[image: image1.emf]
Recommendation for Space Data System Standards

	The Data Description Language EAST Specification (CCSD0010)

Draft Recommended Standard
CCSDS 644.0-P-2.1.1
Draft Blue Book
September 2008
AUTHORITY

	
	
	
	

	
	Issue:
	Draft Recommended Standard, Issue 2.1.1
	

	
	Date:
	September 2008
	

	
	Location:
	Washington, DC, USA
	

	
	
	
	

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS Recommendations is detailed in the Procedures Manual for the Consultative Committee for Space Data Systems, and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the address below.

This document is published and maintained by:

CCSDS Secretariat

Space Communications and Navigation Office, 7L70

Space Operations Mission Directorate

NASA Headquarters

Washington, DC 20546-0001, USA

STATEMENT OF INTENT

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of its members. The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed Recommended Standards and are not considered binding on any Agency.

This Recommended Standard is issued by, and represents the consensus of, the CCSDS members. Endorsement of this Recommendation is entirely voluntary. Endorsement, however, indicates the following understandings:

o
Whenever a member establishes a CCSDS-related standard, this standard will be in accord with the relevant Recommended Standard. Establishing such a standard does not preclude other provisions which a member may develop.

o
Whenever a member establishes a CCSDS-related standard, that member will provide other CCSDS members with the following information:

--
The standard itself.

--
The anticipated date of initial operational capability.

--
The anticipated duration of operational service.

o
Specific service arrangements shall be made via memoranda of agreement. Neither this Recommended Standard nor any ensuing standard is a substitute for a memorandum of agreement.

No later than five years from its date of issuance, this Recommended Standard will be reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect the impact of new technologies, new requirements, or new directions; or (3) be retired or canceled.

In those instances when a new version of a Recommended Standard is issued, existing CCSDS-related member standards and implementations are not negated or deemed to be non-CCSDS compatible. It is the responsibility of each member to determine when such standards or implementations are to be modified. Each member is, however, strongly encouraged to direct planning for its new standards and implementations towards the later version of the Recommended Standard.

FOREWORD

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Recommended Standard is therefore subject to CCSDS document management and change control procedures, which are defined in the Procedures Manual for the Consultative Committee for Space Data Systems. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· British National Space Centre (BNSC)/United Kingdom.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· China National Space Administration (CNSA)/People’s Republic of China.

· Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Federal Space Agency (FSA)/Russian Federation.

· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency (JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Belgian Federal Science Policy Office (BFSPO)/Belgium.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· Centro Tecnico Aeroespacial (CTA)/Brazil.

· Chinese Academy of Sciences (CAS)/China.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· Danish National Space Center (DNSC)/Denmark.

· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· Korea Aerospace Research Institute (KARI)/Korea.

· MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

· Ministry of Communications (MOC)/Israel.

· National Institute of Information and Communications Technology (NICT)/Japan.

· National Oceanic and Atmospheric Administration (NOAA)/USA.

· National Space Organization (NSPO)/Chinese Taipei.

· Naval Center for Space Technology (NCST)/USA.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· United States Geological Survey (USGS)/USA.

DOCUMENT CONTROL

	Document
	Title and Issue
	Date
	Status

	CCSDS 644.0-B-1
	Recommendation for Space Data System Standards: The Data Description Language EAST Specification (CCSD0010), Issue 1
	May 1997
	Original Issue: superseded.

	CCSDS 644.0-B-2
	Recommendation for Space Data System Standards: The Data Description Language EAST Specification (CCSD0010), Issue 2
	November 2000
	Current Issue:

· extends EAST ability to handle repeated data items where repetition is terminated by a marker.

	CCSDS 644.0-P-2.1.1
	The Data Description Language EAST Specification (CCSD0010), Draft Recommended Standard,
Issue 2.1.1
	September 2008
	Current draft update:

· adds requirement to specify EAST version

	
	
	
	

	
	
	
	

CONTENTS

Section
Page

1-11
INTRODUCTION

1.1
PURPOSE AND SCOPE
1-1
1.2
APPLICABILITY
1-1
1.3
RATIONALE
1-1
1.4
DOCUMENT STRUCTURE
1-2
1.5
DEFINITIONS
1-2
1.5.1
TERMS
1-2
1.5.2
NOMENCLATURE
1-2
1.5.3
CONVENTIONS
1-3
1.6
REFERENCES
1-5
2
OVERVIEW
2-1
2.1
DESIGN AIMS
2-1
2.2
STRUCTURE OF AN EAST DESCRIPTION
2-1
2.3
LANGUAGE SUMMARY
2-2
3
DEFINITION OF THE EAST LANGUAGE
3-1
3.1
LEXICAL ELEMENTS
3-1
3.1.1
SEPARATORS AND DELIMITERS
3-1
3.1.2
COMMENTS
3-1
3.1.3
IDENTIFIERS
3-2
3.1.4
NUMERIC LITERALS
3-2
3.2
LOGICAL DESCRIPTION
3-7
3.2.1
TYPE DECLARATIONS
3-8
3.2.2
SUBTYPE DECLARATIONS
3-28
3.2.3
OBJECT DECLARATIONS
3-31
3.2.4
REPRESENTATION CLAUSES
3-35
3.3
PHYSICAL DESCRIPTION
3-47
3.3.1
STORING ARRAYS
3-48
3.3.2
STORING OCTETS/BITS
3-48
CONTENTS (continued)
Section
Page

3.3.3
REPRESENTATION OF SCALAR TYPES
3-50
3.3.4
RELATIONSHIP BETWEEN THE REPRESENTATION OF SCALAR TYPES AND LOGICAL TYPES
3-62
3.3.5
TEMPLATE OF A PHYSICAL DESCRIPTION PART
3-64
4
RESERVED KEYWORDS
4-1
5
CONFORMANCE
5-1

 TOC \o "8-9" * MERGEFORMAT

ANNEX A
ACRONYMS AND GLOSSARY
A-1
ANNEX B
CHARACTER DEFINITION
B-1
ANNEX C
EAST FORMAL SYNTAX SPECIFICATION
C-1
ANNEX D
MAIN DIFFERENCES BETWEEN ADA AND EAST
D-1
ANNEX E
INFORMATIVE REFERENCES
E-1
INDEX

I-1

Figure

1-31-1
Example of Syntax Diagram

3-1
Identifier Definition Diagram
3-2
3-2
Decimal Literal Definition Diagram
3-2
3-3
Integer Decimal Literal Definition Diagram
3-3
3-4
Real Decimal Literal Definition Diagram
3-3
3-5
Integer Definition Diagram
3-3
3-6
Exponent Definition Diagram
3-4
3-7
Based Literal Definition Diagram
3-4
3-8
Integer Based Literal Definition Diagram
3-5
3-9
Real Based Literal Definition Diagram
3-5
3-10
Based Integer Definition Diagram
3-5
3-11
Integer Literal Definition Diagram
3-6
3-12
Real Literal Definition Diagram
3-6
3-13
Logical Part Structure
3-8
3-14
Enumeration Type Specification Diagram
3-9
3-15
Enumeration Literal Definition Diagram
3-9
3-16
Integer Type Specification Diagram
3-10
3-17
Real Type Specification Diagram
3-11
3-18
Array Type Specification Diagram
3-12
3-19
Index Specification Diagram
3-13
3-20
Record Type Specification Diagram
3-15
3-21
Component Declaration Diagram
3-15
3-22
Default Value Definition Diagram
3-16
3-23
Index Constraint Diagram
3-17
CONTENTS (continued)

Figure
Page

3-24
Discriminant Specification Diagram
3-18
3-25
Variant Part Specification Diagram
3-19
3-26
Discriminants in a Packet Format
3-22
3-27
Actual Discriminant Value Declaration Diagram
3-26
3-28
Type Summary
3-27
3-29
Subtype Declaration Diagram
3-28
3-30
Enumeration Constraint Diagram
3-28
3-31
Integer Constraint Diagram
3-29
3-32
Real Constraint Diagram
3-30
3-33
Variable Declaration Diagram
3-31
3-34
Constant Declaration Diagram
3-32
3-35
Length Clause Specification Diagram
3-35
3-36
Enumeration Clause Specification Diagram
3-37
3-37
Component Representation Clause Specification Diagram
3-38
3-38
Record Representation Clause Specification Diagram
3-39
3-39
First Tree Structure
3-40
3-40
Second Tree Structure
3-41
3-41
Third Tree Structure
3-42
3-42
Fourth Tree Structure
3-44
3-43
Distance Specification Diagram
3-46
3-44
Record Value Specification Diagram
3-54
3-45
Component Value Definition Diagram
3-54
3-46
Array Value Specification Diagram
3-55
3-47
ASCII Encoded Decimal Integer Format
3-60
3-48
ASCII Encoded Decimal Real Format
3-61

Example
1-41-1
Example of BNF

3-1
Decimal Literals
3-4
3-2
Based Literals
3-6
3-3
Enumeration Type Declarations
3-10
3-4
Integer Type Declarations
3-10
3-5
Real Type Declarations
3-11
3-6
Constrained Array Type Definitions
3-13
3-7
Unconstrained Array Type Definitions
3-14
3-8
Record Type Definitions
3-18
3-9
Record Type Definition with Discriminant
3-20
3-10
Record Type Definition with Discriminant
3-20
3-11
Logical Description of the Packet Format
3-24
CONTENTS (continued)

Example
Page

3-12
Calculated Size Array
3-25
3-13
Calculated Component Presence Condition
3-26
3-14
Character Declarations
3-29
3-15
Subtype Declarations
3-30
3-16
Variable Declaration
3-31
3-17
Constant Declaration
3-32
3-18
Number Declarations
3-33
3-19
Marker Declaration
3-34
3-20
EOF Marker Declaration
3-34
3-21
Marker Declaration in Record Definition
3-35
3-22
Length Clause Declarations
3-36
3-23
Explicit Description of Unused Space
3-36
3-24
Enumeration Clause Declarations
3-37
3-25
Type Definitions
3-40
3-26
Complete Record Representation Clause Declaration
3-41
3-27
Incomplete Record Representation Clause Declaration
3-42
3-28
Complete Record Representation Clause Declaration
3-43
3-29
Complete Record Representation Clause Declaration
3-45
3-30
Record Representation Clause Using WORD_32_BITS
3-46
3-31
Actual Array Storage Method
3-48
3-32
Octet Storage Possibilities
3-49
3-33
Actual Bit Order
3-50
3-34
Bit Ordering
3-52
3-35
Bit Ordering for the Above 16-Bit Signed Integer
3-55
3-36
Actual Binary Representation of the Above 16-Bit Signed Integer
3-55
3-37
Bit Ordering for the Above 16-Bit Unsigned Integer
3-56
3-38
Actual Binary Representation of the Above 16-Bit Unsigned Integer
3-56
3-39
Bit Ordering for the Above 32-Bit Real
3-57
3-40
Actual Binary Representation of a 32-Bit Real
3-57
3-41
ASCII Enumeration Type Logical Declaration
3-59
3-42
ASCII Enumeration Type Physical Description
3-60
3-43
ASCII Integer Type Logical Declaration
3-62
3-44
ASCII Integer Type Physical Description
3-62
3-45
ASCII Real Type Logical Declaration
3-62
3-46
ASCII Real Type Physical Description
3-62

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this document is to establish a common Recommendation for the specification of a standard language for describing and expressing data in order to interchange them in a more uniform and automated fashion within and among Agencies participating in the Consultative Committee for Space Data Systems (CCSDS).

This Recommendation defines the Enhanced Ada SubseT (EAST) language used to create descriptions of data, called Data Description Records (DDRs). Such DDRs ensure a complete and exact understanding of the data and allow it to be interpreted in an automated fashion. This means that a software tool is able to analyze a DDR and interpret the format of the associated data. This allows the software to extract values from the data on any host machine (i.e., on a different machine from the one that produced the data).

A first look at reference [E4], which is a tutorial for the EAST language, may aid the user in understanding this document. Reference [E4] describes the requirements, explains how to use the EAST language to describe non-ambiguous data, and suggests practices and tools to the users.

This Recommendation is registered under the CCSDS Authority and Description Identifier XE "Identifier" (ADID): CCSD0010.

1.2 APPLICABILITY

The specifications in this document are applicable to all space-related science and engineering data exchanges where data descriptions are desired, and these descriptions need to provide an unambiguous description of the record structure of the data.

1.3 RATIONALE

The Consultative Committee for Space Data Systems has defined the Standard Formatted Data Unit (SFDU) concept for the implementation of standard data structures to be used for the interchange of data within and among space agencies.

SFDU data products may be viewed as containing application data (that is the data which is of primary interest, e.g., actual measurements) and data description information (that is the information telling how the application data are formatted).

The data description information shall be provided in a form that is understandable by the agencies involved in the data interchange. That is the reason why the CCSDS must provide some recommendations for the definition of standard description languages. EAST is one of the recommended languages.

1.4 DOCUMENT STRUCTURE

The Recommendation is structured as follows:

· Section 2 provides an overview of the EAST language.

· Section 3 specifies the EAST language and defines its usage in Data Descriptions.

· Section 4 lists the EAST reserved keywords.

· Annex A contains acronyms and the glossary of terms used in this document.

· Annex B defines the character set to be used in an EAST data description, as well as a predefined type called CHARACTER.

· Annex C provides the EAST formal specification using a simple variant XE "Variant" of the Backus-Naur-Form (BNF XE "BNF").

· Annex D lists the main differences between the Ada programming language and EAST.

· Annex E lists the informative references.

1.5 DEFINITIONS

1.5.1 TERMS

The terms used throughout this document are listed in annex A. They are also explained in the text when they are first used.

1.5.2 NOMENCLATURE

The following conventions apply throughout this Recommendation:

a) the words ‘shall’ and ‘must’ imply a binding and verifiable specification;

b) the word ‘should’ implies an optional, but desirable, specification;

c) the word ‘may’ implies an optional specification;

d) the words ‘is’, ‘are’, and ‘will’ imply statements of fact.

1.5.3 CONVENTIONS

This document uses syntax diagrams to illustrate the syntax of the EAST constructs. Components of a construct are called elements. The following conventions are used:

a) Elements that are presented in bold characters in a circle are reserved keywords, delimiters, or literals.

b) The item named on the left of the ::= symbol is the item being defined.

c) The diagram on the right of the ::= symbol is the corresponding definition.

d) A vertical branch represents a choice.

e) A repetition is indicated by a loop-back covering the object XE "Object" to be repeated.

f) If the name of any syntactic category starts with an italicized part, it is equivalent to the category name without the italicized part. The italicized part is intended to convey some semantic information. For example, an ‘Integer Identifier’ XE "Identifier" is an Identifier; i.e., the definition of the category Identifier applies, but the reader has additional semantic information (it is an integer).

The following example (figure 1‑1) presents a diagram specifying the declaration of Item A. Item A is defined as first a keyword (‘type’), then followed by an italicized Item B (already defined, and known as Item B), then followed by a keyword (‘is’) and a delimiter XE "Delimiter" (‘(’). Then this structure is followed by a choice between Items B and C. The choice may be repeated any number of times, each time a delimiter (‘,’) is inserted. The structure is ended by two delimiters (‘)’ and ‘;’).

[image: image2.emf]::= type is) ; , (Item A Declaration Italicized Item B Item C Item B

Figure 1‑11 TC \f G "-1
Example of Syntax Diagram"
: Example of Syntax Diagram

The syntax of the language is described using a simple variant XE "Variant" of Backus-Naur-Form with the following conventions:

a) Boldface words are used to denote reserved keywords.

b) Square brackets enclose optional items.

c) Braces enclose a repeated item. This item may appear zero or more times.

d) A vertical bar separates alternative items unless it occurs immediately after an opening brace ({): in this case it represents the character ‘vertical bar’.

e) If the name of any syntactic category starts with an italicized part, it is equivalent to the category name without the italicized part. The italicized part is intended to convey some semantic information. This facility used for the BNF XE "BNF" intends to assimilate every element like <italicized_part_name> to the previously defined element <name>.

The following example presents the definition of Item A using a simple variant XE "Variant" of BNF XE "BNF" . Item A is defined as first a keyword (‘type’), then followed by an italicized Item B (already defined, and known as Item B), then followed by a keyword (‘is’) and a delimiter XE "Delimiter" (‘(’). The structure is followed by a choice. The choice may be repeated any number of times, each time a delimiter (‘,’) is inserted. The structure is ended by two delimiters (‘)’ and ‘;’). The choice is between Items B and C.

<Item A> ::= type <Italicized_Item B> is (<choice> { , <choice> }) ;
<choice> ::= <Item B> | <Item C>
Example 1‑11 TC \f E "-1
Example of BNF"
: Example of BNF XE "BNF"
In the case of any confusion, the syntax diagram and the associated text are always the reference for the EAST syntax, and not the BNF XE "BNF" .

This document uses examples to illustrate the EAST. The following conventions are used in the examples:

a) bold characters denote reserved keyword or delimiters;

b) user type names or user variable XE "Variable" names are provided using uppercase letters, although EAST is not a case-sensitive language.

1.6 REFERENCES

The following documents contain provisions which, through reference in this text, constitute provisions of this Recommended Standard. At the time of publication, the editions indicated were valid. All documents are subject to revision, and users of this Recommended Standard are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS Recommended Standards.
[1]
Information Processing—8-Bit Single-Byte Coded Graphic Character Sets—Part 1: Latin Alphabet No. 1. International Standard, ISO 8859-1:1987. Geneva: ISO, 1987.

[2]
Information Processing—Universal Multiple-Octet Coded Character Set (UCS). International Standard, ISO/IEC 10646-1:1993.

2 OVERVIEW

2.1 DESIGN AIMS

EAST was designed with three overriding concerns: data description capabilities, human readability, and computer interpretability.

The need for data description languages that supply complete and non-ambiguous information about the format and the nature of the described data is well established.

Any user must be able to understand descriptions of data, with a minimal effort. Error-prone notations have been avoided, and the syntax of the EAST language avoids the use of cryptic forms in favor of more English-like constructs.

EAST is a formal language and not a natural language: it is a machine compilable (or interpretable) language. The formal nature of EAST allows the control of data descriptions and the interpretation of data in an automated fashion.

2.2 STRUCTURE OF AN EAST DESCRIPTION

An EAST Data Description Record (DDR) includes a syntactic, and in some way semantic, description of the data called a logical description, which is followed by a physical description. The physical description makes possible the interpretation of the actual bit patterns encountered on the medium. Each description part of a DDR consists of an EAST unit, called a package XE "Package" : one for the logical part and another one for the associated physical part.

The logical part of an EAST description includes:

· a logical description of all components of the exchanged data (see 3.2.1 and 3.2.2);

· their size in bits (see 3.2.4.1);

· their location within the set of the described data (see 3.2.4.3).

The physical part of an EAST description includes:

· the representation of some basic data types (enumeration, integer, and real) defined in the logical description and dependent on the machine that has generated the data (see 3.3.3);

· the array organization (first-index XE "Index" -first or last-index-first) used by the generating machine (see 3.3.1);

· the octet and bit organization on the medium (high-order-first or low-order-first—see 3.3.2).

A DDR created using the EAST Language has the following structure:

	Data Description Record

	
	package XE "Package" name_of_the_logical_description is
	
	

	
	
	Logical Description XE "Logical description" (see 3.2)
	
	

	
	end name_of_the_logical_description ;
	
	

	
	
	

	
	package XE "Package" name_of_the_physical_description is
	

	
	
	Physical Description XE "Physical description" (see 3.3)
	
	

	
	end name_of_the_physical_description ;
	

	
	

The logical description always precedes the physical description. The logical and the physical packages are mandatory even if the content of the physical one can be empty (see 3.3).

The two part design of the DDR is intended to allow interchangeable physical description parts for one logical description part, provided that the length of fields in bits in the logical description are supported by field lengths of the same number of bits in the physical description part. For example, a 32 bit real number on a IEEE architecture has a physical description different from the one on a 1750 architecture, although lengths in bits of each field are equal. Note that the representations written to an exchange medium do not have to be the ones typically supported by the writing machine.

The data block associated with the DDR contains one or more complete sets of data. The DDR describes a single set only and is repetitively applied to fully interpret the data block.

2.3 LANGUAGE SUMMARY

An EAST description is composed of two units, called packages. The first one is a logical description and the second one is a physical description of the data. The logical part of an EAST description provides syntactic information and in some way semantic information, i.e., the information needed by a user to understand the data he has to deal with. The physical part of an EAST description provides a bit-level description that ensures the non-ambiguous interpretation of the data.

The syntax used in each of the two packages is based on the type and object XE "Object" concept. A type is a model, defined once, that is used to create many occurrences (objects) of the models.

Every data item described in an EAST description is an object XE "Object" . An object in the language has a type, which characterizes a set of values. The basic classes of types are scalar types (comprising enumeration and numeric types, describing single elements), and composite types (comprising array and record types, describing sequences of objects).

A type has a name: if well chosen, this name is a way to provide the meaning of the model (e.g., the type DATE may describe a CCSDS date). An object XE "Object" has a name also: this name is a way to provide (if any) the particularity of the occurrence (e.g., the object DATE_AT_THE_BEGINNING_OF_THE_ORBIT of the type DATE may represent a particular date). The name used to identify a type or an object can be any identifier XE "Identifier" except for an EAST reserved keyword (reserved keywords are provided in section 4).

An enumeration type defines an ordered set of distinct enumeration literals; for example, a Boolean type defines two enumeration literals (TRUE and FALSE). The enumeration type CHARACTER is predefined and given in 3.2.1.1.

Numeric type XE "Numeric type" s provide a means of describing whole numbers and real numbers. Whole numbers are described using integer type XE "Integer type" s. Real numbers are described using floating point types, with relative bounds on the error.

Composite type XE "Composite type" s allow definitions of structured objects with related components. The composite types of the EAST language are arrays and records. An array is an object XE "Object" with indexed components of the same type. The array type STRING is predefined and given in 3.2.1.1. A record is an object with named components of possibly different types.

A record may have special components called discriminants. Discriminants specify either which of alternative record structures is to be used or the dynamic size of an internal array (depending on the values of the discriminants).

The concept of type is refined by the concept of subtype XE "Subtype" , whereby a user can constrain the set of allowed values of a type. Subtypes can be used to define subranges of scalar types and arrays with a limited set of index XE "Index" values.

Representation clause XE "Representation clause" s are used to specify the mapping between logical types and their physical representations. For example, the user specifies that objects of a given type are represented with a given number of bits, or the components of a record are represented using a given storage layout.

NOTES

1 EAST is a subset of the Ada programming language (reference [E3]). EAST contains therefore most of the declarative features of Ada, but no algorithmic features.

2 The declarative part of Ada normally defines the logical entities and sometimes some of their physical characteristics. EAST extends the descriptive power of the Ada language (using conventions in the physical packages). It is able to describe not only the logical aspects of a data item, but also all its physical aspects.

3 DEFINITION OF THE EAST LANGUAGE

An EAST Data Description is a text composed of lexical elements, each composed of ASCII characters: the 128 first characters of the Latin Alphabet No. 1 (see reference [1] and/or annex B). The rules of composition are given in 3.1. They are applicable to the whole EAST DDR.

3.1 LEXICAL ELEMENTS

A lexical element is either a delimiter XE "Delimiter" , an identifier XE "Identifier" (which may be a reserved word), a numeric literal, a character string, a string literal, or a comment XE "Comment" . The rules of composition are given in this section.

3.1.1 SEPARATORS AND DELIMITERS

In some cases an explicit separator XE "Separator" is required to separate adjacent lexical elements (namely, when without separation, interpretation as a single lexical element is possible). A separator is any of a space character, a control character, or the end of a line.

· A space character is a separator XE "Separator" except within a comment XE "Comment" , a string literal, or a space character literal.

· Control characters other than horizontal tabulation are always separators. Horizontal tabulation is a separator XE "Separator" except within a comment XE "Comment" .

· The end of a line is always a separator XE "Separator" . What defines the end of a line is specified in annex B.

A delimiter XE "Delimiter" is either one of the following special characters:

& ’ () * + , - . / : ; < = > |

or one of the following compound delimiters, each composed of two adjacent special characters:

=> .. ** := /= >= <= << >> <>

Each of the special characters listed for single character delimiters is a single delimiter XE "Delimiter" except if this character is used as a character of a compound delimiter, or as a character of a comment XE "Comment" , string literal, character literal, or numeric literal.

The remaining forms of lexical elements are described in 3.1.2, 3.1.3 and 3.1.4.

3.1.2 COMMENTS

A comment XE "Comment" \b starts with two adjacent hyphens and extends up to the end of the line. A comment can appear on any line of a description.

3.1.3 IDENTIFIERS

Identifiers are used as names and also as reserved words. See figure 3‑1 for the lexical definition of an identifier XE "Identifier" \b :

[image: image3.emf]::= _ Identifier Letter Letter Digit o

Figure 3‑13 TC \f G "-1
Identifier Definition Diagram"
: Identifier Definition Diagram

All characters of an identifier are significant, including any underline character inserted between a letter or a digit and an adjacent letter or digit. Identifiers differing in the use of corresponding upper and lower case letters are considered to be the same.

3.1.4 NUMERIC LITERALS

A numeric literal is either a decimal literal or a based literal. A decimal literal is a numeric literal expressed in the conventional decimal notation (that is, the base is implicitly ten). A based literal is a numeric literal expressed in a form that specifies the base explicitly. The base can only be either two, eight, or sixteen.

In another way, a numeric literal is either an integer literal (decimal or based) or a real literal (decimal or based). See figure 3‑2.

a)
decimal literals

[image: image4.emf]::= Decimal Literal Decimal Literal Integer Decimal Literal Real

Figure 3‑23 TC \f G "-2
Decimal Literal Definition Diagram"
: Decimal Literal Definition Diagram XE "Decimal literal"
where Integer Decimal Literal and Real Decimal Literal XE "Decimal literal" are defined as in figures 3‑3 and 3‑4:

[image: image5.emf]::= Decimal Literal Integer Exponent Integer

Figure 3‑33 TC \f G "-3
Integer Decimal Literal Definition Diagram"
: Integer Decimal Literal Definition Diagram XE "Decimal literal"
[image: image6.emf]::= . Decimal Literal Integer Integer Exponent Real

Figure 3‑43 TC \f G "-4
Real Decimal Literal Definition Diagram"
: Real Decimal Literal Definition Diagram XE "Decimal literal"
where Integer and Exponent are defined as in figures 3‑5 and 3‑6:

[image: image7.emf]::= _ Integer Digit Digit

Figure 3‑53 TC \f G "-5
Integer Definition Diagram"
: Integer Definition Diagram

[image: image8.emf]::= + E Exponent - Integer e

Figure 3‑63 TC \f G "-6
Exponent Definition Diagram"
: Exponent Definition Diagram

An underline character inserted between adjacent digits of a decimal literal does not affect the value of this decimal literal. The letter E of the exponent, if any, can be written either in lowercase or in uppercase, with the same meaning. Leading zeros are allowed. No space is allowed in a decimal literal.

12
0
1E6
123_456
-- integer literals

12.0
0.0
0.456
3.14159_26
-- real literals

1.3E-12
1.0E+6

-- real literals with exponent

Example 3‑13 TC \f E "-1
Decimal Literals"
: Decimal Literals XE "Decimal literal"
b)
based literals

See figure 3‑7.

[image: image9.emf]::= Based Literal Based Literal Integer Based Literal Real

Figure 3‑73 TC \f G "-7
Based Literal Definition Diagram"
: Based Literal Definition Diagram XE "Based literal"
where Integer Based Literal and Real Based Literal XE "Based literal" are defined as in figure 3‑8 and figure 3‑9:

[image: image10.emf]::= 216 # # 8 Based Literal Exponent Based Integer Integer

Figure 3‑83 TC \f G "-8
Integer Based Literal Definition Diagram"
: Integer Based Literal Definition Diagram XE "Based literal"
[image: image11.emf]::= 216 # # 8 Based Literal Exponent Based Integer Real . Based Integer

Figure 3‑93 TC \f G "-9
Real Based Literal Definition Diagram"
: Real Based Literal Definition Diagram XE "Based literal"
where Based Integer is defined as in figure 3‑10:

[image: image12.emf]::= _ Based Integer Digit Letter Digit Letter * * *) See restriction belo w.

Figure 3‑103 TC \f G "-10
Based Integer Definition Diagram"
: Based Integer Definition Diagram XE "Based literal"
The only letters allowed as extended digits are the letters A through F representing ten through fifteen. Letters are allowed for a based integer only if the base of the literal of which it is a part is 16. A letter in a based literal can be written either in lowercase or in uppercase, with the same meaning. No space is allowed in a based literal.

2#1111_1111#
16#FF#
016#0FF#
-- integer literals of value 255

16#E#E1
2#1110_0000#

-- integer literals of value 224

16#F.FF#E+2
2#1.1111_1111_111#E11
-- real literals of value 4095.0

Example 3‑23 TC \f E "-2
Based Literals"
: Based Literals

c)
integer literals

[image: image13.emf]::= Integer Literal Decimal Literal Integer Based Literal Integer

Figure 3‑113 TC \f G "-11
Integer Literal Definition Diagram"
: Integer Literal Definition Diagram

c)
real literals

[image: image14.emf]::= Real Literal Decimal Literal Real Based Literal Real

Figure 3‑123 TC \f G "-12
Real Literal Definition Diagram"
: Real Literal Definition Diagram

3.2 LOGICAL DESCRIPTION

The logical part of an EAST DDR is composed of:

· the logical description of the models of data (using type and subtype XE "Subtype" declarations for the syntactic definition of the data, and using representation clauses for the specification of their size in bits and their location within the set of data);

· the declaration of the data occurrences, i.e., the declaration of the described data items (using object XE "Object" declarations).

The logical part of the Data Description Record consists of a package XE "Package" . This unit is introduced by the keyword package, followed by the package name, and ends with ‘end package name;’. The package name is an identifier XE "Identifier" (see 3.1.3).

The logical description package identification must be followed by the mention of the version of the EAST recommendation to which the description is supposed to conform.

As the notion of EAST recommendation version was not present in the first two EAST recommendation issues, the absence of the mention in a description should be interpreted as a reference to these two first versions (fully compatible).

A description that conforms to a particular version of the EAST recommendation must remain correct with regard to the following versions of EAST.
If an EAST description is generated using a tool, it is recommended that the tool indicate its own version using a comment.

Types are models, and objects are instances (or occurrences) of these models. Type declarations describe therefore the structure of the data elements which may occur in the described data, while the actual data occurrences are represented by the declaration of variables and constants.

A type (except predefined type), a subtype XE "Subtype" or a constant XE "Constant" (except predefined constant) must be declared in the package XE "Package" before being used.

The declaration of variables must occur in the latter section of the logical description. Constants may be declared in the type declaration section or in the section for the declaration of variables: in the first section, they contribute to data models definition, while they represent data occurrences in the second section.

The described data is a concatenation of elements in the order of the corresponding variables. The types used in the declaration of variables must have been previously declared in the package XE "Package" .

Figure 3‑13 summarizes the content of the logical part of a DDR.

	package XE "Package" logical_package_name is

	
	EAST version and -- tool version (optional)
	

	
	Section for the Declaration of Types: Definition of the Data Models
	

	
	· type declarations and representation clauses (see 3.2.1 and 3.2.4)

· subtype XE "Subtype" and constant XE "Constant" declarations (see 3.2.2 and 3.2.3.2)
	

	
	Section for the Declaration of Variables: Definition of the Data Occurrences
	

	
	· variable XE "Variable" and constant XE "Constant" declarations (see 3.2.3.1 and 3.2.3.2)

· actual values of discriminant (see 3.2.1.6)
	

	end logical_package XE "Package" _name ;

Figure 3‑133 TC \f G "-13
Logical Part Structure"
: Logical Part Structure

The version declaration should respect the following format:

east_version : constant STRING := "3.0";

-- tool version : OASIS 5.0 (optional comment)

3.2.1 TYPE DECLARATIONS

The type is characterized by a set of permissible values. Several classes of types exist: scalar types (enumeration types, integer type XE "Integer type" s, and real types), array types, and record types. Some types are EAST predefined types (see 3.2.1.1); the other types are user defined types and must be declared according to a specific syntax (see 3.2.1.2, 3.2.1.3, 3.2.1.4, 3.2.1.5 and 3.2.1.6).

3.2.1.1 Predefined Types XE "Predefined type" \b
There are three predefined types provided by the EAST language: CHARACTER, STRING and EOF. Predefined means that no previous declaration has to be made explicitly by the user to use one of these types.

The predefined type CHARACTER is an enumeration type (see next subsection for the enumeration definition syntax rules), whose values are the 256 characters of the 8-bit coded Latin Alphabet No. 1 character set (see annex B and reference [1]).

The values of the predefined type STRING are one-dimensional arrays of the predefined type CHARACTER, indexed by values in increments of one of any positive integer type XE "Integer type" .

The number of characters must be specified every time the type is used.

As an example STRING(1 .. 10) designates a 10 character string, while STRING(10 .. 22) designates a 13 character string.

The predefined type EOF is exclusively used to declare a fictive end delimiter called EOF Marker (see 3.2.3.2.2).

3.2.1.2 Enumeration Type XE "Enumeration type" \b
An enumeration type is defined as a set of enumeration literals. An enumeration literal is an identifier XE "Identifier" or a character literal for one of the possible values of the type. Figure 3‑14 illustrates the syntax of an enumeration type specification. Each enumeration literal yields a different enumeration value.

[image: image15.emf]::= type is) ; , (Enumeration Type Declaration Enumeration Identifier Enumeration Literal

Figure 3‑143 TC \f G "-14
Enumeration Type Specification Diagram"
: Enumeration Type XE "Enumeration type" Specification Diagram

where the enumeration literal is defined as in figure 3‑15:

[image: image16.emf]::= Enumeration Literal Identifier Character Literal

Figure 3‑153 TC \f G "-15
Enumeration Literal Definition Diagram"
: Enumeration Literal Definition Diagram

The following example presents some enumeration type definitions.

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
type STATE is (OFF , ON);
type ROMAN_DIGIT is (‘I’ , ‘V’ , ‘X’ , ‘L’ , ‘C’ , ‘D’ , ‘M’);

Example 3‑33 TC \f E "-3
Enumeration Type Declarations"
: Enumeration Type XE "Enumeration type" Declarations

3.2.1.3 Integer Type

An integer type XE "Integer type" \b is defined as a set of integer values specified by a range. Each bound of the range is an integer constant XE "Constant" identifier XE "Identifier" (see 3.2.3.2) or an integer literal (see 3.1.4). Note that both bounds need not have the same integer type and that negative bounds are allowed. The range L .. R specifies the value from L to R inclusive if the relation L <= R is true. A null range is a range for which the relation R < L is true; no value belongs to a null range.

Figure 3‑16 illustrates the syntax of an integer type XE "Integer type" specification.

[image: image17.emf]::= is ; . . Type Declaration Integer type range Identifier Integer Identifier Constant Integer Integer Literal Identifier Constant Integer Integer Literal

Figure 3‑163 TC \f G "-16
Integer Type Specification Diagram"
: Integer Type Specification Diagram

The following example presents an integer type XE "Integer type" , defined using integer literals (-10 and 10) and an integer type, defined using a constant XE "Constant" identifier XE "Identifier" (MAX).

type SMALL_INTEGER is range -10 .. 10;
type NUMBER is range 0 .. MAX;
-- where MAX could be defined as: MAX := 100;

Example 3‑43 TC \f E "-4
Integer Type Declarations"
: Integer Type Declarations

3.2.1.4 Real Type XE "Real type" \b
Real type XE "Real type" s provide approximations to real numbers, with relative bounds on errors. The error bound is specified as a relative precision by giving the required minimum number of significant decimal digits. The range bounds are optional. When they are specified, they are either real constant XE "Constant" identifier XE "Identifier" (see 3.2.3.2) or real literal (see 3.1.4).

Figure 3‑17 illustrates the syntax of a real type specification.

[image: image18.emf]::= is ; . . Type Declaration Real Identifier Real digits type Number of Digits range Constant Identifier Real Real Literal Constant Identifier Real Real Literal

Figure 3‑173 TC \f G "-17
Real Type Specification Diagram"
: Real Type XE "Real type" Specification Diagram

The following example presents some real type definitions.

type COEFFICIENT is digits 10 range 0.1 .. 1.0;
type REAL is digits 15;
Example 3‑53 TC \f E "-5
Real Type Declarations"
: Real Type XE "Real type" Declarations

NOTE
–
The range is optional in a real type declaration. If the real type declaration specifies no range, then the range is supposed to be the largest range that can be implemented within the specified number of bits (see 3.2.4.1) accommodating the number of significant digits. When unspecified, the range will depend on the convention used to represent the binary values of the real type (see 3.3.3.1).

3.2.1.5 Array Type XE "Array type" \b
An array type is a composite type consisting of components that have the same type. The name for a component of an array uses one or more index XE "Index" values belonging to specified discrete types.

A discrete type is either an enumeration type or an integer type XE "Integer type" .

An array type is characterized by:

· an ordered list of indices XE "Index" ;

· the type of each index XE "Index" ;

· the lower and upper bound for each index XE "Index" ;

· the type of the components.

The order of indices XE "Index" is significant. The index type and component type declarations must precede the array type declaration that makes use of them, except if one of these types is a predefined type of the EAST language.

A one-dimensional array has a distinct component for each possible index XE "Index" value. A multi-dimensional array has a distinct component for each possible sequence of index values that can be formed by selecting one value for each index position within the list of indices (in the given order).

The possible values for a given index XE "Index" are all the values between the lower and upper bounds, inclusive; this range of values is called the index range. Figure 3‑18 illustrates the syntax of an array type specification.

[image: image19.emf]::= type is ; (,) of Type Declaration Array Identifier Array array Specification Index Type Identifier

Figure 3‑183 TC \f G "-18
Array Type Specification Diagram"
: Array Type XE "Array type" Specification Diagram

An array type can be constrained (i.e., have a fixed number of elements) or unconstrained (i.e., have an undetermined number of elements), depending on the specification of the indices XE "Index" . In multi-dimensional array types, the indices are either all determined or all undetermined.

An index XE "Index" is specified as follows in figure 3‑19:

[image: image20.emf]Index Specification Discrete type Identifier Discrete Constant Identifier Discrete Constant Identifier Enumeration Literal Integer Literal Integer Literal Enumeration Literal . . range <> ::=

Figure 3‑193 TC \f G "-19
Index Specification Diagram"
: Index XE "Index" Specification Diagram

In the ‘..’ notation, the first identifier XE "Identifier" or literal specifies the lower bound, while the second one specifies the upper bound.

The ‘range <>’ expression denotes an undetermined number of elements.

The following example defines array types, for which the number of elements is known: 100 characters in a line, and 7 states in a schedule.

type LINE is array(1 .. 100) of CHARACTER;
-- CHARACTER is an EAST predefined type
type SCHEDULE is array(DAY) of STATE;
-- DAY is an enumeration type defined in 3.2.1.2 as:
-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
Example 3‑63 TC \f E "-6
Constrained Array Type Definitions"
: Constrained Array Type XE "Array type"

 XE "Constraint array type" Definitions

The following example defines array types, for which the number of elements is not known: because of the definition of the integer type XE "Integer type" NUMBER, VECTOR may contain at a maximum MAX reals, and at a minimum 0 real.

type VECTOR is array(NUMBER range <>) of REAL;
type MATRIX is array(NUMBER range <>, NUMBER range <>) of REAL;
-- NUMBER is an integer type XE "Integer type" defined in 3.2.1.3 as:
-- type NUMBER is range 0 .. MAX;
-- REAL is a real type defined in 3.2.1.4 as:
-- type REAL is digits 15;
Example 3‑73 TC \f E "-7
Unconstrained Array Type Definitions"
: Unconstrained Array Type XE "Array type"

 XE "Unconstrained array type" Definitions

The actual number of elements must be specified every time an unconstrained array type is used, while the number of elements must not be specified when a constrained array type is used (because this number is already fixed by the type definition).

As an example, MATRIX(1 .. 512, 1 .. 512) designates a matrix which contains 512*512 elements.

If the lower bound of an index XE "Index" range is greater than the upper bound (i.e., if the index range is zero), then the corresponding array row/column has no component.

NOTE
–
Ways of storing arrays and, therefore, which array index XE "Index" varies first are discussed in 3.3.1.

3.2.1.6 Record Type XE "Record type" \b
A record type is a composite type consisting of a sequence of named components. EAST forbids identical component names in a record. This sequence contains the declaration of each component of the record type. Each declaration indicates the type of the component. Each component type must have been previously defined.

The identifiers of all components of a record type must be distinct. Figure 3‑20 illustrates the syntax of a record type specification:

[image: image21.emf]::= is ; Type Declaration Record type Identifier Record Discriminant Specification record Variant Part Specification Component Declaration endrecord

Figure 3‑203 TC \f G "-20
Record Type Specification Diagram"
: Record Type XE "Record type" Specification Diagram

where a component declaration is specified as in figure 3‑21:

[image: image22.emf]: Component Declaration ::= Component Identifier Type Identifier Index Constraint := Default Value ; Constant Declaration

Figure 3‑213 TC \f G "-21
Component Declaration Diagram"
: Component Declaration Diagram

The optional default value is the one to be given automatically if no other value is given by an application that could generate such data; it is to be used by a generic software layer.
The constant declaration refers to the Marker in 3.2.3.2.2.
Figure 3‑22 illustrates default value definitions.

[image: image23.emf]::= ::=::= Default Value Array Value Elementary Value Array Value String Literal Integer Literal Elementary Value Real Literal Enumeration literal Constant Identifier ::=Mono-dimension Array Value Multi-dimension Array Value Multi-dimension Array Value Mono-dimension Array Value (others => Array Value) (others => Elementary Value) ::=::=

Figure 3‑223 TC \f G "-22
Default Value Definition Diagram"
: Default Value Definition Diagram

When a constant declaration is present, it means that the component is repeated in the data an unknown number of times until the marker it represents (as defined in 3.2.3.2.2.2) is en​countered.

Constant declaration in a record definition makes the record size unknown with the conse​quences explained in 3.2.4.3 (rules 1 and 2).

An index XE "Index" constraint shall be present for an array component if the array type identifier XE "Identifier" corresponds to an unconstrained array type. In this case, the constraint is specified as in figure 3‑23:

[image: image24.emf]Index Constraint Discrete type or Subtype Identifier Discrete Constant Identifier Discrete Constant Identifier Enumeration Literal Integer Literal Integer Literal Enumeration Literal . . , (::=)

Figure 3‑233 TC \f G "-23
Index Constraint Diagram"
: Index XE "Index" Constraint Diagram

The following example presents two record type definitions that consist only of simple component declarations:

type COMPLEX is record

REAL_PART: REAL;

IMAGINARY_PART: REAL;
end record;
-- REAL is a real type defined in 3.2.1.4 as:
-- type REAL is digits 15;
type MEASUREMENT_BLOCK is record

TODAY: DAY := MON;

TEMPERATURE: SMALL_INTEGER := 0;

VOLUME: SMALL_INTEGER := 0;

FIRST_SEQUENCE_OF_MEASUREMENTS: VECTOR(1 .. 100) := (others => 1);

SECOND_SEQUENCE_OF_MEASUREMENTS: VECTOR(1 ..10) := (others => 1);
end record;
-- DAY is an enumeration type defined in 3.2.1.2 as:
-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
-- SMALL_INTEGER is an integer type XE "Integer type" defined in 3.2.1.3 as:
-- type SMALL_INTEGER is range -10 .. 10;
-- VECTOR is an array type defined in 3.2.1.5 as:
-- type VECTOR is array (NUMBER range <>) of REAL;

Example 3‑83 TC \f E "-8
Record Type Definitions"
: Record Type XE "Record type" Definitions

Some records may contain components of which the size or even the existence depends on the value of another component, called a discriminant XE "Discriminant" . The type of a discriminant must be discrete. Figure 3‑24 illustrates the syntax of a discriminant specification.

[image: image25.emf]::= () : ; Specification Discriminant Discriminant Identifier Type Identifier Default Value := o

Figure 3‑243 TC \f G "-24
Discriminant Specification Diagram"
: Discriminant XE "Discriminant" Specification Diagram

Figure 3‑25 illustrates the syntax of a variant XE "Variant" part, introduced by the presence of a discriminant XE "Discriminant" .

[image: image26.emf]::= case is Part Specification Variant Discriminant Identifier => |.. when Value Value Value Component Declaration ; => when others Component Declaration end case o Part Specification Variant null ; Part Specification Variant

Figure 3‑253 TC \f G "-25
Variant Part Specification Diagram"
: Variant XE "Variant" Part Specification Diagram

The ‘when others’ clause is mandatory only if all the possible values of the discriminant XE "Discriminant" are not explicitly named before, in the variant XE "Variant" part specification.

The following example presents a discriminant XE "Discriminant" that conditions the existence of other components:

type ACTIVITY(TODAY: DAY := MON) is record

case TODAY is

when SAT | SUN =>

SLEEPING: DURATION_IN_HOURS;

PLAYING_TENNIS: DURATION_IN_HOURS;

SWIMMING: DURATION_IN_HOURS;

when MON =>

RESTING_AFTER_WEEK_END: DURATION_IN_HOURS;

when others =>

WORKING: DURATION_IN_HOURS;

end case;
end record;
-- DAY is an enumeration type defined in 3.2.1.2 as:
-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
-- DURATION_IN_HOURS is an integer type XE "Integer type" defined as:
-- type DURATION_IN_HOURS is range 0 .. 24;
Example 3‑93 TC \f E "-9
Record Type Definition with Discriminant"
: Record Type XE "Record type" Definition with Discriminant XE "Discriminant"
In this example, TODAY is a discriminant XE "Discriminant" for the type ACTIVITY: other components of the record might change depending on the value of TODAY.

The keyword case introduces the variant part, which consists of alternative lists of components. The keyword when, followed by one or more values (separated by a vertical bar) of the type of the discriminant XE "Discriminant" of the variant part, introduces a list of components that are present for the specified value(s) of the discriminant. The keyword others represents all the possible values of the type of the discriminant that have not been taken into account explicitly before (in this example, others is equivalent to TUE | WED | THU | FRI).

The following example presents a discriminant XE "Discriminant" that conditions a size:

type SQUARE(LENGTH: NUMBER := 10) is record

MAT: MATRIX(1 .. LENGTH, 1 .. LENGTH);
end record;
-- NUMBER is an integer type XE "Integer type" defined in 3.2.1.3 as:
-- type NUMBER is range 0 .. MAX;
-- MATRIX is an array type defined in 3.2.1.5 as:
-- type MATRIX is array (NUMBER range <> , NUMBER range <>) of REAL;
Example 3‑103 TC \f E "-10
Record Type Definition with Discriminant"
: Record Type XE "Record type" Definition with Discriminant XE "Discriminant"
In the previous example, LENGTH is a discriminant XE "Discriminant" for the type SQUARE: the value of LENGTH determines the size of the matrix. If LENGTH is less than 1 (i.e., LENGTH is equal to 0), then the matrix has no element. If LENGTH is, for example, equal to 5, then the matrix has 25 elements.

The EAST syntax requires a default value for each discriminant XE "Discriminant" (if any) in a record type declaration. A default value does not preclude any possible value for the discriminant of corresponding record objects. In the case of the type ‘SQUARE’, the default value could have been any allowed value for the integer type XE "Integer type" ‘NUMBER’, i.e., in the range 0 .. MAX.

Some records may contain components of which the size or the existence depend on the value of a data item that is not part of the record: this data item is considered to be a discriminant XE "Discriminant" for the record, except that the occurrence of this discriminant is not in the record itself. Such a discriminant is called a virtual discriminant XE "Virtual discriminant" .

The syntax of a virtual discriminant XE "Virtual discriminant" is the same as a ‘classic’ discriminant XE "Discriminant" (see figure 3‑24). The only difference is that the discriminant identifier XE "Identifier" begins in this case with ‘VIRTUAL_’ and does not represent any data item occurrence.

Figure 3‑26 presents an example of virtual discriminant XE "Virtual discriminant"

 XE "Discriminant" use. It describes a packet format.

[image: image27.wmf]Packet

Primary

Packet

Identification

Packet

Sequence

Cont

r

ol

Sou

r

ce

Data

V

ersion

Numbe

r

T

ype_Id

Secondary

Heade

r

Flag

Application

P

r

ocess ID

Segmentation

Sou

r

ce

Flag

Sequence

Count

(3)

(1)

(1)

(

1

1)

(2)

(14)

(16)

(variable)

(variable)

(x) : Length in bits

Sou

r

ce

Data

Secondary

Heade

r

Heade

r

(48)

- Optional -

Length

[...]

discriminates

discriminates

Figure 3‑263 TC \f G "-26
Discriminants in a Packet Format"
: Discriminants in a Packet Format

This tree structure can be described using EAST type definitions as follows:

-- basic data types used in the first branch
type VERSION is (VERSION_1, VERSION_2);

type PACKET_TYPE is (TELEMETRY , TELECOMMAND);

type PRESENCE_FLAG is (ABSENT , PRESENT);

type PROCESS_IDENTIFICATION is (WORKING , IDLE);

-- structuring type for the Packet Identification
type PACKET_IDENTIFICATION_TYPE is record

VERSION_NUMBER: VERSION;

TYPE_ID: PACKET_TYPE;

SECONDARY_HEADER_FLAG: PRESENCE_FLAG;

APPLICATION_PROCESS_ID: PROCESS_IDENTIFICATION;
end record;

-- basic data types used in the second branch
type STATUS is (CONTINUATION_SEGMENT,

FIRST_SEGMENT, LAST_SEGMENT, UNSEGMENTED_PACKET);

type COUNTER is range 0 .. 16383;

-- structuring type for the Packet Sequence Control
type PACKET_SEQUENCE_CONTROL_TYPE is record

SEGMENTATION_FLAG: STATUS;

SOURCE_SEQUENCE_COUNT: COUNTER;
end record;

-- basic data types used in the other branches
type NUMBER is range 0 .. 65535;

type OCTET is range 0 .. 255;

.../...

.../...

-- structuring types
type DATA_ARRAY is array (NUMBER range <>) of OCTET;
type SECONDARY_HEADER_TYPE is array (1 .. 4) of OCTET;

type PRIMARY_HEADER_TYPE is record
 PACKET_IDENTIFICATION: PACKET_IDENTIFICATION_TYPE;
 PACKET_SEQUENCE_CONTROL: PACKET_SEQUENCE_CONTROL_TYPE;
 SOURCE_DATA_LENGTH: NUMBER;
end record;

type PACKET_FORMAT_TYPE(

VIRTUAL_SECONDARY_HEADER_FLAG: PRESENCE_FLAG := PRESENT;

-- point to the secondary header flag located in the first branch

VIRTUAL_SOURCE_DATA_LENGTH: NUMBER := 256)

-- point to the source data length located in the third branch
is record

PRIMARY_HEADER: PRIMARY_HEADER_TYPE;

case VIRTUAL_SECONDARY_HEADER_FLAG is

 when ABSENT =>
SOURCE_DATA_0: DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);

 when PRESENT =>

SECONDARY_HEADER: SECONDARY_HEADER_TYPE;
SOURCE_DATA_1: DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);

end case;
end record;
FLAG : PRESENCE_FLAG;
LENGTH : NUMBER;
PACKET : PACKET_FORMAT_TYPE;
-- Actual values of discriminants
PACKET.VIRTUAL_SECONDARY_HEADER_FLAG : virtual PRESENCE_FLAG := FLAG;
PACKET.VIRTUAL_SOURCE_DATA_LENGTH : virtual NUMBER := LENGTH;
Example 3‑113 TC \f E "-11
Logical Description of the Packet Format"
: Logical Description XE "Logical description" of the Packet Format

The two virtual discriminants XE "Virtual discriminant" ‘VIRTUAL_SECONDARY_HEADER_FLAG’ and ‘VIRTUAL_SOURCE_DATA_LENGTH’ do not really exist in the exchanged data block. They serve as a link between other data:

· VIRTUAL_SECONDARY_HEADER_FLAG is supposed to have the value of the SECONDARY_HEADER_FLAG field in the PACKET IDENTIFICATION block; it conditions the existence of the SECONDARY_HEADER block. It serves as a link between these two fields.

· VIRTUAL_SOURCE_DATA_LENGTH is supposed to have the value of the SOURCE_DATA_LENGTH field in the PRIMARY HEADER; it conditions the size of the SOURCE DATA block. It also serves as a link.

If the size of an array is deduced from several discriminants by a calculation its virtual size declaration remains unchanged (as shown on example 3‑10). The calculation to be done is described later after the object declaration section (see 3.2.3) as shown in example 3‑12.

type A_JULIAN_DAY is range 1 .. (2**32)-1;

type A_SECOND_IN_A_DAY is range 0 .. 86399;

type A_JULIAN_DATE is record
 DAY : A_JULIAN_DAY;

 SECOND : A_SECOND_IN_A_DAY;

end record;

type A_TEMPERATURE is digit 6 range 0.0 .. 100.0;

type TEMPERATURES is array (A_JULIAN_DAY range <>) of A_TEMPERATURE;

type DATA_RECORD (VIRTUAL_SIZE : A_JULIAN_DAY := 1) is record
 MEASUREMENTS : TEMPERATURES (1 .. VIRTUAL_SIZE);

end record;

FIRST_DATE : A_JULIAN_DATE;

LAST_DATE : A_JULIAN_DATE;

DATA : DATA_RECORD;

-- Actual values of discriminant

DATA.VIRTUAL_SIZE : virtual DAY_TYPE := LAST_DATE.DAY - FIRST_DATE.DAY;

Example 3‑123 TC \f E "-12
Calculated Size Array"
: Calculated Size Array

Supported operators are ‘+’, ‘-’, ‘*’, ‘/’, ‘**’ (exponent), ‘is_odd’, ‘is_even’, ‘cos’, ‘sin’, ‘tan’, ‘acos’, ‘asin’, ‘atan’, ‘log’, ‘ln’, ‘cosh’, ‘sinh’, ‘tanh’, ‘acosh’, ‘asinh’, ‘atanh’, ‘(’, ‘)’, ‘!’ (factorial).

The syntax of the virtual declaration for a calculated condition is the same as in example 3‑9.

The calculation to be done is described later after the object declaration section, as shown in example 3‑13.
Operators that parallel generic function calls in Ada may be used in an EAST description. These are supported by the software application.
type A_RESULT is range 0 .. 100;

type RESULTS (VIRTUAL_BONUS_FLAG : BOOLEAN := TRUE) is record

 RESULT_1 : A_RESULT;

 RESULT_2 : A_RESULT;

 case VIRTUAL_BONUS_FLAG is

 when TRUE => BONUS : A_RESULT;

 end case;

end record;

PREVIOUS_WEEK : A_RESULT;

THIS_WEEK : RESULTS;

-- Actual values of discriminant

THIS_WEEK.VIRTUAL_BONUS_FLAG : virtual BOOLEAN

 := (THIS_WEEK.RESULT_2 - THIS_WEEK.RESULT_1) > PREVIOUS_WEEK;

Example 3‑133 TC \f E "-13
Calculated Component Presence Condition"
: Calculated Component Presence Condition

Figure 3‑27 illustrates the syntax of an actual discriminant value declaration.
[image: image28.emf]::= Actual Discriminant Value EAST path : Type Identifier Function := ; NOTES 1 Function returns a value compliant with type identifier computed using predefined operators applied to values designated by their complete EAS T path. 2 The EAS T path is built using the name of each hierarchy level from the top to the designated item.

Figure 3‑273 TC \f G "-27
Actual Discriminant Value Declaration Diagram"
: Actual Discriminant Value Declaration Diagram

3.2.1.7 Type Summary

The following diagram (figure 3‑28) presents the types that can be found in the logical part of an EAST description:

[image: image29.emf]type integer array composite unconstrainedarray record invariantrecord scalar constrainedarray variantrecord enumeration CHARACTER * STRING * discrete real *) EAST predefinedtype

Figure 3‑283 TC \f G "-28
Type Summary"
: Type Summary

Scalar type XE "Scalar type" s have a binary coding or an ASCII coding, according to their physical description (see 3.3.3).

A variant record is a record that contains at least one discriminant. An invariant record contains no discriminant.

3.2.2 SUBTYPE DECLARATIONS

A subtype XE "Subtype" \b of a given type is used to restrict the set of values of the initial type. The initial type must be known at the subtype declaration time: either it is a predefined type of the EAST language or it has been previously declared.

Figure 3‑29 illustrates the syntax of a subtype XE "Subtype" declaration.

[image: image30.emf]::= subtype is ; Subtype Declaration Subtype Identifier Type Identifier Enumeration Constraint Integer Constraint Real Constraint Index Constraint

Figure 3‑293 TC \f G "-29
Subtype Declaration Diagram"
: Subtype XE "Subtype" Declaration Diagram

The constraint for an enumeration subtype XE "Subtype" is defined in figure 3‑30.

[image: image31.emf]::= range Constraint Enumeration . . ; Constant Identifier Enumeration Character Literal Identifier Literal Enumeration Constant Identifier Enumeration Character Literal Identifier Literal Enumeration

Figure 3‑303 TC \f G "-30
Enumeration Constraint Diagram"
: Enumeration Constraint XE "Enumeration constraint" Diagram

If a character literal used as range bound is not a printable character (as defined in annex B), its constant XE "Constant" identifier XE "Identifier" is used (constants of the type CHARACTER are defined in annex B in a table called ASCII).

The constant XE "Constant" identifier XE "Identifier" for a character must be prefixed by ‘ASCII.’, in order to avoid any confusion with other identifiers defined in the current description.

The following example defines some subtypes of CHARACTER:

subtype XE "Subtype" CAPITAL_LETTER is CHARACTER range ‘A’ .. ‘Z’;
-- the range bounds are printable

subtype XE "Subtype" LINE_FORMAT is CHARACTER range ASCII.HT .. ASCII.CR;
-- the range bounds are not printable

Example 3‑143 TC \f E "-14
Character Declarations"
: Character Declarations

The constants of the type CHARACTER, which are specified in the ASCII table, are EAST predefined constants.

The constraint for an integer subtype XE "Subtype" is defined in figure 3‑31.

[image: image32.emf]::= ; range . . Constraint Integer Integer Literal Constant Identifier Integer Integer Literal Constant Identifier Integer

Figure 3‑313 TC \f G "-31
Integer Constraint Diagram"
: Integer Constraint XE "Integer constraint" Diagram

In the previous diagram, the first integer gives the lower bound and the second the upper bound of the specified range.

The constraint for a real subtype XE "Subtype" is defined in figure 3‑32.

[image: image33.emf]::= ; range .. digits Real Constraint Number ofDigits Constant Identifier Real Real Literal Constant Identifier Real Real Literal

Figure 3‑323 TC \f G "-32
Real Constraint Diagram"
: Real Constraint XE "Real constraint" Diagram

In the previous diagram, the first real gives the lower bound and the second the upper bound of the specified range.

The constraint for an array subtype or for a subtype XE "Subtype" of the predefined type STRING is defined in figure 3‑23 (on page 3-17). In this diagram, the discrete literal in the range specification is any integer (based or decimal integer) literal or any enumeration literal. In the same way, the discrete constant XE "Constant" identifier XE "Identifier" in the range specification is any integer or enumeration constant (see 3.2.3.2).

The following example defines some subtypes:

subtype XE "Subtype" WEEK_END is DAY range SAT .. SUN ;
-- where DAY is an enumeration type defined in 3.2.1.2 as:
-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
subtype VERY_SMALL_INTEGER is SMALL_INTEGER range ‑5 .. 5;
-- where SMALL_INTEGER is an integer type XE "Integer type" defined in 3.2.1.3 as:
-- type SMALL_INTEGER is range -10 .. 10;
subtype MY_REAL is REAL range ‑9_999.999 .. 9_999.999;
-- where REAL is a real type defined in 3.2.1.4 as:
-- type REAL is digits 15;
subtype SMALL_MATRIX is MATRIX (1 .. 10 , 1 .. 10);
-- where MATRIX is an array type defined in 3.2.1.5 as:
-- type MATRIX is array (NUMBER range <>, NUMBER range <>) of REAL;
subtype NAME is STRING (1 .. 32);
-- where STRING is a predefined array type (see 3.2.1.1).
Example 3‑153 TC \f E "-15
Subtype Declarations"
: Subtype XE "Subtype" Declarations

3.2.3 OBJECT DECLARATIONS

An object XE "Object" \b is an entity that contains a value of a given type. A declared object is called a constant XE "Constant" if the reserved word constant appears in the object declaration. An object that is not a constant is called a variable XE "Variable" .

3.2.3.1 Declaration of Variables

The declaration of a variable uses types specified previously in 3.2.1. Variables correspond to the data that are to be exchanged. Figure 3‑33 illustrates the syntax for the declaration of a variable.

[image: image34.emf]::= Variable Declaration Variable Identifier : Type Identifier Default Value := ;

Figure 3‑333 TC \f G "-33
Variable Declaration Diagram"
: Variable XE "Variable" Declaration Diagram

The default value (which definition is given by figure 3‑22) is the one to be given automatically if no other value is given by an application generating such data; it is to be used by generic software layer.

A variable XE "Variable" declaration consists of only one identifier XE "Identifier" (the variable identifier) followed by the identifier of the type that describes the corresponding data.

UPDATED_DATA: MEASUREMENT_BLOCK ;

-- MEASUREMENT_BLOCK is a record type defined in 3.2.1.6

INSTRUMENT_STATUS : STATE := ON;

-- STATE is an enumeration type defined in 3.2.1.2:

-- ON is a default value
Example 3‑163 TC \f E "-16
Variable Declaration"
: Variable Declaration XE "Variable"
3.2.3.2 Declaration of Constants

The declaration of a constant XE "Constant" \b must include an explicit initialization, except for the EOF Marker declaration (see 3.2.3.2.2). This declaration guarantees that the corresponding object XE "Object" value cannot be modified after initialization. Figure 3‑34 illustrates the syntax of a constant declaration.

[image: image35.emf]::= ; : constant := Constant Declaration Constant Identifier Type Identifier Value

Figure 3‑343 TC \f G "-34
Constant Declaration Diagram"
: Constant XE "Constant" Declaration Diagram

A constant XE "Constant" declaration consists of only one identifier XE "Identifier" (the constant identifier) followed by the reserved word constant, an optional identifier for the constant type, and the value of the constant.

FIRST_DAY_OF_THE_WEEK: constant XE "Constant" DAY := MON;
Example 3‑173 TC \f E "-17
Constant Declaration"
: Constant XE "Constant" Declaration

The value of a constant XE "Constant" can be specified as a static expression, combining other constant values and operators (‘+’, ‘*’, ‘**’, ‘-’, ‘/’, ‘(’ and ‘)’).

‘+’ and ‘-’ are unary or binary operators (addition and subtraction). ‘*’, ‘/’ and ‘**’ are binary operators: ‘*’ is the multiplication operator, ‘/’ is the division operator, ‘**’ is the exponentiation operator. ‘(’ and ‘)’ are used to specify an explicit precedence for the expression evaluation.

Constants may be declared either in the section for the declaration of types or in the section for the declaration of variables (see figure 3‑13). In the first case, they contribute to data model definitions while they represent, in the second case, some special data occurrences called markers.

The first definition of a variable XE "Variable" within the logical description part delimits the two sections. Any declaration that occurs before the first variable definition belongs to the section for the declaration of types. Any declaration that occurs after the first variable definition (including the first variable declaration itself) belongs to the section for the declaration of variables.

3.2.3.2.1 Constants in the Section for the Declaration of Types

A constant XE "Constant" that is declared in the section for the declaration of types can be used:

· in type or subtype XE "Subtype" declarations for the specification of range bounds,

· in constant XE "Constant" declarations for the specification of the values.

In this case, the constant XE "Constant" is either an integer constant, a real constant, or an enumeration constant, the end objective of the constant being its use as a range bound.

A number declaration is a special form of a constant XE "Constant" declaration, where no type is specified.

PI: constant XE "Constant" := 3.14159_26536; -- a real number
MAXIMUM: constant := 500; -- an integer number
NUMBER_OF_VALUES_OF_AN_OCTET: constant := 2**8; -- the integer 256

Example 3‑183 TC \f E "-18
Number Declarations"
: Number Declarations

3.2.3.2.2 Markers

A marker XE "Marker" \b declaration is a special form of a constant XE "Constant" declaration, where the type of the constant is mandatory. A marker is used to delimit the end of the repetition of an element. A marker indicates that the data item just above is repeated until the marker value is found.

A marker XE "Marker" is a constant XE "Constant" which should be unambiguously recognized. The type of a marker is therefore restricted to integer type XE "Integer type" , enumeration type, character type, or character string type.

The element of a repetition delimited by a marker can only be a variable or a component of a record type.
3.2.3.2.2.1 Markers: Constants in the Section for the Declaration of Variables

When a marker declara​tion occurs after the declaration of a variable, it means that this variable which is declared immediately before the constant occurs an undetermined number of times, the last instance be​ing followed by the constant value.
RULE
–
The marker must follow a declaration of a variable. It cannot be the first declaration of the section.

The following example represents a set of values, the number of values being unspecified. The end of the set occurs when the character string ‘END’ is encountered within the data.

VALUE : COEFFICIENT;
-- COEFFICIENT is a real type defined in 3.2.1.4 as:

-- type COEFFICIENT is digits 10 range 0.0 .. 1.0;
END_OF_COEFFICIENTS : constant XE "Constant" STRING := "END";

Example 3‑193 TC \f E "-19
Marker Declaration"
: Marker XE "Marker" Declaration

The presence of the EOF marker XE "Marker" implies that the previous element is repeated until the File Management System returns an ‘end of file’ indication.

The following convention is adopted: the type of the Marker is an EAST predefined type, called EOF. No explicit value is associated with this constant since this value is unknown. This is the only case of a constant declaration where the value is absent.
RULE
–
The EOF marker XE "Marker" can only be used once in an EAST description. When used, the EOF marker will be the last declaration in the logical description part.

The next example presents the description of a data file that contains a header and n values (n being undetermined).

HEADER : HEADER_TYPE; -- any record type
VALUE : COEFFICIENT;
-- COEFFICIENT is a real type defined in 3.2.1.4 as:

-- type COEFFICIENT is digits 10 range 0.0 .. 1.0;
END_OF_COEFFICIENTS : constant XE "Constant" EOF ;

Example 3‑203 TC \f E "-20
EOF Marker Declaration"
: EOF Marker XE "Marker" Declaration

3.2.3.2.2.2 Markers: Constants in Record Type Definition

When a marker declaration occurs within the declaration of the components of a record type, it means that the component which is declared immediately before the constant occurs an unde​termined number of times, the last instance being followed by the constant value.
RULE
–
The marker must follow a declaration of a component. It cannot be the first declaration in the record.

The following example represents such a usage of a marker.

type CLIENT_ADDRESS is record

ONE_CHARACTER : CHARACTER;

END_OF_ADDRESS : constant CHARACTER := ASCII.CR; -- carriage return

end record;

type CLIENT is record

NAME : STRING (1 .. 30);

COMPANY : STRING (1..30);

ADDRESS : CLIENT_ADDRESS;

END_OF_ADDRESSES : constant STRING := "-- End of addresses --";

end record;
Example 3‑213 TC \f E "-21
Marker Declaration in Record Definition"
: Marker Declaration in Record Definition

3.2.4 REPRESENTATION CLAUSES

Concerning the descriptive features, the representation clause XE "Representation clause" \b s are one of the most significant facilities offered by EAST. The representation clauses specify the mapping between the logical types of the language and their physical representation. EAST provides the length clauses, the enumeration representation clauses, and the record representation clauses.

A representation clause XE "Representation clause" immediately follows the type whose storage it describes. A representation clause is mandatory in a logical data description, except for variable-sized components, for which the representation cannot be known.

3.2.4.1 Length Clauses XE "Length clause" \b
A length clause specifies the number of bits that data of a particular type occupy in storage. Length clauses must be provided for enumeration, integer, and real types. Length clauses must also be provided for composite types every time it is possible, i.e., every time the size of the composite type (array or record) is known. In such case, this size is the size of the whole type. Figure 3‑35 illustrates the syntax of a length clause declaration.

[image: image36.emf]::= ; for ' use size Declaration Length Clause Type Identifier Number of bits

Figure 3‑353 TC \f G "-35
Length Clause Specification Diagram"
: Length Clause XE "Length clause" Specification Diagram

The following example presents type declarations with their associated length clauses:

type VALUE is range 0 .. 500;
for VALUE'size use 16; -- bits

type COLUMN is array(1 .. 10) of VALUE;
for COLUMN'size use 160; -- 10 times 16 bits

Example 3‑223 TC \f E "-22
Length Clause Declarations"
: Length Clause XE "Length clause" Declarations

If the elements of the described array are not contiguous, the unused space between elements must be described explicitly. This results in contiguous elements containing unused space.

The following example presents an array which contains values and spare fields (for alignment purpose).

type VALUE is range 0 .. 500;
for VALUE'size use 16; -- bits

type OCTET is range 0 .. 255;

for OCTET'size use 8;

type SPARE is array (1 .. 2) of OCTET;

for SPARE'size use 16;

type ELEMENT is record

A_VALUE: VALUE;

A_SPARE: SPARE;

end record;

for ELEMENT'size use 32;

type COLUMN is array(1 .. 10) of ELEMENT;
for COLUMN'size use 320; -- 10 times 32 bits

Example 3‑233 TC \f E "-23
Explicit Description of Unused Space"
: Explicit Description of Unused Space

3.2.4.2 Enumeration Representation Clauses

An enumeration representation clause XE "Enumeration representation clause" \b

 XE "Representation clause" specifies the bit pattern for the binary representation of the value associated with each literal of an enumeration type. An enumeration representation clause is optional.

If an enumeration representation clause is provided, each literal of the enumeration type must be provided with a unique bit pattern. The integer values (corresponding to the given bit pattern) specified for the enumeration type must satisfy the predefined ordering relation of the type; i.e., they must increase.

If no enumeration representation clause is provided for a binary enumeration type, default integer codes are presumed: the value of the first listed enumeration literal is zero; the value for each other enumeration literal is one more than for its predecessor in the list.

Figure 3‑36 illustrates the syntax of an enumeration representation clause declaration:

[image: image37.emf]::= for) ; , (use => Enumeration Clause Declaration Enumeration Identifier Identifier Value

Figure 3‑363 TC \f G "-36
Enumeration Clause Specification Diagram"
: Enumeration Clause Specification Diagram

The integer value, specifying the mapping with bit pattern, can be expressed using the binary, octal, decimal or hexadecimal notation. The syntax for a binary, octal, or hexadecimal value is: base # value#.

type CODE is (ADD , SUB , MUL , LDA , STA , STZ);
for CODE use (
ADD => 2#1#, SUB => 2#10#,

MUL => 2#11#, LDA => 2#1000#,

STA => 2#11000#, STZ => 2#11111#);

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
for DAY use (
MON => 8#1#, TUE => 8#2#, WED => 8#3#,

THU => 8#4#, FRI => 8#5#, SAT => 8#6#, SUN => 8#7#);

type STATE is (OFF , ON);
for STATE use (OFF => 0 , ON => 1);

type SYNCHRONIZATION is (NOMINAL_SYNCHRO , INVERSE_SYNCHRO);
for SYNCHRONIZATION use (
NOMINAL_SYNCHRO => 16#0C# ,

INVERSE_SYNCHRO => 16#F5#);

Example 3‑243 TC \f E "-24
Enumeration Clause Declarations"
: Enumeration Clause Declarations

3.2.4.3 Record Representation Clauses

A record representation clause XE "Record representation clause" \b

 XE "Representation clause" specifies the storage representation of records, that is, the order, position, and size of record components (including discriminants, if any).

A record representation clause occurs immediately after the record type definition and before the record length clause (if its size is known).

A component clause specifies the storage position of a component, relative to the beginning of the record. A component clause must be provided every time it is possible, i.e., every time the exact location of the component is known (e.g., it is not possible for variable-sized components).

If component clauses are given for all components, the record representation clause completely specifies the representation of the record type.

If some component clauses are missing, the order of these components is specified as in the record type definition.

The order of component clauses in a record representation clause is not significant.

A representation clause is mandatory for a discriminant XE "Discriminant" , except for virtual discriminants XE "Virtual discriminant" which cannot have a representation clause.

There is an overlap between distinct variants. The EAST syntax requires that a variant part is declared after the fixed part of a record. If the variant XE "Variant" part has a constant length, fixed components are allowed to be physically located after the alternative components of the variant: the actual location of the fixed components is specified using a record representation clause.

Figure 3‑37 illustrates the syntax of a component representation. The expression after the keyword at indicates a relative distance XE "Distance" to the start of the structure. This distance is expressed in words, the length of a word being either 16 bits or 32 bits (see page 3-46 for the declaration of the length). If distance is equal to 0, the range is specified relatively to the beginning (i.e., location 0) of the record. The expressions after the keyword range are the positions in bits relatively to the distance.

[image: image38.emf]. . ; at range ::= Clause Component Component Identifier Distance Location in bits Location in bits

Figure 3‑373 TC \f G "-37
Component Representation Clause Specification Diagram"
: Component Representation Clause XE "Representation clause" Specification Diagram

Figure 3‑38 illustrates the syntax of a record representation clause.

[image: image39.emf]::= for record use endrecord ; Clause Declaration Record Identifier Record Component Clause

Figure 3‑383 TC \f G "-38
Record Representation Clause Specification Diagram"
: Record Representation Clause XE "Record representation clause"

 XE "Representation clause" Specification Diagram

The next four examples illustrate the use of record representation clauses, in different cases:

· First case: everything is known (the size and the location of every component);

· Second case: the number of elements of a component is not known at definition time, and the size and the location of this variable XE "Variable" component are therefore not known;

· Third case: the global size of the record is known, but there are two alternatives for the choice of the components;

· Fourth case: the record contains alternatives for the choice of the components, followed by a fixed (i.e., known) component.

Assuming the following definitions of the basic data types used in the four examples:

-- enumeration type definition
type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
for DAY'size use 8;

-- integer type XE "Integer type" definitions
type MONTH is range 1 .. 12;
for MONTH'size use 8;
type YEAR is range 1900 .. 2100;
for YEAR'size use 16;
type NUMBER is range 1 .. 10;
for NUMBER'size use 8;
type ALPHA is range 1 .. 10;
for ALPHA'size use 8;
type BETA is range 1 .. 10;
for BETA'size use 8;
type GAMMA is range 1 .. 10;
for GAMMA'size use 8;
type DELTA is range 1 .. 10;
for DELTA'size use 8;

-- real type definition
type VALUE is digits 5;
for VALUE'size use 32;

-- array type definition
type VECTOR is array(NUMBER range <>) of VALUE;

Example 3‑253 TC \f E "-25
Type Definitions"
: Type Definitions

The following example (figure 3‑39) presents the case of a complete record representation clause. The record representation clause is provided because the size and the location of every component of the data structure are known.

[image: image40.emf]First Record Day (8 bits) Year (16 bits) Value (32 bits) Month (8 bits)

Figure 3‑393 TC \f G "-39
First Tree Structure"
: First Tree Structure

This tree structure is described using the following declaration:

type FIRST_RECORD is record

THE_DAY_OF_MONTH: DAY;

THE_MONTH: MONTH;

THE_YEAR: YEAR;

THE_MEASUREMENT: VALUE;
end record;
for FIRST_RECORD use record

THE_DAY_OF_MONTH at 0 range 0 .. 7;

THE_MONTH at 0 range 8 .. 15;

THE_YEAR at 0 range 16 .. 31;

THE_MEASUREMENT at 0 range 32 .. 63;
end record;
for FIRST_RECORD'size use 64; ‑‑ 64 bits

Example 3‑263 TC \f E "-26
Complete Record Representation Clause Declaration"
: Complete Record Representation Clause XE "Record representation clause"

 XE "Representation clause" Declaration

The following example (figure 3‑40) presents the case of an incomplete record representation clause. A fortiori no representation clause could be found after a computed size array or a computed structure record.
[image: image41.emf]Day (8 bits) Year (16 bits) Month (8 bits) Number (8 bits) Second Record Vector (1 .. Number) (?)

Figure 3‑403 TC \f G "-40
Second Tree Structure"
: Second Tree Structure

The number of measurements is not known at definition time. The size of the vector of measurements is therefore not provided. The tree structure is described using the following declarations:

type SECOND_RECORD(THE_NUMBER: NUMBER := 1) is record

THE_YEAR: YEAR;

THE_MEASUREMENT: VECTOR(1 .. THE_NUMBER);

THE_MONTH: MONTH;

THE_DAY_OF_MONTH: DAY;
end record;
for SECOND_RECORD use record

THE_NUMBER at 0 range 0 .. 7;

THE_YEAR at 0 range 8 .. 23;

-- no component clause for the_measurement,

-- for the_month nor for the_day_of_month
end record;
-- no length clause for SECOND_RECORD type

Example 3‑273 TC \f E "-27
Incomplete Record Representation Clause Declaration"
: Incomplete Record Representation Clause XE "Record representation clause"

 XE "Representation clause" Declaration

In this example, the length of ‘the_measurement’ depends on the value of the discriminant XE "Discriminant" ‘the_number’. No representation clause can be given for it. Nevertheless the size is determined by the expression ‘the_number times 32’, 32 being the size of the basic element VALUE. The component ‘the_measurement’ begins at bit 24. The length of ‘the_month’ is known but its location is not known at definition time. No representation clause can be given for it. The component ‘the_month’ begins after the end of ‘the_measurement’. In the same way, the length of ‘the_day_of_month’ is known, but its location is not known at definition time. No representation clause can be given for it. The component ‘the_DAY_OF_month’ begins after the end of ‘the_month’.

The following example (figure 3‑41) gives the case of a complete record representation clause, where some components overlap:

[image: image42.wmf]Day

(8 bits)

Y

ear

(16 bits)

Month

(8 bits)

V

alue

(32 bits)

Alpha

(8 bits)

Beta

(8 bits)

Gamma

(8 bits)

Delta

(8 bits)

Third Record

Figure 3‑413 TC \f G "-41
Third Tree Structure"
: Third Tree Structure

The size of the record is known at definition time: all the alternatives have the same length (32 bits if THE_DAY_OF_MONTH is equal MON, and 4*8 bits if THE_DAY_OF_MONTH is equal something else). The location of every component is known.

type THIRD_RECORD(THE_DAY_OF_MONTH: DAY := MON) is record

THE_MONTH: MONTH;

THE_YEAR: YEAR;

case THE_DAY_OF_MONTH is

 when MON =>

THE_MEASUREMENT: VALUE; ‑‑ 32 bits

 when others =>

THE_ALPHA_VALUE: ALPHA; ‑‑ 8 bits

THE_BETA_VALUE: BETA; -- 8 bits

THE_GAMMA_VALUE: GAMMA; -- 8 bits

THE_DELTA_VALUE: DELTA; -- 8 bits

end case;
end record;
for THIRD_RECORD use record

THE_DAY_OF_MONTH at 0 range 0 .. 7;

THE_MONTH at 0 range 8 .. 15;

THE_YEAR at 0 range 16 .. 31;

THE_MEASUREMENT at 0 range 32 .. 63;

THE_ALPHA_VALUE at 0 range 32 .. 39;

THE_BETA_VALUE at 0 range 40 .. 47;

THE_GAMMA_VALUE at 0 range 48 .. 55;

THE_DELTA_VALUE at 0 range 56 .. 63;
end record;
for THIRD_RECORD'size use 64; ‑‑ 64 bits

Example 3‑283 TC \f E "-28
Complete Record Representation Clause Declaration"
: Complete Record Representation Clause XE "Record representation clause"

 XE "Representation clause" Declaration

NOTE
–
The components ‘THE_MEASUREMENT’ and ‘THE_ALPHA_VALUE’ cannot appear in the same record, so their storage locations can overlap.

The following example (figure 3‑42)presents the case of a complete representation clause, where components and associated representation clauses are not declared in the same order:

[image: image43.wmf]Day

(8 bits)

Month

(8 bits)

Fourth Record

Y

ear

(16 bits)

V

alue

(32 bits)

Alpha

(8 bits)

Beta

(8 bits)

Gamma

(8 bits)

Delta

(8 bits)

Figure 3‑423 TC \f G "-42
Fourth Tree Structure"
: Fourth Tree Structure

The size of the record is known at definition time. The variant XE "Variant" part has a constant length (32 bits). A fixed component is located after the variant part.

type FOURTH_RECORD (THE_DAY_OF_MONTH: DAY := MON) is record

THE_MONTH: MONTH;

THE_YEAR: YEAR;

case THE_DAY_OF_MONTH is

 when MON =>

THE_MEASUREMENT: VALUE; -- 32 bits

 when others =>

THE_ALPHA_VALUE: ALPHA; -- 8 bits

THE_BETA_VALUE: BETA; -- 8 bits

THE_GAMMA_VALUE: GAMMA; -- 8 bits

THE_DELTA_VALUE: DELTA; -- 8 bits

end case;
end record;
for FOURTH_RECORD use record

THE_DAY_OF_MONTH at 0 range 0 .. 7;

THE_MONTH at 0 range 8 .. 15;

THE_MEASUREMENT at 0 range 16 .. 47;

THE_ALPHA_VALUE at 0 range 16 .. 23;

THE_BETA_VALUE at 0 range 24 .. 31;

THE_GAMMA_VALUE at 0 range 32 .. 39;

THE_DELTA_VALUE at 0 range 40 .. 47;

THE_YEAR at 0 range 48 .. 63;
end record;
for FOURTH_RECORD'size use 64; -- 64 bits

Example 3‑293 TC \f E "-29
Complete Record Representation Clause Declaration"
: Complete Record Representation Clause XE "Record representation clause"

 XE "Representation clause" Declaration

The data item of the type YEAR is declared before the variant XE "Variant" part in the record type declaration, but after the variant part in the record representation clause declaration.

The four previous examples are an illustration of the following rules:

1 The reasons for not providing a component representation clause are: the component has a variable size or it follows a component that has no component representation clause.

2 When no representation clause can be given for a component, its location is supposed to be contiguous to the previous component.

3 A fixed component is allowed after the variant XE "Variant" part if that part has a constant length, i.e., if the location of the fixed component can be stated using a component representation clause.

The storage location of a component, relative to the start of the record, has been expressed until now in bits in the examples (the distance XE "Distance" has been set to 0). For large structures, the values of expressions given after the reserved word range can be huge.

The EAST syntax also allows one to express the relative position of a component in distance XE "Distance" to which a number of bits is added. For that purpose, EAST allows two units for the distance: WORD_16_BITS XE "WORD_16_BITS" and WORD_32_BITS XE "WORD_32_BITS" , representing respectively a 16-bit word and a 32-bit word.

WORD_16_BITS XE "WORD_16_BITS" and WORD_32_BITS XE "WORD_32_BITS" are two EAST predefined identifiers.

Distances are expressed in multiples of the selected unit as follows:

[image: image44.emf]::= * Distance Literal Integer Decimal word_32_bits word_16_bits 0

Figure 3‑433 TC \f G "-43
Distance Specification Diagram"
: Distance XE "Distance" Specification Diagram

NOTE
–
The integer decimal literal is the value of the distance XE "Distance" expressed in the selected unit, either word_32_bits XE "WORD_32_BITS" or word_16_bits XE "WORD_16_BITS" .

See below for the previous record representation clause written using the constant XE "Constant" WORD_32_BITS XE "WORD_32_BITS" :

for THIRD_RECORD use record

THE_DAY_OF_MONTH at 0 * WORD_32_BITS XE "WORD_32_BITS" range 0 .. 7;

THE_MONTH at 0 * WORD_32_BITS range 8 .. 15;

THE_YEAR at 0 * WORD_32_BITS range 16 .. 31;

THE_MEASUREMENT at 1 * WORD_32_BITS range 0 .. 31;

THE_ALPHA_VALUE at 1 * WORD_32_BITS range 0 .. 7;

THE_BETA_VALUE at 1 * WORD_32_BITS range 8 .. 15;

THE_GAMMA_VALUE at 1 * WORD_32_BITS range 16 .. 23;

THE_DELTA_VALUE at 1 * WORD_32_BITS range 24 .. 31;
end record;
Example 3‑303 TC \f E "-30
Record Representation Clause Using WORD_32_BITS"
: Record Representation Clause XE "Record representation clause"

 XE "Representation clause" Using WORD_32_BITS XE "WORD_32_BITS"
3.3 PHYSICAL DESCRIPTION

The physical description part adds implementation information to the logical part. While the logical part of the DDR describes the meaning of the exchanged data, the physical part describes how the data are physically implemented on the medium.

The machine-dependent characteristics include:

· the representation of numerics;

· the way of storing arrays on the medium;

· the way of storing octets on the medium.

This physical part of the Data Description Record consists of a package XE "Package" . See below the content of the physical part of a DDR.

	package XE "Package" physical_package_name is

	
	way of storing arrays (see 3.3.1)
	

	

	
	way of storing octets (see 3.3.2)
	

	

	
	actual scalar type representations (see 3.3.3)
	

	

	
	association of basic type names with their actual representations (see 3.3.4)
	

	end physical_package_name ;

The name of the physical package XE "Package" is an identifier XE "Identifier" (see 3.1.3) and must be different from the name of the package giving the associated logical description.

The physical description part has to be considered to be the instance of a template. Thus, the syntax used throughout this section is not justified or formally defined. An extended example of the template is provided in 3.3.5. The next subsections (3.3.1 to 3.3.4) explain the content of the template. Each time a declaration of the template must be used as it is, it is called ‘fixed part of the physical description’ as opposed to the declarations that change from a description to another one.

Every part of the template is optional (see 3.3.5). There is no required ordering between the different parts of the template.

3.3.1 STORING ARRAYS

An array object XE "Object" on a medium consists of a sequence of components. For a multi-dimensional array, i.e., an array with more than one index XE "Index" range, there are different methods to organize the sequence: either the first index range varies first or the last index range varies first. The first described method of storing arrays is called first_index_first, and the second one is called last_index_first.

The method for storing arrays on the medium is described in the physical description by using an enumeration type. See below the corresponding declaration:

type ARRAY_STORAGE_METHOD is (
FIRST_INDEX_FIRST,

LAST_INDEX_FIRST);

Fixed Part 3-1 of the Physical Description XE "Physical description" : Array Storage Method XE "Array storage method"
Using this declaration, it is necessary to declare the actual method for storing arrays, for example:

ARRAY_STORAGE: constant XE "Constant" ARRAY_STORAGE_METHOD :=

FIRST_INDEX_FIRST;

Example 3‑313 TC \f E "-31
Actual Array Storage Method"
: Actual Array Storage Method XE "Array storage method"
This declaration is applicable to the whole description.

By default, the array storage is FIRST_INDEX_FIRST.

3.3.2 STORING OCTETS/BITS

The method used to store octets/bits determines the location of the Most Significant Bit (MSB) and the Least Significant Bit (LSB) of a data element.

A machine is said to be big-endian or little-endian depending on whether the MSB is in the lowest or highest addressed octet of the data element.

For a big-endian representation of a multi-octet data element, the MSB is in the first transmitted octet, i.e., in the first octet on the medium, while it is in the last transmitted octet, i.e., in the last octet on the medium, for a little-endian representation of a multi-octet data element.

The big-endian representation for a data element can be viewed as storing the bits from most to LSB order, and then keeping this same order when output to some medium.

The little-endian representation for a data element can be viewed as storing the bits from least to MSB order, but then re-ordering the bits (from most to least significant) within each octet when output to some medium.

This machine-dependent characteristic is very important for a correct interpretation of the data. Its definition is given for multi-octet data elements, but is still applicable for every data element, whatever its length and its position (on octet boundary or not) within the data set.

The following example presents the transmission of data elements for both kinds of machines.
	Logically we have:

	
	A

2 bits
	B

3 bits
	C

16 bits
	D

n bits
	

	
	A1
	A2
	B1
	B2
	B3
	C1
	C2
	C3
	C4

	C13
	C14
	C15
	C16
	D1
	D2

	Dn
	

	When writing onto a medium, the machine writes the bits of the current octet first so that the contained data element bits are ordered from MSB to LSB while maintaining their relative bit positions to one another.

Therefore, for a big-endian machine where the bits are stored MSB first, the bit values in memory appear as follows:

	
	A1
	A2
	B1
	B2
	B3
	C1
	C2
	C3
	C4
C11.....
	C13
	C14
	C15
	C16
	D1
	D2
	...
	Dn
	

	
	21
	20
	22
	21
	20
	215
	214
	213
	212
25......
	23
	22
	21
	20
	2n-1
	2n-2
	...
	20
	

	
	
	

	The bits are transmitted towards the medium octet by octet in the following order:

A1 A2 B1 B2 B3 C1 C2 C3 then C4 C5 C6 ... C11 then C12 C13 ... D1 D2 D3 and so forth.

For a little-endian machine where the bits are stored LSB first, the bit values in memory appear as follows:

	
	A1
	A2
	B1
	B2
	B3
	C1
	C2
	C3
	C4
C11...
	C13
	C14
	C15
	C16
	D1
	D2
	...
	Dn
	

	
	20
	21
	20
	21
	22
	20
	21
	22
	23
210...
	212
	213
	214
	215
	20
	21
	...
	2n-1
	

	
	
	

	The bits are transmitted towards the medium octet by octet in the following order:

C3 C2 C1 B3 B2 B1 A2 A1 then C11 C10 C9 ... C4 then D3 D2 D1 C16 ... C12 and so forth.

Example 3‑323 TC \f E "-32
Octet Storage Possibilities"
: Octet Storage Possibilities

See below the corresponding declaration:

type BIT_ORDER is (
HIGH_ORDER_FIRST,
-- big-endian representation

LOW_ORDER_FIRST);
-- little-endian representation

Fixed Part 3-2 of the Physical Description XE "Physical description" : Bit Order

Using this declaration, it is necessary to declare the actual way of storing octets, for example:

OCTET_STORAGE: constant XE "Constant" BIT_ORDER := HIGH_ORDER_FIRST;

Example 3‑333 TC \f E "-33
Actual Bit Order"
: Actual Bit Order

This declaration is applicable to the whole description.

The description of the way of storing octets (using the type BIT_ORDER) is sufficient to fully describe the organization on the medium (even at a bit level).

By default, the octet storage is HIGH_ORDER_FIRST.

3.3.3 REPRESENTATION OF SCALAR TYPES

Scalar types can be either binary encoded or ASCII encoded.

3.3.3.1 Binary Representation XE "Binary Representation" of Scalar Types

The way to determine the value of a numeric (integer or real), i.e., how to interpret its bit pattern on the medium, depends on its binary representation.

The binary representation of a numeric indicates its bit pattern on the medium. It includes the physical characteristics that may differ depending on the machine that has generated the numeric.

No binary representation is provided for enumeration types, because they are mapped on integers, for which the location of the bits from the MSB to the LSB are deduced from another physical information item, called bit order (see 3.3.2). If necessary, negative values are represented in a two’s complement form.

If a negative value is present in the enumeration list, then the sign bit is present in any data occurrence of the enumeration type. If the sign bit is set, the two’s complement shall be used to decode the integer value.

If all enumeration values are positive integers, then there is no sign bit and any data occurrence of the enumeration must be considered to be an unsigned integer.

The binary representation of an integer includes the following characteristics:

· the sign convention, which indicates the complementation, if any;

· the bit ordering, which indicates the location of MSB to the LSB, the sign position, if any, being the MSB.

The binary representation of a real includes the following characteristics:

· the sign position;

· the sign convention, if any;

· the location of the exponent;

· the bias, which is a constant XE "Constant" chosen to make the sum of exponent value and bias which is a non-negative number;

· the exponent base, which is the integer (two, ten or sixteen) raised to the exponent power in determining the value of the represented number;

· the location of the mantissa.

It must additionally include the identifier of the convention of the generating machine, ‘convention of the generating machine’ being the method to reconstitute the real values from the previously defined characteristics. An Authority and Description Identifier XE "Identifier" (ADID) is associated with every registered convention. See reference [E5] for the list of conventions and related ADIDs.

The conventions adopted in this document for the data representation on a medium are the following:

· In multi-octet elements, the first octet is drawn in the leftmost position and is called ‘Octet Zero’. Successive octets are assigned successively larger numbers.

· Within an octet or binary field (not a multiple of octets), the first bit is drawn in the leftmost position and is called ‘Bit Zero’.

The following rule is applicable for a field representing an integer, an exponent or a mantissa of a real: the bits of the field are not necessarily provided in the right order (MSB to LSB) on the medium. The aim is to reconstitute the proper bit ordering (MSB to LSB). To achieve that, the initial field might be divided into an ordered sequence of subfields for which the bit ordering is respected in each of them. The order of the subfields provides the order of bits from the MSB to the LSB of the whole field.

	Bit number
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	
	
	
	
	
	
	
	
	
	
	

	Significance
	26
	25
	24
	23
	22
	29
	28
	27
	21
	20

The bit ordering for this field from the MSB to LSB is: 5-6-7-0-1-2-3-4-8-9. This can be summarized using the previous rule in 3 subfields according to the bit numbers in the following order: (5 , 7) - (0 , 4) - (8 , 9).

Example 3‑343 TC \f E "-34
Bit Ordering"
: Bit Ordering

Using the previous conventions and rules, the binary representation of numerics is described in the corresponding physical description part. It contains:

· a fixed part declaring the types used to describe the representations (INTEGER_PHYSICAL_DESCRIPTION and REAL_PHYSICAL_DESCRIPTION), this part being always the same and present in any physical description part;

· a part declaring the actual representations used, i.e., a specific part, depending on the nature of the numerics to be described.

type NATURAL_NUMBER is range 0 .. 65535;

type LOCATION_OF_SUBFIELD is
-- subfields composing an integer or the
record

-- exponent/mantissa of a real.

BEGINNING_AT_BIT_NUMBER: NATURAL_NUMBER;

ENDING_AT_BIT_NUMBER: NATURAL_NUMBER;
end record;

MAXIMUM_NUMBER_OF_SUBFIELDS: constant XE "Constant" := 255;
type SUBFIELD_NUMBER is range

1 .. MAXIMUM_NUMBER_OF_SUBFIELDS;

type LOCATION_OF_FIELD is array (SUBFIELD_NUMBER range <>)

of LOCATION_OF_SUBFIELD;

Fixed Part 3-3 of the Physical Description XE "Physical description" : Location of Fields for Numerics

NOTES

1 The MAXIMUM_NUMBER_OF_SUBFIELDS is set to 255. It is an arbitrary value that is big enough to cover all the identified machine architectures (i.e., the number of subfields that are necessary to locate the bits of an integer can be up to 255).

2 The upper bound of NATURAL_NUMBER is set to 65535. It is an arbitrary value that seems to be large enough in this context.

type SIGN_CONVENTION is (UNSIGNED, SIGN_AND_MAGNITUDE,

ONES_COMPLEMENT, TWOS_COMPLEMENT);

type LIST_OF_RECOGNIZED_CONVENTIONS is (FCSTC000, FCSTC001,

FCSTC0002, FCSTC0003); -- this list is not exhaustive (see reference [E5])

type INTEGER_PHYSICAL_DESCRIPTION (

number_of_subfields: SUBFIELD_NUMBER := 1) is record

COMPLEMENT: SIGN_CONVENTION;

LOCATION: LOCATION_OF_FIELD (1 .. number_of_subfields);
end record;

type REAL_PHYSICAL_DESCRIPTION(

number_of_subfields_in_exponent: SUBFIELD_NUMBER := 1;

number_of_subfields_in_mantissa: SUBFIELD_NUMBER := 1)
is record

CONVENTION_USED: LIST_OF_RECOGNIZED_CONVENTIONS;

SIGN_BIT_NUMBER: NATURAL_NUMBER;

COMPLEMENT: SIGN_CONVENTION;

EXPONENT_BASE: NATURAL_NUMBER;

BIAS: NATURAL_NUMBER;

LOCATION_OF_EXPONENT: LOCATION_OF_FIELD (

1 .. number_of_subfields_in_exponent);

LOCATION_OF_MANTISSA: LOCATION_OF_FIELD (

1 .. number_of_subfields_in_mantissa);
end record;
Fixed Part 3-4 of the Physical Description XE "Physical description" : Binary Description for Numerics

Each time the bits of an integer or the bits of the exponent or mantissa are not contiguously located on the medium from the MSB to the LSB (see example 3‑34), several subfields are necessary to locate the bits. In these cases, BEGINNING_AT_BIT_NUMBER of the first element of the array LOCATION_OF_FIELD is supposed to be the bit number of the MSB. Bit numbers continue in sequence until ENDING_AT_BIT_NUMBER of the last element of LOCATION_OF_FIELD, which is supposed to be the bit number of the LSB.

The actual representation of the numerics is given by the declaration of constants of the previous record types (INTEGER_PHYSICAL_DESCRIPTION for the representation of integers and REAL_PHYSICAL_DESCRIPTION for the representation of reals).

The actual representation of a numeric is therefore provided by a record value (i.e., the value of the constant of the relevant record type: INTEGER_PHYSICAL_DESCRIPTION or REAL_PHYSICAL_DESCRIPTION).

Figure 3‑44 illustrates the syntax of a record value.

[image: image45.emf]::=) , (= > Record Value Identifier Component Value Component

Figure 3‑443 TC \f G "-44
Record Value Specification Diagram"
: Record Value Specification Diagram

In the case of the record types used in the physical part of an EAST description, the component value is either an enumeration literal, an integer literal or an array value (see figure 3‑45).

[image: image46.emf]Com ponent Value Array Value ::= Enum eration LiteralValue Integer LiteralValue

Figure 3‑453 TC \f G "-45
Component Value Definition Diagram"
: Component Value Definition Diagram

Figure 3‑46 illustrates the syntax of an array value.

[image: image47.emf]::=) , (= > Array Value Value Index Value Component

Figure 3‑463 TC \f G "-46
Array Value Specification Diagram"
: Array Value Specification Diagram

The index XE "Index" value is an integer literal. In the case of the array types used in the physical part of an EAST description, the component value is either an enumeration literal, an integer literal, an array value, or a record value.

The following examples present real cases of two integers and a real that must be described.

A 16-bit signed integer with the following physical representation (big-endian representation):

	0 7
	8 15

	octet 0
	octet 1

	 SYMBOL 175 \f "Symbol" 214
	20

Sign

· The sign position is bit 0.

· The bit ordering is (0,15), which means that the MSB is bit 1 (bit 0 being the sign bit) and the LSB is bit 15.

Example 3‑353 TC \f E "-35
Bit Ordering for the Above 16-Bit Signed Integer"
: Bit Ordering for the Above 16-Bit Signed Integer

Using the types declared in the fixed part of the physical description, it is possible to declare the actual binary representation of this integer. Assuming that for negative values the two’s complement is used, the actual binary representation is given by the following declaration:

Binary_Representation_01:
constant XE "Constant" INTEGER_PHYSICAL_DESCRIPTION :=

(number_of_subfields => 1 ,

COMPLEMENT => TWOS_COMPLEMENT,

LOCATION => (1 => (0,15)));

Example 3‑363 TC \f E "-36
Actual Binary Representation of the Above 16-Bit Signed Integer"
: Actual Binary Representation XE "Binary Representation" of the Above 16-Bit Signed Integer

In this example, the binary representation indicates that the sign bit is the first bit encountered (bit 0). Then, a less significant bit is the second bit encountered (bit 1) and so on till the sixteenth bit (this bit being the LSB of the integer).

In the same way, a 16-bit unsigned integer with the following physical representation (big-endian representation):

	0 7
	8 15

	octet 0
	octet 1

	 215
	20

· The bit ordering is (0,15), which means that the MSB is bit 0 and LSB is bit 15.

Example 3‑373 TC \f E "-37
Bit Ordering for the Above 16-Bit Unsigned Integer"
: Bit Ordering for the Above 16-Bit Unsigned Integer

Using the types declared in the fixed part of the physical description, it is possible to declare the actual binary representation of this integer. The actual binary representation is given by the following declaration:

Binary_Representation_02:
constant XE "Constant" INTEGER_PHYSICAL_DESCRIPTION :=

(number_of_subfields => 1 ,

COMPLEMENT => UNSIGNED,

LOCATION => (1 => (0,15)));

Example 3‑383 TC \f E "-38
Actual Binary Representation of the Above 16-Bit Unsigned Integer"
: Actual Binary Representation XE "Binary Representation" of the Above 16-Bit Unsigned Integer

In this example, the binary representation indicates that the most significant is the first bit encountered (bit 0). Then, a less significant bit is the second bit encountered (bit 1) and so on until the sixteenth bit (this bit being the LSB of the integer).

If the range that is specified in the integer type XE "Integer type" definition (in the logical part of the EAST description) allows negative values, then there is a sign bit, and the SIGN_CONVENTION cannot be UNSIGNED. If this range specifies only positive values, then there can be a sign bit (or not) according to the SIGN_CONVENTION. If there is no sign bit, the first bit number of the first subfield really corresponds to the MSB.

A 32-bit real with the following physical representation (little-endian representation):

	0 7
	8 15
	16 23
	24 31

	octet 0
	octet 1
	octet 2
	octet 3

	SYMBOL 172 \f "Symbol" Mantissa SYMBOL 174 \f "Symbol"
	SYMBOL 172 \f "Symbol" Mantissa SYMBOL 174 \f "Symbol"
	SYMBOL 175 \f "Symbol" SYMBOL 172 \f "Symbol" Mantissa SYMBOL 174 \f "Symbol"
Exponent
	SYMBOL 175 \f "Symbol" SYMBOL 172 \f "Symbol" Exponent SYMBOL 174 \f "Symbol"
Sign

· The sign position is bit 24.

· The location of the exponent includes two subfields (25,31) and (16,16), which means that the MSB of the exponent is bit 25 and the LSB is bit 16.

· The location of the mantissa includes three subfields (17,23), (8,15) and (0,7), which means that the MSB of the mantissa is bit 17 and the LSB is bit 7.

Example 3‑393 TC \f E "-39
Bit Ordering for the Above 32-Bit Real"
: Bit Ordering for the Above 32-Bit Real

Using the types declared in the fixed part of the physical description, it is possible to declare the actual binary representation of this real. Assuming that the real is generated on a PC (which uses the IEEE 754 convention, identified by FCSTC000, see reference[E5]), the actual binary representation is given by the following declaration:

Binary_Representation_03:
constant XE "Constant" REAL_PHYSICAL_DESCRIPTION :=

(number_of_subfields_in_exponent => 2,

number_of_subfields_in_mantissa => 3,

CONVENTION_USED => FCSTC000, -- IEEE 754

SIGN_BIT_NUMBER => 24,

COMPLEMENT => SIGN_AND_MAGNITUDE,

EXPONENT_BASE => 2,

BIAS => 127,

LOCATION_OF_EXPONENT => (
1 => (25,31),

2 => (16,16)),

LOCATION_OF_MANTISSA => (
1 => (17,23),

2 => (8,15),

3 => (0,7)));

Example 3‑403 TC \f E "-40
Actual Binary Representation of a 32-Bit Real"
: Actual Binary Representation XE "Binary Representation" of a 32-Bit Real

In this example, the binary representation indicates that the most significant bit of the exponent is the twenty-sixth bit encountered (bit 25). Then from bit 26 through bit 31 the bits encountered are less significant, and bit 16 is the LSB of the exponent.

In the same way, the most significant bit of the mantissa is the eighteenth bit encountered (bit 17). Then from bit 18 through bit 23, and then from bit 8 through bit 15, and from bit 0 through bit 7, the bits encountered are less significant, bit 7 being the LSB of the mantissa.

NOTE
–
The name of the constant XE "Constant" used to identify the binary representation (Binary_Representation_01 or Binary_Representation_02) could be any identifier XE "Identifier" (except a reserved keyword). The only restriction is that a constant identifier cannot be defined twice in the physical part.

Reference [E5] provides the way of calculating real values for the conventions, mentioned in the definition of LIST_OF_RECOGNIZED_CONVENTIONS.

3.3.3.2 ASCII Representation XE "ASCII Representation" of Scalar Types XE "Scalar type"
ASCII encoded types are sometimes used to increase the portability of the data. Enumeration XE "Enumeration type" types, integer types XE "Integer type" , and real types can be encoded using character strings. An ASCII encoded type is a character string type with a specific format, depending on the nature of the type (enumeration, integer, or real).

There is no difference (except the size) between the logical description of a binary type and the logical description of an ASCII encoded type. The physical description specifies the actual representation of the scalar types. By default, a type is a binary encoded type. An ASCII representation XE "ASCII Representation" must be associated with the type name, if the type is ASCII encoded.

The ASCII representation XE "ASCII Representation" of an enumeration type provides all the character strings associated with all the enumeration literals of the type. The character strings, which are the coding values of the enumeration type, have all the same length (NUMBER_OF_CHARACTERS). The set of the coding values is therefore represented by a character string list, which is also an array of characters, dimensioned by the NUMBER_OF_OCCURRENCES of the enumeration type and the NUMBER_OF_CHARACTERS of every occurrence.

The ASCII representation XE "ASCII Representation" of an enumeration uses the following types:

type STRING_LIST is array(
NATURAL_NUMBER range <>,

NATURAL_NUMBER range <>) of CHARACTER;

type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION (

NUMBER_OF_OCCURRENCES: NATURAL_NUMBER := 0;

NUMBER_OF_CHARACTERS: NATURAL_NUMBER := 0) is record

REPRESENTATION: STRING_LIST (
1 .. NUMBER_OF_OCCURRENCES,

1 .. NUMBER_OF_CHARACTERS);

end record;
Fixed Part 3-5 of the Physical Description XE "Physical description" : ASCII Description for Enumeration Types XE "Enumeration type"
The number of characters used to encode the enumeration type must be the same for every enumeration literal of the type. This number is known at definition time.

All characters (i.e., the 256 characters of the Latin Alphabet No. 1—see reference [1] and/or annex B) are allowed and are significant, including the space character.

The physical representations of the enumeration literals are provided in the order of their declaration in the logical part.

An enumeration type is either an ASCII encoded type (in this case, its ASCII representation XE "ASCII Representation" shall be present in the physical description part) or a binary encoded type (in this case, an enumeration representation clause can be present in the logical description part). In any case, enumeration representation clause and ASCII representation are exclusive: they must not be associated with the same enumeration type.

Using the types declared in the fixed part of the physical description, it is possible to declare the actual ASCII representation XE "ASCII Representation" of the enumeration types.

For example, an enumeration type which has two permitted values: ‘WORKING’ and ‘IDLE’, identifying a process, can be described in the logical part as follows:

type PROCESS_IDENTIFICATION is (WORKING, IDLE);
for PROCESS_IDENTIFICATION'size use 56; -- bits, i.e., 7 characters

Example 3‑413 TC \f E "-41
ASCII Enumeration Type Logical Declaration"
: ASCII Enumeration Type XE "Enumeration type" Logical Declaration

and in the physical part as follows:

ASCII_Rep_01: constant XE "Constant" ASCII_ENUMERATION_PHYSICAL_DESCRIPTION :=

(NUMBER_OF_OCCURRENCES => 2, NUMBER_OF_CHARACTERS => 7,

REPRESENTATION => ("WORKING" , "IDLE "));

Example 3‑423 TC \f E "-42
ASCII Enumeration Type Physical Description"
: ASCII Enumeration XE "Enumeration type" Type Physical Description XE "Physical description"
In this example, three space characters belong to the representation of the enumeration value IDLE.

An ASCII Encoded Decimal Integer is a character string representing an integer value. The format of the character string corresponding to an ASCII encoded decimal integer is described in figure 3‑47:

[image: image48.emf]digit space + - space

Figure 3‑473 TC \f G "-47
ASCII Encoded Decimal Integer Format"
: ASCII Encoded Decimal Integer Format

An ASCII Encoded Decimal Real is a string representing a real value. The format of the character string corresponding to an ASCII encoded decimal real is described in figure 3‑48:

[image: image49.emf]digit space + - space digit EeDd +- digit

Figure 3‑483 TC \f G "-48
ASCII Encoded Decimal Real Format"
: ASCII Encoded Decimal Real Format

A digit is one of the following characters: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’.

Only the normalized ASCII encoded numbers can be described using EAST. There is no convention for the ASCII representation XE "ASCII Representation" of infinite values (‘+INF’, ‘-INF’ or ‘+ SYMBOL 165 \f "Symbol"’, ‘- SYMBOL 165 \f "Symbol"’) and no representation for ‘NaN’ (Not a Number).

The ASCII representation XE "ASCII Representation" of an integer or real type specifies the number of characters used for the integer or real values. The ASCII representation of an integer or real uses the following type:

type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is record

NUMBER_OF_CHARACTERS: NATURAL_NUMBER;
end record;

Fixed Part 3-6 of the Physical Description XE "Physical description" : ASCII Description for Numerics

Using the types declared in the fixed part of the physical description, it is possible to declare the actual ASCII representation XE "ASCII Representation" of the numerics.

For example, a five-character ASCII decimal integer type XE "Integer type" can be described in the logical part as follows:

type COUNTER is range -1 .. 16383;
for COUNTER'size use 40; -- bits, i.e., 5 characters

Example 3‑433 TC \f E "-43
ASCII Integer Type Logical Declaration"
: ASCII Integer Type Logical Declaration

and in the physical part as follows:

ASCII_Rep_02: constant XE "Constant" ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=

(NUMBER_OF_CHARACTERS => 5);

Example 3‑443 TC \f E "-44
ASCII Integer Type Physical Description"
: ASCII Integer Type Physical Description XE "Physical description"
For example, an 11-character ASCII decimal real type can be described in the logical part as follows:

type KILOMETERS is digits 5;
for KILOMETERS'size use 88; -- bits

Example 3‑453 TC \f E "-45
ASCII Real Type Logical Declaration"
: ASCII Real Type XE "Real type" Logical Declaration

and in the physical part as follows:

ASCII_Rep_03: constant XE "Constant" ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=

(NUMBER_OF_CHARACTERS => 11);

Example 3‑463 TC \f E "-46
ASCII Real Type Physical Description"
: ASCII Real Type XE "Real type" Physical Description XE "Physical description"
NOTE
–
The name of the constant XE "Constant" used to identify the ASCII representation XE "ASCII Representation" (ASCII_Rep_01 or ASCII_Rep_02 or ASCII_Rep_03) could be any identifier XE "Identifier" (except a reserved keyword). The only restriction is that a constant identifier cannot be defined twice in the physical part.

3.3.4 RELATIONSHIP BETWEEN THE REPRESENTATION OF SCALAR TYPES AND LOGICAL TYPES

As seen in 3.3.3, a binary or ASCII representation XE "ASCII Representation" is provided for some basic types (enumeration, integer, or real types) defined in the logical part of the DDR. The association of a type name with the corresponding representation name also has to be provided in this physical description part. See below how this association is implemented in EAST:

· an enumeration type gives all the basic type names, which are previously defined in the logical description part and which need a physical representation, by prefixing them with ‘USER_TYPE_’:

type BASIC_TYPE_NAMES is (USER_TYPE_xxx , USER_TYPE_yyy ,

USER_TYPE_zzz, USER_TYPE_ttt);

· the different representations are declared as seen in 3.3.3.1 and 3.3.3.2:

Binary_Representation_01: constant INTEGER_PHYSICAL_DESCRIPTION

:= "value"; -- integer type
Binary_Representation_02: constant REAL_PHYSICAL_DESCRIPTION

:= "value"; -- real type
ASCII_Representation_01: constant

ASCII_NUMERIC_PHYSICAL_DESCRIPTION

:= "value"; -- integer or real type
ASCII_Representation_02: constant

ASCII_ENUMERATION_PHYSICAL_DESCRIPTION

:= "value"; -- enumeration type
... and so forth ...

· finally, the relation between the type names and their binary representations is specified as follows:

type RELATION(choice: BASIC_TYPE_NAMES) is record

case choice is

when USER_TYPE_xxx =>

PHYS_xxx: INTEGER_PHYSICAL_DESCRIPTION

:= Binary_Representation_01;

when USER_TYPE_yyy =>

PHYS_yyy: REAL_PHYSICAL_DESCRIPTION

:= Binary_Representation_02;

when USER_TYPE_zzz =>

PHYS_zzz: ASCII_NUMERIC_PHYSICAL_DESCRIPTION

:= ASCII_Representation_01;

when USER_TYPE_ttt =>

PHYS_ttt: ASCII_ENUMERATION_PHYSICAL_DESCRIPTION

:= ASCII_Representation_02;

and so forth ...

end case;
end record;
3.3.5 TEMPLATE OF A PHYSICAL DESCRIPTION PART

This subsection gives an extended template for the physical description part definition. The italicized part corresponds to the variable part of the description, i.e., what changes from a physical part to another physical part.

package XE "Package" physical_package_name is

type ARRAY_STORAGE_METHOD is (
FIRST_INDEX_FIRST,

LAST_INDEX_FIRST);
ARRAY_STORAGE: constant XE "Constant" ARRAY_STORAGE_METHOD :=

FIRST_INDEX_FIRST;

type BIT_ORDER is (
HIGH_ORDER_FIRST,
-- big-endian representation

LOW_ORDER_FIRST);
-- little-endian representation
OCTET_STORAGE: constant BIT_ORDER := HIGH_ORDER_FIRST;

type LOCATION_OF_SUBFIELD is
-- subfields composing an integer or the
record

-- exponent/mantissa of a real.

BEGINNING_AT_BIT_NUMBER: NATURAL_NUMBER;

ENDING_AT_BIT_NUMBER: NATURAL_NUMBER;
end record;

MAXIMUM_NUMBER_OF_SUBFIELDS: constant := 255;
type SUBFIELD_NUMBER is range

1 .. MAXIMUM_NUMBER_OF_SUBFIELDS;

type LOCATION_OF_FIELD is array (SUBFIELD_NUMBER range <>)

of LOCATION_OF_SUBFIELD;

type SIGN_CONVENTION is (UNSIGNED, SIGN_AND_MAGNITUDE,

ONES_COMPLEMENT, TWOS_COMPLEMENT);

type LIST_OF_RECOGNIZED_CONVENTIONS is (FCSTC000);

type INTEGER_PHYSICAL_DESCRIPTION (

number_of_subfields: SUBFIELD_NUMBER := 1) is record

COMPLEMENT: SIGN_CONVENTION;

LOCATION: LOCATION_OF_FIELD (1 .. number_of_subfields);
end record;

type REAL_PHYSICAL_DESCRIPTION(

number_of_subfields_in_exponent: SUBFIELD_NUMBER := 1;

number_of_subfields_in_mantissa: SUBFIELD_NUMBER := 1)
is record

CONVENTION_USED: LIST_OF_RECOGNIZED_CONVENTIONS;

SIGN_BIT_NUMBER: NATURAL_NUMBER;

COMPLEMENT: SIGN_CONVENTION;

EXPONENT_BASE: NATURAL_NUMBER;

BIAS: NATURAL_NUMBER;

LOCATION_OF_EXPONENT: LOCATION_OF_FIELD (

1 .. number_of_subfields_in_exponent);

LOCATION_OF_MANTISSA: LOCATION_OF_FIELD (

1 .. number_of_subfields_in_mantissa);
end record;

type STRING_LIST is array(
NATURAL_NUMBER range <>,

NATURAL_NUMBER range <>) of CHARACTER;
type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION (

NUMBER_OF_OCCURRENCES: NATURAL_NUMBER := 0;

NUMBER_OF_CHARACTERS: NATURAL_NUMBER := 0) is record

REPRESENTATION: STRING_LIST (
1 .. NUMBER_OF_OCCURRENCES,

1 .. NUMBER_OF_CHARACTERS);
end record;

type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is record

NUMBER_OF_CHARACTERS: NATURAL_NUMBER;
end record;

Binary_Representation_01:
constant INTEGER_PHYSICAL_DESCRIPTION :=

(number_of_subfields => 1 ,

COMPLEMENT => TWOS_COMPLEMENT,

LOCATION => (1 => (0,15)));
 Binary_Representation_02:
constant REAL_PHYSICAL_DESCRIPTION :=

(number_of_subfields_in_exponent => 1,

number_of_subfields_in_mantissa => 1,

CONVENTION_USED => FCSTC000,

SIGN_BIT_NUMBER => 0,

COMPLEMENT => SIGN_AND_MAGNITUDE,

EXPONENT_BASE => 2,

BIAS => 127,

LOCATION_OF_EXPONENT => (
1 => (1,8),

LOCATION_OF_MANTISSA => (
1 => (9,31)));
ASCII_Rep_01: constant ASCII_ENUMERATION_PHYSICAL_DESCRIPTION :=

(NUMBER_OF_OCCURRENCES => 2, NUMBER_OF_CHARACTERS => 7,

REPRESENTATION => ("WORKING" , "IDLE"));

ASCII_Rep_02: constant ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=

(NUMBER_OF_CHARACTERS => 5);

type BASIC_TYPE_NAMES is (USER_TYPE_xxx , USER_TYPE_yyy ,

USER_TYPE_zzz , USER_TYPE_ttt);

type RELATION(choice: BASIC_TYPE_NAMES) is record

case choice is

when USER_TYPE_xxx =>

PHYS_xxx: INTEGER_PHYSICAL_DESCRIPTION

:= Binary_Representation_01;

when USER_TYPE_yyy =>

PHYS_yyy: REAL_PHYSICAL_DESCRIPTION

:= Binary_Representation_02;

when USER_TYPE_zzz =>

PHYS_zzz: ASCII_ENUMERATION_PHYSICAL_DESCRIPTION

:= ASCII_Rep_01;

PHYS_ttt: ASCII_NUMERIC_PHYSICAL_DESCRIPTION

:= ASCII_Rep_02;

end case;
end record;
end physical_package_name;

Most of the declarations are optional. Indeed only the types that are used must be declared. As an example, the type REAL_PHYSICAL_DESCRIPTION must be defined only if it is used in the physical part, i.e., if at least one real type is defined in the logical part.

The following rules apply:

1 The array storage is optional (ARRAY_STORAGE_METHOD type and ARRAY_STORAGE constant XE "Constant") if there is no multi-dimensional array in the logical part, or if the method is FIRST_INDEX_FIRST (default value).

2 The octet storage is optional (BIT_ORDER type and OCTET_STORAGE constant XE "Constant") if the method is HIGH_ORDER_FIRST (default value).

3 The type REAL_PHYSICAL_DESCRIPTION is optional if there is no binary representation for real type to provide, i.e., if there is no binary real type in the logical part.

4 The type INTEGER_PHYSICAL_DESCRIPTION is optional if there is no binary representation for integer type XE "Integer type" to provide, i.e., if there is no binary integer type in the logical part or if they are all considered to be unsigned integers or two’s-complement signed integers.

5 The type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION is optional if there is no ASCII representation XE "ASCII Representation" for enumeration type to provide, i.e., if there is no ASCII enumeration type in the logical part.

6 The type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is optional if there is no ASCII representation XE "ASCII Representation" for integer or real type to provide, i.e., if there is no ASCII integer type XE "Integer type" and no ASCII real type in the logical part.

7 The types BASIC_TYPE_NAMES and RELATION are optional if there is no representation to provide.

4 RESERVED KEYWORDS

The following reserved keywords are not available for use as declared identifiers. Some of them are reserved keywords of the Ada programming language (see reference [E3]), but not of the EAST language. These words are also reserved so that in the case of an Ada application using an EAST description in accessing the data, the syntax will be compatible, although not equivalent in meaning. Differences between Ada and EAST syntax interpretations are discussed in annex D. Other words are reserved identifiers of the EAST language and not of the Ada programming language.

a) EAST and Ada Keywords

	
array
	
digits
	
is
	
package
	
type

	
at
	
	
	
	

	
	
end
	
null
	
range
	
use

	
case
	
	
	
record
	

	
constant
	
for
	
of
	
	
when

	
	
	
others
	
subtype
	

b) Other Ada Keywords

	
abort
	
delta
	
if
	
pragma
	
tagged

	
abs
	
do
	
in
	
private
	
task

	
abstract
	
	
	
procedure
	
terminate

	
accept
	
else
	
limited
	
protected
	
then

	
access
	
elsif
	
loop
	
	

	
aliased
	
entry
	
	
raise
	
until

	
all
	
exception
	
mod
	
rem
	

	
and
	
exit
	
	
renames
	
while

	
	
	
new
	
requeue
	
with

	
begin
	
function
	
not
	
return
	

	
body
	
	
	
reverse
	
xor

	
	
generic
	
or
	
	

	
declare
	
goto
	
out
	
select
	

	
delay
	
	
	
separate
	

c) Pure EAST reserved identifiers

	
virtual_...
	
word_32_bits XE "WORD_32_BITS"
	
word_16_bits XE "WORD_16_BITS"
	east_version
	virtual

NOTE
–
Any identifier XE "Identifier" beginning with ‘virtual_’ is reserved for virtual component identifier only.

5 CONFORMANCE

Data conforming to a Recommendation may be said to be in conformance at some identified level. Identifying conformance levels provides a standard way to classify the required capabilities of generating and receiving systems.

The Recommendation for Data Description Language EAST Specification recognizes only one conformance level, and that is the entire specification. Therefore recipient systems which are said to be in conformance to this Recommendation shall recognize the entire specification.

ANNEX A

ACRONYMS AND GLOSSARY

(This annex is part of the Recommendation)

This annex defines key acronyms and the glossary of terms which are used throughout this Recommendation to describe the Data Description Language EAST.

A1 ACRONYMS

ADID

Authority and Description IDentifier
ASCII

American Standard Code for Information Interchange
BNF XE "BNF"

Backus-Naur-Form
DDR

Data Description Record
EAST

Enhanced Ada SubseT
ISO

International Standards Organization
LSB

Least Significant Bit
LSO

Least Significant Octet
MSB

Most Significant Bit
MSO

Most Significant Octet

A2 GLOSSARY OF TERMS

ADID: in the context of EAST, an ADID is an identifier XE "Identifier" of the EAST Recommendation within the CCSDS organization. See reference [E2].

Array type: an array type XE "Array type" is a composite type whose components are all of the same type. Components are selected by indexing.

Based literal XE "Based literal" : a based literal is a numeric literal expressed in a form that specifies the base explicitly.

Character literal: a character literal XE "Character literal" is formed by enclosing a graphic character between two apostrophe characters.

Character type: a character type XE "Character type" is an enumeration type that represents a character set.

Composite type: a composite type XE "Composite type" is a collection of components of the same or different types.

Constant: a constant XE "Constant" is a keyword that indicates that the identifier XE "Identifier" it qualifies has a unique and specified value.

Constrained array: a constrained array is an array with a constant number of elements.

Discrete type: a discrete type XE "Discrete type" is either an integer type XE "Integer type" or an enumeration type. Discrete types may be used, for example, in case statements and as array indexes.

Discriminant: a discriminant XE "Discriminant" is a component of a record type whose value influences the structure of this record.

Elementary type: an elementary type does not have components.

Enumeration representation clause: an enumeration representation clause XE "Enumeration representation clause" specifies the bit pattern for each literal of the corresponding enumeration type.

Enumeration type: an enumeration type XE "Enumeration type" is defined by the list of its values, called enumeration literals, which may be identifiers or character literals. All values for a given enumeration type are different.

Length clause: a length clause XE "Length clause" specifies the amount of storage in bits associated with a type.

Literal: a literal is a value represented by its value itself instead of an identifier XE "Identifier" . A literal can be specialized as a numeric literal, an enumeration literal, a character literal, or a string literal.

Marker: a marker XE "Marker" is a constant value provided by a data description. This value will be found in the data as an end-delimiter XE "Delimiter" of a repetition.

Numeric literal: a numeric literal XE "Numeric literal" is the value of a number, expressed by means of characters.

Object: an object XE "Object" is either a constant XE "Constant" or a variable XE "Variable" . An object contains a value.

Predefined type: a predefined type XE "Predefined type" is a type provided by EAST, that is, a type that can be used in any EAST description without being previously declared.

Record representation clause: a record representation clause XE "Record representation clause" specifies the storage representation of the record type on the medium, that is, the order, position and size of record components (including discriminants, if any).

Record type: a record type XE "Record type" is a composite type consisting of zero or more named components, possibly of different types.

Representation clause: representation clauses XE "Representation clause" specify the mapping between types of the language and their physical representation.

Scalar type: scalar types XE "Scalar type" are discrete types and real types.

String literal: a string literal is formed by a sequence of graphic characters (possibly none) enclosed between two quotation marks used as string brackets.

Subtype XE "Subtype" : a subtype is a type together with a constraint, which constrains the values of the type to satisfy a certain condition. The values of a subtype are a subset of the values of its type.

Type: a type is a named set of characteristics. This name can be used to define sets of values.

Unconstrained array: an unconstrained array is an array with a variable number of elements.

Variable: a variable XE "Variable" is an identifier XE "Identifier" that represents a data item occurrence.

Variant part: a variant XE "Variant" part of a record specifies alternative record components, dependent on the discriminant XE "Discriminant" of the record. Each value of the discriminant establishes a particular alternative of the variant part.

Virtual Discriminant: a virtual discriminant XE "Virtual discriminant" is a discriminant that is not included in the composite type that it discriminates.

ANNEX B

CHARACTER DEFINITION

(This annex is part of the Recommendation)

This annex contains the definition of the character set used for the EAST predefined type CHARACTER.

This character set is a subset of the 16-bit Basic Multilingual Plane (BMP) of the ISO 10646 coded character set (reference [2]). This subset is defined as the first 256 characters (row00) of the BMP, which corresponds to the ISO 8859-1, which is an 8-bit single-byte coded graphic character set, also known as ‘Latin Alphabet No. 1’ (reference [1]). The corresponding codes are shown in the following tables. (The code for each character (Char) is given in decimal (Dec), and hexadecimal (Hex).)
The whole of the ISO 8859-1 character set shown in the following tables is permitted in the data that conforms to this Recommendation, although for interpretation purposes the characters shaded in the following tables are ignored and should not be displayed or printed.

The use of an ISO 8859-1 encoding to represent the natural language also permits the incorporation of tables and figures that can be drawn with the characters listed below. For these figures or tables to be presented identically to any receiver, the interpretation of the control characters (Vertical Tab, Horizontal Tab, Form Feed, Line Feed (also known as New Line) and Carriage Return) must be standardized. The following rules apply:

a) A new line (positioning the next displayable character to the leftmost displayable position and one line down) for presentation purposes is understood to occur upon encountering the following conditions:

1) a Carriage Return, when it is not followed by a Line Feed;

2) a Carriage Return/Line Feed pair, regardless of what follows;

3) a Line Feed, when it is not followed by a Carriage Return;

4) a Line Feed/Carriage Return pair, regardless of what follows.

b) A Horizontal Tab character positions the next displayable character onto the next character position that is a multiple of 8 (i.e., character positions 8, 16, 24, 32 etc., where the leftmost displayable character position is 0).

c) A Form Feed character positions the next displayable character to the leftmost displayable position and down to the beginning of the next page. The definition of a page is as defined by the local device (e.g., a new screen for a visual display unit (VDU) or a new piece of paper for a printer).

d) If the characteristics of the display device conflict with those of the data, for example, line lengths may be greater than those permitted by the device, then some adjustment to the layout of the data, as determined by the device, will occur. (Note also that some devices may process or react to codes which this Recommendation specifies as being ignored for presentation purposes.)
NOTE
–
If the alignment of the displayed characters is significant to the understanding of the information, then a fixed space font should be used for presentation.

Some of the defined characters need some explanations: Space (SP), No_Break_Space (NBSP), Soft_Hyphen (SHY) and Res.

a) A space might be interpreted as a graphic character, or a control character or both. As a graphic character, its representation consists of no symbol, but it takes up display space.

b) A No_Break_Space is a graphic character for which the representation consists of no symbol. It shall be used when no break (new line) is allowed.

c) A Soft_Hyphen is a graphic character with the following representation: ‘-’. It occurs when a word is broken up because of a new line.

d) Res represents a reserved control character. It is anyway ignored in EAST.

The language identified by the ADID = CCSD0010 is EAST. The character set to be used in EAST descriptions is a subset of the ISO 8859-1 (reference [1]). This subset is defined as the first 128 characters of the 8-bit single byte coded graphic character set (from the decimal code 0 up to the decimal code 127 in the following tables).

NOTE
–
The character set used in EAST descriptions should not be confused with the character set of the predefined type CHARACTER that describes occurrences of data.

	Char
	Dec
	Hex
	
	Char
	Dec
	Hex
	
	Char
	Dec
	Hex
	
	Char
	Dec
	Hex

	NUL
	0
	00
	
	space
	32
	20
	
	@
	64
	40
	
	`
	96
	60

	SOH
	1
	01
	
	!
	33
	21
	
	A
	65
	41
	
	a
	97
	61

	STX
	2
	02
	
	“
	34
	22
	
	B
	66
	42
	
	b
	98
	62

	ETX
	3
	03
	
	#
	35
	23
	
	C
	67
	43
	
	c
	99
	63

	EOT
	4
	04
	
	$
	36
	24
	
	D
	68
	44
	
	d
	100
	64

	ENQ
	5
	05
	
	%
	37
	25
	
	E
	69
	45
	
	e
	101
	65

	ACK
	6
	06
	
	&
	38
	26
	
	F
	70
	46
	
	f
	102
	66

	BEL
	7
	07
	
	‘
	39
	27
	
	G
	71
	47
	
	g
	103
	67

	BS
	8
	08
	
	(
	40
	28
	
	H
	72
	48
	
	h
	104
	68

	HT
	9
	09
	
)
	41
	29
	
	I
	73
	49
	
	i
	105
	69

	LF
	10
	0A
	
	*
	42
	2A
	
	J
	74
	4A
	
	j
	106
	6A

	VT
	11
	0B
	
	+
	43
	2B
	
	K
	75
	4B
	
	k
	107
	6B

	FF
	12
	0C
	
	,
	44
	2C
	
	L
	76
	4C
	
	l
	108
	6C

	CR
	13
	0D
	
	-
	45
	2D
	
	M
	77
	4D
	
	m
	109
	6D

	SO
	14
	0E
	
	.
	46
	2E
	
	N
	78
	4E
	
	n
	110
	6E

	SI
	15
	0F
	
	/
	47
	2F
	
	O
	79
	4F
	
	o
	111
	6F

	DLE
	16
	10
	
	0
	48
	30
	
	P
	80
	50
	
	p
	112
	70

	DC1
	17
	11
	
	1
	49
	31
	
	Q
	81
	51
	
	q
	113
	71

	DC2
	18
	12
	
	2
	50
	32
	
	R
	82
	52
	
	r
	114
	72

	DC3
	19
	13
	
	3
	51
	33
	
	S
	83
	53
	
	s
	115
	73

	DC4
	20
	14
	
	4
	52
	34
	
	T
	84
	54
	
	t
	116
	74

	NAK
	21
	15
	
	5
	53
	35
	
	U
	85
	55
	
	u
	117
	75

	SYN
	22
	16
	
	6
	54
	36
	
	V
	86
	56
	
	v
	118
	76

	ETB
	23
	17
	
	7
	55
	37
	
	W
	87
	57
	
	w
	119
	77

	CAN
	24
	18
	
	8
	56
	38
	
	X
	88
	58
	
	x
	120
	78

	EM
	25
	19
	
	9
	57
	39
	
	Y
	89
	59
	
	y
	121
	79

	SUB
	26
	1A
	
	:
	58
	3A
	
	Z
	90
	5A
	
	z
	122
	7A

	ESC
	27
	1B
	
	;
	59
	3B
	
	[
	91
	5B
	
	{
	123
	7B

	FS
	28
	1C
	
	<
	60
	3C
	
	\
	92
	5C
	
	|
	124
	7C

	GS
	29
	1D
	
	=
	61
	3D
	
]
	93
	5D
	
	}
	125
	7D

	RS
	30
	1E
	
	>
	62
	3E
	
	^
	94
	5E
	
	~
	126
	7E

	US
	31
	1F
	
	?
	63
	3F
	
	_
	95
	5F
	
	DEL
	127
	7F

	Char
	Dec
	Hex
	
	Char
	Dec
	Hex
	
	Char
	Dec
	Hex
	
	Char
	Dec
	Hex

	Res
	128
	80
	
	nbsp
	160
	A0
	
	À
	192
	C0
	
	à
	224
	E0

	Res
	129
	81
	
	¡
	161
	A1
	
	Á
	193
	C1
	
	á
	225
	E1

	Res
	130
	82
	
	¢
	162
	A2
	
	Â
	194
	C2
	
	â
	226
	E2

	Res
	131
	83
	
	£
	163
	A3
	
	Ã
	195
	C3
	
	ã
	227
	E3

	IND
	132
	84
	
	¤
	164
	A4
	
	Ä
	196
	C4
	
	ä
	228
	E4

	NEL
	133
	85
	
	¥
	165
	A5
	
	Å
	197
	C5
	
	å
	229
	E5

	SSA
	134
	86
	
	|
	166
	A6
	
	Æ
	198
	C6
	
	æ
	230
	E6

	ESA
	135
	87
	
	§
	167
	A7
	
	Ç
	199
	C7
	
	ç
	231
	E7

	HTS
	136
	88
	
	¨
	168
	A8
	
	È
	200
	C8
	
	è
	232
	E8

	HTJ
	137
	89
	
	©
	169
	A9
	
	É
	201
	C9
	
	é
	233
	E9

	VTS
	138
	8A
	
	ª
	170
	AA
	
	Ê
	202
	CA
	
	ê
	234
	EA

	PLD
	139
	8B
	
	«
	171
	AB
	
	Ë
	203
	CB
	
	ë
	235
	EB

	PLU
	140
	8C
	
	SYMBOL 216 \f "Symbol"
	172
	AC
	
	Ì
	204
	CC
	
	ì
	236
	EC

	RI
	141
	8D
	
	shy
	173
	AD
	
	Í
	205
	CD
	
	í
	237
	ED

	SS2
	142
	8E
	
	®
	174
	AE
	
	Î
	206
	CE
	
	î
	238
	EE

	SS3
	143
	8F
	
	¯
	175
	AF
	
	Ï
	207
	CF
	
	ï
	239
	EF

	DCS
	144
	90
	
	°
	176
	B0
	
	Ð
	208
	D0
	
	ð
	240
	F0

	PU1
	145
	91
	
	±
	177
	B1
	
	Ñ
	209
	D1
	
	ñ
	241
	F1

	PU2
	146
	92
	
	²
	178
	B2
	
	Ò
	210
	D2
	
	ò
	242
	F2

	STS
	147
	93
	
	³
	179
	B3
	
	Ó
	211
	D3
	
	ó
	243
	F3

	CCH
	148
	94
	
	´
	180
	B4
	
	Ô
	212
	D4
	
	ô
	244
	F4

	MW
	149
	95
	
	SYMBOL 109 \f "Symbol"
	181
	B5
	
	Õ
	213
	D5
	
	õ
	245
	F5

	SPA
	150
	96
	
	¶
	182
	B6
	
	Ö
	214
	D6
	
	ö
	246
	F6

	EPA
	151
	97
	
	·
	183
	B7
	
	SYMBOL 180 \f "Symbol"
	215
	D7
	
	SYMBOL 184 \f "Symbol"
	247
	F7

	Res
	152
	98
	
	¸
	184
	B8
	
	Ø
	216
	D8
	
	ø
	248
	F8

	Res
	153
	99
	
	¹
	185
	B9
	
	Ù
	217
	D9
	
	ù
	249
	F9

	Res
	154
	9A
	
	º
	186
	BA
	
	Ú
	218
	DA
	
	ú
	250
	FA

	CSI
	155
	9B
	
	»
	187
	BB
	
	Û
	219
	DB
	
	û
	251
	FB

	ST
	156
	9C
	
	¼
	188
	BC
	
	Ü
	220
	DC
	
	ü
	252
	FC

	OSC
	157
	9D
	
	½
	189
	BD
	
	Ý
	221
	DD
	
	ý
	253
	FD

	PM
	158
	9E
	
	¾
	190
	BE
	
	Þ
	222
	DE
	
	þ
	254
	FE

	APC
	159
	9F
	
	¿
	191
	BF
	
	ß
	223
	DF
	
	ÿ
	255
	FF

The following tables assign a name (according to the ISO standard) to each printable character of the set.

	Hex
	Name
	
	Hex
	Name

	09
	Horizontal Tab
	
	3D
	Equals Sign

	0A
	Line Feed
	
	3E
	Greater Than Sign

	0C
	Form Feed
	
	3F
	Question Mark

	0D
	Carriage Return
	
	40
	Commercial AT

	20
	Space
	
	41
	Capital Letter A

	21
	Exclamation Mark
	
	42
	Capital Letter B

	22
	Quotation Mark
	
	43
	Capital Letter C

	23
	Number Sign
	
	44
	Capital Letter D

	24
	Dollar Sign
	
	45
	Capital Letter E

	25
	Percent Sign
	
	46
	Capital Letter F

	26
	Ampersand
	
	47
	Capital Letter G

	27
	Apostrophe
	
	48
	Capital Letter H

	28
	Left Parenthesis
	
	49
	Capital Letter I

	29
	Right Parenthesis
	
	4A
	Capital Letter J

	2A
	Asterisk
	
	4B
	Capital Letter K

	2B
	Plus Sign
	
	4C
	Capital Letter L

	2C
	Comma
	
	4D
	Capital Letter M

	2D
	Hyphen, Minus Sign
	
	4E
	Capital Letter N

	2E
	Full Stop
	
	4F
	Capital Letter O

	2F
	Solidus
	
	50
	Capital Letter P

	30
	Digit Zero
	
	51
	Capital Letter Q

	31
	Digit One
	
	52
	Capital Letter R

	32
	Digit Two
	
	53
	Capital Letter S

	33
	Digit Three
	
	54
	Capital Letter T

	34
	Digit Four
	
	55
	Capital Letter U

	35
	Digit Five
	
	56
	Capital Letter V

	36
	Digit Six
	
	57
	Capital Letter W

	37
	Digit Seven
	
	58
	Capital Letter X

	38
	Digit Eight
	
	59
	Capital Letter Y

	39
	Digit Nine
	
	5A
	Capital Letter Z

	3A
	Colon
	
	5B
	Left Square bracket

	3B
	Semicolon
	
	5C
	Reverse Solidus

	3C
	Less Than Sign
	
	5D
	Right Square Bracket

	Hex
	Name
	
	Hex
	Name

	5E
	Circumflex Accent
	
	A1
	Inverted Exclamation Mark

	5F
	Low Line
	
	A2
	Cent Sign

	60
	Grave Accent
	
	A3
	Pound Sign

	61
	Small Letter a
	
	A4
	Currency Sign

	62
	Small Letter b
	
	A5
	Yen Sign

	63
	Small Letter c
	
	A6
	Broken Bar

	64
	Small Letter d
	
	A7
	Paragraph Sign, Section Sign

	65
	Small Letter e
	
	A8
	Diaeresis

	66
	Small Letter f
	
	A9
	Copyright Sign

	67
	Small Letter g
	
	AA
	Feminine Ordinal Indicator

	68
	Small Letter h
	
	AB
	Left Angle Quotation Mark

	69
	Small Letter i
	
	AC
	Not Sign

	6A
	Small Letter j
	
	AD
	Soft Hyphen

	6B
	Small Letter k
	
	AE
	Registered Trade Mark Sign

	6C
	Small Letter l
	
	AF
	Macron

	6D
	Small Letter m
	
	B0
	Ring Above, Degree Sign

	6E
	Small Letter n
	
	B1
	Plus-Minus Sign

	6F
	Small Letter o
	
	B2
	Superscript Two

	70
	Small Letter p
	
	B3
	Superscript Three

	71
	Small Letter q
	
	B4
	Acute Accent

	72
	Small Letter r
	
	B5
	Micro Sign

	73
	Small Letter s
	
	B6
	Pilcrow Sign

	74
	Small Letter t
	
	B7
	Middle Dot

	75
	Small Letter u
	
	B8
	Cedilla

	76
	Small Letter v
	
	B9
	Superscript One

	77
	Small Letter w
	
	BA
	Masculine Ordinal Indicator

	78
	Small Letter x
	
	BB
	Right Angle Quotation Mark

	79
	Small Letter y
	
	BC
	Vulgar Fraction One Quarter

	7A
	Small Letter z
	
	BD
	Vulgar Fraction One Half

	7B
	Left Curly Bracket
	
	BE
	Vulgar Fraction Three Quarters

	7C
	Vertical Line
	
	BF
	Inverted Question Mark

	7D
	Right Curly Bracket
	
	C0
	Capital Latter A with Grave

	7E
	Tilde
	
	C1
	Capital Letter A with Acute Accent

	A0
	No-Break Space
	
	C2
	Capital Letter A with Circumflex

	Hex
	Name
	
	Hex
	Name

	C3
	Capital Letter A with Tilde
	
	E2
	Small Letter a with Circumflex

	C4
	Capital Letter A with Diaeresis
	
	E3
	Small Letter a with Tilde

	C5
	Capital Letter A with Ring Above
	
	E4
	Small Letter a with Diaeresis

	C6
	Capital Diphthong A with E
	
	E5
	Small Letter a with Ring Above

	C7
	Capital Letter C with Cedilla
	
	E6
	Small Diphthong a with e

	C8
	Capital Letter E with Grave Accent
	
	E7
	Small Letter c with Cedilla

	C9
	Capital Letter E with Acute Accent
	
	E8
	Small Letter e with Grave Accent

	CA
	Capital Letter E with Circumflex
	
	E9
	Small Letter e with Acute Accent

	CB
	Capital Letter E with Diaeresis
	
	EA
	Small Letter e with Circumflex

	CC
	Capital Letter I with Grave Accent
	
	EB
	Small Letter e with Diaeresis

	CD
	Capital Letter I with Acute Accent
	
	EC
	Small Letter i with Grave Accent

	CE
	Capital Letter I with Circumflex
	
	ED
	Small Letter i with Acute Accent

	CF
	Capital Letter I with Diaeresis
	
	EE
	Small Letter i with Circumflex

	D0
	Capital Icelandic Letter ETH
	
	EF
	Small Letter i with Diaeresis

	D1
	Capital Letter N with Tilde
	
	F0
	Small Icelandic Letter ETH

	D2
	Capital Letter O with Grave Accent
	
	F1
	Small Letter n with Tilde

	D3
	Capital Letter O with Acute Accent
	
	F2
	Small Letter o with Grave Accent

	D4
	Capital Letter O with Circumflex
	
	F3
	Small Letter o with Acute Accent

	D5
	Capital Letter O with Tilde
	
	F4
	Small Letter o with Circumflex

	D6
	Capital Letter O with Diaeresis
	
	F5
	Small Letter o with Tilde

	D7
	Multiplication Sign
	
	F6
	Small Letter o with Diaeresis

	D8
	Capital Letter O with Oblique
	
	F7
	Division Sign

	D9
	Capital Letter U with Grave Accent
	
	F8
	Small Letter o with Oblique Stroke

	DA
	Capital Letter U with Acute Accent
	
	F9
	Small Letter u with Grave Accent

	DB
	Capital Letter U with Circumflex
	
	FA
	Small Letter u with Acute Accent

	DC
	Capital Letter U with Diaeresis
	
	FB
	Small Letter u with Circumflex

	DD
	Capital Letter Y with Acute Accent
	
	FC
	Small Letter u with Diaeresis

	DE
	Capital Icelandic Letter THORN
	
	FD
	Small Letter y with Acute Accent

	DF
	Small German Letter Sharp s
	
	FE
	Small Icelandic Letter THORN

	E0
	Small Letter a with Grave Accent
	
	FF
	Small Letter y with Diaeresis

	E1
	Small Letter a with Acute Accent
	
	
	

The following tables assign an identifier XE "Identifier" to each character of the set. These identifiers are the constant XE "Constant" names of each character.

	Hex
	Constant XE "Constant" Name
	
	Hex
	Constant Name

	00
	NUL
	
	20
	Space

	01
	SOH
	
	21
	Exclamation

	02
	STX
	
	22
	Quotation

	03
	ETX
	
	23
	Number_Sign

	04
	EOT
	
	24
	Dollar_Sign

	05
	ENQ
	
	25
	Percent_Sign

	06
	ACK
	
	26
	Ampersand

	07
	BEL
	
	27
	Apostrophe

	08
	BS
	
	28
	Left_Parenthesis

	09
	HT
	
	29
	Right_Parenthesis

	0A
	LF
	
	2A
	Asterisk

	0B
	VT
	
	2B
	Plus_Sign

	0C
	FF
	
	2C
	Comma

	0D
	CR
	
	2D
	Hyphen or Minus_Sign

	0E
	SO
	
	2E
	Full_Stop

	0F
	SI
	
	2F
	Solidus

	10
	DLE
	
	30
	Digit_Zero

	11
	DC1
	
	31
	Digit_One

	12
	DC2
	
	32
	Digit_Two

	13
	DC3
	
	33
	Digit_Three

	14
	DC4
	
	34
	Digit_Four

	15
	NAK
	
	35
	Digit_Five

	16
	SYN
	
	36
	Digit_Six

	17
	ETB
	
	37
	Digit_Seven

	18
	CAN
	
	38
	Digit_Eight

	19
	EM
	
	39
	Digit_Nine

	1A
	SUB
	
	3A
	Colon

	1B
	ESC
	
	3B
	Semicolon

	1C
	FS or IS4
	
	3C
	Less_Than_Sign

	1D
	GS or IS3
	
	3D
	Equals_Sign

	1E
	RS or IS2
	
	3E
	Greater_Than_Sign

	1F
	US or IS1
	
	3F
	Question

	Hex
	Constant XE "Constant" Name
	
	Hex
	Constant Name

	40
	Commercial_At
	
	60
	Grave

	41
	UC_A
	
	61
	LC_A

	42
	UC_B
	
	62
	LC_B

	43
	UC_C
	
	63
	LC_C

	44
	UC_D
	
	64
	LC_D

	45
	UC_E
	
	65
	LC_E

	46
	UC_F
	
	66
	LC_F

	47
	UC_G
	
	67
	LC_G

	48
	UC_H
	
	68
	LC_H

	49
	UC_I
	
	69
	LC_I

	4A
	UC_J
	
	6A
	LC_J

	4B
	UC_K
	
	6B
	LC_K

	4C
	UC_L
	
	6C
	LC_L

	4D
	UC_M
	
	6D
	LC_M

	4E
	UC_N
	
	6E
	LC_N

	4F
	UC_O
	
	6F
	LC_O

	50
	UC_P
	
	70
	LC_P

	51
	UC_Q
	
	71
	LC_Q

	52
	UC_R
	
	72
	LC_R

	53
	UC_S
	
	73
	LC_S

	54
	UC_T
	
	74
	LC_T

	55
	UC_U
	
	75
	LC_U

	56
	UC_V
	
	76
	LC_V

	57
	UC_W
	
	77
	LC_W

	58
	UC_X
	
	78
	LC_X

	59
	UC_Y
	
	79
	LC_Y

	5A
	UC_Z
	
	7A
	LC_Z

	5B
	Left_Square_Bracket
	
	7B
	Left_Curly_Bracket

	5C
	Reverse_Solidus
	
	7C
	Vertical_Line

	5D
	Right_Square_Bracket
	
	7D
	Right_Curly_Bracket

	5E
	Circumflex
	
	7E
	Tilde

	5F
	Low_Line
	
	7F
	DEL

	Hex
	Constant XE "Constant" Name
	
	Hex
	Constant Name

	80
	Reserved_128
	
	A0
	No_Break_Space or NBSP

	81
	Reserved_129
	
	A1
	Inverted_Exclamation

	82
	BPH
	
	A2
	Cent_Sign

	83
	NBH
	
	A3
	Pound_Sign

	84
	Reserved_132
	
	A4
	Currency_Sign

	85
	NEL
	
	A5
	Yen_Sign

	86
	SSA
	
	A6
	Broken_Bar

	87
	ESA
	
	A7
	Section_Sign

	88
	HTS
	
	A8
	Diaeresis

	89
	HTJ
	
	A9
	Copyright_Sign

	8A
	VTS
	
	AA
	Feminine_Ordinal_Indicator

	8B
	PLD
	
	AB
	Left_Angle_Quotation

	8C
	PLU
	
	AC
	Not_Sign

	8D
	RI
	
	AD
	Soft_Hyphen

	8E
	SS2
	
	AE
	Registered_Trade_Mark_Sign

	8F
	SS3
	
	AF
	Macron

	90
	DCS
	
	B0
	Degree_Sign or Ring_Above

	91
	PU1
	
	B1
	Plus_Minus_Sign

	92
	PU2
	
	B2
	Superscript_Two

	93
	STS
	
	B3
	Superscript_Three

	94
	CCH
	
	B4
	Acute

	95
	MW
	
	B5
	Micro_Sign

	96
	SPA
	
	B6
	Pilcrow_Sign or Paragraph_Sign

	97
	EPA
	
	B7
	Middle_Dot

	98
	Res
	
	B8
	Cedilla

	99
	Res
	
	B9
	Superscript_One

	9A
	Res
	
	BA
	Masculine_Ordinal_Indicator

	9B
	CSI
	
	BB
	Right_Angle_Quotation

	9C
	ST
	
	BC
	Fraction_One_Quarter

	9D
	OSC
	
	BD
	Fraction_One_Half

	9E
	PM
	
	BE
	Fraction_Three_Quarters

	9F
	APC
	
	BF
	Inverted_Question

	Hex
	Constant XE "Constant" Name
	
	Hex
	Constant Name

	C0
	UC_A_Grave
	
	E0
	LC_A_Grave

	C1
	UC_A_Acute
	
	E1
	LC_A_Acute

	C2
	UC_A_Circumflex
	
	E2
	LC_A_Circumflex

	C3
	UC_A_Tilde
	
	E3
	LC_A_Tilde

	C4
	UC_A_Diaeresis
	
	E4
	LC_A_Diaeresis

	C5
	UC_A_Ring
	
	E5
	LC_A_Ring

	C6
	UC_AE_Diphthong
	
	E6
	LC_AE_Diphthong

	C7
	UC_C_Cedilla
	
	E7
	LC_C_Cedilla

	C8
	UC_E_Grave
	
	E8
	LC_E_Grave

	C9
	UC_E_Acute
	
	E9
	LC_E_Acute

	CA
	UC_E_Circumflex
	
	EA
	LC_E_Circumflex

	CB
	UC_E_Diaeresis
	
	EB
	LC_E_Diaeresis

	CC
	UC_I_Grave
	
	EC
	LC_I_Grave

	CD
	UC_I_Acute
	
	ED
	LC_I_Acute

	CE
	UC_I_Circumflex
	
	EE
	LC_I_Circumflex

	CF
	UC_I_Diaeresis
	
	EF
	LC_I_Diaeresis

	D0
	UC_Icelandic_Eth
	
	F0
	LC_Icelandic_Eth

	D1
	UC_N_Tilde
	
	F1
	LC_N_Tilde

	D2
	UC_O_Grave
	
	F2
	LC_O_Grave

	D3
	UC_O_Acute
	
	F3
	LC_O_Acute

	D4
	UC_O_Circumflex
	
	F4
	LC_O_Circumflex

	D5
	UC_O_Tilde
	
	F5
	LC_O_Tilde

	D6
	UC_O_Diaeresis
	
	F6
	LC_O_Diaeresis

	D7
	Multiplication_Sign
	
	F7
	Division_Sign

	D8
	UC_O_Oblique_Stroke
	
	F8
	LC_O_Oblique_Stroke

	D9
	UC_U_Grave
	
	F9
	LC_U_Grave

	DA
	UC_U_Acute
	
	FA
	LC_U_Acute

	DB
	UC_U_Circumflex
	
	FB
	LC_U_Circumflex

	DC
	UC_U_Diaeresis
	
	FC
	LC_U_Diaeresis

	DD
	UC_Y_Acute
	
	FD
	LC_Y_Acute

	DE
	UC_Icelandic_Thorn
	
	FE
	LC_Icelandic_Thorn

	DF
	LC_German_Sharp_S
	
	FF
	LC_Y_Diaeresis

ANNEX C

EAST FORMAL SYNTAX SPECIFICATION

(This annex is not part of the Recommendation)

This annex describes the EAST syntax using a simple version of the Backus-Naur-Form. See below the lexical rules, common to the whole syntax specification:

C1 COMMON LEXICAL RULES

<underline>
::= _

<digit>
::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<upper_case>
::= A | B |...| Z

<lower_case>
::= a | b |...| z

<letter>
::= <upper_case> | <lower_case>

<letter_or_digit>
::= <letter> | <digit>

<identifier XE "Identifier" >
::= <letter> { [<underline>] <letter_or_digit> }

<integer_literal>
::= <digit> { [<underline>] <digit> }

<exponent>
::= E [+ | ‑] <integer_literal>

<floating_point_literal>
::= <integer_literal>.<integer_literal> [<exponent>]

<identifier_list>
::= <identifier> { , <identifier> }

<character>
::= nul | ... | 0 | 1 | ... | b | ... | ~ | del
<character_literal>
::= ‘ <character> ’

<based_literal>
::= <base># <based_integer> [. <based_integer>] # [<exponent>]

<base>
::= 2 | 8 | 16

<based_integer>
::= <extended_digit> {[<underline>] <extended_digit>}

<extended_digit>
::= digit | A | B | C | D | E | F | a | b | c | d | e | f

<integer_based_literal>
::= <base># <based_integer> # [<exponent>]

<real_based_literal>
::= ::= <base># <based_integer> . <based_integer> # [<exponent>]

<simple_integer_based_literal >
::= <base># <based_integer> #

C2 DECLARATION OF THE LOGICAL DATA DESCRIPTION RECORD

<Logical Description XE "Logical description" >
::= package XE "Package" <identifier XE "Identifier" > is

 { <constant XE "Constant" _declaration> |

 <type_declaration> | <subtype XE "Subtype" _declaration> |

 <representation_clause> }

 { <variable XE "Variable" _declaration> | <constant_declaration> }

 end <identifier> ;

C2.1 Subtype Declaration

<subtype XE "Subtype" _declaration>
::= subtype <subtype_identifier> is <subtype_indication> ;
<subtype_indication>
::= <type_mark> [<constraint>]

<type_mark>
::= <predefined_type> | <subtype_identifier> |

 <type_identifier>

C2.2 Type Declaration

<type_declaration>
::= type <type_identifier> [<discriminant_part>] is

 <type_definition> ;
<discriminant XE "Discriminant" _part>
::= (<discriminant_specification>

 { ; <discriminant_specification> })

<discriminant_specification>::= <identifier> : <discrete_type_mark> := <discriminant_value>

<discriminant_value>
::= <integer_literal> | <enumeration_literal>

<type_definition>
::= <integer_type_definition> | <real_type_definition> |

 <array_type_definition> | <record_type_definition> |

 <enumeration_type_definition>

a) constraint declaration
<constraint>
::= <range_constraint> | <floating_point_constraint> |

 <index XE "Index" _constraint>

<range_constraint>
::= range <range>

<range>
::= <integer_bound> .. <integer_bound> ;
<integer_bound>
::= [+ | ‑] <integer_literal> | <integer_constant XE "Constant" _identifier XE "Identifier" >

<floating_point_constraint>
::= [digits <positive_integer_literal>]

 [range <real_bound> .. <real_bound>] ;
<real_bound>
::= [+ | ‑] <floating_point_literal> | <real_identifier>

<index XE "Index" _constraint>
::= (<discrete_range> {, <discrete_range> })
b) integer type declaration
<integer_type XE "Integer type" _definition>
::= <range_constraint>

c) real type declaration
<real_type_definition>
::= <floating_point_constraint>

d) array type declaration
<array_type_definition>
::= <unconstrained_array_definition> |

 <constrained_array_definition>

<unconstrained_array_definition>
::= array (<index_subtype XE "Subtype" _definition>

{, <index_subtype_definition> }) of <type_mark> ;
<constrained_array_definition>
::= array (<discrete_range>

{, <discrete_range> }) of <type_mark> ;
<index_subtype_definition>
::= <discrete_type_mark> range <>
<discrete_range>
::= <discrete_type_mark> | <constrained_index>

<discrete_type_mark>
::= <integer_type_mark> | <enumeration_type_mark>

<constrained_index>
::= <index_bound> .. <index_bound>

<index_bound>
::= [+|‑] <integer_literal> | <integer_constant_identifier> |

<enumeration_literal>

e) record type declaration
<record_type_definition>
::= record <component_list> end record ;
<component_list>
::= <component_declaration> { <component_declaration> }|

 { <component_declaration> } <variant XE "Variant" _part> |

 null ;
<component_declaration>
::= <identifier XE "Identifier" > : <subtype XE "Subtype" _indication> ;
<variant_part>
::= case <discriminant XE "Discriminant" _identifier> is

 <variant> { <variant> }

 end case ;
<variant>
::= when <choice> { | <choice> } =>

 <component_list>

<choice>
::= [‑] <integer_literal> | <discrete_range> | others |

 <enumeration_literal_specifiation>

f) enumeration type declaration
<enumeration_type_definition>
::=
(<enumeration_literal> { , <enumeration_literal> })
<enumeration_literal>::= <identifier> | <character_literal>

g) predefined types
<predefined_type>
::= character | string | EOF
C2.3 Object XE "Object" Declaration

<constant XE "Constant" _declaration>
::= <identifier> : constant [<type_mark>]

[:= <constant_value>];
<constant_value>
::= <integer_literal> |

 <floating_point_literal> |

 <enumeration_literal> |

 <string_literal> |

 <static_expression> ;

<static_expression>
::= { (<term>) | <term> }

<term>
::= [unary_operator] <number> [<binary_operator><number>]

<unary_operator>
::= + | -

<binary_operator>
::= + | - | * | / | **

-- See 3.2.3.2 of the present Recommendation for further constraints on operators.

<number>
::= <integer_literal> | <floating_point_literal> |

 <integer_constant XE "Constant" _identifier XE "Identifier" > | <real_constant_identifier>

<variable XE "Variable" _declaration>
::= <identifier> : <type_mark>;

C2.4 Representation Clause XE "Representation clause"
<representation_clause>
::= <length_clause> |

 <enumeration_representation_clause> |

 <record_representation_clause>

a) length clause
<length_clause>::= for <type_identifier>'size use <integer_literal> ;
b) enumeration representation clause
<enumeration_representation_clause>::= for <enumeration_type_identifier> use

<aggregate>;
<aggregate>
::=(<component_association> {, <component_association>})
<component_association>
::= <enumeration_literal> => <bit_pattern>

<bit_pattern>
::= <integer_literal> | <simple_integer_based_literal >

c) record representation clause
<record_representation_clause>
::= for <record_type_identifier XE "Identifier" > use

 record

<component_clause> { <component_clause>}

 end record ;
<component_clause>
::= <component_identifier> at <distance>

 range <static_range> ;
<distance XE "Distance" >
::= <word_number> * word_32_bits XE "WORD_32_BITS" |

 <word_number> * word_16_bits XE "WORD_16_BITS" | 0

<word_number>
::= <integer_literal>

C3 DECLARATION OF THE PHYSICAL DATA DESCRIPTION RECORD

<Physical Description XE "Physical description" >
::= package XE "Package" <identifier XE "Identifier" > is

 <declaration_part>

 end <identifier> ;
<declaration_part>
::= { <constant XE "Constant" _declaration> |

 <type_declaration> | <subtype XE "Subtype" _declaration> }

<constant_declaration>
::= <identifier> : constant <type_mark> := <constant_value> ;
<constant_value>
::= <integer_literal> | <floating_point_literal> |

 <enumeration_literal> |

 <array_value> | <record_value>

<record_value>
::= (<record_component_value> { , <record_component_value> })

<record_component_value>
::= <component_identifier> => <constant_value>

<array_value>
::= (<array_component_value> { , <array_component_value> })
<array_component_value>
::= <integer_literal> => <constant_value>

Other BNF XE "BNF" rules needed for the physical data description record, if not defined above in this section, are identical to those specified for the logical data description record.

ANNEX D

MAIN DIFFERENCES BETWEEN ADA AND EAST

(This annex is not part of the Recommendation)

This annex describes the main differences between EAST and the Ada programming language:

· the Ada features not retained in EAST;

· the Ada syntax elements which have another semantic in EAST;

· the EAST syntax restrictions vs. Ada.

D1 ADA FEATURES NOT RETAINED IN EAST

No algorithmic features of the Ada programming language have been retained in EAST.

In Ada, a program unit can be a procedure, a function, a package XE "Package" or a task. Only packages are allowed in EAST: a package structure is used to implement the logical description part; another package implements the physical description part.

Within the declarative part, some Ada predefined types have been excluded for the data description:

· The predefined type BOOLEAN, because no enumeration representation clause is provided for this type in the Ada STANDARD package. Any bit pattern may therefore be used for the implementation of a Boolean value.

· The predefined type INTEGER, because its definition depends on the implementation (size, bounds, etc.). For the same reason, other integer types XE "Integer type" such as LONG_INTEGER or SHORT_INTEGER are also forbidden.

· The subtypes of INTEGER: POSITIVE and NATURAL depend on the definition of INTEGER and so depend on the implementation.

· The predefined type FLOAT, because its definition depends on the implementation (size, number of digits, etc.). For the same reason, other floating-point types such as LONG_FLOAT or SHORT_FLOAT are also forbidden.

· The predefined type DURATION and any fixed-point type, because their size depends on the implementation. Consequence: a real type in EAST is always considered to be a floating-point type.

Access types and derived types are not considered to be useful in a Data Description Record.

In the same way, generics have not been retained in EAST.

In Ada, a pragma is used to convey information to Ada compilers. As such, pragma use is not justified in EAST.

D2 ADA SYNTAX ELEMENTS THAT HAVE A DIFFERENT MEANING IN EAST

A length clause is defined by the following declaration:

for type_identifier XE "Identifier" 'size use static_expression ;
In Ada, the value of the expression specifies an upper bound for the number of bits to be allocated to objects of the given type. In EAST, the expression specifies the exact number of bits that any object XE "Object" of the given type occupies.

In Ada, a record representation clause specifies the storage representation of records in memory, that is, the order, position, and size of record components in memory of a given machine. In EAST, the record representation clause specifies the actual storage representation on the medium.

D3 EAST SYNTAX RESTRICTIONS VS. ADA

In Ada, the base for based numeric literals can be any number between 2 and 16. In EAST the base can only be 2, 8 or 16.

In Ada the values specified in a range constraint XE "Constant" within an integer or real type definition can be a simple_expression. In EAST the values may only be a numeric literal or an identifier (naming an appropriate numeric constant or an appropriate discriminant eventually computed later, as described in 3.2.1.6).
In Ada, a constant declaration allows a list of identifiers. EAST allows only a single identifier.

ANNEX E

INFORMATIVE REFERENCES

(This annex is not part of the Recommendation)

Informative references [E2]-[E5] below contain information showing how EAST descriptions can be used in the SFDU standard or presenting the Ada language, which is the basis of this Recommendation.

[E1]
Procedures Manual for the Consultative Committee for Space Data Systems. CCSDS A00.0-Y-9. Yellow Book. Issue 9. Washington, D.C.: CCSDS, November 2003.
[E2]
Standard Formatted Data Units—Structure and Construction Rules. Recommendation for Space Data System Standards, CCSDS 620.0-B-2. Blue Book. Issue 2. Washington, D.C.: CCSDS, May 1992.

[E3]
Information Technology—Programming Languages—Ada. International Standard, ISO/EIC 8652:1995. Geneva: ISO, 1995.

[E4]
The Data Description Language EAST—A Tutorial. Report Concerning Space Data System Standards, CCSDS 645.0-G-1. Green Book. Issue 1, May 1997.

[E5]
The Data Description Language EAST—List of Conventions. Report Concerning Space Data System Standards, CCSDS 646.0-G-1. Green Book. Issue 1, May 1997.

Array storage method, 3-48

Array type, 3-12, 3-13, 3-14, A-1

ASCII Representation, 3-58, 3-59, 3-61, 3-62, 3-67

Based literal, 3-4, 3-5, A-1

Binary Representation, 3-50, 3-55, 3-56, 3-57

BNF, 1-2, 1-4, A-1, C-6

Character literal, A-1

Character type, A-1

Comment, 3-1

Composite type, 2-3, A-1

Constant, 3-7, 3-8, 3-10, 3-11, 3-29, 3-30, 3-31, 3-32, 3-33, 3-34, 3-46, 3-48, 3-50, 3-51, 3-52, 3-55, 3-56, 3-57, 3-58, 3-60, 3-62, 3-64, 3-66, A-1, A-2, B-8, B-9, B-10, B-11, C-2, C-4, C-6, D-2

Constraint array type, 3-13

Decimal literal, 3-2, 3-3, 3-4

Delimiter, 1-3, 1-4, 3-1, A-2

Discrete type, A-2

Discriminant, 3-18, 3-19, 3-20, 3-21, 3-22, 3-38, 3-42, A-2, A-3, C-2, C-4

Distance, 3-38, 3-45, 3-46, C-5

Enumeration constraint, 3-28

Enumeration representation clause, 3-36, A-2

Enumeration type, 3-9, 3-10, 3-58, 3-59, 3-60, A-2

Identifier, 1-1, 1-3, 2-3, 3-1, 3-2, 3-7, 3-9, 3-10, 3-11, 3-13, 3-17, 3-21, 3-29, 3-30, 3-31, 3-32, 3-47, 3-51, 3-58, 3-62, 4-1, A-1, A-2, A-3, B-8, C-1, C-2, C-3, C-4, C-5, C-6, D-2

Index, 2-1, 2-3, 3-12, 3-13, 3-14, 3-17, 3-48, 3-55, C-2, C-3

Integer constraint, 3-29

Integer type, 2-3, 3-8, 3-10, 3-12, 3-14, 3-18, 3-20, 3-21, 3-30, 3-33, 3-40, 3-56, 3-58, 3-62, 3-66, 3-67, A-2, C-3, D-1

Length clause, 3-35, 3-36, A-2

Logical description, 2-2, 3-24, C-2

Marker, 3-33, 3-34, A-2

Numeric literal, A-2

Numeric type, 2-3

Object, 1-3, 2-2, 2-3, 3-7, 3-31, 3-32, 3-48, A-2, C-4, D-2

Package, 2-1, 2-2, 3-7, 3-8, 3-47, 3-64, C-2, C-6, D-1

Physical description, 2-2, 3-48, 3-50, 3-52, 3-53, 3-59, 3-60, 3-61, 3-62, C-6

Predefined type, 3-8, A-2

Real constraint, 3-30

Real type, 3-11, 3-62

Record representation clause, 3-38, 3-39, 3-41, 3-42, 3-43, 3-45, 3-46, A-2

Record type, 3-14, 3-15, 3-18, 3-20, A-2

Representation clause, 2-3, 3-35, 3-36, 3-38, 3-39, 3-41, 3-42, 3-43, 3-45, 3-46, A-2, C-5

Scalar type, 3-27, 3-58, A-2

Separator, 3-1

Subtype, 2-3, 3-7, 3-8, 3-28, 3-29, 3-30, 3-33, A-3, C-2, C-3, C-6

Unconstrained array type, 3-14

Variable, 1-4, 3-8, 3-31, 3-32, 3-39, A-2, A-3, C-2, C-4

Variant, 1-2, 1-4, 3-19, 3-38, 3-44, 3-45, A-3, C-3

Virtual discriminant, 3-21, 3-22, 3-24, 3-38, A-3

WORD_16_BITS, 3-46, 4-1, C-5

WORD_32_BITS, 3-46, 4-1, C-5

