required as common configuration data by service providers and users. and that either referenced by or required as common configuration data by service providers and users.	Comment by Quinten Van Woerkom: ESA-068
As previously introduced in 2.42.4, some elements of the MPS information model are optional. This is the case for individual data elements where:
· they may not be required by the supported capability sets of supported services;
· they form an optional element of a required data structure.
Where this is the case, this is indicated in the description of each element in the body of this section.
The section is organized into the following main sections:
· Overview (this subsection);
· Optional Elements;
· Conventions;
· External Definitions;
· MPS Data ItemService Objects;
· MPS Data Types.;
[bookmark: _Ref185333184][bookmark: _Toc186645427]Optional Elements
The elements of the MPS information model are grouped into element sets as detailed in table 4‑14‑14‑14‑14‑14‑1 below. Of these, only the Core Features are mandatory, subject to the further caveat that only those MPS information model elements exposed by supported capability sets of MPS services need to be implemented. Optional element sets are shown with a grey background.	Comment by Quinten Van Woerkom: Removed reference to directory service.
At the interface level, a deployment must support all data structures that may appear within the messages of supported service operations. However, the deployment is not required to generate any data structure from an element set it does not support. If the deployment receives a message containing a data structure from an optional element set it does not support, the service operation will return an UNSUPPORTED error.
It should be noted that support for Resource Constraints is dependent on support for Resources, and that support for Geometric Constraints is dependent on support for Position & Direction types.
[bookmark: T_206MandatoryandOptionalElementsoftheIn][bookmark: _Toc186645534]Table 4‑1	: Mandatory and Optional Elements of the Information Model
	#
	Information Model Element Set
	MO Objects
	MPS Data Types
	Constraints

	1
	Core Features
(Mandatory)
	Planning Requests
Plans
Planning Activities
Planning Events
	Base Data Types (excl. Position & Direction)
Expressions
Additional MPS Data Types
Arguments
Time & Event Triggers
Time & Event Repetitions
	Constraint Expression

	2
	Basic Constraints
	
	
	Temporal Constraints
Sequential Constraint
Exclusion Constraint

	3
	Plan Revisions
	Patch Plans
	Plan Revisions
	

	4
	Resources
	Resources
	Resource Profiles
Plan Resources
	

	5
	Resource Constraints
(requires Resources)
	
	
	Resource Constraints
Argument Constraint
Effects

	6
	Position & Direction
	
	Position & Direction Types
Location, Pointing and Angle Triggers
Location, Pointing and Angle Repetitions
	

	7
	Geometric Constraints
(requires Pos. & Dir.)
	
	
	Geometric Constraints

	8
	Functions
	Functions
	
	Function Constraint

[bookmark: _Toc140093792]MO Object Numbers	Comment by Quinten Van Woerkom: Based on ESA-010, had to move this to its own section (such that it is not part of an informative “Overview” section)
The identity of MO objects requires the specification of the area and object type. In an efficient encoding this may be represented by a number, which is the same as the Short Form Part for the corresponding data structure. The following table specifies the number codes assigned for efficient encoding of the defined MO object types:
Table 4‑1	: MO Object Numbers
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

[bookmark: _Ref125205281][bookmark: _Toc140093794][bookmark: _Ref54020540][bookmark: _Toc186645468]Conventions
[bookmark: _Ref185409871]Data Structures
Each data structure (or type) definition contained in section 4 contains a table following the standard structure outlined below.
[bookmark: _Toc186645536]Table 4‑2	: Example Data Structure Table
	Name	Comment by Peter Van Der Plas: CNES-002
This applies to all subsequent data structure tables
	<Data Structure name>
	Extends
	<Parent name>
	SFP
	<#>

	Field	Comment by Quinten Van Woerkom: ESA-063
	Type
	Nullable
	Description

	<name>
	<data type>
	Yes¦No
	<Description>

	<name>
	<data type>
	Yes¦No
	<Description>

	…
	…
	…
	…

The first row of the table specifies the name of the MPS data structure (in bold), and that of the structure it extends, which may either be a MAL data type (typically MAL::Composite) or another MPS data type. The Short Form Part (SFP) gives the number used by the MAL to identify this structure within the area.
This is followed by a list of fields that constitute the data structure. According to the MAL specification (reference [2] section 4.2.4.2), inherited fields shall be included here and shall be shown with a grey background. For brevity reasons, in this document this is only done for data structures of type MO Object, to highlight the inherited identity field.	Comment by Peter Van Der Plas: ESA-100
Field data types may either be a MAL::Attribute type, or another MPS data structure.	Comment by Quinten Van Woerkom: DLR-039
The nullable column indicates whether the field is allowed to contain a null value. A nullable field does not need to be provided by the consumer, but must be supported by the provider unless it is an optional element of the standard.
A default value may be specified in the description for a non-nullable field. This means that a value must be supplied in any service message ‘on the wire’, to avoid the need for a provider implementation to have knowledge of the default, but that in the context of a user (or Web-based) interface, the default value may be initially populated to avoid the need for the user to specify anything in the general case.
By convention data structure names start with an upper case letter. If the data structure is abstract (only used to define an inheritance hierarchy) then its name is italicized and the word ‘abstract’ is substituted in the SFP. Field names start with a lower case letter. In the context of MPS MO objects (definitions and instances), static and dynamic fields are differentiated by underlining the name of the static fields.
Enumerations
Enumerations are also contained in section 4 and defined using tables of the following format.
[bookmark: _Toc186645537]Table 4‑3	: Example Enumeration Table
	Name	Comment by Peter Van Der Plas: CNES-002
This applies to all subsequent enumeration tables
	<Enumeration name>
	SFP
	<#>

	Status
	Value
	Description

	<STATE NAME>
	<#>
	<Description>

	…
	…
	…

The set of allowed statuses/enumerations is listed together with their corresponding integer values and a description.
By convention the name of an enumeration ends with ‘Enum’, and the names of the statuses/enumerations are all in upper case.
[bookmark: _Ref76480531]NOTE	–	Following from their definition in reference [2], enumerations may be extended by implementations to support custom values. It is recommended to use the upper range of the supported set of enumeration values for this, to prevent conflicts with future updates to the extended enumeration.	Comment by Quinten Van Woerkom: ESA-012
MO Object Numbers	Comment by Quinten Van Woerkom: Based on ESA-010, had to move this to its own section (such that it is not part of an informative “Overview” section)	Comment by Quinten Van Woerkom: Based on ESA-010, moved this here (such that it is not part of an informative “Overview” section)	Comment by Quinten Van Woerkom: Based on ESA-010, had to move this to its own section (such that it is not part of an informative “Overview” section)
The identity of MO objects requires the specification of the area and object type. In an efficient encoding this may be represented by a number, which is the same as the Short Form Part for the corresponding data structure. The following table specifies the number codes assigned for efficient encoding of the defined MO object types:
[bookmark: _Toc186645538]Table 4‑4	: MO Object Numbers
	Area
	Area #
	MO Object Type
	Type #

	MPS
	5
	ActivityDefinition
	101

	
	
	ActivityInstance
	102

	
	
	EventDefinition
	201

	
	
	EventInstance
	202

	
	
	Resource
	301

	
	
	RequestDefinition
	401

	
	
	RequestInstance
	402

	
	
	Plan
	501

	
	
	PlanningUser
	601

[bookmark: _Toc186457313][bookmark: _Toc186470958][bookmark: _Toc186645469]
[bookmark: _Toc186645470]External Definitions	Comment by Quinten Van Woerkom: Based on ESA-010, had to move this to its own section (such that it is not part of an informative “Overview” section)
[bookmark: _Ref185334660]Time Systems
Time system references allow specification of the time system used for time attributefields within an MPS system. This may be specified in the context of a planning request or a plan or as a system-wide default within the MPSSystemConfig object.	Comment by Quinten Van Woerkom: CNES-043
The set of allowed time system values is specified in reference [10] annex B1 and in addition specified not defined by this Recommended Standard, but specified in the SANA registry for time systems:
https://sanaregistry.org/r/time_systems/
To allow for evolution, both of the set of time systems defined within this registry and through mission specific extension, time systems are not defined as an enumeration but represented as a MAL::StringIdentifier.	Comment by Quinten Van Woerkom: DLR-067
Each implementation shall define a default time system (see annex A). This time system shall be used as default value whenever a nullable field in a message represents a time system.	Comment by Quinten Van Woerkom: This addition was needed based on the choice to move the definition of a default time system to the PICS table (see RID CNES-043).
Reference Frames	Comment by Quinten Van Woerkom: DLR-004
Some sub-types of MPS Position and Direction require the specification of the coordinate system reference frame used. The set of allowed reference frame values is specified in reference [10] annex B2 and in addition specified in the SANA registries for reference frames (see also reference [10] annex E2):
https://sanaregistry.org/r/celestial_body_reference_frames/
https://sanaregistry.org/r/orbit_relative_reference_frames/
https://sanaregistry.org/r/spacecraft_body_reference_frames/

To allow for evolution, both of the set of standard coordinate systems defined within this registry and through mission specific extension, reference frames are not defined as an enumeration but represented as a MAL::Identifier.
Celestial Bodies	Comment by Quinten Van Woerkom: ESA-011
Some sub-types of MPS Position and Direction require the specification of a celestial body.
The set of allowed celestial body values is specified with the Navigation and Ancillary Information Facility (NAIF) Integer ID Codes and in addition specified in the SANA registry for orbit centers (see also reference [10] annex E2):
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/FORTRAN/req/naif_ids.html https://sanaregistry.org/r/orbit_centers/
To allow for evolution, both of the set of standard celestial bodies defined within these registries and through mission specific extension, celestial bodies are not defined as an enumeration but represented as a MAL::Identifier.
Units	Comment by Quinten Van Woerkom: ESA-011
Typical units of measure for commonly used unit types are specified in reference [10] annex D. In addition, mission specific unit type and units may be defined.
Nullability
Certain message fields may be NULL. The concept of NULL and the resulting concept of nullability are defined in sections 4.2.8 and 4.2.9 of reference [2].
In the basis, the presence of NULL for a field solely indicates its absence. Alternatively, nullable fields may be interpreted as a default value. In such cases in this standard, this is indicated explicitly.
Lists	Comment by Quinten Van Woerkom: In support of RIDs DLR-041, DLR-042, DLR-068, and to better distinguish normative from informative contents, I have split the “Lists and Nullability” section into its two components. Additionally, in this split I removed all the informative contents of this section, and removed the specifications that were normative from the MAL (as per ESA-086).	Comment by Quinten Van Woerkom: Also, the clause specifying that interpretation of empty/nullable lists is implementation-defined has been removed (see RID DLR-068). This clause was superfluous and erroneous, considering its interpretation is always specified at point-of-use in the standard.
Lists follow the definition given in section 4.2.6 of reference [2]. Lists may be of arbitrary length, including a length of zero elements, unless specified otherwise.
NOTE	–	The concepts of nullability and emptiness (of Lists) are orthogonal. A NULL List represents the absence of a List, whereas an empty List represents a List with no entries in the encoded message. These two representations are distinct, though in some scenarios their interpretation may be identical.
NOTE	–	While Lists may be nullable, their elements shall always be non-nullable.	Comment by Quinten Van Woerkom: DLR-042
Object References	Comment by Quinten Van Woerkom: Moved here from section 1, based on ESA RID-010.
References to objects are expressed using the MAL::ObjectRef type, defined in section 4.5.19 of reference [2]. The convention given in reference [2] is followed that a field with type MAL::ObjectRef <T> may refer only to objects of type T.
[bookmark: _Toc140093795]Lists and Nullability
Whether a field (attribute) of a data structure or service operation message can be null or not, is indicated in the ‘nullable’ column of the corresponding definition table.
Where a nullable field (attribute) is a List, then this gives rise to two possible representations where there are no entries in the List:
· A Null List—there is no List in the encoded message;
· An Empty List—there is a List with no entries in the encoded message.
In most cases these are equivalent. However, where the List represents an optional filter for a subscription or query operation, there may be a distinction in their interpretation. A null list shall always represent the absence of a filter and implies that any value in the filtered field passes the filter. The interpretation of an empty list is implementation dependent, but could be one of the following:
· no filter (equivalent to a null list);
· a filter for which there is no value that passes the filter, which would be of little use in practice;
a filter for which only a null or empty value passes the filter. This may be of used for an attribute that is itself a list of values, for example, the ‘tags’ attribute of an ActivityInstance, where only those items that have no ‘tags’ would pass the filter.
[bookmark: _Ref60919968][bookmark: _Toc140093796][bookmark: _Toc161745107][bookmark: _Toc186645480]MPS Data ItemService Objects
[bookmark: _Toc140093797]General
IntroductionOverview	Comment by Quinten Van Woerkom: ESA-021
The principle principal MPS Data ItemService Objects defined are those introduced in 2.4.22.4 that correspond to a set of MO objects that can be directly referenced in the context of the MPS services:	Comment by Quinten Van Woerkom: Typo - “principle” is not an adjective, “principal” is.	Comment by Peter Van Der Plas: List below updated according to ESA-096 and CNES-043
· Planning Requests;
· Plans;
· Planning Activities;
· Planning Events;
· Planning Resources [Optional];
· Planning Requests;
· Plans;
· Planning Users;
· Custom Planning Configuration Data;
· Functions [Optional].
The following subsections contain the definition of each MPS Data ItemService Object and are structured as follows:
· MO Objects defined for the Data ItemService Object;
· Status enumeration for the Data ItemService Object (if relevant)
· Subordinate Data Types defined for the Data ItemService Object (if relevant);
· Service-specific Data Types defined for the Data ItemService Object (these are used in the context of MPS service messages).
Updates to Multiple multiple Object Types	Comment by Peter Van Der Plas: ESA-094
Data Type: PlanDetailUpdate
Overview
Specifically in the case of reporting the detailed execution status of a plan, updates may be reported for multiple object types: planning activities, planning events, and planning resources. To support this an abstract type of PlanDetailUpdate is defined as follows follows.
Definition

	Name
	PlanDetailUpdate
	Extends
	MAL::Composite
	SFP
	Abstract

[bookmark: _Toc52218249][bookmark: _Ref60926528][bookmark: _Toc140093798][bookmark: _Hlk74674025]Planning Activities
[bookmark: _Ref62569131]Activity MO Objectss	Comment by Peter Van Der Plas: ESA-013
Data Type: ActivityDefinition
Overview
An ActivityDefinition is an MO object that contains static configuration data relating to multiple occurrences of a planning activity. Its identity is defined by a definitionID, which includes a constant key and an evolving version that is updated each time the definition is revised. ActivityDefinitions form part of the planning configuration data.
Definition

	Name
	ActivityDefinition
	Extends
	MAL::Object
	SFP
	101

	AttributeField
	Type
	Nullable
	Description

	identity
	MAL::ObjectIdentity
	No
	Identity of the ActivityDefinition, including version.

	description
	MAL::String
	No
	Description of the Activity.

	argDefs
	List <ArgDef>
	Yes
	List of Argument Definitions.

	constraints
	ConstraintNode	Comment by Quinten Van Woerkom: ESA-050
	Yes
	Set of Constraints applicable to all instances of the Activity.

	effects	Comment by Quinten Van Woerkom: ESA-050
	List <Effect>
	Yes
	Set of Effects applicable to all instances of the Activity.

	executionDefinition
	MAL::Identifier
	Yes
	Reference to the definition of an executable body for the Activity (procedure, action sequence, etc.) [external to the MPS Information Model]. The manner in which this reference is interpreted is implementation-specific.

	durationSpec
	Expression <MAL::Duration>
	Yes
	Supports calculation of an estimated duration of an Activity Instance.

	children
	List <ActivityNodeActivityDetails>	Comment by Quinten Van Woerkom: ESA-050
	Yes
	Set of Activity Details specifying child activities, optionally with repetition.	Comment by Quinten Van Woerkom: ESA-050

	activityType
	MAL::String
	Yes
	Free-text field that can be used to categorize an activity into one of several arbitrary categories. Enables a planning system to customize behavior for activities, such as their presentation in displays, based on the specified value.	Comment by Quinten Van Woerkom: DLR-073

	defaultTags
	List <MAL::String>
	Yes
	Default set of Tags that may be used to associate the Activity with others, grouping activities by operational responsibility (controller/group/system) or other criteria.

Data Type: ActivityInstance
Overview
An ActivityInstance is an MO object that contains the identity of a specific occurrence of a planning activity, together with both static and dynamic information associated with that occurrence. It supports relationships to its definition, source, a related planning event and any child activities.
ActivityInstances may be contained within a Plan.
NOTE	–	The start and end attributefields specify the trigger conditions (including time) that specify when the ActivityInstance starts and/or ends in the context of a Plan. The duration is an estimate of the time taken to execute the ActivityInstance rather than an offset, which may for example be used in the visualization of a Plan. Duration may be used in conjunction with a specified end trigger to determine the planned start time of an ActivityInstance.
Definition

	Name
	ActivityInstance
	Extends
	MAL::Object
	SFP
	102

	AttributeField
	Type
	Nullable
	Description

	identity
	MAL::ObjectIdentity
	No
	Identity of the ActivityInstance

	definition
	MAL::ObjectRef
 <ActivityDefinition>
	No
	Reference to the ActivityDefinition.

	source
	MAL::ObjectRefMAL::ObjectRef <MAL::Element>	Comment by Quinten Van Woerkom: DLR-039
	No
	Object Type: RequestInstance | ActivityInstance | PlanningUser
Reference to the source of the ActivityInstance, which is either its parent ActivityInstance, a RequestInstance if it is a root Activity, or a PlanningUser if directly inserted.

	relatedEvent
	MAL::ObjectRef
 <EventInstance>
	Yes
	Optional reference to an EventInstance that is specifically associated with this instance of the Activity. Typically the Activity is placed in response to the Event.

	children
	List <MAL::ObjectRef
 <ActivityInstance>>
	Yes
	References to any child ActivityInstances.

	comments
	MAL::String
	Yes
	Any notes associated with this instance of the Activity.

	constraints
	ConstraintNode	Comment by Quinten Van Woerkom: ESA-050
	Yes
	Set of Constraints applicable to this instance of the Activity.

	effects	Comment by Quinten Van Woerkom: ESA-050
	List <Effect>
	Yes
	Set of Effects applicable to this instance of the Activity.

	arguments
	List <Argument>
	Yes
	Argument values for each Argument defined in the Activity Definition.

	start
	Trigger
	Yes
	Optionally specifies the trigger that initiates the Activity: may be Time, Position or Event based.

	end
	Trigger
	Yes
	Optionally specifies the trigger that ends the Activity.

	duration
	MAL::Duration
	Yes
	Optional duration of the Activity (estimated until execution, actual post execution).

	subPlan
	MAL::Identifier
	Yes
	Optional association of the Activity with a defined sub-plan.

	tags
	List <MAL::String>
	Yes
	Set of Tags that may be used to associate the Activity with others, grouping activities by operational responsibility (controller/group/system) or other criteria.

	status
	ActivityStatusEnum
	No
	Current Status of the Activity Instance (see Activity State Model in §4.5.2.24.2.2.2).

	executionInstance
	MAL::Identifier
	Yes
	Reference to the instance of an executable body for the Activity (procedure, action sequence, etc.) [external to the MPS Information Model]. The manner in which this reference is interpreted is implementation specific.

	returnData
	List <MAL::NamedValue>
	Yes
	Optional return data from the planning process, provided as a list of ID-Value pairs. This can be used to provide additional information required by the User to interpret the planned activity.

	statusInfo
	MAL::String
	Yes
	StatusInfo provides the reason for entering the Terminated State and is customizable, but if the following conditions exist then the specified text shall be used:
- Completed (nominal);
- Expired (prior to Activation or during plan Suspension);
- Deleted;
- Failed (see ErrorCode/ErrorInfo).

	errorCode
	MAL::Integer
	Yes
	Error Code optional in the case of a failure status for the planning activity (for example Terminated state with statusInfo Failed). The codes are implementation specific.

	errorInfo
	MAL::String
	Yes
	Supplementary Error Information.

[bookmark: _Ref51756818]Activity Status
Data Type: ActivityStatusEnum
Overview
The following states are defined for ActivityStatus:An ActivityStatusEnum represents the set of states possible for an ActivityInstance.
Definition

	Name
	ActivityStatusEnum
	SFP
	103

	Status
	Value
	Description

	PLANNED
	1
	The Activity Instance has been included in the Plan.

	ACTIVATED
	2
	The Plan including the Activity Instance has been Activated within the plan execution function.

	EXECUTING
	3
	Execution of the Activity Instance has been initiated.

	SUSPENDED
	4
	Execution of the Activity Instance has been suspended.

	TERMINATED
	5
	Execution of the Activity Instance has been terminated (further information is provided in statusInfo).

[bookmark: _Ref526347044][bookmark: _Ref49959196][bookmark: _Ref51765410]Activity Subordinate Data TypesDetails and Nodes
[bookmark: _Ref526347180]Data Type: ActivityDetails
Overview
Contains the information required to create one or more ActivityInstances, including the specification of argument values and constraints.
It should be noted that the activityRef and activityOffset attributefields are only relevant in the case that a Repetition has been specified in a parent ActivityNode. Temporal and sequential constraints associated with the ActivityInstance can be specified as constraints attached to a concrete SimpleActivityDetails structure.
Definition

	Name
	ActivityDetails
	Extends
	MAL::Composite
	SFP
	Abstract

	AttributeField
	Type
	Nullable
	Description

	activityRef
	Slider
	Yes
	Specifies how the ActivityInstance is placed with respect to any defined Repetition (0=Start; 1=End).
 Default is Start.

	activityOffset
	Expression <MAL::Duration>
	Yes
	Specifies an offset in time for the ActivityInstance from any defined Repetition.
 Default is no offset.

	relatedEvent
	Expression
<MAL::ObjectRefMAL::ObjectRef <MAL::Element>>	Comment by Quinten Van Woerkom: DLR-039
	Yes
	Object Type: EventInstance.
Specifies a related Event (or Event Group) for the ActivityInstance. Argument specifications and constraints may reference arguments and attributefields of the RelatedEvent.

	comments
	MAL::String
	Yes
	Any notes associated with the ActivityDetails.

Data Type: ActivityNode
Overview
A concrete sub-type of ActivityDetails, an ActivityNode is a container node for a set of ActivityDetails together with an optional Repetition specification. An ActivityNode is used as the root node of any ActivityDetails specification within a planning request or parent activity definition.	Comment by Quinten Van Woerkom: ESA-050
Definition

	Name
	ActivityNode
	Extends
	ActivityDetails
	SFP
	104

	AttributeField
	Type
	Nullable
	Description

	repetition
	Repetition
	Yes
	Optional Repetition specification.

	activities
	List <ActivityDetails>
	Yes
	Set of ActivityDetails.

Data Type: SimpleActivityDetails
Overview
A concrete sub-type of ActivityDetails, a SimpleActivityDetails provides the information required to instantiate a single ActivityInstance.
Definition

	Name
	SimpleActivityDetails
	Extends
	ActivityDetails
	SFP
	105

	AttributeField
	Type
	Nullable
	Description

	activityDefinition
	MAL::ObjectRef
 <ActivityDefinition>
	No
	Reference to the ActivityDefinition.

	argSpecs
	List <ArgSpec>
	Yes
	Set of argument specifications for each argument definition contained in the referenced activity definition. These supply a value for each argument, or an expression to enable the value to be derived.

	constraints
	ConstraintNode	Comment by Quinten Van Woerkom: ESA-050
	Yes
	Set of Constraints specific to the ActivityInstance to be created.

	effects	Comment by Quinten Van Woerkom: ESA-050
	List <Effect>
	Yes
	Set of Effects specific to the ActivityInstance to be created.

	subPlan
	MAL::Identifier
	Yes
	Optional association of the ActivityInstance with a defined sub-plan.

	tags
	List <MAL::String>
	Yes
	Set of tags that may be used to associate the Activity with an identified subset of the Plan, grouping activities by operational responsibility (controller/group/system) or other criteria.

Activity Service StructuresData Types
Data Type: ActivityUpdate
Overview
ActivityUpdate is a data structure that is used to report the dynamic status of an ActivityInstance in the context of the MPS Plan Execution Control service monitorPlanExecutionDetail and getActivityStatus operations.
ActivityUpdates may be distributed to subscribing applications, including status displays, to inform them of the latest status of the activity. This may be particularly relevant in conjunction with a plan execution function. ActivityUpdates may be stored in activity history to provide a complete record of evolving status over time.

Definition
	Name
	ActivityUpdate
	Extends
	PlanDetailUpdate
	SFP
	106

	AttributeField
	Type
	Nullable
	Description

	activityInstance
	MAL::ObjectRef
 <ActivityInstance>
	No
	Reference to the ActivityInstance to which the status update relates.

	timestamp
	MAL::Time
	Yes
	Time of status update.
Only nullable in the context of an updateActivity operation: the timestamp must be provided when reporting ActivityInstance status.

	plan
	MAL::ObjectRef
 <Plan>
	Yes
	Optional reference to the Plan containing the ActivityInstance to which this update pertains.

	arguments
	List <Argument>
	Yes
	Argument values.

	start
	Trigger
	Yes
	Optionally specifies the trigger that initiates the ActivityInstance: may be time, position, or event based.

	end
	Trigger
	Yes
	Optionally specifies the trigger that ends the ActivityInstance.

	duration
	MAL::Duration
	Yes
	Optional duration of the ActivityInstance (estimated until execution, actual post execution).

	subPlan
	MAL::Identifier
	Yes
	Optional association of the ActivityInstance with a defined sub-plan.

	tags
	List <MAL::String>
	Yes
	Set of tags that may be used to associate the ActivityInstance with an identified subset of the Plan, grouping activities by operational responsibility (controller/group/system) or other criteria.

	status
	ActivityStatusEnum
	No
	Current status of the ActivityInstance.

	executionInstance
	MAL::Identifier
	Yes
	Reference to the instance of an executable body for the ActivityInstance (procedure, action sequence, etc.) [external to the MPS information model]. The manner in which this reference is interpreted is implementation-specific.

	returnData
	List <MAL::NamedValue>
	Yes
	Optional return data from the planning process, provided as a list of ID-Value pairs. This can be used to provide additional information required by the User to interpret the planned activity.

	statusInfo
	MAL::String
	Yes
	StatusInfo provides the reason for entering the Terminated State and is customizable, but if the following conditions exist then the specified text shall be used:
- Completed (nominal);
- Expired (prior to Activation or during plan Suspension);
- Deleted;
- Failed (see ErrorCode/ErrorInfo).

	errorCode
	MAL::Integer
	Yes
	Error Code optional in the case of a failure status for the planning activity (for example Terminated state with statusInfo Failed). The codes are implementation specific.

	errorInfo
	MAL::String
	Yes
	Supplementary error information.

Data Type: InsertedActivityDetails
Overview
A concrete sub-type of ActivityDetails (see 4.5.2.34.2.2.3) that is a variation of SimpleActivityDetails providing additional details for a single ActivityInstance to be inserted into a Plan using the MPS Plan Edit service.

Definition
	Name
	InsertedActivityDetails
	Extends
	ActivityDetails
	SFP
	107

	AttributeField
	Type
	Nullable
	Description

	plan
	MAL::ObjectRef
 <Plan>
	No
	Reference to the Plan into which the ActivityInstance is to be inserted.

	start
	Trigger
	Yes
	Optionally specifies the trigger that initiates the ActivityInstance: may be time, position, or event based.

	end
	Trigger
	Yes
	Optionally specifies the trigger that ends the ActivityInstance.

	activityDefinition
	MAL::ObjectRef
 <ActivityDefinition>
	No
	Reference to the ActivityDefinition.

	argSpecs
	List <ArgSpec>
	Yes
	Set of argument specifications for each argument definition contained in the referenced activity definition. These supply a value for each argument, or an expression to enable the value to be derived.

	constraints
	ConstraintNode	Comment by Quinten Van Woerkom: ESA-050
	Yes
	Set of Constraints specific to the ActivityInstance to be created.

	effects
	List <Effect>
	Yes
	Set of Effects specific to the ActivityInstance to be created.	Comment by Quinten Van Woerkom: ESA-050

	subPlan
	MAL::Identifier
	Yes
	Optional association of the ActivityInstance with a defined sub-plan.

	tags
	List <MAL::String>
	Yes
	Set of tags that may be used to associate the Activity with a subset of the Plan, grouping activities by operational responsibility (controller/group/system) or other criteria.

Data Type: ActivitySuspensionStatus
Overview
A data structure that returns the status and supplementary suspension information for an ActivityInstance affected by an MPS Plan Execution Control service sSuspendActivity or RresumeActivity operation.	Comment by Quinten Van Woerkom: DLR-011

Definition
	Name
	ActivitySuspensionStatus
	Extends
	MAL::Composite
	SFP
	108

	AttributeField
	Type
	Nullable
	Description

	activityInstance
	MAL::ObjectRef
 <ActivityInstance>
	No
	Reference to an ActivityInstance.

	plan
	MAL::ObjectRef
 <Plan>
	Yes
	Optional reference to the Plan containing the ActivityInstance.

	status
	ActivityStatusEnum
	No
	Current Status of the ActivityInstance.

	suspensionInfo
	MAL::String
	Yes
	Supplementary information on the suspension/resumption status of the ActivityInstance.
This may detail the point of suspension, which may be specific to the suspension mode; or a reason why resumption was not possible.

[bookmark: _Toc52218250][bookmark: _Ref60926538][bookmark: _Toc140093799]Planning Events
[bookmark: _Ref62569154]Event MO Objects
Data Type: EventDefinition
Overview
An EventDefinition is an MO object that contains static configuration data relating to multiple occurrences of a planning event. Its identity is defined by a definitionID, which includes a constant key and an evolving version, which is updated each time the definition is revised. Event definitions form part of the planning configuration data.
Events may be either Predicted or Potential. Events that are predictable either by time or position can have specific instances included in a Plan. Potential events are those that may occur during the execution of a Plan, but the specific time or position is not predicted.

Definition
	Name
	EventDefinition
	Extends
	MAL::Object
	SFP
	201

	AttributeField
	Type
	Nullable
	Description

	identity
	MAL::ObjectIdentity
	No
	Identity of the EventDefinition, including version.

	description
	MAL::String
	No
	Description of the event.

	predictability
	PredictabilityEnum
	No
	Enumeration: one of {Predicted, Potential} indicating whether the event occurrence is known in advance or can occur at any time.

	eventType
	MAL::String
	Yes
	Free-text field that can be used to categorize an event into one of several arbitrary categories. Enables a planning system to customize behaviour for events, such as their presentation in displays, based on the specified value.	Comment by Quinten Van Woerkom: DLR-073

	argDefs
	List <ArgDef>
	Yes
	List of argument definitions.

	eventDefinitions
	List <MAL::ObjectRef
 <EventDefinition>>
	Yes
	List of child event definitions. For a single event, this list shall be empty; for a group event, the list shall be populated.

NOTE	–	In practice, some planning systems support planning events that are not necessarily instantaneous. Rather, they may have a non-zero duration. This is not the case for planning events as defined in this standard; yet, such behaviour can be supported by providing a ‘duration’ argument for an EventDefinition or EventInstance.	Comment by Quinten Van Woerkom: NASA-002
Data Type: EventInstance
Overview
An EventInstance is an MO object that contains the identity of a specific occurrence of a planning event, together with both static and dynamic information associated with that occurrence. It supports relationships to its definition and source.
The source of an EventInstance may be an external event, corresponding to a NAV Predicted Event or a CSS Contact Event.
EventInstances may be contained within a Plan.
EventInstances may be referenced as a related event by an ActivityInstance, so that the ActivityInstance can reference the timing and arguments of the related EventInstance.

Definition
	Name
	EventInstance
	Extends
	MAL::Object
	SFP
	202

	AttributeField
	Type
	Nullable
	Description

	identity
	MAL::ObjectIdentity
	No
	Identity of the EventInstance

	definition
	MAL::ObjectRef
 <EventDefinition>
	No
	Reference to the EventDefinition.

	sourceEvent
	MAL::Identifier
	Yes
	Reference to an external source event (e.g., NAV predicted event, or CSS contact event).

	events
	List <MAL::ObjectRef
 <EventInstance>>
	Yes
	List of references to child EventInstances. For a single event, this list is empty; for a group event, the list will be populated.

	eventTime
	MAL::FineTime
	Yes
	Predicted or actual time of the event. EventTime is nullable: it can be predicted without an eventTime (e.g., if position based).

	arguments
	List <Argument>
	Yes
	Argument values for each argument defined in the EventDefinition.

	eventStatus
	EventStatusEnum
	No
	Current status of the event instance (see event state model in 4.5.3.24.2.3.2).

	statusInfo
	MAL::String
	Yes
	StatusInfo provides the reason for entering the terminated state and is customizable, but if the following conditions exist then the specified text shall be used:
- Occurred (Event has been triggered);
- Did Not Occur (Event expired or did not occur within validity period);
- Deleted (Event was deleted).

[bookmark: _Ref51774307]PredictabilityEnumData Type:
Overview
The PredictabilityEnum enumeration is used to indicate whether a given Event is predictable or can occur at any time.

Definition
[bookmark: _Ref64044570]Event Status
Data Type: EventStatusEnum
Overview
The following states are defined for EventStatus:The EventStatusEnum represents the status of a given EventInstance.

Definition
	Name
	EventStatusEnum
	SFP
	204203	Comment by Peter Van Der Plas: ESA-097

	Status
	Value
	Description

	GROUP
	1
	The EventInstance is a group event.

	PLANNED
	2
	The EventInstance has been included in the Plan .

	ACTIVATED
	3
	The Plan including the EventInstance has been Activated within the plan execution function.

	TERMINATED
	4
	The EventInstance has reached a terminal status (further information is provided in statusInfo).

Event Subordinate Data Types	Comment by Peter Van Der Plas: ESA-098
Data Type: PredictabilityEnum
Overview
The PredictabilityEnum enumeration is used to indicate whether a given Event is predictable or can occur at any time.
Definition
	Name
	PredictabilityEnum
	SFP
	204	Comment by Peter Van Der Plas: ESA-097

	Enumeration
	Value
	Description

	PREDICTED
	1
	Events that are predictable either by time or position can have specific instances included in a Plan.

	POTENTIAL
	2
	Potential events are those that may occur during the execution of a Plan, but the specific time or position is not predicted.

Event Service StructuresData Types	Comment by Peter Van Der Plas: ESA-098
Data Type: EventUpdate
Overview
EventUpdate is a data structure that is used to report the dynamic status of an EventInstance in the context of the MPS Plan Execution Control service monitorPlanExecutionDetail operation.
EventUpdates may be distributed to subscribing applications, including status displays, to inform them of the latest status of the event. This may be particularly relevant in conjunction with a plan execution function. EventUpdates may be stored in event history to provide a complete record of evolving status over time.

Definition
	Name
	EventUpdate
	Extends
	PlanDetailUpdate
	SFP
	205

	AttributeField
	Type
	Nullable
	Description

	eventInstance
	MAL::ObjectRef
 <EventInstance>
	No
	Reference to the EventInstance to which the status update relates.

	timestamp
	MAL::Time
	No
	Time of status update.

	eventTime
	MAL::FineTime
	No
	Predicted or actual time of the event. EventTime is nullable: it can be predicted without an EventTime (e.g., if position based).

	arguments
	List <Argument>
	Yes
	Argument values.

	eventStatus
	EventStatusEnum
	No
	Current status of the EventInstance.

	statusInfo
	MAL::String
	Yes
	StatusInfo provides the reason for entering the Terminated state and is customizable, but if the following conditions exist then the specified text shall be used::
- Occurred (Event has been triggered);
- Did Not Occur (Event expired or did not occur within validity period);
- Deleted (Event was deleted).

Data Type: InsertedEventDetails
Overview
A data structure that provides the information required to create the EventInstance to be inserted into a Plan using the MPS Plan Edit service.

Definition
	Name
	InsertedEventDetails
	Extends
	MAL::Composite
	SFP
	206

	AttributeField
	Type
	Nullable
	Description

	plan
	MAL::ObjectRef
 <Plan>
	No
	Reference to the Plan into which the Event is to be inserted.

	eventDefinition
	MAL::ObjectRef
 <EventDefinition>
	No
	Reference to the EventDefinition.

	eventTime
	MAL::FineTime
	No
	Specifies the predicted or actual time of the event. For an inserted event this must be present.

	arguments
	List <Argument>
	Yes
	Argument values.

[bookmark: _Toc52218251][bookmark: _Ref60926551][bookmark: _Ref68802859][bookmark: _Ref94548360][bookmark: _Toc140093800][bookmark: _Ref186467205]Planning Resources [Optional]
General
Planning resources are an optional element of the MPS information model. Support for planning resources is not a requirement for compliance of an MPS system with the MPS service interfaces.
[bookmark: _Ref62569207]Resource MO Objects
Data Type: Resource
Overview
A resource is an MO object that contains both the static attributefields that define a planning resource and a dynamic attributefield that holds its current value. Its identity is defined by a constant key and evolving version, which is updated each time the definition is revised. Resource definitions form part of the planning configuration data and in practice the value attributefield may be omitted in this context, although it may also be used to provide an initial or default value.
Depending on the resource data type, the resource definition may require additional type- specific attributefields to support data validation. Sub-types are defined for Numeric, String, and enumerated Status type resources. The base Resource MO object type can be used where no data validation is applicable. The following attributefields are applicable to the base type and all sub-types.

Definition
	Name
	Resource
	Extends
	MAL::Object
	SFP
	301

	AttributeField
	Type
	Nullable
	Description

	identity
	MAL::ObjectIdentity
	No
	Identity of the Resource, including version of the Resource definition.

	description
	MAL::String
	No
	Description of the Resource.

	dataType
	MAL::AttributeType
	No
	Specifies the data type of the Resource, which must be a supported MAL Attribute type.

	units
	MAL::String
	Yes
	Optional. Specifies the units the value of the Resource is expressed in., as defined in reference [D6] annex D	Comment by Quinten Van Woerkom: DLR-004

	validationData
	ValidationDetails
	Yes
	Optional. Specifies the allowed range of values for the Resource, with concrete subtypes specific to the data type of the Resource.

	vValue
	MAL::Attribute
	Yes
	Value of the resource. MAL Attribute type must match the dataType of the Resource definition.
The value is only nullable in the context of a Resource definition (planning configuration data).

Resource Subordinate Data Types	Comment by Peter Van Der Plas: ESA-098
Data Type: NumericResourceProfile	Comment by Quinten Van Woerkom: ESA-024
Overview
An additional concrete sub-type of ValidationDetails applicable only to Resources of any numeric type, including Duration, that provides additional attributefields for the specification of numeric data validation.

Definition
	Name
	NumericResource
	Extends
	ValidationDetails
	SFP
	302

	AttributeField
	Type
	Nullable
	Description

	minimum
	ResourceProfile
	No
	Defines the permitted minimum value over time.

	maximum
	ResourceProfile
	No
	Defines the permitted maximum value over time.

[bookmark: _Ref526771385][bookmark: _Ref33143058]Resource Profiles Data Types
Data Type: ResourceProfile
Overview
A ResourceProfile provides the evolution of a value for a single planning resource over time as a set of ProfileSegments.

Definition

	Name
	ResourceProfile
	Extends
	MAL::Composite
	SFP
	303

	AttributeField
	Type
	Nullable
	Description

	resource
	MAL::ObjectRef <Resource>
	No
	Object Type: Resource
Reference to a Resource.

	profileSegments
	List <ProfileSegment>
	No
	Set of Profile Segments; if these segments are not contiguous, the value of the profile in those places is undefined. The resulting behaviour may be defined by the planning system.	Comment by Quinten Van Woerkom: ESA-025

Data Type: ProfileSegment
Overview
A ProfileSegment defines the time range and interpolation method for a set of ProfileEntries.

Definition
	Name
	ProfileSegment
	Extends
	MAL::Composite
	SFP
	304

	AttributeField
	Type
	Nullable
	Description

	interpolation
	InterpolationTypeEnum
	YesNo
	Interpolation method to be applied for values lying between points defined in the profile segment.
Default = Step.

	start
	Expression <MAL::Time>
	NoNo
	Start of time range covered by the profile segment.

	end
	Expression <MAL::Time>
	NoNo
	End of time range covered by the profile segment.

	startIncluded
	MAL::Boolean
	YesNo
	Indicates whether the start time is included in the profile segment.
Default = True.

	endIncluded
	MAL::Boolean
	YesNo	Comment by Quinten Van Woerkom: DLR-079
	Indicates whether the end time is included in the profile segment. This allows the same time to be used as the end of one segment and the start of another.
Default = False.

	profileEntries
	List <ProfileEntry>
	No
	Set of profile entries (resource value points).

Data Type: InterpolationTypeEnum
Overview
The following InterpolationTypes are defined:The InterpolationTypeEnum describes the set of supported interpolation types for a given operation.

Definition
	Name
	InterpolationTypeEnum
	SFP
	305

	Enumeration
	Value
	Description

	STEP
	1
	No interpolation: resource values remain unchanged between defined points.

	LINEAR
	2
	Linear interpolation: resource values follow a straight line between defined points.

	POLYNOMIAL
	3
	Polynomial interpolation: resource values follow a curve fitting interpolating the defined points.	Comment by Quinten Van Woerkom: DLR-080

Data Type: ProfileEntry
Overview
Defines the value (or minimum/maximum value) of a resource at a particular point in time.
The data type of the value can be any valid MAL Attribute type, but must match the defined dataType in the corresponding Resource definition.
Definition
The data type of the value can be any valid MAL Attribute type, but must match the defined dataType in the corresponding Resource definition.

	Name
	ProfileEntry
	Extends
	MAL::Composite
	SFP
	306

	AttributeField
	Type
	Nullable
	Description

	time
	Expression <MAL::Time>
	No
	Time of resource data point.

	value
	MAL::Attribute
	No
	Value of resource data point.

Data Type: RelativeResourceProfile
Overview
A variation on ResourceProfile, the RelativeResourceProfile uses relative timestamps of type Duration (indicating an offset from a reference time, such as the start time of an Activity). RelativeResourceProfiles are used in the context of a complex resource constraint.

Definition
	Name
	RelativeResourceProfile
	Extends
	MAL::Composite
	SFP
	307

	AttributeField
	Type
	Nullable
	Description

	resource
	MAL::ObjectRef <Resource>
	No
	Object Type: Resource
Reference to a Resource.

	profileSegments
	List <RelativeProfileSegment>
	No
	Set of RelativeProfileSegments.

Data Type: RelativeProfileSegment
Overview
A RelativeResourceSegment defines the time range and interpolation method for a set of RelativeProfileEntries.

Definition
	Name
	RelativeProfileSegment
	Extends
	MAL::Composite
	SFP
	308

	AttributeField
	Type
	Nullable
	Description

	interpolation
	InterpolationTypeEnum
	YesNo
	Interpolation method to be applied for values lying between points defined in the relative profile segment.
Default = Step.

	start
	Expression <MAL::Duration>
	No
	Relative start of time range covered by the relative profile segment.

	end
	Expression <MAL::Duration>
	No
	Relative end of time range covered by the relative profile segment.

	startIncluded
	MAL::Boolean
	YesNo
	Indicates whether the start time is included in the relative profile segment.
Default = True.

	endIncluded
	MAL::Boolean
	YesNo	Comment by Quinten Van Woerkom: DLR-079
	Indicates whether the end time is included in the relative profile segment. This allows the same time to be used as the end of one segment and the start of another.
Default = False.

	profileEntries
	List <RelativeProfileEntry>
	No
	Set of relative profile entries (resource value points).

Data Type: RelativeProfileEntry
Overview
Defines the value (or minimum/maximum value) of a resource at a relative point in time.
Specific sub-types exist for each allowed data type for a Resource. These replace the variant type value attributefield with one of concrete data type.

Definition
	Name
	RelativeProfileEntry
	Extends
	MAL::Composite
	SFP
	309

	AttributeField
	Type
	Nullable
	Description

	time
	Expression <MAL::Duration>
	No
	Relative time of resource data point.

	value
	MAL::Attribute
	No
	Value of resource data point.

Resource Service Data Types
Data Type: ResourceUpdate
Overview
ResourceUpdate is a data structure that is used to report the value of a Resource at a given point in time in the context of the MPS Plan Execution Control service monitorPlanExecutionDetail operation, or to supply an updated value for a Resource in the context of the MPS Plan Edit service.
Resource updates may be distributed to subscribing applications, including status displays, to inform them of the latest value of the Resource. This may be particularly relevant in conjunction with a plan execution function. Resource updates may be stored in resource history to provide a complete record of evolving value over time.
Resource updates are also effectively contained within a Plan to describe the predicted evolution of Resources over the duration of that Plan. However, in this context the ResourceProfile construct is used (see 4.5.4.44.2.4.3 above).

Definition
	Name
	ResourceUpdate
	Extends
	PlanDetailUpdate
	SFP
	310

	AttributeField
	Type
	Nullable
	Description

	resource
	MAL::ObjectRef <Resource>
	No
	Object Type: Resource
Reference to the Resource to which the value update relates.

	timestamp
	MAL::Time
	No
	Time of Resource value update.

	value
	MAL::Attribute
	No
	Value of the resource. MAL Attribute type must match the dataType of the resource definition.

[bookmark: _Toc52218252][bookmark: _Ref60926384][bookmark: _Toc140093801]Planning Requests
[bookmark: _Ref62569099]Planning Request MO Objects
Data Type: RequestDefinition
Overview
A RequestDefinition is an MO object that contains the specification of a re-usable planning request template.

Definition
	Name
	RequestDefinition
	Extends
	MAL::Object
	SFP
	401

	AttributeField
	Type
	Nullable
	Description

	identity
	MAL::ObjectIdentity
	No
	Identity of the RequestDefinition, including version.

	description
	MAL::String
	No
	Description of the re-usable RequestDefinition.

	argDefs
	List <ArgDef>
	Yes
	List of argument definitions. Arguments may be referenced in ActivityDetails and constraints.

	standingOrder
	MAL::Boolean
	No
	A flag that indicates whether the planning request is for a repetitive standing order (unbounded other than by the validity period), or is a one-off request. If it is a standing order, then the supplied activity details must be an ActivityNode must include with specification of the repetition criteria. It should be noted that a one-off request can still include repetition.	Comment by Quinten Van Woerkom: ESA-083: Removed entire constraints field

	constraints
	ConstraintNode
	Yes
	Set of Constraints applicable to the whole planning request. It should be noted that constraints specific to a planning activity can be specified within the ActivityDetails for that activity within the ActivityNode.

	activities	Comment by Quinten Van Woerkom: ESA-050
	List <ActivityDetails>Node
	No
	Set of activity details specifying requested activities, optionally with repetition.

NOTE	–	Some planning systems support some notion of prioritization. That is not natively supported by the planning request concept presented in this standard, due to the multitude of ways in which prioritization can be interpreted and implemented. Instead, attention is drawn to the fact that equivalent functionality can be implemented in individual planning systems by means of arguments.	Comment by Quinten Van Woerkom: NASA-011
Data Type: RequestInstance
Overview
A RequestInstance is an MO object that contains the specification of a planning request. This may change over time if the request is updated by the user, each comprising a separate version of the request with the same object key.
In the context of a hierarchical or federated planning system, a RequestInstance can be used to submit a Plan (4.5.64.2.6.1) to a planning function, either embedding the Plan in the RequestInstance or passing it by reference. If passed by reference, the Plan can be retrieved using the Plan Distribution Service (3.63.3). Patch plans are not permitted in this context.
NOTE	–	RequestInstances may be created from a RequestDefinition that has defined arguments (as ArgDefs) and will in this case have the associated Arguments. An ad-hoc RequestInstance is not anticipated to hold any Arguments. The values that can be parameterized through the arguments of a re-usable RequestDefinition can be directly entered in a RequestInstance, and there would be no corresponding ArgDef associated with any Arguments supplied.

Definition

	Name
	RequestInstance
	Extends
	MAL::Object
	SFP
	402

	AttributeField
	Type
	Nullable
	Description

	identity
	MAL::ObjectIdentity
	No
	Identity of the RequestInstance, including version.

	userReference
	MAL::Identifier
	Yes
	Optional user supplied reference for the planning request. This is distinct from the instancetID of the RequestInstance that is assigned by the planning function.

	requestDetails
	PlanningRequestDetails
	No
	The contents of the planning request.

	creationDatecreationTime	Comment by Quinten Van Woerkom: ESA-033
	MAL::Time
	No
	Creation date-time of the RequestInstance version.

	definition
	MAL::ObjectRef
<RequestDefinition>
	Yes
	Reference to the RequestDefinition from which the RequestInstance was created, if a planning request template was used.

	planningPeriod
	MAL::Identifier
	No
	Specifies which planning period the planning request applies to. Planning period IDs are mission specific, but can be used to indicate mission phase; planning cycle; or ‘semester’ in observatory missions.

	[bookmark: _Hlk184044886]validityTimes
	List <TimeWindow>
	Yes
	Validity period for the planning request, expressed as one or more time windows. The planning request must be satisfied within this period.
Only one of validityTime or validityEvent should be present in a planning request.

	validityEvents
	List <EventWindow>
	Yes
	Validity period for the planning request, expressed as one or more event windows. The planning request must be satisfied within this period.
Only one of validityTime or validityEvent should be present in a planning request.

	timeSystem
	MAL::String
	Yes
	Specifies the time system used for all time attributes within the planning request (see 4.1.3).
If null, the default time system is used (see 4.2.8).

	user
	MAL::ObjectRef
<PlanningUser>
	No
	The User ID for the person or organization raising the planning request.

	description
	MAL::String
	No
	Description of the request.

	arguments
	List <Argument>
	Yes
	List of named argument values. If created from a template planning request, this will include the arguments defined in the RequestDefinition.

	standingOrder
	MAL::Boolean
	No
	A flag that indicates whether the planning request is for a repetitive standing order (unbounded other than by the validity period), or is a one-off request. If it is a standing order, then the ActivityNode must include specification of the repetition criteria. It should be noted that a one-off request can still include repetition.

	constraints
	ConstraintNode
	Yes
	Set of Constraints applicable to the whole planning request. It should be noted that constraints specific to a planning activity can be specified within the ActivityDetails for that activity within the ActivityNode.

	activities
	ActivityNode
	No
	Set of activity details specifying requested activities, optionally with repetition.

	inputPlanRef
	MAL::ObjectRef
<Plan>
	Yes
	Reference to an existing Plan (output of one planning function) submitted as a planning request to another planning function in the context of a distributed or hierarchical planning system.
Only one of inputPlanRef and inputPlan should be present within the planning request.

	inputPlan
	Plan
	Yes
	An existing Plan (output of one planning function) submitted as a planning request to another planning function in the context of a distributed or hierarchical planning system. The Plan is embedded within the planning request.
Only one of inputPlanRef and inputPlan should be present within the planning request.

	comments
	MAL::String
	Yes
	Free text for any additional user comments about the request.

	status
	RequestStatusEnum
	No
	Current status of the ActivityInstance (see planning request state model in 4.5.5.24.2.5.2).

	outputPlanRef
	List <MAL::ObjectRef <Plan>>
	Yes
	Reference to the output Plan(s) that contains the activities resulting from the planning request. Where multiple alternate plans have been generated, these may be listed here.

	returnData
	List <MAL::NamedValue>
	Yes
	Optional return data from the planning process, provided as a list of ID-Value pairs. This can be used to provide additional information required by the User to interpret the planned operations.

	statusInfo
	MAL::String
	Yes
	StatusInfo provides the reason for termination and is customizable, but if the following conditions exist then the specified text shall be used:
- Completed (all constituent activities completed successfully);
- Expired (constituent activities expired prior to execution);
- Failed (constituent activities failed during execution);
- Deleted (constituent activities were deleted);
- Partially Completed.
It may also be used to provide the reason for rejection.

	errorCode
	MAL::Integer
	Yes
	Error Code optional in the case of a failure status for the planning request (for example Terminated state with statusInfo Failed). The codes are implementation specific.

	errorInfo
	MAL::String
	Yes
	Supplementary error information.

[bookmark: _Ref51784986]Planning Request Status
Data Type: RequestStatusEnum
Overview
The following states are defined for RequestStatus:The RequestStatusEnum enumeration represents the different statuses in which a planning request may be found.

Definition
	Name
	RequestStatusEnum
	SFP
	403

	Status
	Value
	Description

	REQUESTED
	1
	The planning request has been submitted to the planning function.

	ACCEPTED
	2
	The planning request has been accepted by the planning function.

	REJECTED
	3
	The planning request has been rejected by the planning function.

	CANCELLED
	4
	The planning request has been cancelled by the user.

	PLANNED
	5
	The planning request has been incorporated into a Plan (see outputPlanRef).

	PROCESSING
	6
	The corresponding Plan has been activated within plan execution.

	PROCESSED
	7
	Execution of the all constituent activities of the planning request have terminated. Awaiting confirmation of the status of the planning request.

	TERMINATED
	8
	The planning request has completed, either successfully or with a failure condition (further information is provided in statusInfo).

[bookmark: _Ref62569297]Planning Request Service StructuresData Types	Comment by Peter Van Der Plas: ESA-098
Data Type: RequestStatusUpdate
Overview
RequestStatusUpdate is a data structure that is used to report changes in status of the RequestInstance as it proceeds through both planning and plan execution functions. Reporting is the responsibility of the planning function.
Planning request status updates may be distributed to subscribing applications, including both Users and status displays, to inform them of the latest status of the planning request. This may be particularly relevant in conjunction with a plan execution function. Status updates may be stored in planning request history to provide a complete record of evolving status over time.

Definition
	Name
	RequestStatusUpdate
	Extends
	MAL::Composite
	SFP
	404

	AttributeField
	Type
	Nullable
	Description

	requestInstance
	MAL::ObjectRef
 <RequestInstance>
	No
	Reference to the planning request instance to which the status update relates.

	timestamp
	MAL::Time
	No
	Time of status update.

	status
	RequestStatusEnum
	No
	Current status of the planning request.

	outputPlanRef
	List <MAL::ObjectRef
 <Plan>>
	Yes
	Reference to the output Plan(s) that contains the activities resulting from the planning request. Where multiple alternate plans have been generated, these may be listed here.Reference to the Plan that contains the planned activities resulting from the planning request. It should be noted that this is only available once the planning request has been processed and successfully planned. The outputPlanRef may be updated following iterative planning cycles or re-planning.	Comment by Quinten Van Woerkom: ESA-041

	returnData
	List <MAL::NamedValue>
	Yes
	Optional return data from the planning process, provided as a list of ID-Value pairs. This can be used to provide additional information required by the User to interpret the planned operations.

	statusInfo
	MAL::String
	Yes
	StatusInfo provides the reason for termination and is customizable, but if the following conditions exist then the specified text shall be used:
- Completed (all constituent activities completed successfully);
- Expired (constituent activities expired prior to execution);
- Failed (constituent activities failed during execution);
- Deleted (constituent activities were deleted);
- PartiallyCompleted.
It may also be used to provide the reason for rejection.

	errorCode
	MAL::Integer
	Yes
	Error Code optional in the case of a failure status for the planning request (for example Terminated state with statusInfo Failed). The codes are implementation specific.

	errorInfo
	MAL::String
	Yes
	Supplementary error information.

Data Type: PlanningRequestDetails
Overview
PlanningRequestDetails is a data structure used in the context of the MPS Planning Request service SubmitRequest and UpdateRequest operations, where the RequestInstance MO object cannot be used as the full identity of the resulting RequestInstance (key and version) is not yet known.	Comment by Quinten Van Woerkom: DLR-082

Its structure is equivalent to that of RequestInstance, but omitting the identity attributes and dynamic attributes used to report its status.
Definition
	Name
	PlanningRequestDetails
	Extends
	MAL::Composite
	SFP
	405

	AttributeField
	Type
	Nullable
	Description

	userReference
	MAL::Identifier
	No
	User supplied reference for the planning request. This is distinct from the instancetID of the RequestInstance that is assigned by the planning function. No guarantees are made by the planning system about the contents of this identifier; that is entirely up to the user who supplies the reference.

	definition
	MAL::ObjectRef
 <RequestDefinition>
	Yes
	Reference to the RequestDefinition from which the RequestInstance was created, if a planning request template was used.

	planningPeriod
	MAL::Identifier
	No
	Specifies which planning period the planning request applies to. Planning period IDs are mission specific, but can be used to indicate mission phase; planning cycle; or ‘semester’ in observatory missions.

	validityTimesvalidityTimes
	List <TimeWindow>List <TimeWindow>
	YesYes
	Validity period for the planning request, expressed as one or more time windows. The planning request must be satisfied within this period.
When multiple TimeWindows are provided, the planning request may be satisfied within any individual TimeWindow.
If this field is null, no restriction is placed on the times between which this request must be planned.Validity period for the planning request, expressed as one or more time windows. The planning request must be satisfied within this period.
Only one of validityTime or validityEvent should be present in a planning request.

	validityEventsvalidityEvents
	List <EventWindow>List <EventWindow>
	YesYes
	Validity period for the planning request, expressed as one or more event windows. The planning request must be satisfied within this period.
When multiple EventWindows are provided, the planning request may be satisfied within any individual EventWindow.
If this field is null, no restriction is placed on any events between which this request must be planned.Validity period for the planning request, expressed as one or more event windows. The planning request must be satisfied within this period.
Only one of validityTime or validityEvent should be present in a planning request.

	timeSystemtimeSystem
	MAL::IdentifierMAL::String	Comment by Quinten Van Woerkom: DLR-067
	YesYes
	Specifies the time system used for all time fields within the planning request (see 4.3).
If null, the default time system is used (see 4.4.1).Specifies the time system used for all time attributes within the planning request (see 4.1.3).
If null, the default time system for is used (see 4.2.8).

	user
	MAL::ObjectRef
 <PlanningUser>
	No
	The User ID for the person or organization raising the planning request.

	description
	MAL::String
	No
	Description of the request.

	arguments
	List <Argument>
	Yes
	List of named argument values. If created from a template planning request, this will include the arguments defined in the RequestDefinition.

	standingOrder
	MAL::Boolean
	No
	A flag that indicates whether the planning request is for a repetitive standing order (unbounded other than by the validity period), or is a one-off request. If it is a standing order, then the ActivityNode supplied activity details must be an ActivityNode with include specification of the repetition criteria. It should be noted that a one-off request can still include repetition.	Comment by Quinten Van Woerkom: ESA-083: removed constraints field

	constraints
	ConstraintNode
	Yes
	Set of Constraints applicable to the whole planning request. It should be noted that constraints specific to a planning activity can be specified within the ActivityDetails for that activity within the ActivityNode.

	activities	Comment by Quinten Van Woerkom: ESA-050
	List <ActivityDetails>Node
	No
	Set of activity details specifying requested activities, optionally with repetition.

	inputPlanRef
	MAL::ObjectRef
 <Plan>
	Yes
	Reference to an existing Plan (output of one planning function) submitted as a planning request to another planning function in the context of a distributed or hierarchical planning system.
Only one of inputPlanRef and inputPlan should be present within the planning request.

	inputPlan
	Plan
	Yes
	An existing Plan (output of one planning function) submitted as a planning request to another planning function in the context of a distributed or hierarchical planning system. The Plan is embedded within the planning request.
Only one of inputPlanRef and inputPlan should be present within the planning request.

	comments
	MAL::String
	Yes
	Free text for any additional user comments about the request.

Data Type: PlanningRequestResponse
Overview
PlanningRequestResponse is a data structure used in the context of the MPS Planning Request service SubmitRequest and UpdateRequest operations, in response to the submitted PlanningRequestDetails defined above. It contains a reference to the created RequestInstance and the supplied userReference to allow the user to correlate the two..

Definition
	Name
	PlanningRequestResponse
	Extends
	MAL::Composite
	SFP
	406

	AttributeField
	Type
	Nullable
	Description

	instance
	MAL::ObjectRef
 <RequestInstance>
	No
	Reference to the RequestInstance created in response to a SubmitRequest operation, or the updated version of the RequestInstance following an UpdateRequest operation.

	userReference
	MAL::Identifier
	No
	User supplied reference for the planning request. This is distinct from the instanceID of the RequestInstance that is assigned by the planning function.

Data Type: RequestSummaryStatus
Overview
RequestSummaryStatus is a data structure used in the context of the MPS Planning Request service getRequestSummaries operation, where a list of these structures is returned. It contains header fields of the planning request and its status, but not the request content (arguments, activities and constraints).

Definition
	Name
	RequestSummaryStatus
	Extends
	MAL::Composite
	SFP
	407

	AttributeField
	Type
	Nullable
	Description

	requestInstance
	MAL::ObjectRef
 <RequestInstance>
	No
	Reference to the RequestInstance (key and version).

	userReference
	MAL::Identifier
	Yes
	Optional user supplied reference for the planning request. This is distinct from the instancetID of the RequestInstance that is assigned by the planning function.

	creationDatecreationTime	Comment by Quinten Van Woerkom: ESA-033
	MAL::Time
	No
	Creation date-time of the RequestInstance version.

	definition
	MAL::ObjectRef
 <RequestDefinition>
	Yes
	Reference to the RequestDefinition from which the RequestInstance was created, if a planning request template was used.

	planningPeriod
	MAL::Identifier
	No
	Specifies which planning period the planning request applies to. Planning period IDs are mission specific, but can be used to indicate mission phase; planning cycle; or ‘semester’ in observatory missions.

	validityTimes	Comment by Quinten Van Woerkom: DLR-083
	List <TimeWindow>
	Yes
	Validity period for the planning request, expressed as one or more time windows. The planning request must be satisfied within this period.
Only one of validityTime or validityEvent should be present in a planning request.

	validityEvents	Comment by Quinten Van Woerkom: DLR-083
	List <EventWindow>
	Yes
	Validity period for the planning request, expressed as one or more event windows. The planning request must be satisfied within this period.
Only one of validityTime or validityEvent should be present in a planning request.

	uUser
	MAL::ObjectRef
 <PlanningUser>
	No
	The User ID for the person or organization raising the planning request.

	dDescription
	MAL::String
	No
	Description of the request.

	standingOrder
	MAL::Boolean
	No
	A flag that indicates whether the planning request is for a repetitive standing order (unbounded other than by the validity period), or is a one-off request. If it is a standing order, then the ActivityNode must include specification of the repetition criteria. It should be noted that a one-off request can still include repetition.	Comment by Quinten Van Woerkom: ESA-090

	comments
	MAL::String
	Yes
	Free text for any additional user comments about the request.

	status
	RequestStatusEnum
	No
	Current status of the ActivityInstance (see planning request state model in 4.5.5.24.2.5.2).

	outputPlanRef
	List <MAL::ObjectRef
 <Plan>>
	Yes
	References to output Plans that contains the activities resulting from the planning request.

	statusInfo
	MAL::String
	Yes
	StatusInfo provides the reason for termination and is customizable, but includes:
- Completed (all constituent activities completed successfully);
- Expired (constituent activities expired prior to execution);
- Failed (constituent activities failed during execution);
- Deleted (constituent activities were deleted);
- PartiallyCompleted.
It may also be used to provide the reason for rejection.

[bookmark: _Toc52218253]Data Type: RequestFilter
Overview
RequestFilter is a data structure used in the context of MPS Planning Request Service operations to specify a filtered set of planning requests. All filter criteria specified are applied (logical AND, not OR).
NOTE	–	All attributefields are nullable and it is valid to specify a RequestFilter with no filter criteria; this corresponds to an open filter in which all available planning requests are returned.

Definition
	Name
	RequestFilter
	Extends
	MAL::Composite
	SFP
	408

	AttributeField
	Type
	Nullable
	Description

	domain
	List <MAL::Identifier>
	Yes
	Domain of the RequestInstance. An ordered list representing a domain hierarchy, ‘*’ can be used to represent a wildcard at that level.

	instanceID
	MAL::ObjectRef
 <RequestInstance>
	Yes
	Identity (key and version) of the RequestInstance.

	creationDatecreationTime	Comment by Quinten Van Woerkom: ESA-033
	MAL::Time
	Yes
	Creation date-time of the RequestInstance version.

	definitionID
	MAL::ObjectRef
 <RequestDefinition>
	Yes
	Identity (key and version) of the RequestDefinition from which the RequestInstance was created.

	userID
	MAL::ObjectRef
 <PlanningUser>
	Yes
	userID of the User who initiated the RequestInstance.

	userReference
	MAL::Identifier
	Yes
	Reference supplied by User when submitting the RequestInstance.

	status
	RequestStatusEnum
	Yes
	Current status (enum) of the RequestInstance.

	outputPlanRef
	List <MAL::ObjectRef
 <Plan>>
	Yes
	Reference to the output Plan(s) generated in response to the RequestInstance.

Requirements	Comment by Peter Van Der Plas: ESA-010
All filter criteria specified shall be applied using a logical AND (not OR).

[bookmark: _Ref60926405][bookmark: _Toc140093802]Plans

[bookmark: _Ref85019844]Plan Object
Plan MO ObjectsGeneral
Data Type: Plan
Overview
A Plan is an MO object that contains both the static attributefields that define a version of a plan and dynamic attributefields that hold its current state. Its identity is defined by a constant key and an evolving version, which is updated each time the Plan is revised.

Definition
	Name
	Plan
	Extends
	MAL::Object
	SFP
	501

	AttributeField
	Type
	Nullable
	Description

	identity
	MAL::ObjectIdentity
	No
	Identity of the Plan, including version.

	isPatchPlan
	MAL::Boolean
	No
	Flag indicating if the Plan is a patch plan that only contains details of the changes from the precursor Plan. A patch plan must have a precursor. It must also include a single PlanRevision relative to the precursor Plan.

	precursorPlan
	MAL::ObjectRef
 <Plan>
	Yes
	Reference to a precursor (or predecessor) Plan from which the changes are detailed in the Plan. This may be used if there is an iterative re-planning cycle in which successive plans overlap, or where a previous Plan has been updated through re-planning. If there is no precursor, then the Plan must be a self-standing full plan.
If the Plan is a Patch Plan, then a precursor plan must be specified.

	targetPlan
	MAL::ObjectRef
<Plan>
	Yes
	Applicable only for patch plans, this is a reference to the target Plan. This target Plan is the result of applying the patch plan to the precursor Plan and is distinct from the identity of the patch plan itself. Patch plans are not permitted in the context of a planning request.

	information
	PlanInformation
	No
	Contains header information relating to the Plan, including its originator and validity period.

	items
	PlannedItems
	No
	Contains the planned activities and events that constitute the Plan.

	revisions
	List <PlanRevision>PlanRevisions
	Yes
	Details the changes between this Plan and other Plans (or other versions of the same Plan), usually the precursor Plan. Optional, but must be presentcontain at least one element in a patch plan.	Comment by Quinten Van Woerkom: ESA-035
Multiple revisions may be included, documenting the differences with any other version of a Plan. This can be used to provide a change history for successive versions of the same Plan, or to document the differences between alternate Plans.

	resources	Comment by Quinten Van Woerkom: ESA-035
	PlanResourcesList <ResourceProfile>
	Yes
	Optional. Contains resource profiles for planning resources covering the period of the Plan.If present, must contain one ResourceProfile per planning resource. These profiles shall provide the projected evolution of the value of a planning resource, or its initial value at the start of the Plan. Which approach is used is a deployment choice.

	isAlternate
	MAL::Boolean
	No
	Flag indicating if the Plan has currently been released as an Operational or Alternate plan.

	status
	PlanStatusEnum
	No
	Current status of the Plan.

	statusInfo
	MAL::String
	Yes
	Supplementary information for a Plan in the Terminated state. This is customizable, but if the following conditions exist then the specified text shall be used:
- Completed (nominal);
- Superseded (by a successor Plan);
- Revoked;
- Cancelled (deactivated after start of execution);
- Expired.

Plan Information	Comment by Peter Van Der Plas: ESA-098
[bookmark: _Ref186642657]Plan Status
Data Type: PlanStatusEnum
Overview
PlanStatusEnum represents the status of a given Plan object.
Definition
	Name
	PlanStatusEnum
	SFP
	502	Comment by Peter Van Der Plas: ESA-097
Updated 5xx numbers

	Status
	Value
	Description

	DRAFT
	1
	The Plan has been saved by the planning function.

	RELEASED
	2
	The Plan has been released for operational use by the planning function.

	SUBMITTED
	3
	The Plan has been submitted to the plan execution function and is available for use, but will not execute until activated.

	ACTIVATED
	4
	The Plan has been activated by the plan execution function.

	TERMINATED
	5
	The Plan has reached a terminal state, as detailed in the statusInfo. This includes the following cases:
- Completed (nominal);
- Superseded by a successor Plan;
- Revoked by a User;
- Cancelled (deactivated after start of execution);
- Expired (reached the end of its validity period without being activated).

Plan Subordinate Data Types	Comment by Peter Van Der Plas: ESA-098
Data Type: PlanInformation
Overview
The PlanInformation section of a plan contains administrative and validity details associated with the plan as a whole.

Definition
	Name
	PlanInformation
	Extends
	MAL::Composite
	SFP
	502503

	AttributeField
	Type
	Nullable
	Description

	originator
	MAL::Identifier
	No
	Identity of the entity or system responsible for the production of the plan. The implementing planning system is responsible for defining the value to be provided for this field.

	productionTimeDate	Comment by Quinten Van Woerkom: ESA-033
	MAL::Time
	No
	Date and time of production of the plan.

	description
	MAL::String
	No
	Description of the plan.

	comments
	MAL::String
	Yes
	Field for additional comments or notes to the operations team regarding the plan.

	validityStart
	MAL::Time
	No
	Start of validity period for the plan.
The validity period defines when the plan is available for operational use. It cannot be used outside its validity period.

	validityEnd
	MAL::Time
	No
	End of validity period for the plan.

	planPeriodStart
	Trigger
	No
	Start of the plan period.
The plan period defines the start and end points of the plan. Planned items (planning activities and events) contained within the plan must at least partially overlap the plan period. The use of the trigger structure allows this to be specified in terms of time, position, pointing, or planning events. Examples are:
- a specified period of time;
- an orbital repeat cycle;
- a period between two events .

	planPeriodEnd
	Trigger
	No
	End of the plan period.

	timeSystem
	MAL::StringIdentifier	Comment by Quinten Van Woerkom: DLR-067
	Yes
	Specifies the time system used for all time attributefields within the Plan (see 4.4.1e 4.1.3).
If Null, the default time system is used (see 4.2.8).

Data Type: Planned Items
Overview
The PlannedItems section of the Plan specifies the set of planning activities and planning events contained within the Plan. It comprises two lists of contained MO objects: one of EventInstances and one of ActivityInstances. Both lists can be empty.
If the Plan is a full plan, then there must be an entry in the list for all planned items contained within the plan, whether changed or not. If the plan is a patch plan, then there is only an entry in the list for those planned items that have changed (new or modified).
PlannedItems
Definition
If the Plan is a full plan, then there must be an entry in the list for all planned items contained within the plan, whether changed or not. If the plan is a patch plan, then there must only be an entry in the list for those planned items that have changed (new or modified).

	Name
	PlannedItems
	Extends
	MAL::Composite
	SFP
	503504

	AttributeField
	Type
	Nullable
	Description

	plannedEvents
	List <EventInstance>
	Yes
	List of planned events contained within the Plan.

	plannedActivities
	List <ActivityInstance>
	Yes
	List of planned activities contained within the Plan.

[bookmark: _Ref68802815]Plan Revisions [Optional]
PlanRevisions
The optional PlanRevisions section details the changes between this Plan and another Plan. PlanRevisions comprise a collection of PlanRevision structures, each of which details the changes with respect to one version of a Plan (the revised Plan).
In the typical case, there is only one PlanRevision corresponding to the changes between the Plan and its predecessor (the precursor plan). However, it is possible to include multiple PlanRevision structures documenting the differences with any other version of a Plan. This can be used to provide a change history for successive versions of the same Plan, or to document the differences between alternate Plans.
In the case of a patch plan, the Plan must include a single PlanRevision relative to the precursor Plan.
Each PlanRevision comprises an ordered set of ItemRevisions that document the change to individual planned items (planning events and activities). The order should be from earliest to latest modification within the plan period, to allow for the earliest and most critical changes to be applied first to a currently executing plan. Each ItemRevision references an individual EventInstance or ActivityInstance and indicates whether the planned item is new, modified or deleted in the current Plan. New or modified items must also exist within the PlannedItems section of the Plan, but deleted items are not contained within the current Plan. It should be noted that unmodified items do not appear in the PlanRevision.

	Name

	PlanRevisions
	Extends
	MAL::Composite
	SFP
	504

	Attribute
	Type
	Nullable
	Description

	planRevisions
	List <PlanRevision>
	No
	Set of PlanRevision structures, each detailing the change with respect to an identified Plan.

[bookmark: _Ref185415521][bookmark: _Hlk183703777]Plan Revisions Data Types [Optional]
Data Type: PlanRevision
Overview
Each PlanRevision comprises an ordered set of ItemRevisions that document the change to individual planned items (planning events and activities). Each ItemRevision references an individual EventInstance or ActivityInstance and indicates whether the planned item is new, modified or deleted in the current Plan.	Comment by Quinten Van Woerkom: ESA-035

The order of the ItemRevisions shall be from earliest to latest modification within the plan period, to allow for the earliest and most critical changes to be applied first to a currently executing plan.
DefinitionNew or modified items must also exist in the set of planned items in a Plan, but deleted items shall not be contained within the current Plan.
	Name
	PlanRevision
	Extends
	MAL::Composite
	SFP
	505

	AttributeField
	Type
	Nullable
	Description

	revisedPlan
	MAL::ObjectRef
 <Plan>
	No
	Reference to the Plan (key and version) with respect to which the plan revisions are detailed. Typically this is the precursor Plan, but any other Plan can be used.

	revisionStart
	MAL::Time
	No
	Start time of the earliest revision.

	revisionEnd
	MAL::Time
	No
	End time of the latest revision.

	itemRevisions
	List <ItemRevision>
	Yes
	Ordered list (earliest to latest) of revisions to planned items (activity and event instances).

NOTE	–	Unmodified items do not appear in a PlanRevision.
Requirements	Comment by Peter Van Der Plas: ESA-010
The order of the ItemRevisions shall be from earliest to latest modification within the plan period, to allow for the earliest and most critical changes to be applied first to a currently executing plan.
New or modified items shall also exist in the set of planned items in a Plan, but deleted items shall not be contained within the current Plan.
Data Type: ItemRevision
Overview
An ItemRevision represents the changes that were made to a single planned item inside a revision.	Comment by Quinten Van Woerkom: ESA-010

Definition
	Name
	ItemRevision
	Extends
	MAL::Composite
	SFP
	506

	AttributeField
	Type
	Nullable
	Description

	itemRef
	MAL::ObjectRefMAL::ObjectRef <MAL::Element>	Comment by Quinten Van Woerkom: DLR-039
	No
	Object Type: ActivityInstance | EventInstance.
Reference to a planned ActivityInstance or EventInstance that is new or modified in the current Plan, or has been deleted with respect to the referenced revisedPlan.

	revisionStatus
	RevisionStatusEnum
	No
	Revision status of the referenced item. May be one of New, Modified, or Deleted.
 Default = Undefined.

Data Type: RevisionStatusEnum
Overview
The RevisionStatusEnum represents the type of changes that were made to an item in a given revision.	Comment by Quinten Van Woerkom: ESA-010

Definition
	Name
	RevisionStatusEnum
	SFP
	507

	Status
	Value
	Description

	NEW
	1
	The item is new in this revision of the Plan.

	MODIFIED
	2
	The item has been modified in this revision of the Plan.

	DELETED
	3
	The item has been deleted in this revision of the Plan.

	UNDEFINED
	4
	The item is unchanged in this revision of the Plan, or its revision status is undefined.	Comment by Quinten Van Woerkom: ESA-035: Removed PlanResources wrapper type

[bookmark: _Ref68803035]Plan Resources [Optional]
PlanResources
The optional PlanResources section allows the projected values of planning resources to be communicated between distributed planning and plan execution functions as part of a plan.
This is provided as a set of ResourceProfiles, one per planning resource included. Resource profiles can provide the projected evolution of the value of a planning resource over the period of the Plan. Alternatively it can provide a single value at the start of the Plan to enable synchronization between planning systems. Which approach is used is a deployment choice.

	Name
	PlanResources
	Extends
	MAL::Composite
	SFP
	508

	Attribute
	Type
	Nullable
	Description

	resourceProfiles
	List <ResourceProfile>
	No
	Set of resource profiles, one per planning resource, containing the initial value of the resource and optionally the projected evolution of the resource value over the period of the Plan.

[bookmark: _Ref63620429]Plan Status
PlanStatusEnum

The following states are defined for PlanStatus:

	Name
	PlanStatusEnum
	SFP
	509

	Status
	Value
	Description

	DRAFT
	1
	The Plan has been saved by the planning function

	RELEASED
	2
	The Plan has been released for operational use by the planning function

	SUBMITTED
	3
	The Plan has been submitted to the plan execution function and is available for use, but will not execute until activated.

	ACTIVATED
	4
	The Plan has been activated by the plan execution function

	TERMINATED
	5
	The Plan has reached a terminal state, as detailed in the statusInfo. This includes the following cases:
- Completed (nominal)
- Superseded by a successor Plan
- Revoked by a User
- Cancelled (deactivated after start of execution)
- Expired (reached the end of its validity period without being activated)

Plan Service StructuresData Types
Data Type: PlanUpdate
Overview
PlanUpdate is a data structure that is used to report changes in status of the Plan as it proceeds through both planning and plan execution functions. It is returned in the context of the MPS Plan Distribution service GgetPlanStatus and MmonitorPlanStatus operations, and also the MPS Plan Execution Control service MmonitorPlanExecution and GgetPlanStatus operations.	Comment by Quinten Van Woerkom: DLR-085
PlanUpdates may be distributed to subscribing applications, including status displays, to inform them of the latest status of a Plan. PlanUpdates may be stored in plan history to provide a complete record of evolving status over time.

Definition

	Name
	PlanUpdate
	Extends
	MAL::Composite
	SFP
	510508

	AttributeField
	Type
	Nullable
	Description

	plan
	MAL::ObjectRef
 <Plan>
	No
	Reference to the Plan (key and version) to which the status update relates.

	timestamp
	MAL::Time
	No
	Time of status update.

	isAlternate
	MAL::Boolean
	No
	Flag indicating if the Plan has currently been released as an Operational or Alternate plan.

	status
	PlanStatusEnum
	No
	Current status of the Plan.

	statusInfo
	MAL::String
	Yes
	Supplementary information for a Plan in the Terminated state. This is customizable, but if the following conditions exist then the specified text shall be used:
- Completed (nominal);
- Superseded by a successor Plan;
- Revoked by a User;
- Cancelled (deactivated after start of execution);
- Expired (reached the end of its validity period without being activated).

Data Type: PlanSummaryStatus
Overview
PlanSummaryStatus is a data structure that provides an summary view of a Plan that includes the PlanInformation section and current status, but not the full details of the Plan. It is returned in the context of the MPS Plan Distribution service GetPlanSummaries operation.	Comment by Quinten Van Woerkom: NASA-018

Definition
	Name
	PlanSummaryStatus
	Extends
	MAL::Composite
	SFP
	511509

	AttributeField
	Type
	Nullable
	Description

	plan
	MAL::ObjectRef
 <Plan>
	No
	Reference to the Plan (key and version) to which the summary status relates.

	isPatchPlan
	MAL::Boolean
	No
	Flag indicating if the Plan is a patch plan that only contains details of the changes from the precursor Plan. A patch plan must have a precursor. It must also include a single PlanRevision relative to the precursor Plan.

	precursorPlan
	MAL::ObjectRef
 <Plan>
	Yes
	Reference to a precursor (or predecessor) Plan from which the changes are detailed in the Plan. This may be used if there is an iterative re-planning cycle in which successive plans overlap, or where a previous Plan has been updated through re-planning. If there is no precursor, then the Plan must be a self-standing full plan.
If the Plan is a Patch Plan, then a precursor plan must be specified.

	targetPlan
	MAL::ObjectRef
 <Plan>
	Yes
	Applicable only for patch plans, this is a reference to the target Plan. This target Plan is the result of applying the patch plan to the precursor Plan and is distinct from the identity of the patch plan itself. Patch plans are not permitted in the context of a planning request.

	information
	PlanInformation
	No
	Contains header information relating to the Plan, including its originator and validity period.

	isAlternate
	MAL::Boolean
	No
	Flag indicating if the Plan has currently been released as an Operational or Alternate plan.

	status
	PlanStatusEnum
	No
	Current status of the Plan.

	statusInfo
	MAL::String
	Yes
	Supplementary information for a Plan in the Terminated state.

Data Type: PlanActivationStatus
Overview
PlanActivationStatus is a data structure that returns the activation status of a Plan in the context of the MPS Plan Execution Control service ActivatePlan and DeactivatePlan operations.

Definition
	Name
	PlanActivationStatus
	Extends
	MAL::Composite
	SFP
	512510

	AttributeField
	Type
	Nullable
	Description

	plan
	MAL::ObjectRef
 <Plan>
	No
	Reference to the Plan (key and version) to which the status relates.

	status
	PlanStatusEnum
	No
	Current status of the Plan.

	activationInfo
	MAL::String
	No
	ActivationInfo provides customizable detailed information on the result of the activation/deactivation request for the referenced Plan.

Data Type: SubPlanUpdate
Overview
SubPlanUpdate is a data structure that is used to report changes in status of a sub-plan during plan execution. It is returned in the context of the MPS Plan Execution Control service MonitorSubPlanExecution and GetSubPlanStatus operations.
Sub-plans are not defined as objects within the MPS model. Individual activities within a Plan may be associated with a single sub-plan via its Identifier. The plan execution function is responsible for managing and reporting sub-plan status associated with relevant Plan Execution Control service operations, if supported.

Definition
	Name
	SubPlanUpdate
	Extends
	MAL::Composite
	SFP
	513511

	AttributeField
	Type
	Nullable
	Description

	subPlan
	MAL::Identifier
	No
	Identifier of the sub-plan to which the update relates.

	timestamp
	MAL::Time
	No
	Time of status update.

	status
	SubPlanStatusEnum
	No
	Current status of the sub-plan, which may be Activated or Deactivated.

Data Type: SubPlanStatusEnum
Overview
This enumeration may be used to indicate whether or not a given subplan is active.
Definition

	Name
	SubPlanStatusEnum
	SFP
	514512

	Status
	Value
	Description

	ACTIVATED
	1
	The sub-plan is active.

	DEACTIVATED
	2
	The sub-plan is not active.

Data Type: SubPlanActivationStatus
Overview
SubPlanActivationStatus is a data structure that returns the activation status of a sub-plan in the context of the MPS Plan Execution Control service ActivateSubPlan and DeactivateSubPlan operations.
Definition

	Name
	SubPlanActivationStatus
	Extends
	MAL::Composite
	SFP
	515513

	AttributeField
	Type
	Nullable
	Description

	plan
	MAL::Identifier
	No
	Identifier of the sub-plan to which the status relates.

	status
	SubPlanStatusEnum
	No
	Current status of the sub-plan, which may be Activated or Deactivated.

	activationInfo
	MAL::String
	No
	ActivationInfo provides customizable detailed information on the result of the activation/deactivation request for the referenced sub-plan.

Data Type: PlanQuery
Overview
PlanQuery is a data structure used in the context of queryPlan operation of the MPS Plan Distribution Service. It is used to specify search criteria for querying the available set of Plans. All fields are nullable, in which case they do not apply as a search criteria.
Definition
All fields are nullable, in which case they shall not apply as a search criteria.

	Name
	PlanQuery
	Extends
	MAL::Composite
	SFP
	516514

	AttributeField
	Type
	Nullable
	Description

	planID
	MAL::ObjectRef <Plan>
	Yes
	Query for Plans with the specified PlanID.

	hasPrecursor
	MAL::Boolean
	Yes
	Query for Plans with or without a precursor.

	isPatchPlan
	MAL::Boolean
	Yes
	Query for Plans that are or are not patch plans.

	precursorPlan
	MAL::ObjectRef
<Plan>
	Yes
	Query for Plans with the specified precursor Plan.

	targetPlan
	MAL::ObjectRef
<Plan>
	Yes
	Applicable only for patch plans. Query for patch plans that have the specified target Plan.

	originator
	MAL::Identifier
	Yes
	Query for Plans with the specified originator.

	productionTimeDate	Comment by Quinten Van Woerkom: ESA-033
	TimeWindow
	Yes
	Query for Plans with a production date in the specified range.

	validityPeriod
	TimeWindow
	Yes
	Query for Plans with a validity period within (overlapping with) the specified range.

	isAlternate
	MAL::Boolean
	Yes
	Query for Plans that are or are not Alternate plans.

	status
	List <PlanStatusEnum>
	Yes
	Query for Plans that have a current status matching one of the specified list of Plan statuses.

	containedEventsplannedEvents	Comment by Quinten Van Woerkom: DLR-010
	List <MAL::ObjectRef
<EventDefinition>>
	Yes
	Query for Plans that contain EventInstances inside plannedItems whose definition matches one of the specified list of EventDefinitions.

	plannedcontainedActivities	Comment by Quinten Van Woerkom: DLR-010
	List <MAL::ObjectRef
 <ActivityDefinition>>
	Yes
	Query for Plans that contain ActivityInstances inside plannedItems whose definition matches one of the specified list of ActivityDefinitions.

	[bookmark: _Hlk185349850]revisedEvents	Comment by Quinten Van Woerkom: DLR-010
	List <MAL::ObjectRef <EventDefinition>>
	Yes
	Query for patch plans that contain EventInstances inside their revisions whose definition matches one of the specified list of EventDefinitions.

	revisedActivities	Comment by Quinten Van Woerkom: DLR-010
	List <MAL::ObjectRef <ActivityDefinition>>
	Yes
	Query for patch plans that contain ActivityInstances inside their revisions whose definition matches one of the specified list of ActivityDefinitions.

Requirements	Comment by Peter Van Der Plas: ESA-010
All fields are nullable, in which case they shall not apply as a search criteria.

Data Type: PartialPlan
Overview
A PartialPlan is a data structure returned from the getPartialPlan operation of the Plan Distribution Service that contains a reference to the source Plan, the criteria used to select the partial plan, and the partial plan itself. The partial plan uses the same structure as a normal Plan, with header fields matching those of the source Plan, but only containing the subset of ActivityInstances that matches the selection criteria. Whether EventInstances and Resources are included is implementation specific, but it might be assumed that any events and resources related to the selected ActivityInstances would be included in the returned partial plan.

Definition
	Name
	PartialPlan
	Extends
	MAL::Composite
	SFP
	517515

	AttributeField
	Type
	Nullable
	Description

	sourcePlan
	MAL::ObjectRef
 <Plan>
	No
	Reference to the Plan of which the partial plan is a selected subset.

	domain
	List <MAL::Identifier>
	Yes
	Selection criterion based on the domain of contained ActivityInstances.
An ordered list representing a domain hierarchy, ‘*’ can be used to represent a wildcard at that level.

	subPlan
	MAL::Identifier
	Yes
	Selection criterion based on the subPlan of contained ActivityInstances.

	tags
	List <MAL::String>
	Yes
	Selection criterion based on tags associated with contained ActivityInstances.

	partialPlanStart
	Trigger
	Yes
	Selection criterion indicating the start of a range of time, position, or events associated with contained ActivityInstances.

	partialPlanEnd
	Trigger
	Yes
	Selection criterion indicating the end of a range of time, position, or events associated with contained ActivityInstances.

	partialPlan
	Plan
	No
	The returned partial plan.

Data Type: PlanFilter
Overview
PlanFilter is a data structure used in the context of MPS Plan Distribution Service operations to specify a filtered set of Plans. All filter criteria specified are applied (logical AND, not OR).

DefinitionAll filter criteria specified shall be applied (logical AND, not OR).
	Name
	PlanFilter
	Extends
	MAL::Composite
	SFP
	518516

	AttributeField
	Type
	Nullable
	Description

	domain
	List <MAL::Identifier>
	Yes
	Domain of the Plan.
An ordered list representing a domain hierarchy, ‘*’ can be used to represent a wildcard at that level.

	planID
	MAL::ObjectRef
 <Plan>
	Yes
	Identity (key and version) of the Plan.

	precursorPlan
	MAL::ObjectRef
 <Plan>
	Yes
	Identity (key and version) of the precursor Plan.

	status
	PlanStatusEnum
	Yes
	Current status (enum) of the Plan.

	originator
	MAL::Identifier
	Yes
	Originator of the Plan.

	validityPeriod
	TimeWindow
	Yes
	Period of time with which the validity period of the Plan overlaps.

Requirements
All filter criteria specified shall be applied using a logical AND (not OR).
Data Type: PartialPlanFilter
Overview
[bookmark: _Toc52218254][bookmark: _Ref62569238]PartialPlanFilter is a data structure input to the getPartialPlan operation of the Plan Distribution Service that contains a reference to the source Plan, and specifies the criteria used to select the partial plan.

Definition
	Name
	PartialPlanFilter
	Extends
	MAL::Composite
	SFP
	519517

	AttributeField
	Type
	Nullable
	Description

	sourcePlan
	MAL::ObjectRef
 <Plan>
	No
	Reference to the Plan of which the partial plan is a selected subset.

	domain
	List <MAL::Identifier>
	Yes
	Selection criterion based on the domain of contained ActivityInstances.
An ordered list representing a domain hierarchy, ‘*’ can be used to represent a wildcard at that level.

	subPlan
	MAL::Identifier
	Yes
	Selection criterion based on the subPlan of contained ActivityInstances.

	tags
	List <MAL::String>
	Yes
	Selection criterion based on tags associated with contained ActivityInstances

	partialPlanStart
	Trigger
	Yes
	Selection criterion indicating the start of a range of time, position, or events associated with contained ActivityInstances. If no actual time is known for a Trigger, its predicted time may be used instead to derive the relevant range.

	partialPlanEnd
	Trigger
	Yes
	Selection criterion indicating the end of a range of time, position, or events associated with contained ActivityInstances. If no actual time is known for a Trigger, its predicted time may be used instead to derive the relevant range.

[bookmark: _Toc95258307][bookmark: _Toc140093803][bookmark: _Ref63774826]Planning Users
Data Type: PlanningUser
Overview
The source of a planning request is the user that raises it, and this is identified in the user field of a RequestInstance as a reference to a PlanningUser object.
The information held on planning users is outside the scope of this Recommended Standard. The only requirement on the PlanningUser object is that it is formulated as an MO object, with an associated object identity. Any additional content [attributes] of the PlanningUser object are system specific. As the PlanningUser object is not transferred in any message of the MPS services, there is no requirement to fully define the data structure within this Recommended Standard, but it is referenced in other MPS objects and data structures using an attribute of type MAL::ObjectRef.Definition
The information held on planning users is outside the scope of this Recommended Standard. The only requirement on the PlanningUser object is that it is formulated as an MO object, with an associated object identity. Any additional content [fields] of the PlanningUser object are system specific. As the PlanningUser object is not transferred in any message of the MPS services, there is no requirement to fully define the data structure within this Recommended Standard, but it is referenced in other MPS objects and data structures using a field of type MAL::ObjectRef.

	Name
	PlanningUser
	Extends
	MAL::Object
	SFP
	601

	AttributeField
	Type
	Nullable
	Description

	identity
	MAL::ObjectIdentity
	No
	Identity of the PlanningUser, including version.

[bookmark: _Ref96948858][bookmark: _Ref96948887][bookmark: _Toc140093804]Planning Configuration Data
MPSSystemConfigDetails	Comment by Quinten Van Woerkom: DLR-087
The referenced timeSystem allows specification the time system used for time attributes within an MPS system. This may be specified in the context of a planning request, a plan, or as a system-wide default here within the MPSSystemConfig object.
Other configuration parameters specific to the MPS system can be defined using the customConfig attribute as a list of name-value pairs.

	Name
	MPSSystemConfigDetails	Comment by Quinten Van Woerkom: DLR-087
	Extends
	MAL::Object
	SFP
	701

	Attribute
	Type
	Nullable
	Description

	identity	Comment by Quinten Van Woerkom: DLR-086
	MAL::ObjectIdentity
	No
	Identity of MPS system config, including version.

	timeSystem
	MAL::String
	No
	Specifies the default time system used by the MPS system (see 4.1.3).

	customConfig
	List <MAL::NamedValue>
	Yes
	Optional set of custom configuration parameters defined as a set of named values.

[bookmark: _Ref21955530][bookmark: _Toc52218255][bookmark: _Ref68803392][bookmark: _Toc140093805]Discussion
The information held on planning users is outside the scope of this Recommended Standard. The only requirement on the PlanningUser object is that it is formulated as an MO object, with an associated object identity. Any additional content [fields] of the PlanningUser object are system specific. As the PlanningUser object is not transferred in any message of the MPS services, there is no requirement to fully define the data structure within this Recommended Standard, but it is referenced in other MPS objects and data structures using a field of type MAL::ObjectRef.

[bookmark: _Ref186643743]Custom Functions [Optional]
Data Type: FunctionDefinitionDetails
Overview
FunctionDefinitionDetails is a data structure that contains static configuration data relating to custom functions: built-in Boolean functions of an MPS system, each of which has a specified Identifier and optional set of argument definitions. This may change over time, each comprising a separate version of the definition. FunctionDefinitions form part of the planning configuration data.	Comment by Quinten Van Woerkom: ESA-042
Definition

	Name
	FunctionDefinitionDetails
	Extends
	MAL::Composite
	SFP
	801701	Comment by Peter Van Der Plas: ESA-097

	AttributeField
	Type
	Nullable
	Description

	functionID
	MAL::Identifier
	No
	ID of the custom function.

	version
	MAL::UInteger
	No
	Version of the FunctionDefinition.

	description
	MAL::String
	No
	Description of the custom function.

	argDefs
	List <ArgDef>
	Yes
	List of argument definitions.

Data Type: FunctionDetails
Overview
Contains the information required to invoke a defined function, including the specification of argument values.
Definition

	Name
	FunctionDetails
	Extends
	MAL::Composite
	SFP
	802702	Comment by Peter Van Der Plas: ESA-097

	AttributeField
	Type
	Nullable
	Description

	function
	MAL::Identifier
	No
	ID of a specific FunctionDefinition.

	argSpecs
	List <ArgSpec>
	Yes
	Set of argument specifications for each argument definition contained in the referenced function definition. These supply a value for each argument, or an expression to enable the value to be derived.

[bookmark: _Ref33099150][bookmark: _Toc52218256][bookmark: _Toc140093806][bookmark: _Toc161745108][bookmark: _Toc186645481]MPS Data Types
Overview
MPS Data Types are supporting data structures and enumerations used in the context of MPS Data ItemService Objects and MPS service messages:
· MPS Base Data Types;
· MPS Position and Direction Data Types [Optional];
· Expressions;
· Miscellaneous Additional MPS Data Types;
· Expressions;
· Arguments;
· Constraints;
· Effects [Optional];
· Triggers;
· Repetitions.
[bookmark: _Ref20839653][bookmark: _Toc52218257][bookmark: _Toc140093807]MPS Base Data Types
The MPS information model optionally extends the set of MAL attribute typesattributes (see reference [2] section 4.5) with the following additional MAL compositeMPS data types:	Comment by Peter Van Der Plas: ESA-099
· Position	coordinates defining a physical location;
· Direction	coordinates defining a target pointing angle.
Data Type: ArgTypeEnum
Overview
ArgTypeEnum is an MPS extension of the MAL::AttributeType enumeration (see reference [2] section 4.6.4) that also allows specification of the data type as Position or Direction.
Definition

	Name
	ArgTypeEnum
	SFP
	1

	Status
	Value
	Description

	BLOB
	1
	Binary object.

	BOOLEAN
	2
	Boolean value (True or False).

	DURATION
	3
	Length of time in nanosecond resolution.seconds	Comment by Quinten Van Woerkom: DLR-074

	FLOAT
	4
	Floating point number (32 bits).

	DOUBLE
	5
	Double precision floating point number (64 bits).

	IDENTIFIER
	6
	The Identifier structure is used to store an identifier and can be used for indexing. It is a variable-length, unbounded, Unicode string.

	OCTET
	7
	Signed 8 bit Integer.

	UOCTET
	8
	Unsigned 8 bit Integer.

	SHORT
	9
	Signed 16 bit Integer.

	USHORT
	10
	Unsigned 16 bit Integer.

	INTEGER
	11
	Signed 32 bit Integer.

	UINTEGER
	12
	Unsigned 32 bit Integer.

	LONG
	13
	Signed 64 bit Integer.

	ULONG
	14
	Unsigned 64 bit Integer.

	STRING
	15
	Text. It is a variable length, unbounded, Unicode string.

	TIME
	16
	Absolute date-time to millisecond resolution..

	FINETIME
	17
	Absolute date-time to picosecond nanosecond resolution..	Comment by Quinten Van Woerkom: DLR-075

	URI
	18
	Uniform Resource Identifier (address). It is a variable-length, unbounded Unicode string (see reference [4])..

	OBJECTREF
	19
	Object Reference.

	ANY	Comment by Quinten Van Woerkom: NASA-025	Comment by Quinten Van Woerkom: One might intuitively expect this variant to have value 0 or 1. However, it was decided not to do this: value 0 is discouraged (although not formally reserved) by the MAL, and value 1 would require shifting all the existing variants by 1, which would impact prototyping.
	20
	Argument may be of any type.

	DIRECTION
	129
	MPS Direction.

	POSITION
	130
	MPS Position.

[bookmark: _Toc96965784][bookmark: _Toc96965785][bookmark: _Toc96965786][bookmark: _Toc96965787][bookmark: _Toc96965788][bookmark: _Toc96965794][bookmark: _Hlk185321075][bookmark: _Toc52218258][bookmark: _Ref85031035][bookmark: _Toc140093808]NOTE	–	To support future extension of the set of MAL Attributes, enumeration values up to and including 128 are reserved for MAL Attributes. MPS-specific argument types are assigned enumeration values from 129 upwards.	Comment by Quinten Van Woerkom: NASA-020
Data Type: NamedElement
Overview
The NamedElement composite represents a pair of a MAL::Identifier and an abstract MAL::Element. It is an extension of the MAL::NamedValue composite that adds support for non-MAL::Attribute values.
Definition
	Name	
	NamedElement
	Extends
	MAL::Composite
	SFP
	2

	Field
	Type
	Nullable
	Description

	name
	MAL::Identifier
	No
	Name identifying the element.

	value
	MAL::Element
	Yes
	Corresponding MAL::Element value.

[bookmark: _Ref185351165][bookmark: _Ref186643583]MPS Position and Direction Data Types [Optional]
IntroductionOverview	Comment by Peter Van Der Plas: ESA-010
This subsection defines MPS Position and Direction data types and support types required in the definition of pointing constraints. These are consistent with those used within CCSDS Navigation data format Recommended Standards, and specifically the Pointing Request Message (PRM) (reference [10][D6]), but for MPS, to enable use of the MO Framework, they are defined explicitly in terms of MAL Attributes.
MPS Position and Direction data types are only required in the context of the following MPS data structures:
· Geometric Constraints (see 4.6.7.44.3.7.2.8);
· Triggers of type PositionTrigger and DirectionTrigger (see 4.6.94.3.8);
· Repetitions of type PositionRepetition and PointingRepetition (see 4.6.104.3.9).
As all of these are considered optional elements of the MPS information model, MPS Position and Direction data types are themselves optional.
Coordinate System
Some sub-types of MPS Position and Direction require the specification of the coordinate reference frame used. The set of allowed coordinate system values is specified in the PRM (reference [D6]) annex B2 or in the SANA registry as per reference [D6] annex E2, or a mission specific frame.
To allow for evolution, both of the set of standard coordinate systems defined within this registry and through mission specific extension, coordinate systems are not defined as an enumeration but represented as a MAL::String.
[bookmark: _Ref68803100]Position Data Types	Comment by Peter Van Der Plas: ESA-097
Data Type: Position
Overview
Abstract type that represents a unique position in three-dimensional space. Depending on the concrete subtype used, the actual position may be derived in different manners.	Comment by Quinten Van Woerkom: ESA-010
Definition

	Name
	Position
	Extends
	MAL::Composite
	SFP
	Abstract

Data Type: CartesianPosition
Overview
Concrete type representing a Position in Cartesian coordinates.	Comment by Quinten Van Woerkom: ESA-010
Definition

	Name
	CartesianPosition
	Extends
	Position
	SFP
	32

	AttributeField
	Type
	Nullable
	Description

	x
	MAL::Double
	No
	Cartesian x coordinate defined in the given frame and with values of the given unit.

	y
	MAL::Double
	No
	Cartesian y coordinate defined in the given frame and with values of the given unit.

	z
	MAL::Double
	No
	Cartesian z coordinate defined in the given frame and with values of the given unit.

	frame
	MAL::StringIdentifier	Comment by Quinten Van Woerkom: DLR-067
	No
	One of the coordinate reference frames as defined in reference [D6] annex B2, or in the SANA registry as per reference [D6] annex E2 or a mission specific frameReference frame within which the position is expressed.	Comment by Quinten Van Woerkom: DLR-004

	units
	MAL::String
	Yes
	The distance unit name used, as defined in reference [D6] annex D.	Comment by Quinten Van Woerkom: DLR-004

Default = ‘km’.

Data Type: SurfacePosition	Comment by Quinten Van Woerkom: ESA-043
Overview
A SurfacePosition is The unit may be defined here. Ttypically used to specify a coordinate on the surface of a celestial body. Optionally, an the altitude above the surface (as defined by a reference ellipsoid) maycan also be specified. The reference ellipsoid used to define the surface may be mission-specific.

DefinitionThe reference ellipsoid used to define the surface may be mission-specific.

	Name
	SurfacePosition
	Extends
	Position
	SFP
	43

	AttributeField
	Type
	Nullable
	Description

	longitude
	MAL::Double
	No
	Angular coordinate. May also represent azimuth.

	latitude
	MAL::Double
	No
	Angular coordinate. May also represent elevation.

	frame
	MAL::StringIdentifier	Comment by Quinten Van Woerkom: DLR-067
	No
	One of the coordinate reference frames as defined in reference [D6] annex B2, or in the SANA registry as per reference [D6] annex E2 or a mission specific frame.Reference frame used to determine the origin and orientation of the reference ellipsoid. Must be a celestial body reference frame.

	units
	MAL::String
	Yes
	To be one of the Angle units as defined in reference [D6] annex D.Units in which to express the longitude and latitude.
Default = ‘deg’.

	altitude
	MAL::Double
	Yes
	Altitude above a reference ellipsoid (negative values allowed).
Default = 0.

	altitudeUnits
	MAL::String
	Yes
	The distance unit name, as defined in reference [D6] annex D.The altitude unit used.	Comment by Quinten Van Woerkom: DLR-004

Default = ‘m’.

Data Type: OrbitFilePosition
Overview
An OrbitFilePosition represents a Position that is defined with respect to some Orbit Data Message (ODM) file (reference [D10]).

DefinitionThe planning system shall evaluate the resulting orbit when needed to obtain the position at a given time.	Comment by Quinten Van Woerkom: ESA-045

	Name
	OrbitFilePosition
	Extends
	Position
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	orbitFile
	MAL::StringFile
	No
	Name of or reference to a file containing an ODM ODM (reference [D12]).

Requirements	Comment by Peter Van Der Plas: ESA-043
The planning system shall evaluate the resulting orbit when needed to obtain the position at a given time.
Data Type: OrbitalPosition
Overview
An OrbitalPosition represents a Position that is defined with respect to some mission-specific orbit. The conventions used to derive the orbitNumber and orbitAngle follow from a mission-specific definition.

DefinitionThe conventions used to derive the orbitNumber and orbitAngle follow from a mission-specific definition.

	Name
	OrbitalPosition
	Extends
	Position
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	orbitNumber
	MAL::Integer
	No
	Orbit number. Depending on the relativeOrbit flag, the orbit number may be absolute (since start of mission) or relative (to the orbital repeat cycle).

	relativeOrbit
	MAL::Boolean
	No
	Flag indicating if the orbit number is absolute or relative to the orbital repeat cycle.

	orbitAngle
	MAL::Double
	No
	Angle within orbit. Whether this angle is the mean or true anomaly and from which datum it is measured are mission specific.

	Unitsunits
	MAL::String
	Yes
	The units used for orbitAngle, as defined in reference [D6] annex D.	Comment by Quinten Van Woerkom: DLR-004
Default = ‘deg’.

Data Type: ObjectPosition
Overview
An ObjectPosition is a Position that coincides with the position of an existing object. The manner in which the planning system derives the value of this Position from the name of the referenced object is implementation-defined.

DefinitionThe manner in which the planning system derives the value of this Position from the name of the referenced object is implementation-defined.

	Name
	ObjectPosition
	Extends
	Position
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	object
	MAL::String
	No
	Name or identifier of a catalogued celestial object or a mission specific object.Name or identifier of a celestial body as per reference [D6] annex E2, or a mission specific object.	Comment by Quinten Van Woerkom: DLR-004

Data Type: PositionReference
Overview
A PositionReference is a Position that is evaluated based on a given reference position. The manner in which the Position is computed by the planning system based on this reference may be mission-specific.	Comment by Quinten Van Woerkom: NASA-024

DefinitionThe manner in which the Position is computed by the planning system based on this reference may be mission-specific.

	Name
	PositionReference
	Extends
	Position
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	reference
	MAL::String
	No
	Name of a mission specific position definition.

[bookmark: _Ref21960594]Direction Data Types	Comment by Peter Van Der Plas: ESA-097
Data Type: Direction
Overview
Abstract type that represents a unique direction in three-dimensional space. The actual manner in which this direction is evaluated depends on the concrete subtype used.	Comment by Quinten Van Woerkom: ESA-010
Definition

	Name
	Direction
	Extends
	MAL::Composite
	SFP
	Abstract

Data Type: CartesianDirection
Overview
Dimensionless unit vector. Either a direction in the base frame or in a secondary frame may be defined.
Definition

	Name
	CartesianDirection
	Extends
	Direction
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	x
	MAL::Double
	No
	Cartesian x coordinate defined in the given frame.

	y
	MAL::Double
	No
	Cartesian y coordinate defined in the given frame.

	z
	MAL::Double
	No
	Cartesian z coordinate defined in the given frame.

	frame
	MAL::StringIdentifier	Comment by Quinten Van Woerkom: DLR-067
	No
	One of the coordinate reference frames as defined in reference [D6] annex B2, or in the SANA registry as per reference [D6] annex E2 or a mission specific frameReference frame within which the direction is expressed..	Comment by Quinten Van Woerkom: DLR-004

Data Type: SphericalDirection
Overview
Based on azimuth and elevation, the unit may be defined here. Typically used to define a direction in a secondary frame. When used to specify a surface coordinate, this actually represents a {longitude, latitude} pair.
Definition

	Name
	SphericalDirection
	Extends
	Direction
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	azimuth
	MAL::Double
	No
	Angular coordinate. May also represent longitude.

	elevation
	MAL::Double
	No
	Angular coordinate. May also represent latitude.

	frame
	MAL::StringIdentifier	Comment by Quinten Van Woerkom: DLR-067
	No
	One of the coordinate reference frames as defined in reference [D6] annex B2, or in the SANA registry as per reference [D6] annex E2 or a mission specific frame.Reference frame within which the direction is expressed. Must be a celestial body or spacecraft reference frame.	Comment by Quinten Van Woerkom: DLR-004

	units
	MAL::String
	Yes
	To be one of the Angle units as defined in reference [D6] annex D.Units within which the angles are expressed. 	Comment by Quinten Van Woerkom: DLR-004
Default = ‘deg’.

Data Type: RADecDirection
Overview
Represents a Direction bBased on celestial angular coordinates of right ascension and declination, the unit may be defined here.
Definition

	Name
	RADecDirection
	Extends
	Direction
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	ra
	MAL::Double
	No
	Right Ascension: Celestial angular coordinate, measured eastward along the celestial equator.

	dec
	MAL::Double
	No
	Declination: Celestial angular coordinate, north or south of the celestial equator.

	frame
	MAL::StringIdentifier	Comment by Quinten Van Woerkom: DLR-067
	No
	One of the coordinate reference frames as defined in reference [D6] annex B2, or in the SANA registry as per reference [D6] annex E2 or a mission specific frame.Reference frame within which the direction is expressed. Must be a quasi-inertial celestial body or orbit-relate.	Comment by Quinten Van Woerkom: DLR-004

	units
	MAL::String
	Yes
	To be one of the Angle units as defined in reference [D6] annex D.Units within which the angles are expressed.	Comment by Quinten Van Woerkom: DLR-004
Default = ‘deg’.

RevolutionDirection
Based on fixed rotation about an axis, the direction is defined by an angle within a single revolution.

	Name
	RevolutionDirection
	Extends
	Direction
	SFP
	11

	Attribute
	Type
	Nullable
	Description

	revolutionAngle
	MAL::Double
	No
	Angle within a revolution.

	units
	MAL::String
	Yes
	To be one of the Angle units as defined in reference [D6] annex D.
Default = ‘deg’.

Data Type: NamedTargetDirection
Overview
A NamedTargetDirection is a Direction that points to an existing object. The manner in which the planning system derives the value of this Direction from the name of the referenced object is implementation-defined.

DefinitionThe manner in which the planning system derives the value of this Direction from the name of the referenced object is implementation-defined.

	Name
	NamedTargetDirection
	Extends
	Direction
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	namedTarget
	MAL::String
	No
	Name or identifier of a catalogued celestial object or a mission specific object.

Data Type: DirectionReference
Overview
A DirectionReference is a Direction that may be computed following some mission specific definition.

DefinitionThe reference field shall be used to distinguish between different possible mission-specific directions.

	Name
	DirectionReference
	Extends
	Direction
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	reference
	MAL::String
	No
	Name of a mission specific direction definition.

Requirements
The reference field shall be used to distinguish between different possible mission-specific directions.
Physical Value Data Types
Data Type: Physical Value
Overview
PhysicalValue is an abstract base type for the specific value types defined below. Only specific value types are used in the pointing constraint definitions below.
Definition

	Name
	PhysicalValue
	Extends
	MAL::Composite
	SFP
	Abstract

	AttributeField
	Type
	Nullable
	Description

	value
	MAL::Double
	No
	Physical value.

	units
	MAL::String
	Yes
	Optional unit. The unit type depends on the specific value type, as defined in reference [D6] annex D.	Comment by Quinten Van Woerkom: DLR-004

Data Type: For MPS, three specific physical value types (as defined in reference [D6] annex D) are used in the context of geometric constraints on position or pointing:
Angle
Overview
Physical value with Has units of type Angle.
Definition

	Name
	Angle
	Extends
	PhysicalValue
	SFP
	

Data Type: AngularVelocity
Overview
HasPhysical value with units of type AngularVelocity.
Definition

	Name
	AngularVelocity
	Extends
	PhysicalValue
	SFP
	

Data Type: Distance
Overview
HPhysical value withas units of type Distance.
Definition

	Name
	Distance
	Extends
	PhysicalValue
	SFP
	

[bookmark: _Ref21941987][bookmark: _Toc52218259][bookmark: _Toc140093809]Expressions
	Comment by Quinten Van Woerkom: DLR-071	Comment by Quinten Van Woerkom: ESA-064	Comment by Quinten Van Woerkom: ESA-071	Comment by Quinten Van Woerkom: NASA-025

Expression

When entering MPS data, it is often not possible to provide an absolute value for a required attribute. Instead, it is necessary to provide a calculation to be performed at run time that supplies the value. These calculations are defined as expressions of a specified data type. The data type can be any defined ArgType (see 4.3.2), which may be any MAL Attribute type, Position, or Direction.
The expressions are themselves text strings which comprise a sequence of operands and operators. Operands may be literals or references to objects and their attributes or arguments, as defined within the MPS information model.

The manner in which this expression is evaluated is implementation specific.

	Name
	Expression
	Extends
	MAL::Composite
	SFP
	17

	Attribute
	Type
	Nullable
	Description

	type
	ArgTypeEnum
	No
	Enumeration specifying the data type of the result of the expression.

	value
	MAL::Attribute
	No
	Providing the ArgType is a MAL Attribute type, this field may be used to hold a simple literal value or the evaluated result of the expression.

	
	
	
	

	expressionLanguage
	MAL::String
	No
	Defines the expression language used to specify the expression.

	expression
	MAL::String
	No
	The text of the expression.

[bookmark: _Ref21357983][bookmark: _Toc52218260][bookmark: _Toc140093810]MiscellaneousAdditional MPS Data Types	Comment by Peter Van Der Plas: ESA-097
Data Type: Slider
Overview
Used to indicate a relative position with respect to an MPS object, such as a planning activity where 0 represents the start and 1 the end of the activity. The slider is a real number that can represent any point between these two extremes.
Definition

	Name
	Slider
	Extends
	MAL::Composite
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	position
	MAL::Float
	No
	Relative point between the start and end of an MPS object, where 0 represents the start and 1 represents the end.

Data Type: StateDef
Overview
Status values may be represented as enumerated Integers, but the enumeration is not defined by the Recommended Standard, but in the context of planning configuration data. StateDefs hold the definitions of the text labels associated with specific status values.
Definition

	Name
	StateDef
	Extends
	MAL::Composite
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	value
	MAL::Integer
	No
	Enumerated value of the Status.

	state
	MAL::String
	No
	Text label associated with the enumerated value.

Data Type: TimeWindow
Overview
Represents a specific period of time, specified as two Expressions of type Time defining the start and end of the TimeWindow.

DefinitionIf an operation encounters a start of a TimeWindow that is later in time than its end, the planning system shall report an INVALID error, with as secondary error code INCONSISTENT.	Comment by Quinten Van Woerkom: ESA-019

	Name
	TimeWindow
	Extends
	MAL::Composite
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	start
	Expression <MAL::Time>
	No
	Start time of the time window.

	end
	Expression
<MAL::Time>
	No
	End time of the time window. Shall not be earlier in time than the start of the time window.

Requirements	Comment by Peter Van Der Plas: ESA-019
If an operation encounters a start of a TimeWindow that is later in time than its end, the planning system shall report an INVALID error, with as secondary error code INCONSISTENT.
Data Type: EventWindow
Overview
Represents a specific period relative to two events that mark the start and end of the EventWindow.

DefinitionIf an operation encounters a start of an EventWindow that is later in time than its end, the planning system shall report an INVALID error, with as secondary error code INCONSISTENT.	Comment by Quinten Van Woerkom: ESA-019

	Name
	EventWindow
	Extends
	MAL::Composite
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	startEvent
	Expression <MAL::ObjectRef <EventInstance>>
	Comment by Quinten Van Woerkom: DLR-097
	No
	Object Type: EventInstance.
The start of the event window is relative to the referenced startEvent.

	startOffset
	Expression <MAL::Duration>
	YesNo
	The start of the event window is offset by the defined time period from the startEvent.
Default is no offset.

	endEvent
	Expression
 <MAL::ObjectRef <EventInstance>>
	Comment by Quinten Van Woerkom: DLR-097
	No
	Object Type: EventInstance.
The end of the event window is relative to the referenced endEvent.

	endOffset
	Expression <MAL::Duration>
	YesNo
	The end of the event window is offset by the defined time period from the endEvent.
Default is no offset.

[bookmark: _Toc52218261]Requirements	Comment by Peter Van Der Plas: ESA-019
If an operation encounters a start of an EventWindow that is later in time than its end, the planning system shall report an INVALID error, with as secondary error code INCONSISTENT.
Data Type: DefListEntry
Overview
Used in the context of the MPS Plan Information Management service, this holds a list of definitions for a specified type of MPS data itemservice object, together with their definitions.
Definition

	Name
	DefListEntry
	Extends
	MAL::Composite
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	definitionID
	MAL::ObjectRefMAL::ObjectRef <MAL::Element>	Comment by Quinten Van Woerkom: DLR-039
	No
	Object Type: ActivityDefinition | EventDefinition | Resource | RequestDefinition.
Item Definition (key and version).

	description
	MAL::String
	No
	Description of the item.

[bookmark: _Ref186466633][bookmark: _Ref85030952][bookmark: _Toc140093811]Expressions
Data Type: Expression
Overview
When entering MPS data, it is often not possible to provide a concrete value for a required field of some type T. Instead, a field may be defined as type Expression <T>. This denotes that the field can have not just a value of type T, but may also be of some other type that can be evaluated by the planning system to a value of type T.
Requirements	Comment by Peter Van Der Plas: ESA-010
Expressions of a given type T shall be denoted using the notation Expression <T>, where the data type T is restricted to be any defined ArgType (see 4.6.2), which may be any MAL Attribute type, Position, or Direction.
In such cases, the underlying type shall be a MAL::Element that must evaluate to type T.
NOTE	–	The manner in which this evaluation occurs is implementation defined.
Where an expression of type Expression <T> is expected, implementations shall at minimum support values of type T and of type ExternalExpression.
When an operation receives a value for an Expression <T> that does not evaluate to the expected type T, an INVALID error shall be returned. This error shall have INCONSISTENT as secondary error code.
Data Type: ExternalExpression
Overview
When the MPS data types are not sufficiently expressive, it is possible to provide an external expression that evaluates into a given data type, using the ExternalExpression data type. These external expressions are themselves text strings in some external language.
The manner in which this expression is evaluated is implementation specific.
Definition
	Name
	ExternalExpression
	Extends
	MAL::Composite
	SFP
	22

	Field
	Type
	Nullable
	Description

	type
	ArgTypeEnum
	No
	Enumeration specifying the data type of the result of the expression.

	expressionLanguage
	MAL::String
	No
	Defines the expression language used to specify the expression.

	expression
	MAL::String
	No
	The text of the expression.

[bookmark: _Ref186466648]Arguments
GeneralOverview	Comment by Peter Van Der Plas: ESA-010
The instance objects of several MPS data itemservice objects have associated arguments that can be used to parameterize the object. The set of arguments is defined in the associated definition object, with the argument values forming part of the instance object. Arguments apply to ActivityInstance, EventInstance, RequestInstance and Functions.
General	Comment by Peter Van Der Plas: ESA-010
Data Type: ArgDef
Overview
The definition of an argument is an ArgDef, a set of which may be contained within the definition MO object of a planning event, planning activity, or planning request. This defines the name and data type of the argument. Depending on the data type, the ArgDef may require additional type specific attributefields to support data validation. SubTypes are identified for Numeric, String, and Status arguments.
It should be noted that if the argument is an array, then all values of the array are of the same type, as defined in argType.
Definition

	Name
	ArgDef
	Extends
	MAL::Composite
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	argName
	MAL::Identifier
	No
	Name of the argument.

	description
	MAL::String
	No
	Extended description of the argument.

	argType
	ArgTypeEnum
	No
	Enumeration specifying the data type of the argument.

	argUnits	Comment by Quinten Van Woerkom: DLR-088
	MAL::String
	Yes
	Units that the argument value is expressed in, as defined in reference [D6] annex D.	Comment by Quinten Van Woerkom: DLR-004

	isArray
	MAL::Boolean
	No
	If True, indicates that the argument is an array of values of type ArgTypeEnum.

	validationData
	ValidationDetails
	Yes
	Optional. Specifies the allowed range of values for the Argument, with concrete subtypes specific to the data type of the Argument.

Requirements
If the argument is an array, then all values of the array shall be of the same type, as defined in argType.
Data Type: Argument
Overview
The instance of an argument is an Argument, a set of which may be contained within the instance MO object of a planning event or planning activity or within a planning request. This comprises the name and value of the argument, corresponding to the set of arguments defined in the ArgDef. Argument values are represented as a MAL Element Attribute of appropriate data type. As there is no equivalent MAL::Attribute type for Position or Direction, values of these types are represented as a MAL::String containing a literal in the defined expression format for these types.	Comment by Quinten Van Woerkom: ESA-064
It should be noted that if the argument is an array (count > 1) then all values of the array are of the same type, as defined by the argType of the associated ArgDef.
Definition

	Name
	Argument	Comment by Quinten Van Woerkom: DLR-089
	Extends
	MAL::Composite
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	argName
	MAL::Identifier
	No
	Name of the argument.

	count
	MAL::Integer
	Yes
	If argument is an array, count of the number of elements in the array.

	argValues
	List <MAL::AttributeElement>	Comment by Quinten Van Woerkom: NASA-025
	No
	Argument value (or values if it is an array). The MAL Element subAttribute type(s) must match the ArgType argument type suppliedof the in the corresponding ArgDef. Position and Direction values are represented as a MAL::String.	Comment by Quinten Van Woerkom: DLR-090

Requirements
If the argument is an array (count > 1) then all values of the array shall be of the same type, as defined by the argType of the associated ArgDef.
Data Type: ArgSpec
Overview
In the case of the planning activity, there is also an ArgSpec, a set of which may be contained within the ActivityDetails structure embedded within a planning request or parent planning activity definition. The ArgSpec defines how to derive the value of an Argument when instantiating it at run-time. The ArgSpec attribute is an Expression, the result of which must be a value matching the defined ArgType.

Definition

	Name
	ArgSpec	Comment by Quinten Van Woerkom: DLR-089
	Extends
	MAL::Composite
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	argName
	MAL::Identifier
	No
	Name of the argument.

	count
	MAL::Integer
	Yes
	If argument is an array, count of the number of elements in the array.

	argSpecs
	List <Expression>
	No
	Expression that can be evaluated at run-time to provide argument value(s) of appropriate data type.

Requirements
The argSpec field is an Expression, the result of which shall be a value matching the defined ArgType.
Validation Details
Data Type: ValidationDetails
Overview
Abstract type that is used to represent an allowed range of values for a given Argument or Resource.	Comment by Quinten Van Woerkom: DLR-026
Definition

	Name
	ValidationDetails
	Extends
	MAL::Composite
	SFP
	Abstract

Data Type: NumericRange
Overview
Concrete sub-type of ValidationDetails that provides additional attributefields to support data validation for numeric data types.
Definition

	Name
	NumericRange	Comment by Quinten Van Woerkom: DLR-091
	Extends
	ValidationDetails
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	min
	MAL::Double
	YesNo
	Minimum value of the argument; if omitted, no minimum value is considered.	Comment by Quinten Van Woerkom: DLR-093

	max
	MAL::Double
	YesNo
	Maximum value of the argument; if omitted, no maximum value is considered.	Comment by Quinten Van Woerkom: DLR-093

	precision
	MAL::Short
	No
	Precision of the argument.

Data Type: StringPatternm	Comment by Quinten Van Woerkom: ESA-069
Overview
Concrete sub-type of ValidationDetails that provides additional attributefields to support data validation for the string data type.
Definition

	Name
	StringPattern
	Extends
	ValidationDetails
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	maxLength
	MAL::UInteger	Comment by Quinten Van Woerkom: DLR-092
	YesNo
	Maximum length of the string (characters). If omitted, no maximum length is enforced.	Comment by Quinten Van Woerkom: DLR-093

	regex
	MAL::String
	YesNo
	A ‘regular expression’ or sequence of characters defining a character pattern that the string value must match. If omitted, all character sequences are permitted.
The choice of ‘regular expression’ specification to follow is implementation-specific.	Comment by Quinten Van Woerkom: DLR-094	Comment by Quinten Van Woerkom: ESA-072

Data Type: StatusValues
Overview
Concrete sub-type of ValidationDetails that provides additional attributefields to support data validation and interpretation for integer type arguments that are effectively enumerated Statuses.
Definition

	Name
	StatusValues
	Extends
	ValidationDetails
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	allowedValues
	List <StateDef>
	No
	Set of allowed State definitions (see 4.6.44.3.5), comprising the enumerated value and an associated text label.

[bookmark: _Ref33099098][bookmark: _Toc52218262][bookmark: _Toc140093812]Constraints
[bookmark: _Ref186643492]General
Data Type: Constraint
Overview
Abstract type representing a planning constraint, a Boolean condition which restricts the planning of planning activities.	Comment by Quinten Van Woerkom: DLR-026
Definition

	Name
	Constraint
	Extends
	MAL::Composite
	SFP
	Abstract

	Field
	Type
	Nullable
	Description

	negate	Comment by Quinten Van Woerkom: ESA-050
	MAL::Boolean
	Yes
	Specifies whether the result of combining the Constraints is to be inverted (NOT function).
Default = False.

Data Type: ConstraintNode
Overview
Multiple planning constraints can be combined using a ConstraintNode. The ConstraintNode specifies the logical operation (AND or OR) to be used when combining a set of constraints together. As the ConstraintNode is itself defined as a sub-type of Constraint, it is possible to construct a tree of ConstraintNodes using different logical operators.
Definition

	Name
	ConstraintNode
	Extends
	Constraint
	SFP
	

	[bookmark: _Hlk184127306]AttributeField
	Type
	Nullable
	Description

	operator
	LogicOpEnum
	YesNo
	Enumeration specifying the logic for combining multiple Boolean conditions together. One of {AND, OR}.
Default = AND.

	negate
	MAL::Boolean
	No
	Specifies whether the result of combining the Constraints is to be inverted (NOT function).
Default = False

	constraints
	List <Constraint>
	No
	The set of Constraints to be combined. Must contain at least one element.

Data Type: LogicOpEnum
Overview
A LogicOpEnum represents the type of logic used to combine two Boolean conditions.	Comment by Quinten Van Woerkom: DLR-026
Definition

	Name
	LogicOpEnum
	SFP
	

	Enumeration
	Value
	Description

	AND
	1
	Logical AND

	OR
	2
	Logical OR

Conditional Constraints
General
ConditionalConstraint

	Name
	ConditionalConstraint
	Extends
	Constraint
	SFP
	Abstract

Data Type: Constraint Expression	Comment by Peter Van Der Plas: ESA-097
ConstraintExpressionOverview
All types of constraint can be considered conditions that are either met or not met when a planning activity is placed in a Plan. They can therefore be specified as a potentially complex Boolean expression that combines references to the arguments and attributefields of objects in the MPS information model using operators of various types (arithmetic, comparative, logical, string, temporal, and geometric). The expression must evaluate to TRUE for the constraint to be met.
As introduced in 1.24.3.4, this Recommended Standard does not define a full expression language capable of supporting such complex Boolean expressions. It does, however, support the use of externally defined expression languages. The ConstraintExpression type allows for the use of such an expression language to define any type of constraint, providing communicating entities all have the capability to evaluate that expression language.
Definition

	Name
	ConstraintExpression
	Extends
	ConditionalConstraintConstraint	Comment by Quinten Van Woerkom: ESA-050
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	constraint
	Expression <MAL::Boolean>
	No
	Potentially complex conditional expression that must evaluate to TRUE for the constraint to be met.

[bookmark: _Ref68803311]Temporal Constraints [Optional]
Data Type: TemporalConstraint
Overview
Temporal constraints impose a restriction on when a planning activity can appear in a plan. The abstract type TemporalConstraint identifies the planning activity that is subject to the constraint, while concrete sub-types allow the specification of three different types of temporal constraint:
· TimeConstraint: the time at which the planning activity is to be planned;
· TimeWindowConstraint: a time window within which the planning activity is to be planned;
· DurationConstraint: a restriction on the duration of the planning activity in the plan.

Definition
	[bookmark: _Hlk185265633]Name
	TemporalConstraint	Comment by Quinten Van Woerkom: ESA-083
	Extends
	ConditionalConstraintConstraint	Comment by Quinten Van Woerkom: ESA-050
	SFP
	Abstract

Data Type: TimeConstraint
Overview
The time at which a planning activity must be planned.	Comment by Quinten Van Woerkom: DLR-026
Definition

	Name
	TimeConstraint
	Extends
	TemporalConstraint
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	time
	Expression <MAL::Time>
	No
	The time at which the planning activity must be planned.

	timeRef
	Slider
	No
	The point in the duration of the planning activity that is time constrained.
0: the start of the planning activity.
1: the end of the planning activity.

Data Type: TimeWindowConstraint
Overview
A time window within which the planning activity is to be planned.	Comment by Quinten Van Woerkom: DLR-026
Definition

	Name
	TimeWindowConstraint
	Extends
	TemporalConstraint
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	startRef
	Slider
	YesNo
	The point in the duration of the activity that is constrained to be after the start time of the time window. Although typically the start of the activity (0), this can be any point up to the end of the activity (1).
Default is the start of the planning activity.

	endRef
	Slider
	YesNo
	The point in the duration of the activity that is constrained to be before the end time of the time window. Although typically the end of the activity (1), this can be any point up to the start of the activity (0).
Default is the end of the planning activity.

	timeWindows
	List <TimeWindow>
	No
	The [set of] TimeWindows within which the activity must be placed on the Plan.

Data Type: DurationConstraint
Overview
A DurationConstraint restricts the duration of a planning activity within the plan.	Comment by Quinten Van Woerkom: DLR-026
Definition

	Name
	DurationConstraint
	Extends
	TemporalConstraint
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	minDuration
	Expression <MAL::Duration>
	YesNo
	Specifies the minimum duration of the planning activity.
If omitted, a value of 0 is used.	Comment by Quinten Van Woerkom: ESA-051

	maxDuration
	Expression <MAL::Duration>
	YesNo
	Specifies the maximum duration of the planning activity.
If omitted, the maximum representable MAL::Duration value is assumed.	Comment by Quinten Van Woerkom: ESA-052

[bookmark: _Ref68803318]Sequential Constraint [Optional]	Comment by Quinten Van Woerkom: NASA-008
Sequential Constraint
Sequential constraints impose a restriction on the order of planning activities in a Plan with respect to both other planning activities and planning events.
Two objects are identified: the predecessor which must be followed in the Plan by the successor. While either the predecessor or successor may be a planning event, it is not possible to specify a sequential constraint between two planning events: one or both must be a planning activity.

	Name
	SequentialConstraint
	Extends
	ConditionalConstraint	Comment by Quinten Van Woerkom: ESA-050
	SFP
	35

	Attribute
	Type
	Nullable
	Description

	predecessor
	Expression <MAL::ObjectRef>
	No
	Object Type: ActivityInstance | EventInstance
Identifies the planning activity or planning event that must occur first on the Plan.

	successor
	Expression <MAL::ObjectRef>	Comment by Quinten Van Woerkom: DLR-039
	No
	Object Type: ActivityInstance | EventInstance
Identifies the planning activity or planning event that must follow the predecessor on the Plan.

	predecessorRef
	Slider
	No
	Point on the predecessor that must be followed by the successor

	successorRef
	Slider
	No
	Point on the successor that must follow the predecessor

	minOffset
	Expression <MAL::Duration>
	No
	Minimum period between the specified points on the predecessor and successor.	Comment by Quinten Van Woerkom: ESA-052

	maxOffset
	Expression <MAL::Duration>
	No
	Maximum period between the specified points on the predecessor and successor.

[bookmark: _Ref68803330]Exclusion Constraint [Optional]	Comment by Quinten Van Woerkom: NASA-008
Exclusion Constraint
An exclusion constraint specifies a set of 2 or more planning activities or planning events that cannot occur concurrently in a Plan. As only planning activities can be excluded, at least one of the set must be a planning activity. Excluded objects are specified by definition [class] rather than instance, the exclusion applying to all instances of the class. Exclusion implies no overlap between the excluded items.

This constraint shall be fulfilled if two constraint windows, placed relative in time to the parent activity and to its opponent, do not overlap.Objects are specified by definition [class] rather than instance. The separation condition shall apply to all instances of the class.

	Name
	ExclusionConstraint
	Extends
	ConditionalConstraint	Comment by Quinten Van Woerkom: ESA-050
	SFP
	36

	Attribute
	Type
	Nullable
	Description

	classRefs
	List <MAL::ObjectRef>	Comment by Quinten Van Woerkom: DLR-039
	No
	Object Type: ActivityDefinition | EventDefinition
Specifies the definition (class) of excluded planning activities and planning events.

	[bookmark: _Hlk185346984]
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	[bookmark: _Ref68802931]
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

[bookmark: _Ref185419958]Resource and Argument Constraints [Optional]
Data Type: ArgumentConstraint
Overview
An argument constraint may be associated with a planning activity to restrict when it can be planned, based on the value of an argument of the planning activity itself or a related planning activity or event.	Comment by Quinten Van Woerkom: ESA-053
Definition

	Name
	ArgumentConstraint	Comment by Quinten Van Woerkom: ESA-083
	Extends
	ConditionalConstraint	Comment by Quinten Van Woerkom: ESA-050
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	activityRef
	Expression <MAL::ObjectRef>

	Yes
	Object Type: ActivityInstance.
Identifies the planning activity for which the argument constraint applies. If omitted the activity containing the constraint is assumed.

	objectRef
	Expression <MAL::ObjectRefMAL::ObjectRef <MAL::Element>>	Comment by Quinten Van Woerkom: DLR-039
	Yes
	Object Type: ActivityInstance | EventInstance
Identifies the Object (planning activity or planning event) whose argument is to be referenced. If omitted the activity containing the constraint is assumed.

	argName
	MAL::Identifier
	No
	Identifies the specific argument of the referenced Object whose value is to be compared

	comparator
	ExpressionOperatorEnum
	No
	Comparisson operator, which may be one of:	Comment by Quinten Van Woerkom: ESA-054
=, !=, >, >=, <, <=, contains, icontains
The contains operator only applies to strings and may be case sensitive or insensitive.

	value
	MAL::ElementAttribute	Comment by Quinten Van Woerkom: To support DLR-090 (changing Argument values to type MAL::Element), this must also become a MAL::Element
	No
	Value (of same type as the referenced Argument) to be compared against.

Data Type: ExpressionOperatorEnum	Comment by Quinten Van Woerkom: DLR-095
Overview
Whenever a value comparison is needed in this standard, multiple Boolean operations may be chosen from. These operations are described by each of the possible enumeration values of ExpressionOperatorEnum.
Definition

	Name
	ExpressionOperatorEnum
	SFP
	

	Enumeration
	Value
	Description

	EQUAL
	1
	=

	DIFFER
	2
	!=

	GREATER
	3
	>

	GREATER_OR_EQUAL
	4
	>=

	LESS
	5
	<

	LESS_OR_EQUAL
	6
	<=

	CONTAINS
	7
	Case sensitive containment (Strings only).

	ICONTAINS
	8
	Case insensitive containment (Strings only).

Requirements
The following sets of data types shall support one or more operations:
· Binary values: MAL::Blob and MAL::Boolean.
· Integers: MAL::Octet, MAL::UOctet, MAL::Short, MAL::UShort, MAL::Integer, MAL::UInteger, MAL::Long and MAL::ULong.
· Floating-point numbers: MAL::Float and MAL::Double.
· Unicode strings: MAL::String, MAL::Identifier, and MAL::URI.
· Time representations: MAL::Time and MAL::FineTime.
· Geometric types: Position and Direction.
The following classes of operations shall be distinguished:
· Equality: EQUAL and DIFFER.
· Ordering: GREATER, GREATER_OR_EQUAL, LESS, and LESS_OR_EQUAL.
· Containment: CONTAINS and ICONTAINS.
The precise semantics for each supported combination of data types and operations are given in the table below.
[bookmark: _Toc186645539]Table 4‑5	: Supported Expression Operations per Data Type
	Data Types
	Supported operations
	Semantics

	Binary values
	Equality
	Bitwise equality.

	Integers
	Equality
	Integer equality.

	
	Ordering
	Integer ordering.

	Floating-point numbers	
	Equality
	Follows IEEE 754 comparison predicates (reference [8]). Implementations may opt for either signaling or quiet comparison.

	
	Ordering
	Follows IEEE 754 comparison predicates (reference [8]). Implementations may opt for either signaling or quiet comparison.

	Unicode strings
	Equality
	Case-sensitive equivalence. Implementations may opt to apply Unicode normalization (reference [9]) when checking for equivalence.

	
	Ordering
	Respects lexical ordering based on Unicode collation (see reference [9]). The locale used to determine this ordering is implementation specific.

	
	Containment
	Whether the given string is equivalent to any of the substrings of the value being compared to. Implementations may opt to apply Unicode normalization (reference [9]) when checking for equivalence.

	Time representations
	Equality
	Two times are equal when they encode the same time point.

	
	Ordering
	Greater-than implies encoding a time point later in time, and vice versa.

	Geometric types
	Equality
	Equal when all individual coordinates are equal following floating-point comparison, given the same coordinate frame and units.
Implementations may additionally support equivalence across difference frames and units in an implementation-specific manner.

[bookmark: _Ref186644055]Data Type: ResourceConstraint
Overview
ResourceConstraint is an abstract type that represents a constraint expressed in terms of the value of a given Resource.
Definition

	Name
	ResourceConstraint	Comment by Quinten Van Woerkom: ESA-083
	Extends
	ConditionalConstraint	Comment by Quinten Van Woerkom: ESA-050
	SFP
	Abstract

	AttributeField
	Type
	Nullable
	Description

	activityRef
	Expression <MAL::ObjectRef>
	Yes
	Object Type: ActivityInstance.
Identifies the planning activity for which the resource constraint applies. If omitted the activity containing the constraint is assumed.

	resourceRef
	MAL::ObjectRef <Resource>	Comment by Quinten Van Woerkom: DLR-097
	No
	Object Type: Resource
Identifies the planning resource that is constrained for the duration of the planning activity.

	comparator
	ExpressionOperatorEnum
	No
	Ccomparison operator, which may be one of:

=, !=, >, >=, <, <=, contains, icontains.

The contains operator only applies to strings and may be case sensitive or insensitive.

[bookmark: _Ref186644061]Data Type: SimpleResourceConstraint
Overview
The simple resource constraint must be satisfied for the duration of the referenced planning activity.
Definition

	Name
	SimpleResourceConstraint
	Extends
	ResourceConstraint
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	value
	MAL::Attribute
	No
	Value (of same type as the referenced Resource) to be compared against.

[bookmark: _Ref186644067]Data Type: ComplexResourceConstraint
Overview
In the [simple] resource constraint, the value of the referenced planning resource is constrained against a single value for the entire duration of the referenced planning activity.
With the complex resource constraint, the period over which the constraint applies can be customized relative to the referenced planning activity; and the value against which the referenced planning resource is constrained can be specified as a relative resource profile which evolves over time.
The attributefields of the complex resource constraint extend or modify those of the [simple] resource constraint as given below. follows:
Definition

	Name
	ComplexResourceConstraint
	Extends
	ResourceConstraint	Comment by Quinten Van Woerkom: DLR-098
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	startRef
	Slider
	YesNo
	Identifies the point in the duration of the referenced planning activity to which the start of the constraint period relates.
Default is the start of the planning activity.

	endRef
	Slider
	YesNo
	Identifies the point in the duration of the referenced planning activity to which the end of the constraint period relates.
Default is the end of the planning activity.

	startOffset
	Expression <MAL::Duration>
	YesNo
	Offset from startRef that specifies the start of the constraint period. A positive offset implies a shift later in time.
Default is no offset.

	endOffset
	Expression <MAL::Duration>
	YesNo
	Offset from endRef that specifies the end of the constraint period. A positive offset implies a shift later in time.	Comment by Quinten Van Woerkom: ESA-055
Default is no offset.

	valueProfile
	RelativeResourceProfile
	No
	ResourceProfile specifying an evolving value over time against which the value of the planning resource is to be compared (see 4.5.4.4).
(See 4.2.4.3.)

[bookmark: _Ref33146022][bookmark: _Ref68803403]Function Constraint [Optional]
Function Constraint
Function constraints make use of an external custom function to determine whether or not a constraint is satisfied. Available functions must be pre-defined (see 4.2.9) to allow them to be referenced in a function constraint.
As for complex resource constraints, the period over which the function constraint applies is specified relative to the referenced planning activity.

	Name
	FunctionConstraint	Comment by Quinten Van Woerkom: ESA-083
	Extends
	ConditionalConstraint	Comment by Quinten Van Woerkom: ESA-050
	SFP
	41

	Attribute
	Type
	Nullable
	Description

	activityRef
	Expression <MAL::ObjectRef>
	Yes
	Object Type: ActivityInstance.
Identifies the planning activity for which the function constraint applies. If omitted the activity containing the constraint is assumed.

	startRef
	Slider
	No
	Identifies the point in the duration of the referenced planning activity to which the start of the constraint period relates.

	endRef
	Slider
	No
	Identifies the point in the duration of the referenced planning activity to which the end of the constraint period relates.

	startOffset
	Expression <MAL::Duration>
	No
	Offset from startRef that specifies the start of the constraint period.	Comment by Quinten Van Woerkom: ESA-055

	endOffset
	Expression <MAL::Duration>
	No
	Offset from endRef that specifies the end of the constraint period.	Comment by Quinten Van Woerkom: ESA-055

	function
	FunctionDetails
	No
	Specifies the Function to be applied and its set of input arguments.

[bookmark: _Ref52369846][bookmark: _Ref68803285]Geometric Constraints [Optional]
Data Type: GeometricConstraint
Overview
Geometric constraints restrict the planning of the planning activity by imposing a geometric condition that must be valid during some constraint period.	Comment by Quinten Van Woerkom: DLR-026
Definition

	Name
	GeometricConstraint	Comment by Quinten Van Woerkom: ESA-083
	Extends
	ConditionalConstraint	Comment by Quinten Van Woerkom: ESA-050
	SFP
	Abstract

	AttributeField
	Type
	Nullable
	Description

	activityRef
	Expression <MAL::ObjectRef>
	Yes
	Object Type: ActivityInstance.
Identifies the planning activity for which the geometric constraint applies. If omitted the activity containing the constraint is assumed.

	startRef
	Slider
	YesNo
	Identifies the point in the duration of the referenced planning activity to which the start of the constraint period relates.
Default is the start of the planning activity.

	endRef
	Slider
	YesNo
	Identifies the point in the duration of the referenced planning activity to which the end of the constraint period relates.
Default is the end of the planning activity.

	startOffset
	Expression <MAL::Duration>
	YesNo
	Offset from startRef that specifies the start of the constraint period. A positive offset implies a shift later in time.	Comment by Quinten Van Woerkom: ESA-055
Default is no offset.

	endOffset
	Expression <MAL::Duration>
	YesNo
	Offset from endRef that specifies the end of the constraint period. A positive offset implies a shift later in time.	Comment by Quinten Van Woerkom: ESA-055
Default is no offset.

Data Type: PositionConstraint
Overview
Sub-type of geometric constraint expressed in terms of a specified Position and a tolerance. The tolerance is defined as a sphere around the specified position, expressed as a distance or angle. It should be noted that the position itself can be expressed using any of the concrete position sub-types, including orbital and surface positions. The use of a constraint expressed by OrbitalPosition is particularly relevant for Earth observation satellites with a repetitive ground track and on-board position-based scheduler. The position can also specified as an expression.
Definition

	Name
	PositionConstraint
	Extends
	GeometricConstraint
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	position
	Expression <Position>
	No
	Specifies the required position expressed using any concrete position type.

	tolerance
	Expression <MAL::Double>
	No
	Specifies the maximum distance or angle from the required position that satisfies the constraint, effectively defining a sphere around the required position.

	units
	MAL::String
	Yes
	Optional. The tolerance unit name, as defined in reference [D6] annex D.	Comment by Quinten Van Woerkom: DLR-004
Default = ‘km’, but ‘deg’ is more relevant for an OrbitalPosition.

Data Type: EllipsoidalPositionConstraint	Comment by Quinten Van Woerkom: DLR-006
Overview
Geometric constraint that specifies a Position with a tolerance given in terms of a frame-aligned ellipsoid. The frame within which this tolerance ellipsoid is expressed may be different from the frame in which the required position is expressed.

DefinitionThis constraint shall be satisfied when the position falls within the tolerance ellipsoid that is centered around the required position.
	Name
	EllipsoidalPositionConstraint
	Extends
	GeometricConstraint
	SFP
	40

	Field
	Type
	Nullable
	Description

	position
	Expression <Position>
	No
	Specifies the required position expressed using any concrete position type.

	x
	Expression <MAL::Double>
	No
	Length of the ellipsoid axis that is aligned with the x axis of the specified frame.

	y
	Expression <MAL::Double>
	No
	Length of the ellipsoid axis that is aligned with the y axis of the specified frame.

	z
	Expression <MAL::Double>
	No
	Length of the ellipsoid axis that is aligned with the z axis of the specified frame.

	frame
	MAL::Identifier
	No
	Reference frame with which the axes of the tolerance ellipsoid are aligned.

	units
	MAL::String
	Yes
	Optional. The tolerance unit name.
Default = ‘km’, but ‘deg’ is more relevant for an OrbitalPosition.

Requirements
This constraint shall be satisfied when the position falls within the tolerance ellipsoid that is centered around the required position.
Data Type: PointingConstraint
Overview
Pointing constraints impose a restriction on a planning activity appearing in a Plan, based on the pointing direction of a physical object, such as a spacecraft or instrument.
As with the Direction data types (see 4.6.3.34.3.3.3), pointing constraints are consistent with the pointing templates defined for use within CCSDS Navigation data format Recommended Standards, and specifically the Pointing Request Message (PRM) (reference [10][D6]). PointingConstraint is a concrete sub-type of GeometricConstraint that includes attributefields common to all pointing templates. The pointing template itself is then identified as an attributefield and any additional arguments applicable to the template are provided as a list of name-value pairs.
NOTE	–	Pointing templates are common, generic templates that describe pointing modes that may be followed by spacecraft.	Comment by Quinten Van Woerkom: NASA-026
Definition

	Name
	PointingConstraint
	Extends
	GeometricConstraint
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	pointingFrame
	MAL::StringIdentifier	Comment by Quinten Van Woerkom: DLR-067
	Yes
	Optional. Reference fFrame to which the pointing constraint applies. One of the spacecraft body frames defined in reference [D6] annex B2, or in the SANA registry as per reference [D6] annex E2, section 1.7 reference [19] or a mission specific frame.	Comment by Quinten Van Woerkom: DLR-004
 Default frame is the spacecraft frame or any other mission specific default frame.

	boresight
	Direction
	No
	Direction in any spacecraft frame.

	boresightMargin
	Angle
	Yes
	Defines an optional cone region around the boresight, allowing a margin for application of the pointing constraint.
Default = 0.0.

	phaseAngleMargin
	Angle
	Yes
	Defines an optional rotation around the boresight, w.r.t. the default phase angle, allowing a margin for application of the pointing constraint.
Default = 0.0.

	unconstrainedPhaseAngle
	MAL::Boolean
	Yes
	If TRUE no constraint will apply to the phaseAngle. The phaseAngleMargin attributefield will be ignored in this case.
Default = FALSE.

	pointingTemplate
	MAL::String
	No
	One of the pointing templates defined in the PRM with the XML available in the SANA registry reference [D6] annex E2, or a mission specific pointing template. The pointing templates are also available in the SANA registry (see reference [10] annex E2).

	pointingArguments
	List <MAL::NamedValueNamedElement>	Comment by Quinten Van Woerkom: NASA-025
	Yes
	The argument list is consistent with the referenced template by name. Physical values are represented as a pair of arguments containing the value and units respectively. Position and Direction type arguments are represented as strings containing the literal value.	Comment by Quinten Van Woerkom: ESA-093

Requirements
The following table prescribes the summarizes currently defined pointing templates and their additional arguments. Not all templates require additional arguments (where applicable).	Comment by Quinten Van Woerkom: ESA-056

[bookmark: _Hlk185326463][bookmark: _Toc186645540]Table 4‑6	: Predefined Pointing Templates	Comment by Quinten Van Woerkom: ESA-057

	Pointing Template
	Arguments
	Type

	Inertial Pointing
	target
phaseAngle
offsetAngle
angularRate
	Direction
Angle
Angle
AngularVelocity

	Sun Pointing
	phaseAngle
offsetAngle
angularRate
	Angle
Angle
AngularVelocity

	Track with Inertial Direction Yaw Steering
	targetBody
phaseAngle
	Position
Angle

	Track with Power Optimized Yaw Steering
	targetBody
	Position

	Nadir with Power Optimized Yaw Steering
	
	

	Nadir with Ground Track Aligned Yaw Steering
	
	

	Nadir with Orbital Pole Aligned Yaw Steering
	
	

	Limb Pointing with Power Optimized Yaw Steering
	surface
dirVector
height
	MAL::String
Direction
Distance

	Limb Pointing with Inertial Direction Yaw Steering
	surface
dirVector
height
phaseAngle
	MAL::String
Direction
Distance
Angle

	Velocity Pointing with Orbital Pole Yaw Steering
	phaseAngle
	Angle

NOTES
1 Following reference [10], some pointing template arguments are optional; in those cases, the argument may be omitted from the passed pointing arguments list.	Comment by Peter Van Der Plas: ESA-058
2 What are referred to as ‘arguments’ in the table below correspond one-to-one with the elements that are indicated as ‘parameters’ in reference [10].	Comment by Peter Van Der Plas: ESA-057
Data Type: RevolutionConstraint
Overview
Specifies a range of revolution angles for a rotating spacecraft.
Definition

	Name
	RevolutionConstraint
	Extends
	GeometricConstraint
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	revolutionAngle
	Expression <MAL::Double>
	No
	Angle of revolution

	tolerance
	Expression <MAL::Double>
	No
	Tolerance in the angle of revolution

	units
	MAL::String
	Yes
	Optional. The name of the angular unit name, as defined in reference [D6] annex D.	Comment by Quinten Van Woerkom: DLR-004
Default = ‘deg’.

Data Type: DistanceConstraint
Overview
Specifies a range of distances between two physical objects (the observer and the target).
Definition

	Name
	DistanceConstraint
	Extends
	GeometricConstraint
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	observer
	Expression <Position>
	No
	Position of the observer [Object1].

	target
	Expression <Position>
	No
	Position of the target [Object2].

	minDistance
	Expression <MAL::Double>
	No
	Minimum distance between observer and target.

	maxDistance
	Expression <MAL::Double>
	No
	Maximum distance between observer and target.

	units
	MAL::String
	Yes
	Optional. The distance unit name, as defined in reference [D6] annex D.	Comment by Quinten Van Woerkom: DLR-004
Default = ‘km’.

Data Type: AngleConstraint
Overview
Specifies a range of values for the angle subtended between three physical objects. The constrained angle is that subtended at the central object by target objects 1 and 2.

Definition

	Name
	AngleConstraint
	Extends
	GeometricConstraint
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	centreObject
	Expression <Position>
	No
	Position of the central centre object.

	targetObject1
	Expression <Position>
	No
	Position of target object 1.

	targetObject2
	Expression <Position>
	No
	Position of target object 2.

	minAngle
	Expression <MAL::Double>
	No
	Minimum angle subtended at the central centre object by target objects 1 and 2.

	maxAngle
	Expression <MAL::Double>
	No
	Maximum angle subtended at the central centre object by target objects 1 and 2.

	units
	MAL::String
	Yes
	Optional. TheOptional angular unit name, as defined in reference [D6] annex D.
Default = ‘deg’.

[bookmark: _Ref64045174]Requirements
The constrained angle shall be that subtended at the centre object by target objects 1 and 2.
Miscellaneous Constraints [Optional]
Data Type: SequentialConstraint
Overview
Sequential constraints impose a restriction on the order of planning activities in a Plan with respect to both other planning activities and planning events.
Two objects are identified: the parent activity and its opponent. This opponent may be either a planning activity or a planning event and must be placed in the Plan relative to the parent activity.
Definition
	Name
	SequentialConstraint
	Extends
	Constraint	Comment by Quinten Van Woerkom: ESA-050
	SFP
	45

	Field
	Type
	Nullable
	Description

	opponent
	Expression <MAL::ObjectRef <MAL::Element>>
	No
	Object Type: ActivityInstance | EventInstance
Identifies the planning activity or planning event that must follow the parent activity on the Plan.

	parentRef
	Slider
	No
	Point on the parent activity that must be followed by the opponent.

	opponentRef
	Slider
	No
	Point on the opponent that must follow the parent activity.

	minOffset
	Expression <MAL::Duration>
	Yes
	Minimum offset between the specified points on the parent activity and the opponent.
Default is no offset.	Comment by Quinten Van Woerkom: ESA-055

	maxOffset
	Expression <MAL::Duration>
	Yes
	Maximum offset between the specified points on the parent activity and the opponent.
Default is no offset.	Comment by Quinten Van Woerkom: ESA-055

Data Type: SeparationConstraint
Overview
A separation constraint specifies that the parent planning activity must be separate in time from another planning activity or planning event, the opponent.
Definition
	Name
	SeparationConstraint
	Extends
	Constraint	Comment by Quinten Van Woerkom: ESA-050
	SFP
	46

	Field
	Type
	Nullable
	Description

	opponent
	MAL::ObjectRef <MAL::Element>
	No
	Object Type: ActivityDefinition | EventDefinition
Specifies the definition (class) of the opponent planning activity or planning event.

	startRef
	Slider
	Yes
	Identifies the point in the duration of the parent activity with respect to which to place the start of its constraint window.
Default = 0.

	startOffset
	Expression <MAL::Duration>
	Yes
	Offset with respect to startRef of the start of the parent activity constraint window.
Default is no offset.

	endRef
	Slider
	Yes
	Identifies the point in the duration of the parent activity with respect to which to place the end of its constraint window.
Default = 1.

	endOffset
	Expression <MAL::Duration>
	Yes
	Offset with respect to endRef of the end of the parent activity constraint window.
Default is no offset.

	opponentStartRef
	Slider
	Yes
	Identifies the point in the duration of the opponent with respect to which to place the start of its constraint window.
Default = 0.

	opponentStartOffset
	Expression <MAL::Duration>
	Yes
	Offset with respect to opponentStartRef of the start of the opponent constraint window.
Default is no offset.

	opponentEndRef
	Slider
	Yes
	Identifies the point in the duration of the opponent with respect to which to place the end of its constraint window.
Default = 1.

	opponentEndOffset
	Expression <MAL::Duration>
	Yes
	Offset with respect to opponentEndRef of the end of the opponent constraint window.
Default is no offset.

Requirements
This constraint shall be fulfilled if two constraint windows, placed relative in time to the parent activity and to its opponent, do not overlap.
Objects are specified by definition [class] rather than instance. The separation condition shall apply to all instances of the class.
[bookmark: _Ref186643800]Data Type: FunctionConstraint
Overview
Function constraints make use of an external custom function to determine whether or not a constraint is satisfied.
As for complex resource constraints, the period over which the function constraint applies is specified relative to the referenced planning activity.
Definition
	Name
	FunctionConstraint	Comment by Quinten Van Woerkom: ESA-083
	Extends
	Constraint	Comment by Quinten Van Woerkom: ESA-050
	SFP
	47

	Field
	Type
	Nullable
	Description

	startRef
	Slider
	Yes
	Identifies the point in the duration of the referenced planning activity to which the start of the constraint period relates.
Default is the start of the planning activity.	Comment by Quinten Van Woerkom: ESA-055

	endRef
	Slider
	Yes
	Identifies the point in the duration of the referenced planning activity to which the end of the constraint period relates.
Default is the end of the planning activity.	Comment by Quinten Van Woerkom: ESA-055

	startOffset
	Expression <MAL::Duration>
	Yes
	Offset from startRef that specifies the start of the constraint period. A positive offset implies a shift later in time.
Default is no offset.

	endOffset
	Expression <MAL::Duration>
	Yes
	Offset from endRef that specifies the end of the constraint period. A positive offset implies a shift later in time.
Default is no offset.

	function
	FunctionDetails
	No
	Specifies the Function to be applied and its set of input arguments.

Requirements
Available functions shall be pre-defined (see 4.5.7.1.3) to allow these to be referenced in a function constraint.
Effects [Optional]
Data Type: Effect
Overview
An Effect is an abstract type that may be used to represent the impact that executing a planning activity will have on a planning resource.	Comment by Quinten Van Woerkom: DLR-026
Definition

	Name
	Effect	Comment by Quinten Van Woerkom: ESA-083
	Extends
	ConstraintMAL::Composite
	SFP
	Abstract

	AttributeField
	Type
	Nullable
	Description

	activityRef
	Expression <MAL::ObjectRef>
	Yes
	Object Type: ActivityInstance | ActivityDefinition.
Identifies the planning activity for which the resource effect applies. May be either an ActivityDefinition or an ActivityInstance. If omitted the activity containing the effect is assumed.

	resourceRef
	MAL::ObjectRef <Resource>	Comment by Quinten Van Woerkom: DLR-039
	No
	Object Type: Resource
Identifies the planning resource that is constrained for the duration of the planning activity.

Data Type: Simple Effect
Overview
A simple effect applies the defined operation on the specified planning resource at the time relative to the planning activity defined by timeRef+timeOffset.
Definition

	Name
	SimpleEffect
	Extends
	Effect
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	timeRef
	Slider
	No
	The point in the duration of the planning activity to which the time of the Effect is relative.
0: the start of the planning activity
1: the end of the planning activity

	timeOffset
	Expression <MAL::Duration>
	YesNo
	Offset from timeRef that specifies the time at which the Effect is to be applied.
Default is no offset.

	operator
	EffectOperationEnum
	No
	Operation to be performed on the planning resource. One of: SET, INCREASEINCREMENT, DECREMENTDECREASE.	Comment by Quinten Van Woerkom: NASA-021
Increase Increment and decrease decrement are only applicable to numeric data types.

	value
	MAL::Attribute
	No
	The value that the planning resource is to be set to if the Effect operator is SET; or to be increasedincremented/decreaseddecremented by if it is INCREASE INCREMENT or DECREASE DECREMENT.	Comment by Quinten Van Woerkom: NASA-021

Data Type: EffectOperationEnum
Overview
An EffectOperationEnum is used to denote the specific type of change made to a planning resource for a given Effect.	Comment by Quinten Van Woerkom: DLR-026
Definition

	Name
	EffectOperationEnum
	SFP
	

	Status
	Value
	Description

	SET
	1
	Set to specified value

	INCREASEMENT	Comment by Quinten Van Woerkom: NASA-021
	2
	Increment Increase by specified value

	DECREASEDECREMENT	Comment by Quinten Van Woerkom: NASA-021
	3
	Decrease Decrement by specified value

Data Type: ComplexEffect
Overview
In the simple effect, the value of the impacted planning resource is set to the specified value at a single point in time.
With the complex effect, the value of the impacted planning resource can be evolved over a specified time period in accordance with a defined RelativeResourceProfile.
Definition

	Name
	ComplexEffect
	Extends
	Effect
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	startRef
	Slider
	YesNo
	Identifies the point in the duration of the referenced planning activity to which the start of the effect period relates.
Default is the start of the planning activity.

	endRef
	Slider
	YesNo
	Identifies the point in the duration of the referenced planning activity to which the end of the effect period relates.
Default is the end of the planning activity.

	startOffset
	Expression <MAL::Duration>
	YesNo
	Offset from startRef that specifies the start of the effect period. A positive offset implies a shift later in time.	Comment by Quinten Van Woerkom: ESA-055
Default is no offset.

	endOffset
	Expression <MAL::Duration>
	YesNo
	Offset from endRef that specifies the end of the effect period. A positive offset implies a shift later in time.	Comment by Quinten Van Woerkom: ESA-055
Default is no offset.

	operator
	EffectOperationEnum
	No
	Operation to be performed on the planning resource. One of: SET, INCREASEEMENT, DECREASE DECREMENT.	Comment by Quinten Van Woerkom: NASA-021
Increase Increment and decrease decrement are only applicable to numeric data types.

	Vvalue	Comment by Quinten Van Woerkom: DLR-101
	RelativeResourceProfile
	No
	Resource profile specifying an evolving value to which the value of the planning resource is to be set if the Effect operator is SET; or to be increased/decreased by if it is INCREASE or DECREASE.
(sSee 4.5.4.44.2.4.3.).

[bookmark: _Toc52218263][bookmark: _Ref52369871][bookmark: _Ref85031108][bookmark: _Toc140093813]Triggers
General
Data Type: Trigger
Overview
All sub-classes of Trigger include the time at which they are predicted to occur (in advance of execution); and, where applicable, the time at which they actually occurred (post execution).
Definition

	Name
	Trigger
	Extends
	MAL::Composite
	SFP
	Abstract

	AttributeField
	Type
	Nullable
	Description

	time
	MAL::Time
	No
	Predicted or actual time of Trigger. The predicted time may evolve during the planning process up to the time of execution. The actual time is only available post execution, and hence can only be provided by a plan execution function.

Data Type: Temporal Triggers
OverviewTimeTrigger
Sub-type of Trigger based on time. The trigger time is the specified constraint, and will usually match the predicted time on the base class during the planning process, but the actual time could still be slightly different post-execution.
Definition

	Name
	TimeTrigger
	Extends
	Trigger
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	triggerTime
	MAL::Time
	No
	Planned time of Trigger.

[bookmark: _Ref68803146]Data Type: Position Triggers [Optional]
OverviewPositionTrigger
Sub-type of Trigger based on position. Depending on the coordinate type of position used, a margin may be specified in terms of distance from the specified position.Depending on the coordinate type of position used, a margin may be specified in terms of distance from the specified position. This is not relevant for an OrbitalPosition, as an orbiting spacecraft would pass through the specified angle.

Definition

	Name
	PositionTrigger
	Extends
	Trigger
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	triggerPosition
	Position
	No
	Planned position of Trigger.

	distanceMargin
	Distance
	Yes
	Defines a sphere around the trigger position within which a position is considered to meet the trigger condition.

[bookmark: _Ref68803156]Requirements
No margin shall be present for an OrbitalPosition, as an orbiting spacecraft would pass through the specified angle.
Data Type: DDirection Triggers [Optional]
DirectionTriggerOverview
Sub-type of Trigger based on pointing. Depending on the coordinate type of direction used, a margin may be specified in terms of angle from the specified direction. Depending on the coordinate type of direction used, a margin may be specified in terms of angle from the specified direction. This is not relevant for a RevolutionDirection, as a rotating spacecraft or instrument would pass through the specified angle.

Definition

	Name
	DirectionTrigger
	Extends
	Trigger
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	triggerDirection
	Direction
	No
	Planned direction of Trigger.

	angleMargin
	Angle
	Yes
	Defines a circle around the trigger direction within which a direction is considered to meet the trigger condition.

[bookmark: _Ref68803164]Requirements
No margin shall be present for a RevolutionDirection, as a rotating spacecraft or instrument would pass through the specified angle.
Data Type: Angle Trigger [Optional]
OverviewAngle Trigger
Sub-type of Trigger based on the angle subtended between three physical objects. The trigger angle is that subtended at the central object by target objects 1 and 2.

Definition

	Name
	AngleTrigger
	Extends
	Trigger
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	centreObject
	Expression <Position>
	No
	Position of the central centre object. The trigger angle is that subtended at the central centre object by target objects 1 and 2.

	targetObject1
	Expression <Position>
	No
	Position of target object 1.

	targetObject2
	Expression <Position>	Comment by Quinten Van Woerkom: ESA-080
	No
	Position of target object 2.

	minAngle	Comment by Quinten Van Woerkom: ESA-037
	Angle
	No
	Minimum angle subtended at the centre object by target objects 1 and 2.

	maxAngleangleMargin	Comment by Quinten Van Woerkom: ESA-037
	AngleAngle
	NoNo
	Maximum angle subtended at the centre object by target objects 1 and 2.The trigger occurs if the angle is within ± angleMargin of the trigger angle.

Requirements
The trigger angle shall be that subtended at the centre object by target objects 1 and 2.
The trigger shall occur when the trigger angle is between the minimum and maximum angle.
Data Type: Event Triggers
OverviewEvent Trigger
Sub-type of Trigger based on planning event.
Definition

	Name
	EventTrigger
	Extends
	Trigger
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	triggerEvent
	MAL::ObjectRef
 <EventInstance>
	No
	Reference to an EventInstance

	timeOffset
	MAL::Duration
	No
	Time offset from the EventInstance

[bookmark: _Ref21969378][bookmark: _Toc52218264][bookmark: _Toc140093814]Repetitions
General
Data Type: Repetition
Overview
A repetition is used to specify the repeated instantiation of a [set of] planning activities. Multiple sub-types of Repetition are defined to support the specification of repeat cycles by different criteria. It can be used in the context of a planning request to specify a standing order for repeated execution of the [set of] planning activities.
In the context of an ActivityNode embedded within a planning request (see 4.5.2.34.2.2.3), it is possible to nest one Repetition inside another, enabling the specification of complex repetitive sequences of activities.

DefinitionAll sub-types have the following attributes:

	Name
	Repetition
	Extends
	MAL::Composite
	SFP
	Abstract

	AttributeField
	Type
	Nullable
	Description

	count
	MAL::Integer
	Yes
	Maximum number of repeat cycles/instances [optional].
If not specified there is no limit to the number of repetitions.

	timeWindow
	TimeWindow
	Yes
	Time period over which the repetition is applicable [optional].
If not specified repetition continues indefinitely.

	separationType
	SeparationTypeEnum
	No
	Specifies whether the repetition interval is Relative to the previous occurrence, or Absolute for all occurrences.

Data Type: SeparationTypeEnum
Overview
A SeparationTypeEnum is used to define whether the separation between repetitions is relative or absolute.
Definition

	Name
	SeparationTypeEnum
	SFP
	

	Enumeration
	Value
	Description

	RELATIVE
	1
	Tolerance on separation is only considered between any two occurrences.

	ABSOLUTE
	2
	Tolerance on separation applies to a multiple of the separation from the initial occurrence.

Temporal Repetition
TemporalRepetition
A sub-type of Repetition based on time.

	Name
	TemporalRepetition
	Extends
	Repetition
	SFP
	56

	Attribute
	Type
	Nullable
	Description

	initialTime
	Expression <MAL::Time>
	No
	Nominal time of first occurrence.

	separation
	Expression <MAL::Duration>
	No
	The required time interval between occurrences.

	tolerance
	Expression <MAL::Duration>
	No
	The allowed tolerance (+/-) in the required time between occurrences, the interpretation of which is dependent on the separationType.

[bookmark: _Ref68803181]Location Repetitions [Optional]	Comment by Peter Van Der Plas: ESA-097
Data Type: LocationRepetition
Overview
A sub-type of Repetition based on Position. Separate concrete sub-types provide for repetitions based on generic position and orbital position.
Definition

	Name
	LocationRepetition
	Extends
	Repetition
	SFP
	Abstract

Data Type: PositionRepetition
Overview
A sub-type of Repetition that starts at a given Position and repeats based on separation from each subsequent occurrence.
Definition

	Name
	PositionRepetition
	Extends
	LocationRepetition
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	initialPosition
	Expression <Position>
	No
	Nominal position of first occurrence.

	repetitionDirection
	Expression <Direction>
	No
	Direction of repetition.

	separation
	Expression <MAL::Double>
	No
	The required Distance between occurrences.

	tolerance
	Expression <MAL::Double>
	No
	The allowed tolerance (+/-) in the required distance between occurrences, the interpretation of which is dependent on the separationType.

	units
	MAL::String
	Yes
	The units used for separation and tolerance., as defined in reference [D6] annex D.	Comment by Quinten Van Woerkom: DLR-004

Data Type: OrbitRepetition
Overview
A sub-type of Repetition based on the orbital cycle.
Definition

	Name
	OrbitRepetition
	Extends
	LocationRepetition
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	orbitNumber
	Expression <MAL::Long>
	No
	Orbit number for the first occurrence. Depending on the relativeOrbit flag, the orbit number may be absolute (since start of mission) or relative (to the orbital repeat cycle).
The datum with respect to which the orbit number is counted is mission-specific.	Comment by Quinten Van Woerkom: ESA-038	Comment by Quinten Van Woerkom: NASA-023

	relativeOrbit
	MAL::Boolean
	No
	Flag indicating if the orbit number is absolute or relative to the orbital repeat cycle.

	orbitSeparation
	Expression <MAL::Long>
	No
	The required number of orbits separation between occurrences. If orbitNumber is Relative and the required repetition is once per repeat cycle, this is the number of orbits in the repeat cycle, but the value 0 may also be used.

	angleSeparation
	Expression <MAL::Double>
	No
	The required angular separation between occurrences. This allows for multiple repetitions within an orbit. The value 0 indicates only one occurrence within the orbit.

	orbitAngle
	Expression <MAL::Double>
	No
	The required position of the first occurrence within the orbit expressed as an angle.

	tolerance
	Expression <MAL::Double>
	No
	The allowed tolerance (+/-) in the required orbital angle.

	units
	MAL::String
	Yes
	The units used for orbitAngle, angularSeparation, and tolerance, as defined in reference [D6] annex D.	Comment by Quinten Van Woerkom: DLR-004

[bookmark: _Ref68803188]Pointing Repetitions [Optional]	Comment by Peter Van Der Plas: ESA-097
Data Type: PointingRepetition
Overview
A sub-type of Repetition based on Pointing. Concrete sub-types provide for repetition based on direction and revolutions.
Definition

	Name
	PointingRepetition
	Extends
	Repetition
	SFP
	Abstract

Data Type: DirectionRepetition
Overview
A sub-type of Repetition based on direction, which supports the specification of astronomical surveys.
Definition

	Name
	DirectionRepetition
	Extends
	PointingRepetition
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	initialDirection
	Expression <Direction>
	No
	Nominal direction of first occurrence.

	targetDirection
	Expression <Direction>
	No
	Specifies the direction of repetition as line connecting the initial and target directions.

	separation
	Expression <MAL::Double>
	No
	The required angle between occurrences.

	tolerance
	Expression <MAL::Double>
	No
	The allowed tolerance (+/-) in the required angle between occurrences, the interpretation of which is dependent on the separationType.

	units
	MAL::String
	Yes
	The units used for separation and tolerance, as defined in reference [D6] annex D.	Comment by Quinten Van Woerkom: DLR-004

Data Type: RevolutionRepetition
Overview
A sub-type of Repetition based on the revolutions of a rotating spacecraft or instrument.
Definition

	Name
	RevolutionRepetition
	Extends
	PointingRepetition
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	revsSeparation
	Expression <MAL::Long>
	No
	The required number of revolutions between occurrences.

	revsTolerance
	Expression <MAL::Long>
	No
	The allowed tolerance (+/-) in the required number of revolutions between occurrences, the interpretation of which is dependent on the separationType.

	revAngle
	Expression <MAL::Double>
	Yes
	Specifies the angle within a revolution.

	units
	MAL::String
	Yes
	The units used for revAngle, as defined in reference [D6] annex D.	Comment by Quinten Van Woerkom: DLR-004

[bookmark: _Ref68803195]Miscellaneous Repetitions	Comment by Peter Van Der Plas: ESA-097
Data Type: TemporalRepetition
Overview
A sub-type of Repetition based on time.
Definition
	Name
	TemporalRepetition
	Extends
	Repetition
	SFP
	61

	Field
	Type
	Nullable
	Description

	initialTime
	Expression <MAL::Time>
	No
	Nominal time of first occurrence.

	separation
	Expression <MAL::Duration>
	No
	The required time interval between occurrences.

	tolerance
	Expression <MAL::Duration>
	No
	The allowed tolerance (+/-) in the required time between occurrences, the interpretation of which is dependent on the separationType.

Data Type: Angle Repetition [Optional]
OverviewAngleRepetition
A sub-type of Repetition based on the angle subtended between three physical objects.

DefinitionThe repetition angle is that subtended at the central object by target objects 1 and 2.

	Name
	AngleRepetition
	Extends
	Repetition
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	centreObject
	Expression <Position>
	No
	Position of the centreal object.

	targetObject1
	Expression <Position>
	No
	Position of target object 1.

	targetObject2
	Expression <Position>
	No
	Position of target object 2.

	initialAngle
	Expression <MAL::Double>
	No
	Initial angle subtended at the central centre object by target objects 1 and 2.

	separation
	Expression <MAL::Double>
	No
	The required angle between occurrences.
If this is zero, this implies that repetition is between multiple occurrences of the initialAngle.

	tolerance
	Expression <MAL::Double>
	No
	The allowed tolerance (+/-) in the required angle between occurrences, the interpretation of which is dependent on the separationType.

	units
	MAL::String
	Yes
	The units used for separation and tolerance., as defined in reference [D6] annex D.	Comment by Quinten Van Woerkom: DLR-004

Requirements
The repetition angle shall be that subtended at the centre object by target objects 1 and 2.
Data Type: Event Repetition
Event RepetitionOverview
A sub-type of Repetition based on planning events.
Definition

	Name
	EventRepetition
	Extends
	Repetition
	SFP
	

	AttributeField
	Type
	Nullable
	Description

	eventRef	Comment by Quinten Van Woerkom: DLR-097
	Expression <MAL::ObjectRef <EventDefinition>>
	No
	Object Type: EventDefinition.
Reference to an EventDefinition (type of event).

	separation
	Expression <MAL::Long>
	No
	Number of occurrences of the planning event required between occurrences of the planning activity.

	tolerance
	Expression <MAL::Long>
	No
	The allowed tolerance (+/-) in the number of occurrences of the planning event between occurrences of the planning activity, the interpretation of which is dependent on the separationType.

[bookmark: _Toc161745109][bookmark: _Ref185243549][bookmark: _Ref185243558][bookmark: _Ref185243646][bookmark: _Ref185261043][bookmark: _Ref186112465][bookmark: _Ref186112499][bookmark: _Ref186112513][bookmark: _Ref186112526][bookmark: _Ref186112536][bookmark: _Ref186112552][bookmark: _Ref186112566][bookmark: _Ref186112574][bookmark: _Ref186112581][bookmark: _Ref186112591][bookmark: _Ref186112605][bookmark: _Ref186117688][bookmark: _Ref186117699][bookmark: _Ref186117707][bookmark: _Ref186117714][bookmark: _Ref186117721][bookmark: _Ref186117730][bookmark: _Ref186117738][bookmark: _Ref186117745][bookmark: _Ref186117754][bookmark: _Ref186117762][bookmark: _Ref186117778][bookmark: _Ref186117786][bookmark: _Ref186117794][bookmark: _Ref186117799][bookmark: _Ref186117807][bookmark: _Ref186117813][bookmark: _Ref186117822][bookmark: _Ref186117829][bookmark: _Ref186117844][bookmark: _Ref186117854][bookmark: _Ref186117861][bookmark: _Ref186117868][bookmark: _Ref186117882][bookmark: _Ref186117890][bookmark: _Ref186117900][bookmark: _Ref186117927][bookmark: _Ref186117936][bookmark: _Ref186117946][bookmark: _Ref186117954][bookmark: _Ref186117962][bookmark: _Ref186642462][bookmark: _Toc186645482]Error Codes
[bookmark: _Toc186645483]Overview	Comment by Quinten Van Woerkom: Added this section heading to align with the new heading required for 5.3 as per RID ESA-010
Standard error codes defined by the MAL are applicable to the MPS service operations. In particular it is noted that this includes errors associated with delivery issues and authorization failure.
Not all failure modes for the operations defined in this standard are adequately described using only the MAL error codes. For this purpose, a set of MPS-specific MO Errors is defined in this section. Where applicable, the operations in this standard may return one or more of these errors.
[bookmark: _Toc186645484]MPS-Specific MO Errors	Comment by Quinten Van Woerkom: Added this section heading to align with the new heading required for 5.3 as per RID ESA-010
Each MPS-defined MO Error carries an additional ‘ExtraInfo’ field that can be used to convey additional information about the returned error. The type of this field may differ between different error codes; the type corresponding with each error code is given in its specification.	Comment by Quinten Van Woerkom: ESA-089
The following error codes shall apply to this specification.Definition

	Error
	#	Comment by Quinten Van Woerkom: DLR-009: Shifted all error code numbers upwards by one
	Description
	ExtraInfo Type
	ExtraInfo Description

	INVALID
	10
	One or more fields in the message contain invalid values.
	List <MAL::Pair>
	ExtraInfo comprises a list of structures, each identifying an invalid field, comprising:
1. A MAL::String giving a dot- separated nested index for the invalid field(s). This , to allows for fields that are themselves a structure or list element to be denoted., ofFor example, the form ‘3.2.4’ could meaningn the 4th element of the 2nd field of the composite structure that is the 3rd field of the message.	Comment by Quinten Van Woerkom: DLR-104	Comment by Quinten Van Woerkom: ESA-070
2. A UInteger MAL::UShort giving a secondary error code that details the reason for invalidity.	Comment by Quinten Van Woerkom: DLR-105

	CANCEL_FAILED
	21
	The cancelRequest operation failed to cancel the referenced RequestInstance.
	MAL::String
	ExtraInfo provides additional information on the reason for failure as a free format string.

	UPDATE_FAILED
	32
	The update operation (to Request, PlanStatus, Activity, Event or Resource) failed to update the referenced object.
	MAL::String
	ExtraInfo provides additional information on the reason for failure as a free format string.

	REVOKE_FAILED
	43
	The revokePlan operation failed to revoke the referenced Plan, for example because it has already started executing.
	MAL::String
	ExtraInfo provides additional information on the reason for failure as a free format string.

	INSERT_FAILED
	54
	The insertActivity or insertEvent operation failed to insert the requested object.
	MAL::String
	ExtraInfo provides additional information on the reason for failure as a free format string.

	DELETE_FAILED
	65
	The deleteActivity or deleteEvent operation failed to delete the requested object.
	MAL::String
	ExtraInfo provides additional information on the reason for failure as a free format string.

	ACTIVATE_FAILED
	76
	The activatePlan operation failed as the activation was outside the validity period of the Plan, or the start of the planPeriod had already passed.
	MAL::String
	ExtraInfo indicates ‘Validity’ or ‘Expired’ as appropriate.

	DEACTIVATE_FAILED	Comment by Quinten Van Woerkom: ESA-092
	8
	The deactivatePlan operation failed.
	MAL::String
	ExtraInfo provides additional information on the reason for failure as a free format string.

	SUBMIT_FAILED	Comment by Quinten Van Woerkom: ESA-092
	9
	The submitPlan operation failed as the submitted plan was already terminated.
	MAL::String
	ExtraInfo provides additional information on the reason for failure as a free format string.

	UNSUPPORTED
	107
	An optional data structure used in the message is not supported by the service provider.
	List <MAL::String>
	ExtraInfo comprises a list of MAL::Strings giving a dot- separated nested index for the unsupported field(s). , This to allows for fields that are themselves a structure or list element to be denoted. , ofFor example, the form ‘3.2.4’ could mean the 4th element ofing the 2nd field of the composite structure that is the 3rd field of the message.	Comment by Quinten Van Woerkom: DLR-104

	ACTIVATE_SUBPLAN_FAILED
	118
	The activateSubPlan operation failed.
	MAL::String
	ExtraInfo provides additional information on the reason for failure as a free format string.

	DEACTIVATE_SUBPLAN_FAILED
	129
	The deactivateSubPlan operation failed.
	MAL::String
	ExtraInfo provides additional information on the reason for failure as a free format string.

[bookmark: _Toc186645485]Data Type: SecondaryErrorCodeEnumSecondaryErrorCodeEnum	Comment by Quinten Van Woerkom: ESA-010
Overview
For the INVALID error, the secondary error code is defined as a UInteger MAL::UShort that allows for deployment specific extensibility. The following standard secondary error codes are defined:	Comment by Quinten Van Woerkom: DLR-105
Definition

	Name
	SecondaryErrorCodeEnum
	SFP
	

	Error
	Error #
	Description

	UNKNOWN
	0
	Referenced MO object is not available to the service provider.

	UNDEFINED
	1
	Undefined value for enumeration field.

	OUT_OF_RANGE
	2
	A numeric value is outside the supported range.

	UNRECOGNIZED
	3
	Value of type MAL::Identifier or MAL::String (referencing a named item) does not correspond to a known item.

	BAD_TIME
	4
	A date-time value is outside the supported time period.

	BAD_POSITION
	5
	A position value is outside the supported position range.

	BAD_DIRECTION
	6
	A direction value is outside the supported direction range.

	INCONSISTENT
	7
	A value is inconsistent with that of another field within the message. This indicates violation of a constraint rule.

[bookmark: _Ref56507081][bookmark: _Toc140093897][bookmark: _Toc161745110][bookmark: _Hlk158221774][bookmark: _Hlk158116288][bookmark: _Toc186645486]Service Specification XML
[bookmark: _Toc145686950][bookmark: _Toc156918262][bookmark: _Toc161745111][bookmark: _Toc186645487]Overview
The MO MAL specification (reference [2][2]) defines a normative XML Schema Definition (XSD) for validating MO service specifications and the MAL XML specification. The use of XML for service specification provides a machine-readable format rather than the text-based document format (reference [5][5]).
The MPS service specification defined in this document is also represented as an XML specification that follows the MAL defined schema.
The published XML Schema Definition (XSD) and the service specifications are held in an online SANA registry (reference [6][6]) located at:
https://sanaregistry.org/r/moschemas/
While these schemas encode the specifications prescribed by the standard in XML, that should not be confused as a prescription that any conforming implementation shall be encoded in XML. Implementations in any language can conform to the MPS service specification, or to the MO service specifications in general.	Comment by Quinten Van Woerkom: NASA-031
[bookmark: _Toc145686951][bookmark: _Toc156918263][bookmark: _Toc161745112][bookmark: _Toc236731232][bookmark: _Toc241922493][bookmark: _Toc264646478][bookmark: _Toc186645488]XML Schema Definition (XSD) for MO Services
The XML Schema Definition (XSD) that is used to validate the actual XML service specifications has a filename with the structure ‘“ServiceSchema-vBBB.xsd’”, where ‘BBB’ is replaced with the issue number of the corresponding document. 	Comment by Quinten Van Woerkom: ESA-089
The normative XML for an MO service specification has a filename with the structure “‘areaAAA-vBBB-AREA’” where ‘AAA’ is replaced with the area number, ‘BBB’ is replaced with the area version which shall match the issue number of the corresponding document and ‘AREA’ is replaced by the area name.	Comment by Quinten Van Woerkom: ESA-089
For this specification the following version of the XML Schema Definition (XSD) is applicable:
https://sanaregistry.org/r/moschemas/ServiceSchema-v003.xsdhttps://sanaregistry.org/files/moschemas/ServiceSchema-v003.xsd
The latest version of the XML Schema Definition is directly available from the address:

https://sanaregistry.org/rfiles/moschemas/ServiceSchema.xsd
[bookmark: _Toc135404765][bookmark: _Toc135404937][bookmark: _Toc145686952][bookmark: _Toc156918264][bookmark: _Toc161745113][bookmark: _Toc186645489]MAL XML
The normative XML for the MAL specification, validated against the XML Schema Definition (XSD), is located at:
https://sanaregistry.org/r/moschemas/area001-v003-MAL.xmlhttps://sanaregistry.org/files/moschemas/area001-v003-MAL.xml
where 001 corresponds to the area number for MAL and 003 corresponds to the area version on which this specification is based.
The latest version of the MAL specification is directly available from the address:
https://sanaregistry.org/r/moschemas/ServiceDefMAL.xmlhttps://sanaregistry.org/files/moschemas/ServiceDefMAL.xml
[bookmark: _Toc156918265][bookmark: _Toc161745114][bookmark: _Toc186645490]MPS XML
The normative XML for the MPS specification, validated against the XML Schema Definition (XSD), is located at[footnoteRef:5]: [5: Note that this Red book contains references to the beta SANA registry and will be changed to the formal SANA registry on publication as a Blue Book.]

https://beta.sanaregistry.org/files/moschemas/area005-v001-MPS.xmlhttps://beta.sanaregistry.org/r/moschemas/area005-v001-MPS.xml
where 005 corresponds to the area number for MPS and 001 corresponds to the area version which shall match the issue number of this document.
The latest version of the MPS specification is directly available from the address:
https://beta.sanaregistry.org/r/moschemas/ServiceDefMPS.xmlhttps://beta.sanaregistry.org/files/moschemas/ServiceDefMPS.xml

[bookmark: _Ref56506907][bookmark: _Toc140093898][bookmark: _Toc161745115][bookmark: _Toc186645491]XML File Formats
[bookmark: _Toc158131916][bookmark: _Toc158399328][bookmark: _Toc161745116][bookmark: _Toc161745117][bookmark: _Toc186645492]IntroductionOverview
Some MPS deployments, including those based on legacy systems, may not be designed to use service-based interaction, using instead the transfer of files with a defined data structure. In order to support the exchange of information using the MPS Information Model structures, the following standardized file formats are defined:
· Planning Request;
· Planning Response (to a Planning Request);
· Plan.
[bookmark: _Ref68802427]These are based on the MPS information model defined in section 4, expressed as XML schemas, restricted to the data structures required to support Planning Requests and Plans respectively.
This section describes the approach taken to define the normative XML schemas and provides the location of the schemas in an online SANA registry. Detailed definition of the data structures referenced and the interpretation of their constituent fields can be found in section 4, except for additional or modified types specific to the file formats that are defined in this section.
[bookmark: _Toc140093900][bookmark: _Toc161745118][bookmark: _Toc186645493]XML Schema Namespace
The schema for the MPS File Structures are defined within a single namespace with the following URN:
urn:ccsds:schema:mo:mps
The schema for the MALTypes is defined within a separate namespace for the MAL with the following URN:
	urn:ccsds:schema:mo:mal
[bookmark: _Toc140093901][bookmark: _Toc161745119][bookmark: _Toc186645494]XML Schema Encoding
Overview
Data structures of the MPS information model are ultimately composed of fields defined as one of the MAL::Attribute types. The encoding of these data types is fixed in the context of the XML file structures and associated XML schema. , andIt follows the approach already defined for XML encoding of the MAL in section 5 ofin reference [D8][D10], but is not directly compatible as it is adapted for file-based usage.	Comment by Quinten Van Woerkom: DLR-111
Mapping
The following table defines the mapping of MAL::Attribute data types to XSD schema types used in the context of the MPS XML file structures.
[bookmark: T_701MappingofMALAttributeTypestoXSDType][bookmark: _Toc158132088][bookmark: _Toc186645541]Table 7‑17‑1	: Mapping of MAL Attribute Types to XSD Types
	MAL Attribute Type	Comment by Quinten Van Woerkom: ESA-039: With inclusion of xs:anyType we refer not only to MAL Attributes but in general to MAL types.
	XSD Type
	Comment

	MAL::Boolean
	boolean
	

	MAL::Octet
	byte
	

	MAL::UOctet
	unsignedByte
	

	MAL::Short
	short
	

	MAL::UShort
	unsignedShort
	

	MAL::Integer
	int
	

	MAL::UInteger
	unsignedInt
	

	MAL::Long
	long
	

	MAL::ULong
	unsignedLong
	

	MAL::Float
	float
	

	MAL::Double
	double
	

	MAL::Duration
	duration
	

	MAL::Time
	mal:Time
	Corresponds to XSD dateTime but with format constrained to CCYY-MM-DDThh:mm:ss.sss.

	MAL::FineTime
	mal:FineTime
	Corresponds to XSD dateTime but with format constrained to CCYY-MM-DDThh:mm:ss.sssssssss.

	MAL::String
	string
	

	MAL::Blob
	hexbinary
	

	MAL::Identifier	Comment by Quinten Van Woerkom: DLR-118
	mal:Identifier
	Corresponds to XSD string but with its format restricted to that of a MAL Identifier

	MAL::URI
	anyURI
	

	MAL::ObjectRef
	mal:ObjectRef
	Corresponds to an XSD complex type.

	MAL::Element	Comment by Quinten Van Woerkom: ESA-039
	anyType
	

NOTES
1 The majority of MAL::Attribute types correspond to the specified XSD simple types.
2 The remainder are defined within the MALTypes schema that is imported into the MPS schema. These are shown in the table above with the ‘mal:’ namespace prefix and either imply constraints to be imposed on their encoding as XSD simple types or define MAL specific XSD complex types.
3 MAL::Time and MAL::FineTime correspond to the XSD dateTime simple type but with constraints on the time format to be used.
4 In the specific case of an Expression of type Time defined in the MPSTypes schema, the value field is encoded as dateTime and can be used to represent either MAL type, according to the rules below.
Fields of type MAL::Time shall be encoded using the XSD dateTime simple type with the format CCYY-MM-DDThh:mm:ss.sss.
Fields of type MAL::FineTime shall be encoded using the XSD dateTime simple type with the format CCYY-MM-DDThh:mm:ss.sssssssss.
NOTE	–	MAL::Identifier corresponds to the XSD string simple type, but the string must follow the format defined for MAL Identifiers.
Fields of type MAL::Identifier shall be encoded using the XSD string simple type with any format constraint imposed by the MAL (reference [2][2]).
NOTE	–	MAL::Identifier corresponds to the XSD string simple type, but the string must follow the format defined for MAL Identifiers.

NOTE	–	MAL::ObjectRef and MAL::StaticObjectRef corresponds to an XSD complex types defined as part of the MPS XML schema hierarchy. The MALTypes schema also includes an XSD complex type for the MAL::ObjectIdentity composite.
Fields of type MAL::ObjectRef shall be encoded using the XSD MAL::ObjectRef complex type. If a field is defined in the information model as being of type MAL::ObjectRef <T>, with a specified concrete object type T, then the area and type fields of the reference shall be omitted, with the correct values substituted in by the implementation.	Comment by Quinten Van Woerkom: DLR-113	Comment by Quinten Van Woerkom: ESA-061
NOTE	–	MAL::ObjectRef corresponds to an XSD complex types defined as part of the MPS XML schema hierarchy. The MALTypes schema also includes an XSD complex type for the MAL::ObjectIdentity composite.

NOTE	–	Lists are encoding directly as an XSD element with multiple occurrences.
Fields defined as a list of items of defined type shall be encoded as an XSD element of defined type with minimum and maximum occurrences.	Comment by Quinten Van Woerkom: ESA-084
Attributes of abstract types MAL::Element or MAL::Attribute shall be represented using the XSD anyType type.	Comment by Quinten Van Woerkom: ESA-039
[bookmark: _Toc186470984][bookmark: _Toc186645495]
[bookmark: _Toc158131921][bookmark: _Toc158399332][bookmark: _Toc161745120][bookmark: _Toc140093902][bookmark: _Toc161745121][bookmark: _Toc186645496]XML Schema Structure
Overview
The MPS XML file structures are defined as a hierarchy of XML schemas, as illustrated in figure 7‑1 below.
Each MPS XML file structure has a root XSD schema that includes:
· the top level element for the file;
· XSD representations of each MPS Service Object that may be included as part of the file.
[image:]
[bookmark: F_701XMLSchemaHierarchy][bookmark: _Toc158132072][bookmark: _Toc186645517]Figure 7‑1	: XML Schema Hierarchy
Each MPS XML file structure has a root XSD schema that includes:
· the top level element for the file;
· XSD representations of each MPS Data Item that may be included as part of the file.
It should be noted that these root XSD schemas do not include all defined data structures relating to an MPS data itemservice object, but only those required for the specific file structure. Those not required, such as Definition data structures and service specific data structures, are omitted.
A set of XSD schemas are also defined that are included by the above MPSPlanFile and MPSPlanningRequestFile to define referenced data types within the MPS information model. It should be noted that these are not required by the MPSPlanningResponseFile schema. Separate schema are defined to cover:
· MAL Data Types: MAL Attribute Types that do not map directly to XSD simple types:
· Time, FineTime, and Identifier,
· ObjectRef and ObjectIdentity,
· NamedValue;
· MPS Data Types covering:
· MPS Base Data Types (see 4.6.24.3.2),
· Expressions (see 4.3.4),
· Additional Miscellaneous MPS Data Types (see 4.6.44.3.5),
· Expressions (see 4.6.5),
· Arguments (see 4.6.64.3.6);
· MPS Position and Direction Types (see 4.6.3 4.3.3) [Optional];:
· Constraints (see 4.6.7);
· Triggers (see 4.6.9);
· Repetitions (see 4.6.10);
· Resources (see 4.5.4);
· MPS Constraints (see 4.3.7),
· MPS Triggers (see 4.3.8),
· MPS Repetitions (see 4.3.9),
· MPS Resources (see 4.2.4.3).
The MPSRepetitions schema is only included by the MPSPlanningRequestFile schema.
The MPSPlanningRequestFile schema also includes the MPSPlanFile schema to support the direct embedding of a plan within a planning request.
The MPSResources schema defines resource profiles used within the MPSPlanFile and MPSConstraints schema.
[bookmark: _Toc140093903][bookmark: _Toc161745122][bookmark: _Toc186645497]XML File Structure
Overview
The XML file structure is illustrated in figure 7‑2 below. There is an XSD top level element for each MPS File.
[image:]
[bookmark: F_702MPSXMLFileStructure][bookmark: _Toc158132073][bookmark: _Toc186645518]Figure 7‑2	: MPS XML File Structure
The general structure of the MPS Files comprises an optional common FileHeader, followed by a file body that corresponds to:
· PlanningRequestDetails (see 4.5.5.34.2.5.3) in the case of a PlanningRequestFile;
· A dedicated structure, defined below, in the case of a PlanningResponseFile that is a combination of a PlanningRequestResponse and a RequestStatusUpdate (see 4.5.5.34.2.5.3);
· Plan (see 4.5.64.2.6.1) in the case of the PlanFile.
· This is illustrated in figure 7‑2 above. There is an XSD top level element for each MPS File.
The FileHeader is an additional concrete data structure not defined in the context of the MPS Information Model, but defined below. This is included in the MPSTypes schema.
PlanningRequestFile

Definition
	Name
	PlanningRequestFile

	AttributeField
	Type
	Nullable
	Description

	requestFileHeader
	FileHeader
	Yes
	File header giving details of the source and scope of the MPS file.

	requestFileBody
	PlanningRequestDetails
	No
	File body corresponding to a the PlanningRequestDetails structure.

PlanningResponseFile

Definition
	Name
	PlanningResponseFile

	AttributeField
	Type
	Nullable
	Description

	responseFileHeader
	FileHeader
	Yes
	File header giving details of the source and scope of the MPS file.

	responseFileBody
	PlanningResponse
	No
	File body corresponding to a combination of PlanningRequestResponse and RequestStatusUpdate (defined in 7.6 below).

PlanFile

Definition
	Name
	PlanFile

	AttributeField
	Type
	Nullable
	Description

	planFileHeader
	FileHeader
	Yes
	File header giving details of the source and scope of the MPS file.

	planFileBody
	Plan
	No
	File body corresponding to a Plan structure.

FileHeader
Overview
In the absence of any standard MO message headers, the MPSFileHeader provides optional information about the origin, creation timedate, and scope of the file.	Comment by Quinten Van Woerkom: ESA-033
Definition

	Name
	FileHeader

	AttributeField
	Type
	Nullable
	Description

	originator
	MAL::Identifier
	Yes
	Identity of the entity responsible for generation of the file.

	creationTimeDate	Comment by Quinten Van Woerkom: ESA-033
	MAL::Time
	Yes
	File creation date.	Comment by Quinten Van Woerkom: ESA-033

	mission
	MAL::Identifier
	Yes
	The space mission to which the file relates.

	domain
	List <MAL::Identifier>
	Yes
	Mission domain to which the file relates.

	topic
	MAL::String
	Yes
	Mission specific information that further defines the scope of the file.

	comments
	MAL::String
	Yes
	Field for any additional information or comments.

[bookmark: _Toc89084150][bookmark: _Toc95258409][bookmark: _Toc89084151][bookmark: _Toc95258410][bookmark: _Toc89084152][bookmark: _Toc95258411][bookmark: _Toc89084153][bookmark: _Toc95258412][bookmark: _Toc89084154][bookmark: _Toc95258413][bookmark: _Toc89084239][bookmark: _Toc95258498][bookmark: _Toc89084240][bookmark: _Toc95258499][bookmark: _Toc89084241][bookmark: _Toc95258500][bookmark: _Toc89084242][bookmark: _Toc95258501][bookmark: _Toc89084243][bookmark: _Toc95258502][bookmark: _Toc89084244][bookmark: _Toc95258503][bookmark: _Toc89084245][bookmark: _Toc95258504][bookmark: _Toc89084246][bookmark: _Toc95258505][bookmark: _Toc89084247][bookmark: _Toc95258506][bookmark: _Toc89084248][bookmark: _Toc95258507][bookmark: _Toc89084249][bookmark: _Toc95258508][bookmark: _Toc89084250][bookmark: _Toc95258509][bookmark: _Toc89084251][bookmark: _Toc95258510][bookmark: _Toc89084252][bookmark: _Toc95258511][bookmark: _Toc89084253][bookmark: _Toc95258512][bookmark: _Toc89084254][bookmark: _Toc95258513][bookmark: _Toc89084255][bookmark: _Toc95258514][bookmark: _Toc89084256][bookmark: _Toc95258515][bookmark: _Toc89084257][bookmark: _Toc95258516][bookmark: _Toc89084258][bookmark: _Toc95258517][bookmark: _Toc89084259][bookmark: _Toc95258518][bookmark: _Toc89084260][bookmark: _Toc95258519][bookmark: _Toc89084261][bookmark: _Toc95258520][bookmark: _Toc89084262][bookmark: _Toc95258521][bookmark: _Toc89084263][bookmark: _Toc95258522][bookmark: _Toc89084264][bookmark: _Toc95258523][bookmark: _Toc89084265][bookmark: _Toc95258524][bookmark: _Toc89084266][bookmark: _Toc95258525][bookmark: _Toc89084267][bookmark: _Toc95258526][bookmark: _Toc89084268][bookmark: _Toc95258527][bookmark: _Toc89084269][bookmark: _Toc95258528][bookmark: _Toc89084270][bookmark: _Toc95258529][bookmark: _Toc89084271][bookmark: _Toc95258530][bookmark: _Toc89084272][bookmark: _Toc95258531][bookmark: _Toc89084273][bookmark: _Toc95258532][bookmark: _Toc89084274][bookmark: _Toc95258533][bookmark: _Ref92893166][bookmark: _Ref94441327][bookmark: _Ref94441332][bookmark: _Toc140093904][bookmark: _Toc161745123][bookmark: _Toc186645498]Planning Request XML File Formats
General
Two XML file formats are defined for use in conjunction with MPS planning requests:
· MPSPlanningRequestFile;
· MPSPlanningResponseFile.
The body of the MPSPlanningRequestFile corresponds to a PlanningRequestDetails structure from the MPS information Information model Model (see 4.5.5.34.2.5.3).
The MPSPlanningRequestFile schema includes the definition of XSD complex types for the following data structures:
· PlanningRequestDetails;
· ActivityDetails (ActivityNode and SimpleActivityDetails).
The XSD representation of these data structures omits some attributefields that are only meaningful where they are dynamically updatable. Similarly the set of allowed values for status attributefields may be restricted to those relevant to the context of the message, omitting those relevant only during or post execution of the planned activities.
In the specific case of the Planning Request File, the option to include an embedded requested Plan is supported by inclusion of the MPSPlanFile schema.
PlanningResponse

In order to be able to interpret a plan and correlate a planning request with the resultant planning activities contained in the plan, the identity of the planning request is required. This identity is assigned by the planning function, not the originator of the planning request. This may be returned through ad-hoc mechanisms; however, the MPSPlanningResponseFile is provided as a standard file format to supply this feedback. The file may also optionally include the result of the planning request. The body of the MPSPlanningRespnseFile is based on the PlanningRequestResponse and RequestStatusUpdate structures from the MPS information model, but uses the dedicated hybrid structure detailed below.o
DefinitionAlthough the PlanningResponse message combines the information contained in both the PlanningRequestResponse and the RequestStatusUpdate, this does not imply that the corresponding operations within the planning system have to be combined. It is implementation-dependent when the file is generated and whether the status information is included. There is no definition of the service interface for deployments using the file formats.

	Name
	PlanningResponse

	AttributeField
	Type
	Nullable
	Description

	instance
	MAL::ObjectRef
<RequestInstance>
	No
	Reference to the RequestInstance created in response to a submitted MPSPlanningRequestFile.

	userReference
	MAL::Identifier
	No
	User supplied reference for the planning request. This is distinct from the instanceID of the RequestInstance that is assigned by the planning function.

	status
	RequestStatusEnum
	Yes
	Current status of the planning request.

	outputPlanRef
	List <MAL::ObjectRef
<Plan>>
	Yes
	Reference to the output Plan(s) that contains the activities resulting from the planning request. Where multiple alternate plans have been generated, these may be listed here.Reference to the Plan that contains the planned activities resulting from the planning request. It should be noted that this is only available once the planning request has been processed and successfully planned. The outputPlanRef may be updated following iterative planning cycles or re-planning.

	returnData
	List <MAL::NamedValue>	Comment by Quinten Van Woerkom: ESA-070
	Yes
	Optional return data from the planning process, provided as a list of ID-Value pairs. This can be used to provide additional information required by the User to interpret the planned operations.

	statusInfo
	MAL::sString
	Yes
	StatusInfo provides the reason for termination and is customizable, but includes:
- Completed (all constituent activities completed successfully)
- Expired (constituent activities expired prior to execution)
- Failed (constituent activities failed during execution)
- Deleted (constituent activities were deleted)

	errorCode
	MAL::Integer
	Yes
	Error Code optional in the case of a failure status for the planning request (for example Terminated state with statusInfo Failed). The codes are implementation specific.

	errorInfo
	MAL::sString
	Yes
	Supplementary error information.

Discussion
In order to be able to interpret a plan and correlate a planning request with the resultant planning activities contained in the plan, the identity of the planning request is required. This identity is assigned by the planning function, not the originator of the planning request. This may be returned through ad-hoc mechanisms; however, the MPSPlanningResponseFile is provided as a standard file format to supply this feedback. The file may also optionally include the result of the planning request. The body of the MPSPlanningResponseFile is based on the PlanningRequestResponse and RequestStatusUpdate structures from the MPS information model, but uses the dedicated hybrid structure detailed below.
Although the PlanningResponse message combines the information contained in both the PlanningRequestResponse and the RequestStatusUpdate, this does not imply that the corresponding operations within the planning system have to be combined. It is implementation-dependent when the file is generated and whether the status information is included. There is no definition of the service interface for deployments using the file formats.
This allows the return of both the reference to the created RequestInstance and current status of the request in a single PlanningResponseFile. No timestamp is included within the structure above, but it is recommended that the creation date field of the file header is used, particularly if the status field is provided.
The point at which any PlanningResponseFile is generated by a planning function is deployment-specific. This may limit the set of possible status values, and whether or not the other nullable fields are meaningful in context. The outputPlanRef is only relevant if the planning process has generated an output Plan addressing the planning request. The last three fields may be used to supply a reason for rejection, but are most relevant post execution of the Plan.
NOTE	–	In the equivalent Planning Request Service operation, an error may be returned if the planning request is INVALID, and no RequestInstance is created. In the case of an invalid PlanningRequestFile, this error reporting mechanism is not available. Providing the PlanningRequestFile is not so badly formed that its identity cannot be interpreted, it would be possible to provide a PlanningResponseFile in return. In this case, a RequestInstance would need to be created and assigned the status REJECTED, the statusInfo attributefield set to ‘INVALID’ and the errorCode and errorInfo attributefields set consistently with the error code defined in section 4 above.
[bookmark: _Toc89084276][bookmark: _Toc95258535][bookmark: _Toc89084277][bookmark: _Toc95258536][bookmark: _Ref68802434][bookmark: _Toc140093905][bookmark: _Toc161745124][bookmark: _Toc186645499]Plan XML File Format

A single XML file format is defined for distribution of MPS plans:
· MPSPlanFile.
The body of the MPSPlanFile corresponds to a Plan structure from the MPS information model (see 4.5.64.2.6.1).
The MPSPlanFile schema includes definition of XSD complex types for the following data structures:
· Plan (together with subsidiary data structures for PlanInformation, PlannedItems, PlanRevisions, and PlanResources);	Comment by Quinten Van Woerkom: DLR-010	Comment by Quinten Van Woerkom: ESA-035
· EventInstance;
· ActivityInstance;
· ResourceProfile.
The XSD representation of these data structures omits some attributefields that are only meaningful where they are dynamically updatable, such as statusInfo. Similarly the set of allowed values for status attributefields may be restricted to those relevant to the context of the message, omitting those relevant only during or post execution of the planned activities. The following details the specific omissions for each data structure:
Plan:	PlanStatusEnum restricted to Draft and Released,;
statusInfo omitted.
EventInstance:	eventStatus and statusInfo omitted.
ActivityInstance:	status, executionInstance, returnData, statusInfo, errorCode, and errorInfo omitted.	Comment by Quinten Van Woerkom: DLR-108
[bookmark: _Toc89084279][bookmark: _Toc95258538][bookmark: _Toc89084280][bookmark: _Toc95258539][bookmark: _Toc89084281][bookmark: _Toc95258540][bookmark: _Toc140093906][bookmark: _Toc161745125][bookmark: _Toc186645500][bookmark: _Toc128466839][bookmark: _Hlk158228620]MPS XML File Format Schema Location
The published XML schemas for MPS file formats are held in an online SANA registry, located at the following URL:
https://sanaregistry.org/r/mpsfileschemas/
The following schemas are located within this registry:
MPSPlanningRequestFile.xsd
MPSPlanningResponseFile.xsd
MPSPlanFile.xsd
MPSTypes.xsd
MPSPositionandDirectionTypes.xsd	Comment by Quinten Van Woerkom: DLR-110
MPSConstraints.xsd
MPSTriggers.xsd
MPSRepetitions.xsd
MPSResources.xsd
MALTypes.xsd
It is not possible to add versions to schema files because this would invalidate the file references within the schemas. As such, all the above files are contained within a single .zip file with the following naming convention: ‘“MPSFileFormats-v.v.zip’”, where the ‘v.v’ part is replaced with the issue number of the corresponding document and an incremental patch number counting from zero.	Comment by Quinten Van Woerkom: ESA-089
The file schemas defined by this document can be found at[footnoteRef:6]: [6: Note that this Red book contains references to the beta SANA registry and will be changed to the formal SANA registry on publication as a Blue Book]

https://beta.sanaregistry.org/r/mpsfileschemas/MPSFileFormats-1.0.ziphttps://beta.sanaregistry.org/files/mpsfileschemas/MPSFileFormats-1.0.zip
The latest version of any specification may always be directly addressed by removing the ‘-v.v’ part from the URL; for example:
https://beta.sanaregistry.org/r/mpsfileschemas/MPSFileFormats.ziphttps://beta.sanaregistry.org/files/mpsfileschemas/MPSFileFormats.zip

[bookmark: _Toc403538567][bookmark: _Toc118556209][bookmark: _Toc158132048][bookmark: _Ref185410613][bookmark: _Toc186645501]

Protocol Implementation Conformance
Statement (PICS) Proforma

(Normative)
INTRODUCTION
OVERVIEW
This annex provides the Protocol Implementation Conformance Statement (PICS) Requirements List (RL) for an implementation of the Mission Operations MPS Services Recommended Standard. The PICS for an implementation is generated by completing the RL in accordance with the instructions below. An implementation claiming conformance must satisfy the mandatory requirements referenced in the RL.
The MO MPS Services Recommended Standard includes optional elements, as outlined in 2.62.6. These comprise:
· Optional services and service capability sets as summarized in table 3‑13‑13‑13‑12‑7. A compliant deployment can support any combination of MO MPS services. If a service is supported, then it must support any mandatory service capability sets; other capability sets are optional.
· Optional data structures corresponding to optional elements of the MPS Information Model, as summarized in table 4‑14‑12‑6.
An implementation’s completed RL is called the PICS. The PICS states which protocol features have been implemented. The following entities can use the PICS:
· the protocol implementer, as a checklist to reduce the risk of failure to conform to the Recommended Standard through oversight;
· the supplier and acquirer or potential acquirer of the implementation, as a detailed indication of the capabilities of the implementation, stated relative to the common basis for understanding provided by the standard PICS proforma;
· the user or potential user of the implementation, as a basis for initially checking the possibility of interworking with another implementation (while interworking can never be guaranteed, failure to interwork can often be predicted from incompatible PICSes);
· a protocol tester, as the basis for selecting appropriate tests against which to assess the claim for conformance of the implementation.
Notation
Status Column Symbols
The following are used in the RL to indicate the status of features:
	Symbol
	Meaning

	M
	Mandatory

	O
	Optional

	C
	Mandatory if its optional parent feature is implemented

Support Column Symbols
The support of every item as claimed by the implementer is stated by entering the appropriate answer (Y, N, or N/A) in the support column.
	Symbol
	Meaning

	Y
	Yes, supported by the implementation

	N
	No, not supported by the implementation

	N/A
	Not applicable

General Information
Identification of PICS
	Ref
	Question
	Response

	1
	Date of Statement (DD/MM/YYYY)
	

	2
	CCSDS document number containing the PICS
	

	3
	Date of CCSDS document containing the PICS
	

Identification of implementation under test (IUT)
	Ref
	Question
	Response

	1
	Implementation name
	

	2
	Implementation version
	

	3
	Machine name
	

	4
	Machine version
	

	5
	Operating System name
	

	6
	Operating System version
	

	7
	Special Configuration
	

	8
	Other Information
	

User Identification
	Supplier
	

	Contact Point for Queries
	

	Implementation name(s) and Versions
	

	Other Information Necessary for full identification, for example, name(s) and version(s) for machines and/or operating systems;
System Name(s)
	

Instructions for Completing the RL
An implementer shows the extent of compliance to the protocol by completing the RL; the resulting completed RL is called a PICS.
MPS Services PICS	Comment by Quinten Van Woerkom: With the addition of “Default time system” as configuration parameter, RID CNES-043 (which requires a “Values allowed” column, which is not present in the rest of the RL), it became clearer to split the RL into its constituent tables (similar to the RL for the CCSDS SPP).
The MPS RL has an entry for each configuration parameter, service, service capability set, file format, and information model element set.
The configuration parameters that may be used to configure a deployment are shown below. Each configuration parameter is shown as a separate RL item ‘C’. If implemented, a value must be provided for the given parameter.
	Configuration Parameters

	Item
	Description
	Reference
	Status
	Values Allowed
	Support

	C.1
	Default Time System
	4.4.1
	M
	 String
	

There are 5 separate MPS services defined, each of which has multiple capability sets. The service is shown as a top level item, with subsidiary items for each capability set, using the format s.c in the Item column, where s is the service number, and c is the capability set number. All services are optional, but if implemented, some capability sets are mandatory. Compliance with a service implies compliance with the service operations and message structures defined in 13, together with applicable high-level, functional, and structural requirements defined therein. For capability sets, the service operations it comprises are listed in the Protocol Feature column.
	Service Capability Sets	Comment by Quinten Van Woerkom: Added “S.” in front of these items to be in line with the item numbering convention used elsewhere.

	Item
	Protocol Feature
	Reference
	Status
	Support

	S.1
	Planning Request Service
	2.5.2 and 3.5
	O
	

	S.1.1
	 submitRequest
 getRequestSummaries
 getRequestStatus
	 2.5.2 and 3.5
	 C
	

	S.1.2
	 cancelRequest
	2.5.2 and 3.5
	 O
	

	S.1.3
	 updateRequest
	2.5.2 and 3.5
	 O
	

	S.1.4
	 monitorRequestStatus
	2.5.2 and 3.5
	 O
	

	S.1.5
	 getRequest
	2.5.2 and 3.5
	 O
	

	S.2
	Plan Distribution Service
	2.5.3 and 3.6
	O
	

	S.2.1
	 getPlanSummaries
 getPlan
 getPlanStatus
	2.5.3 and 3.6
	 C
	

	S.2.2
	 monitorPlanStatus
	2.5.3 and 3.6
	 O
	

	S.2.3
	 monitorPlan
	2.5.3 and 3.6
	 O
	

	S.2.4
	 queryPlan
	2.5.3 and 3.6
	 O
	

	S.2.5
	 getPartialPlan
	2.5.3 and 3.6
	 O
	

	S.3
	Plan Execution Control Service
	2.5.4 and 3.7
	O
	

	S.3.1
	 submitPlan
 revokePlan
 getPlanStatus
	2.5.4 and 3.7
	 C
	

	S.3.2
	 activatePlan
 deactivatePlan
	2.5.4 and 3.7
	 O
	

	S.3.3
	 monitorPlanExecution
	2.5.4 and 3.7
	 O
	

	S.3.4
	 monitorPlanExecutionDetail
	2.5.4 and 3.7
	 O
	

	S.3.5
	 activateSubPlan
 deactivateSubPlan
 getSubPlanStatus
	2.5.4 and 3.7
	 O
	

	S.3.6
	 monitorSubPlanExecution
	2.5.4 and 3.7
	 O
	

	S.3.7
	 suspendActivity
 resumeActivity
	2.5.4 and 3.7
	 O
	

	S.3.8
	 getActivityStatus
	2.5.4 and 3.7
	 O
	

	S.4
	Plan Information Management Service
	2.5.5 and 3.8
	O
	

	S.4.1
	 listRequestDefs
 getRequestDefs
	2.5.5 and 3.8
	 O
	

	S.4.2
	 listEventDefs
 getEventDefs
	2.5.5 and 3.8
	 O
	

	S.4.3
	 listActivityDefs
 getActivityDefs
	2.5.5 and 3.8
	 O
	

	S.4.4
	 listResourceDefs
 getResourceDefs
	2.5.5 and 3.8
	 O
	

	
	
	
	
	

	S.5
	Plan Edit Service
	2.5.6 and 3.9
	O
	

	S.5.1
	 updatePlanStatus
	2.5.6 and 3.9
	 C
	

	S.5.2
	 insertActivity
 insertEvent
 deleteActivity
 deleteEvent
	2.5.6 and 3.9
	 C
	

	S.5.3
	 updateActivity
 updateEvent
	2.5.6 and 3.9
	 O
	

	S.5.4
	 updateResourceValue
	2.5.6 and 3.9
	 O
	

	S.5.5
	 updateResourceProfile
	2.5.6 and 3.9
	 O
	

	S.5.6
	 applyTimeShift
	2.5.6 and 3.9
	 O
	

Additional items are shown for each of the standard file formats that may be supported without services. These are indicated in the Item column by F.n. Compliance with a file format implies compliance with the file structures defined in 7 and formally expressed in the referenced XML schemas for MPS file formats.
	File Formats

	Item
	Protocol Feature
	Reference
	Status
	Support

	F
	MPS File Formats
	7
	O
	

	F.1
	 Planning Request File Format
	7.6
	 O
	

	F.2
	 Planning Response File Format
	7.6
	 O
	

	F.3
	 Plan File Format
	7.7
	 O
	

The MPS services use an information model that itself has optional elements, which implies some features may not be supported within service messages.
While a compliant deployment shall support the full structure of messages exchanged at the service interface for supported services and capability sets, it is not required to support optional data structures within those messages at application level.
Support for optional elements of the information model is shown as a separate RL item ‘D’, with subsidiary items for each optional element, corresponding to those identified in table 2‑6in sections 3.2 and 4.2. This section should be completed in conjunction with both services and file based items.
	Information Model Element Sets

	[bookmark: _Hlk185335103]Item
	Protocol Feature
	Reference
	Status
	Support

	1
	Planning Request Service
	2.6 and 3.2
	O
	

	1.1
	 submitRequest
 getRequestSummaries
 getRequestStatus
	2.6 and 3.2
	 M
	

	1.2
	 cancelRequest
	2.6 and 3.2
	 O
	

	1.3
	 updateRequest
	2.6 and 3.2
	 O
	

	1.4
	 monitorRequestStatus
	2.6 and 3.2
	 O
	

	1.5
	 getRequest
	2.6 and 3.2
	 O
	

	2
	Plan Distribution Service
	2.6 and 3.3
	O
	

	2.1
	 getPlanSummaries
 getPlan
 getPlanStatus
	2.6 and 3.3
	 M
	

	2.2
	 monitorPlanStatus
	2.6 and 3.3
	 O
	

	2.3
	 monitorPlan
	2.6 and 3.3
	 O
	

	2.4
	 queryPlan
	2.6 and 3.3
	 O
	

	2.5
	 getPartialPlan
	2.6 and 3.3
	 O
	

	3
	Plan Execution Control Service
	2.6 and 3.4
	O
	

	3.1
	 submitPlan
 revokePlan
 getPlanStatus
	2.6 and 3.4
	 M
	

	3.2
	 activatePlan
 deactivatePlan
	2.6 and 3.4
	 O
	

	3.3
	 monitorPlanExecution
	2.6 and 3.4
	 O
	

	3.4
	 monitorPlanExecutionDetail
	2.6 and 3.4
	 O
	

	3.5
	 activateSubPlan
 deactivateSubPlan
 getSubPlanStatus
	2.6 and 3.4
	 O
	

	3.6
	 monitorSubPlanExecution
	2.6 and 3.4
	 O
	

	3.7
	 suspendActivity
 resumeActivity
	2.6 and 3.4
	 O
	

	3.8
	 getActivityStatus
	2.6 and 3.4
	 O
	

	4
	Plan Information Management Service
	2.6 and 3.5
	O
	

	4.1
	 listRequestDefs
 getRequestDefs
	2.6 and 3.5
	 O
	

	4.2
	 listEventDefs
 getEventDefs
	2.6 and 3.5
	 O
	

	4.3
	 listActivityDefs
 getActivityDefs
	2.6 and 3.5
	 O
	

	4.4
	 listResourceDefs
 getResourceDefs
	2.6 and 3.5
	 O
	

	4.5
	 getSystemConfig
	2.6 and 3.5
	 O
	

	5
	Plan Edit Service
	2.6 and 3.6
	O
	

	5.1
	 updatePlanStatus
	2.6 and 3.6
	 M
	

	5.2
	 insertActivity
 insertEvent
 deleteActivity
 deleteEvent
	2.6 and 3.6
	 M
	

	5.3
	 updateActivity
 updateEvent
	2.6 and 3.6
	 O
	

	5.4
	 updateResource
	2.6 and 3.6
	 O
	

	5.5
	 updateResourceProfile
	2.6 and 3.6
	 O
	

	5.6
	 applyTimeShift
	2.6 and 3.6
	 O
	

	F
	MPS File Formats
	7
	O
	

	F.1
	 Planning Request File Format
	7.6
	 O
	

	F.2
	 Planning Response File Format
	7.6
	 O
	

	F.3
	 Plan File Format
	7.7
	 O
	

	D
	MPS Information Model
	2.6 and 4
	M
	

	D.1
	 Core Features
	2.6 2.6 and 4
	 M
	

	D.2
	 Basic Constraints
	2.62.6 and 4.6.7.1, 4.3.7.2.3, 4.3.7.2.4, 4.3.7.2.5
	 O
	

	D.3
	 Plan Revisions
	2.6 2.6 and 4.5.6.44.2.6.1.4
	 O
	

	D.4
	 Resources
	2.62.6, and 4.5.44.2.4, and 4.2.6.1.5
	 O
	

	D.5
	 Resource Constraints (requires D.4)
	2.6 and 4.6.7.3.3, 4.6.7.3.4, 4.6.7.3.52.6, 4.3.7.2.6, and 4.3.7.3
	 O
	

	D.6
	 Position & Direction
	2.62.6 and, 4.6.34.3.3.2, 4.3.3.3, 4.3.8.3, 4.3.8.4, 4.3.8.5, 4.3.9.3, 4.3.9.4, 4.3.9.5
	 O
	

	D.7
	 Geometric Constraints (requires D.6)
	2.62.6 and 4.6.7.4, 4.3.7.2.8
	 O
	

	D.8
	 Functions
	2.62.6, and 4.2.94.5.8, 4.6.7.5.34.3.7.2.7
	 O
	

[bookmark: _Ref160080608][bookmark: _Toc291253267][bookmark: _Toc324845874]
[bookmark: _Toc403538568][bookmark: _Toc118556210][bookmark: _Toc158132049][bookmark: _Ref165022435][bookmark: _Toc186645502]

Security, SANA, and Patent Considerations

(Informative)
Security Considerations
System Security Requirements
Security requirements are specific to the deployed mission system and can vary significantly between different mission systems. The MPS services or file formats support a limited subset of the interactions supported by a typical mission system, and as such must be capable of deployment in the context of a mission or organization specific security architecture that supports multiple services.
The mission security architecture shall address the following:
· Protection of the communications link between MPS service consumer and provider to ensure data integrity and confidentiality. This may or may not include the encryption of service messages, depending on mission specific requirements.
· Control of access to specific MPS services, service operations and service data through the management of access rights associated with registered service users.
· Authentication to ensure only genuine registered service users have access to MPS services and to ascertain their level of access rights.
For the MPS services, the security considerations of this specification are the same as those of the MAL in reference [2][2]. Specifically, authentication and authorization of a participating consumer or provider is provided by the MAL access control concept and is covered in subsections 3.6, 5.2, and 5.3 of the Reference Model (reference [1][1]).
Security of the communications link carrying the MPS services is delegated to the implementation of the underlying Transport Layer.
For MPS file formats, this specification only addresses the format of the files, not the method of transfer. All security considerations relating to the transfer of these files must therefore be addressed by the actual file transfer service and security architecture of the deployed mission system.

Potential Threats
In many mission systems, mission planning is the principal or nominal way of controlling the mission. Unauthorized access to the MPS services can therefore be a means of sabotaging the mission:
· the Planning Request Service could be used to inject dangerous planning requests into the system. This is mitigated by the Planning function itself, the implementation of which can be used to detect and flag potentially dangerous requests either for automatic rejection or to obtain authorization from the mission planner.
· the Planning Request and Plan Distribution Services could be used to access confidential information about submitted planning requests or planned activities.
· The Plan Execution Control Service could be used to submit unauthorized plans for automated execution, or to stop execution of the currently authorized plans.
· The Plan Edit Service could be used to make unauthorized changes to the currently authorized plans, by deleting or modifying planned activities and events, or by inserting new activities or events into the currently authorized plans.
Access Control
The MPS services are closely tied to the Access Control aspect of the MAL where returned authentication identifiers are used in the MAL message header to authenticate and authorize messages via Access Control.
Registered users are assigned roles (access rights) that may limit their access to MPS services. The set of access control roles is specific to the service deployment. An implementation of the MPS service provider can thaen restrict access to services, service capability sets, and individual service operations based on the assigned roles. Similarly roles can be used to restrict access to a subset of service data, either by data class or domain.	Comment by Quinten Van Woerkom: DLR-115
Which access control roles are supported is specific to the mission deployment and depends on the access control requirements for the mission. Typical MPS roles include access to:
· Individual MPS Services: access to Plan Execution Control and Plan Edit Services is likely to be more restricted than to the Planning Request and Plan Distribution Services.
· Restricted Capability Sets or individual Operations of an MPS Service: more sensitive operations may require a special access control role.
· Data class or domain of contained information (for example to restrict access to a specific spacecraft, subsystem or payload in terms of available planning requests and planning activities)
· Information pertaining to other users: access for some users may be restricted to their own planning requests and planned activities.
· Submission of custom planning requests: access for some users may be restricted to predefined planning requests.
It is the responsibility of the implementation of the MPS service provider to enforce access control based on the assigned user roles.
Data Integrity
As stated previously, the confidentiality and integrity of MPS service messages is delegated to the implementation of the underlying transport layer.
This is dependent on the technology used for the implementation of the transport layer and the corresponding MAL technology binding. It may include the encryption of the service messages,.	Comment by Quinten Van Woerkom: DLR-116
Authentication
Authentication for the MPS Services, as for all MO Services, may be supported through the MO Common Login Service (reference [D3][D3]).
The Login service allows a service user to provide authentication information to the system. It takes the user’s credentials and uses a deployment-specific mechanism to authenticate the user; the result of this is used by the MAL during access control.
The Login service and the access control provided by the MAL are fully dependent on a deployment-specific security architecture (for example, the authentication protocol Kerberos). Both layers (Common and MAL) provide access to, and use of, this security service; they do not implement it themselves.
Confidentiality
For some missions, there may be commercial or security considerations that result in a need for confidentiality of planning requests and resultant planned activiaties.	Comment by Quinten Van Woerkom: DLR-117
Where this is the case, the MPS service provider may be required to implement an access control filter on the return of information to users. In particular:
· Visibility of planning requests may be restricted (based on a specific access control role) to those raised by the user currently accessing the service.
· Distributed plans may similarly be filtered to restrict visibility of the planned activitiesates resulting from restricted planning requests. A partial plan would then be returned in place of the full unrestricted plan.	Comment by Quinten Van Woerkom: DLR-117
It is mission and deployment specific how this is implemented, but it is expected that this would make use of special access control roles assigned to users. This may typically restrict access to information based on a level of access rights:
a) All Information;
b) User’s Own + Unrestricted Information;
c) Only User’s Own Information.
Auditing
The MPS Services include the potential to access the evolving state of planning requests and plans (together with their contained planning activities, planning events and planning resources) through the delivery of status updates pertaining to the corresponding MPS data itemservice objects.
The full set of updates provides a comprehensive audit trail on the execution of MPS service operations at the level of planning requests and plans.
While storage of and access to historical updates is not directly supported by the MPS Service specification, this provides the potential for a service provider to implement such an audit trail.
Availability
Availability requirements are mission specific. The required availability of an MPS service provider implementation will impact its design, both in terms of the physical deployment architecture and its software implementation.
[bookmark: _Ref146900197]SANA Considerations
The recommendations of this document request SANA populate the registry specified in reference [2][2] with the schema and XML detailed in section 6 of this document.
As stated in reference [2][2], the registration rule for change to this registry requires an engineering review by a designated expert. The expert shall be assigned by the MPS WG Chair, or in absence, MOIMS Area Director.
Specifically, this applies to the following registries:
http://sanaregistry.org/r/moschemas/https://sanaregistry.org/r/moschemas/ServiceSchema-v003.xsd for entries relating to the MPS Service Specifications.
https://sanaregistry.org/r/mpsfileschemas/ for entries relating to MPS File Format Schemas.
Patent Considerations
The recommendations of this document have no patent issues.

[bookmark: _Ref68100708][bookmark: _Toc118556211][bookmark: _Toc158132051][bookmark: _Toc186645503]

Definition of Acronyms

(Informative)
	[bookmark: Acronyms]Acronym
	Definition

	AOS
	Acquisition Of Signal

	COM
	Common Object Model

	CSS
	Cross Support Services

	LOS
	Loss of Signal

	MAL
	Message Abstraction Layer

	MO
	Mission Operations

	MOIMS
	Mission Operations and Information Management Systems [CCSDS Area]

	MPS
	Mission Planning and Scheduling

	NAV
	CCSDS Navigation Working Group

	NEM
	Navigation Event Message

	ODM
	Orbit Data Message

	OMG
	Object Management Group

	PDS
	Plan Distribution Service

	PECS
	Plan Execution Control Service

	PES
	Plan Edit Service

	PI
	Principal Investigator

	PICS
	Protocol Implementation Conformance Statement

	PIMS
	Plan Information Management Service

	PRM
	Pointing Request Message

	PRS
	Planning Request Service

	RASDS
	Reference Architecture for Space Data Systems

	RL
	Requirements List

	SANA
	CCSDS Space Assigned Numbers Authority

	SFN
	Short Form Number

	SFP
	Short Form Part

	TOO
	Target Of Opportunity

	UML
	Unified Modeling Language

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	URN
	Uniform Resource Name

	XML
	eXtensible Markup Language

[bookmark: _Ref68541065][bookmark: _Toc118556212][bookmark: _Toc158132052][bookmark: _Toc186645504]

Informative References

(Informative)
[bookmark: R_520x0g3MoServicesConcept][D1]	Mission Operations Services Concept. Issue 3. Report Concerning Space Data System Standards (Green Book), CCSDS 520.0-G-3. Washington, D.C.: CCSDS, December 2010.
[bookmark: R_529x0g1MissionPlanningandScheduling][D2]	Mission Planning and Scheduling. Issue 1. Report Concerning Space Data System Standards (Green Book), CCSDS 529.0-G-1. Washington, D.C.: CCSDS, June 2018.
[bookmark: R_522x0b1MoCommonServices][D3]	Mission Operations—Common Services. Issue 1. Recommendation for Space Data System Standards (Blue Book), CCSDS 522.0-B-1. Washington, D.C.: CCSDS, May 2020.
[bookmark: R_522x1b1MoMonitorandControlServices][D4]	Mission Operations Monitor & Control Services. Issue 1. Recommendation for Space Data System Standards (Blue Book), CCSDS 522.1-B-1. Washington, D.C.: CCSDS, October 2017.
[bookmark: R_500x2g3NavigationDataMessagesOverview][D5]	Navigation Data Messages Overview. Issue 3. Report Concerning Space Data System Standards (Green Book), CCSDS 500.2-G-3. Washington, D.C.: CCSDS, March 2023.
[D6]	Pointing Request Message. Issue 1. Recommendation for Space Data System Standards (Blue Book), CCSDS 509.0-B-1. Washington, D.C.: CCSDS, February 2018.
[bookmark: R_902x1b1SimpleScheduleFormatSpec][D67]	Cross Support Service Management—Simple Schedule Format Specification. Issue 1, Technical Corrigendum 1. Recommendation for Space Data System Standards (Blue Book), CCSDS 902.1-B-1. Washington, D.C.: CCSDS, December 2021May 2018.	Comment by Peter Van Der Plas: ESA-095
[bookmark: R_ECSSEST7041CSpaceEngineeringTelemetrya][D78]	Space Engineering—Telemetry and Telecommand Packet Utilization. ECSS-E-ST-70-41C. Noordwijk, The Netherlands: ECSS Secretariat, 15 April 2016.
[D9]	“XML Path Language (XPath) 3.1.” Version 3.1, 21 March 2017. W3C. https://www.w3.org/TR/xpath-31/.
[bookmark: R_524x3b1MoMalBindingtoHTTPTransportandX][D810]	Mission Operations—Message Abstraction Layer Binding to HTTP Transport and XML Encoding. Issue 1. Recommendation for Space Data System Standards (Blue Book), CCSDS 524.3-B-1. Washington, D.C.: CCSDS, June 2018.
[bookmark: R_371x0g1ApplicationandSupportLayerArchi][D911]	Application and Support Layer Architecture. Issue 1. Report Concerning Space Data System Standards (Green Book), CCSDS 371.0-G-1. Washington, D.C.: CCSDS, November 2020.
[bookmark: R_502x0b3OrbitDataMessages][D1012]	Orbit Data Messages. Issue 3. Recommendation for Space Data System Standards (Blue Book), CCSDS 502.0-B-3. Washington, D.C.: CCSDS, April 2023.	Comment by Quinten Van Woerkom: Annex E (literal formats in expressions) could be removed after changing Expression to be a MAL::Element.

Literal Formats In Expressions

(Informative)
Introduction
When entering MPS data, it is often not possible to provide an absolute value for a required attribute, but instead a dynamic value can be specified as an expression (see 4.3.4) for derivation at run time. The expression can be provided as:
a literal value;
a reference to an attribute or argument of an MO object;
a calculated value including one or more references to attributes or arguments of MO objects.
The language used to represent the expression does not form part of this Recommended Standard; any expression language can be used within a particular deployment. This annex specifies an optional simple XSD-based syntax for the specification of literal values and references that can be used in the absence of a complete expression language.
If used in an MPS Expression, the expressionLanguage field should be set to ‘MPSliteral’.
MPS Expressions can be of any MAL::Attribute type plus the MPS position and direction types, as detailed in the following table.
Table E‑1	: MPS Expression Types
	#
	Type
	Expression Subclass
	XSD Type
	Comment

	1
	Blob
	Binary
	hexbinary
	

	2
	Boolean
	Boolean
	boolean
	

	3
	Duration
	Duration
	duration
	

	4
	Float
	Real
	float
	

	5
	Double
	
	double
	

	6
	Identifier
	String
	string
	Format restricted to that of a MAL Identifier. Cannot contain the characters :.()* as these have special meaning in the literal representation of an ObjectRef

	7
	Octet
	Integer
	byte
	

	8
	UOctet
	
	unsignedByte
	

	9
	Short
	
	short
	

	10
	UShort
	
	unsignedShort
	

	11
	Integer
	
	int
	

	12
	UInteger
	
	unsignedInt
	

	13
	Long
	
	long
	

	14
	ULong
	
	unsignedLong
	

	15
	String
	String
	string
	

	16
	Time
	Time
	dateTime
	Format constrained to CCYY-MM-DDThh:mm:ss.sss

	17
	FineTime
	
	dateTime
	Format constrained to CCYY-MM-DDThh:mm:ss.sssssssss

	18
	URI
	String
	anyURI
	

	19
	ObjectRef
	Object
	mal:ObjectRef
	Corresponds to an XSD complex type

	129
	Direction
	Direction
	mps:Direction
	

	130
	Position
	Position
	mps:Position
	

The # and Type columns correspond to the possible values of the ArgTypeEnum that defines the data type of the expression. This specifies the type of the result value of the evaluated expression.
The Expression Subclass column groups these types based on the operations (expression operators and syntax) relevant to them.
The XSD Type column maps each data type to its representation in XML schema.
This is presented in the following subsections:
E2	Literals for Expression Types corresponding to XSD simple types
E4	Literals for Object References
E5	Literals for Position and Direction Types
Within the specification of the literals for ObjectRef, Position, and Direction, the names of the attributes of the corresponding composite data types are shown in italics. These attributes can be represented by the literal form of the corresponding XSD simple type for the attribute.
Literals for Expression Types Corresponding to XSD simple Types
For those expression types that can be mapped directly to XSD data types, as shown in table E‑1 above, literal values can be supplied according to the rules defined for XML Schema in https://www.w3.org/TR/xmlschema-2/.
This applies to all types with the exception of ObjectRef, Direction, and Position, for which special rules are defined in the following sections.
A literal value for these data types can be supplied directly for the Expression.value field, or included within the expression string itself.
MAL Identifiers are essentially represented as XSD strings, but have additional constraints as follows:
The following characters cannot be used within a MAL Identifier, as they are used as delimiters in the literal representation of ObjectRefs (colon, period, or dot and parentheses) :.();
The ‘*’ character cannot be used within a MAL Identifier, as this is used to indicate a wildcard domain.
Times and FineTimes are both represented as XSD dateTimes, but with restricted format rules as outlined in the table above.
Literals for Object References
A reference to an MO object comprises multiple elements, all of which may need to be expressed in its literal representation:
domain	an ordered list of MAL::Identifiers
area	MAL::Identifier
type	MAL::Identifier
key	MAL::Identifier
version	MAL::UInteger
The area and type can be omitted where a field is constrained to be a reference to an MO object of specific type. The domain may be omitted where it is defined by context. The version may also be omitted where the current or latest version is assumed. In its simplest form a literal objectRef consists only of the key field, which is a MAL::Identifier represented as an XSD string.
The following literal format is defined for an ObjectRef:
[bookmark: _Hlk138198579]objectref = [area:type:][domain[.domain]*.]key[(version)]
The above returns a value of type ObjectRef. MO object references may also be used to access the values of attributes or arguments of the object in expressions of any type. The value returned has the type of the corresponding attribute or argument. The literal format above is extended as follows:
objectref = objectref.attribute[\[index|name\]] | objectref@argument[[\[index\]]
where attribute and argument are the names of the attribute or argument of the object respectively.
If the attribute or argument is itself a set or array, then a specific item can be referenced using an integer index enclosed in square brackets. In the specific case that an attribute is itself a collection of objects, then the required object can be specified by name.
NOTE	–	The name (or key) used to reference a specific object in a collection is dependent on the type of object. For Resources it is the name of the Resource; but for instantiated objects such as ActivityInstance and EventInstance it is the name of the associated Definition.
It should be noted that where the returned value is itself an object reference, attribute references can be used iteratively to follow a sequence of references to the required value. For example:
[myActivityInst.source]@argA
returns the argument argA of the parent ActivityInstance of myActivityInst
[myActivityInst.source].children[myActivityDef]
returns an ObjectRef pointing to the sibling activity of myActivityInst that has the name myActivityDef.
Square brackets may be used to enclose an object reference to aid readability.
The special keyword ‘Me’ may be used to reference the current object in context. This gives a shorthand form of referencing the attributes and arguments of an object:
	Me.attribute
	Me@argument
Literals for Position and Direction Types
As positions and directions are not supported as MAL::Attribute types, it is not possible to supply a literal value directly to the value attribute of an MPS expression. The literal value must be provided within the expression string. The expression language used is implementation dependent, but the following provides an optional simple XSD-based representation for positions and directions.
The position and direction types are specific to MPS and defined as abstract data types with multiple concrete subtypes representing different types of coordinates.
The literal representation of all types begins with the @ symbol, followed by two discriminator characters that indicate which coordinate subtype is represented.
For Positions this is as follows:
@PC(x,y,z)[units]:frame	CartesianPosition
@PS(longitude,latitude[,altitude])[units[,altitudeUnits]]:frame	SurfacePosition
@PF(orbitFile)	OrbitFilePosition
@PO(orbitNumber,R|A,orbitAngle)[units]	OrbitalPosition
@PN(object)	ObjectPosition
@PR(reference)	PositionReference
For Directions this is as follows:
@DC(x,y,z):frame	CartesianDirection
@DS(azimuth,elevation)[units]:frame	SphericalDirection
@DA(ra,dec)[units]:frame	RADecDirection
@DN(namedTarget)	NamedTargetDirection
@DR(reference)	PDirectionReference
Where the named attributes are represented as XSD literals for the corresponding data type, with the exception of the relativeOrbit Boolean flag in OrbitalPosition, which is represented as R (True for relative orbit) or A (False for absolute orbit). The frame attribute is represented by one of the defined string values for the coordinate system.

image1.emf

image2.emf
Consumer Provider Broker

seq mandatoryOperation

opt optionalOperation

optionalOperation SUBMIT(SubmitDetails)

mandatoryOperation RESPONSE(RequestResponse)

mandatoryOperation REQUEST(RequestDetails)

optionalOperation ACK()

image3.emf
Planning Planning

(may be Distributed)

Plan

Execution

TT&C Navigation

Mission

Control

Planning User

Monitoring & Control

Automation

Cross Support Scheduling Predicted Events (NEM)



Scope of MPS Standardisation

Mission

Controller

External

Models

Planning Request



Plan Distribution



Plan Information Management

Plan Execution Control



Plan Edit

Plan Information Management

Plan Edit

(Events)

Plan Edit

(Resources, Events)

image4.emf
Users Mission Exploitation Mission Control Space Segment

User Community

PIs

Payload Operations Centre Mission Operations Centre

Unmanned

Spacecraft

Manned Space

Surface Rovers

Tracking Network

Payload Processing Centre

Navigation

Planning User

Planning

Plan Execution

Navigation

TT&C

Mission Data Proc

image5.emf
MPS User Node

MPS User

(Consumer)

MPS System Node

MPS Application

(Provider)

MPS

MAL Technology Binding

Transport Protocol

Transfer Protocol

Link Layer

Transport Protocol

Transfer Protocol

Link Layer

MAL Technology Binding

MO MAL

MO MPS

C++

API

MO MAL

MO MPS

Java

API

image6.emf
PlanningEvent

PlanningActivity

PlanningResource

PlanningRequest

NAV::PredictedEvent

M&C::Procedure

M&C::Action

M&C::Alert

CSS::ContactEvent

Plan

+Source

Initiates

References

+Source

Instantiates

Initiates

+Source

Requests

+Source

Instantiates

1

Precursor

0..1

Instantiated by

+Related Event

0..*

0..*

References

0..1 1

0..*

0..*

0..*

0..*

Instantiates

Constrains

+Source

Instantiates

Child

image7.jpeg
Planning Config Data

MO Static Item i

(MPS SystemConfig j@0—
A

MPS SystemContig

MO Dynamic ltem ¢

(_Planning Activity |@—— ((Activity Definition

Event Definition

Resource Definition

MO Dynamic ltem

[Planning Request

Request Definition

MO State

Planning History

Live Planning Data

) rmuee |

image8.png
0

{ Planning User
Scope of MPS Standardisation
\ Planning Requesty
Plan bistribution ~

Plan Information Management
a |

Predicted Events (NEM) > Cross Support Scheduling

Plan Execution Control v
Plan Edit
Plan Information Management

Plan Edit (Events)

Plan Edit (Resources, Events)

Functions

Monitoring & Control
Automation

image9.png
Users Mission Exploitation Mission Control Space Segment

Tracking Network &@
SIS Human Space
Vehicle

User Community Payload Operations Centre Mission Operations Centre
Pls

@ﬁﬁqﬁ P %ﬁ e Qﬁ o %O Uncrewed

Planning User Payload Processing Centre |
Planning Navigation

é Plan Execution
Surface Rovers
Navigation *
TT&C

Mission Data Proc

image10.png
MPS User Node

MPS System Node

MO MAL -

MAL Technology Binding

Transfer Protocol

Transport Protocol

Link Layer

MO MAL

MAL Technology Binding

Transfer Protocol

Transport Protocol

Link Layer

image11.png
Planning History

Planning Config Data Live Planning Data

1 - 1 - i
Planning Activity Activity Definition Activity Update !

\

e e e e ’

image12.emf
Consumer Provider

opt cancelRequest

seq submitRequest

opt updateRequest

submitRequest RESPONSE(PlanningRequestResponse)

cancelRequest ACK()

submitRequest REQUEST(PlanningRequestDetails)

updateRequest RESPONSE(PlanningRequestResponse)

updateRequest REQUEST(requestRef, PlanningRequestDetails)

cancelRequest SUBMIT(requestRef)

image13.emf
Consumer Provider Broker

opt getRequestSummaries

opt getRequestStatus

opt monitorRequestStatus

opt getRequest

REGISTER_ACK()

getRequest PROGRESS(List<requestRef>)

getRequestStatus RESPONSE()

getRequest UPDATE(List<RequestInstance>)

PUBLISH_DEREGISTER()

PUBLISH_REGISTER(List<EntityKey>)

getRequestStatus ACK()

PUBLISH_REGISTER_ACK()

getRequest RESPONSE()

DEREGISTER(List<subscriptionID>)

getRequest ACK()

DEREGISTER_ACK()

getRequestStatus PROGRESS(List<requestRef>)

PUBLISH_DEREGISTER_ACK()

*monitorRequestStatus NOTIFY(RequestStatusUpdate)

getRequestSummaries RESPONSE(List<RequestSummaryStatus>)

*monitorRequestStatus PUBLISH(RequestStatusUpdate)

*getRequestStatus UPDATE(List<RequestStatusUpdate>)

getRquestSummaries REQUEST(RequestFilter)

REGISTER(subcriptionID, List<EntityRequest>)

image14.emf
Consumer Provider

opt getPlanSummaries

opt getPlan

opt getPlanStatus

getPlan RESPONSE()

getPlan ACK()

getPlanStatus REQUEST(List<planRef>)

*getPlan UPDATE(Plan)

getPlanSummaries REQUEST(PlanFilter)

getPlanSummaries RESPONSE(List<PlanSummaryStatus>)

getPlan PROGRESS(List<planRef>)

getPlanStatus RESPONSE(List<PlanUpdate>)

image15.emf
Consumer Provider Broker

opt monitorPlanStatus

opt monitorPlan

REGISTER_ACK()

DEREGISTER_ACK()

*monitorPlanStatus NOTIFY(PlanUpdate)

REGISTER(subscriptionID, List<EntityRequest>)

PUBLISH_REGISTER_ACK()

PUBLISH_REGISTER_ACK()

DEREGISTER_ACK()

PUBLISH_DEREGISTER_ACK()

*monitorPlan PUBLISH(Plan)

REGISTER_ACK()

DEREGISTER(List<subscriptionID>)

DEREGISTER(List<subscriptionID>)

PUBLISH_DEREGISTER()

*monitorPlan NOTIFY(Plan)

*monitorPlanStatus PUBLISH(PlanUpdate)

PUBLISH_DEREGISTER_ACK()

PUBLISH_REGISTER(List<EntityKey>)

REGISTER(subscriptionID, List<EntityRequest>)

PUBLISH_REGISTER(List<EntityKey>)

PUBLISH_DEREGISTER()

image16.emf
Consumer Provider

opt queryPlan

opt getPartialPlan

queryPlan RESPONSE()

getPartialPlan REQUEST(PartialPlanFilter)

queryPlan PROGRESS(PlanQuery)

getPartialPlan RESPONSE(PartialPlan)

queryPlan ACK()

*queryPlan UPDATE(Plan)

image17.emf
Consumer Provider

seq submitPlan

[status = RELEASED]

opt activatePlan

[status = SUBMITTED]

opt deactivatePlan

[status = ACTIVATED]

opt revokePlan

[status = SUBMITTED ¦ ACTIVATED]

deactivatePlan RESPONSE(List<PlanActivationStatus>)

revokePlan SUBMIT(planRef)

submitPlan ACK()

activatePlan REQUEST(List<planRef>)

deactivatePlan REQUEST(List<planRef>)

submitPlan SUBMIT(Plan)

activatePlan RESPONSE(List<PlanActivationStatus>)

revokePlan ACK()

image18.emf
Consumer Provider Broker

opt getPlanStatus

opt monitorPlanExecution

opt monitorPlanExecutionDetail

DEREGISTER(List<subscriptionIDr>)

DEREGISTER(List<subscriptionID>)

REGISTER_ACK()

PUBLISH_REGISTER_ACK()

PUBLISH_DEREGISTER_ACK()

PUBLISH_REGISTER(List<Entity_Key>)

*monitorPlanExecution PUBLISH(PlanUpdate)

DEREGISTER_ACK()

REGISTER(subscriptionID, List<Entity_Key>)

DEREGISTER_ACK()

PUBLISH_DEREGISTER_ACK()

getPlanStatus REQUEST(List<planRef>)

getPlanStatus RESPONSE(List<PlanUpdate>)

*monitorPlanExecution(PlanUpdate)

PUBLISH_REGISTER_ACK()

PUBLISH_DEREGISTER()

REGISTER(subscriptionID, List<Entity_Key>)

PUBLISH_REGISTER(List<Entity_Key>)

REGISTER_ACK()

*monitoPlanExecutionDetail NOTIFY(PlanDetailUpdate)

PUBLISH_DEREGISTER()

*monitorPlanExecutionDetail PUBLISH(PlanDetailUpdate)

image19.emf
Consumer Provider Broker

opt activateSubPlan

opt deactivateSubPlan

opt getSubPlanStatus

opt monitorSubPlanExecution

PUBLISH_REGISTER(List<Entity_Key>)

deactivateSubPlan REQUEST(List<subPlanID>, deactivationMode)

DEREGISTER_ACK()

PUBLISH_DEREGISTER_ACK()

activateSubPlan RESPONSE(List<SubPlanActivationStatus>)

DEREGISTER(List<subscriptionID>)

REGISTER_ACK()

activateSubPlan REQUEST(List<subPlanID>)

*monitorSubPlanExecution PUBLISH(SubPlanUpdate)

getSubPlanStatus RESPONSE(List<SubPlanUpdate>)

REGISTER(subscriptionID, List<Entity_Key>)

getSubPlanStatus REQUEST(List<subPlanID>)

*monitorSubPlanExecution(SubPlanUpdate)

PUBLISH_REGISTER_ACK()

deactivateSubPlan(List<SubPlanActivationStatus>)

PUBLISH_DEREGISTER()

image20.emf
Consumer Provider

opt suspendActivity

opt resumeActivity

opt getActivityStatus

resumeActivity RESPONSE(List<ActivitySuspensionStatus>)

suspendActivity REQUEST(List<planRef>, List<activityRef>, List<tag>, suspensionMode)

getActivityStatus REQUEST(List<planRef>, List<activityRef>, List<subPlanID>, List<tag>)

suspendActivity RESPONSE(List<ActivitySuspensionStatus>)

getActivityStatus RESPONSE(List<ActivityUpdate>)

resumeActivity REQUEST(List<planRef>, List<activityRef>, List<tag>)

image21.emf
Consumer Provider

opt listItemDefs

opt getItemDefs

listItemDefs ACK()

getItemDefs RESPONSE(List<ItemDefinition>)

listItemDefs PROGRESS(List<domain>, List<itemDef>, List<other>)

listItemDefs RESPONSE()

*listItemDefs UPDATE

(List<DefListEntry>)

getItemDefs REQUEST(List<ItemDef>)

image22.emf
Consumer Provider

opt insertItem

opt updateItem

opt deleteItem

itemUpdate ACK()

updateItem SUBMIT(planRef, itemUpdate)

deleteItem ACK()

insertItem RESPONSE(itemRef)

deleteItem SUBMIT(planRef, itemRef)

insertItem REQUEST(itemDetails)

image23.emf
MPSPlanFile

MPSPlanning

RequestFile

MALTypes

MPSTypes

MPSConstraints

MPSTriggers

MPSRepetitions

MPSPlanning

ResponseFile

MPSPositionand

DirectionTypes

MPSResources

image24.emf
«XSDcomplexType»

FileHeader

- originator: Identifier [0..1]

- creationDate: Time [0..1]

- mission: Identifier [0..1]

- domain: Identifier [0..*]

- topic: string [0..1]

- comments: string [0..1]

«XSDcomplexType»

PlanningRequestFile

- requestFileHeader: FileHeader [0..1]

- requestFileBody: PlanningRequestDetails

«XSDcomplexType»

PlanningResponseFile

- responseFileHeader: FileHeader [0..1]

- responseFileBody: PlanningResponse

«XSDcomplexType»

PlanFile

- planFileHeader: FileHeader [0..1]

- planFileBody: Plan

«XSDtopLevelElement»

MPSPlanFile

«XSDtopLevelElement»

MPSPlanningRequestFile

«XSDtopLevelElement»

MPSPlanningResponseFile

