[image: image1.emf]
Draft Recommendation for
Space Data System Standards

	Spacecraft Monitor and Control—Common Services

Draft Recommended Standard
CCSDS 521.1-R-2
Red Book
April 2008
AUTHORITY

	
	
	
	

	
	Issue:
	Red Book, Issue 2
	

	
	Date:
	April 2008
	

	
	Location:
	Not Applicable
	

	
	
	
	

(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF AUTHORITY:)

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS documents is detailed in the Procedures Manual for the Consultative Committee for Space Data Systems, and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the address below.

This document is published and maintained by:

CCSDS Secretariat

Office of Space Communication (Code M-3)

National Aeronautics and Space Administration

Washington, DC 20546, USA

STATEMENT OF INTENT

(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF INTENT:)

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of its members. The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed Recommended Standards and are not considered binding on any Agency.

This Recommended Standard is issued by, and represents the consensus of, the CCSDS members. Endorsement of this Recommendation is entirely voluntary. Endorsement, however, indicates the following understandings:

o
Whenever a member establishes a CCSDS-related standard, this standard will be in accord with the relevant Recommended Standard. Establishing such a standard does not preclude other provisions which a member may develop.

o
Whenever a member establishes a CCSDS-related standard, that member will provide other CCSDS members with the following information:

--
The standard itself.

--
The anticipated date of initial operational capability.

--
The anticipated duration of operational service.

o
Specific service arrangements shall be made via memoranda of agreement. Neither this Recommended Standard nor any ensuing standard is a substitute for a memorandum of agreement.

No later than five years from its date of issuance, this Recommended Standard will be reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect the impact of new technologies, new requirements, or new directions; or (3) be retired or canceled.

In those instances when a new version of a Recommended Standard is issued, existing CCSDS-related member standards and implementations are not negated or deemed to be non-CCSDS compatible. It is the responsibility of each member to determine when such standards or implementations are to be modified. Each member is, however, strongly encouraged to direct planning for its new standards and implementations towards the later version of the Recommended Standard.

FOREWORD

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Recommended Standard is therefore subject to CCSDS document management and change control procedures, which are defined in the Procedures Manual for the Consultative Committee for Space Data Systems. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· British National Space Centre (BNSC)/United Kingdom.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Federal Space Agency (FSA)/Russian Federation.
· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency (JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Belgian Federal Science Policy Office (BFSPO)/Belgium.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· Centro Tecnico Aeroespacial (CTA)/Brazil.

· Chinese Academy of Sciences (CAS)/China.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· Danish National Space Center (DNSC)/Denmark.
· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· Korea Aerospace Research Institute (KARI)/Korea.

· MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

· Ministry of Communications (MOC)/Israel.

· National Institute of Information and Communications Technology (NICT)/Japan.
· National Oceanic and Atmospheric Administration (NOAA)/USA.

· National Space Organization (NSPO)/Taiwan.

· Naval Center for Space Technology (NCST)/USA.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· United States Geological Survey (USGS)/USA.

PREFACE

This document is a draft CCSDS Recommended Standard. Its ‘Red Book’ status indicates that the CCSDS believes the document to be technically mature and has released it for formal review by appropriate technical organizations. As such, its technical contents are not stable, and several iterations of it may occur in response to comments received during the review process.

Implementers are cautioned not to fabricate any final equipment in accordance with this document’s technical content.

DOCUMENT CONTROL

	Document
	Title
	Date
	Status

	CCSDS 521.1-R-2
	Spacecraft Monitor and Control—Common Services, Draft Recommended Standard, Issue 2
	April 2008
	Current draft

	
	
	
	

	
	
	
	

CONTENTS

Section
Page

1-11
Introduction

1.1
Purpose and Scope
1-1
1.2
Document structure
1-1
1.3
Definition of Terms
1-2
1.4
References
1-2
2
SM&C Service COncept
2-1
2.1
Overview
2-1
2.2
Patterns of Interaction
2-2
2.3
Message Abstraction
2-2
2.4
Common services
2-3
2.5
SM&C Framework
2-4
2.6
Interoperability
2-6
3
Common Service Concepts
3-1
3.1
Overview
3-1
3.2
Directory Service
3-2
3.3
Login Service
3-6
3.4
Interact Service
3-6
3.5
Configuration Service
3-7
3.6
Common Model
3-8
4
Common Service Specification
4-1
4.1
Overview
4-1
4.2
Common Model Service
4-2
4.3
Directory Service
4-25
4.4
Login Service
4-37
4.5
Interact Service
4-45
4.6
Replay Service
4-57
4.7
Retrieval Service
4-72
4.8
Configuration Service
4-85
5
Common Service Structures
5-1
5.1
Overview
5-1
5.2
Common Service Error Codes
5-1
5.3
Common Model Structures
5-2
5.4
Directory Service Structures
5-10
5.5
Login Service Structures
5-17
5.6
Interact Service Structures
5-20
5.7
Replay Service Structures
5-25
5.8
Retrieval Service Structures
5-30
5.9
Configuration Service Structures
5-37
6
Service and operation Summary
6-1
6.1
Common Model Operations
6-1
6.2
Directory service operations
6-1
6.3
Login service operations
6-2
6.4
Interact service operations
6-2
6.5
Replay service operations
6-3
6.6
Retrieval service operations
6-3
6.7
Configuration service operations
6-4

A-1ANNEX A Informative References (Informative)

ANNEX B Acronyms (Informative)
B-1

Figure

2-12-1
Generic Service Model

2-2
Service Stack View
2-4
2-3
Service Layering
2-5
2-4
Example Entity Interoperability
2-7
2-5
Protocol Bridge Example
2-7
3-1
Example Common Deployment
3-2
3-2
Directory Service Concept
3-3
3-3
Directory Service Structure
3-4
3-4
Common Model Structure
3-8
3-5
Common Model Structure
3-9
3-6
Historical Archive Model
3-10
3-7
Historical Archive Updates
3-10

Table

3-53-1
Directory Service Capability Fields

3-2
Message Header Fields
3-6
4-1
Common Model Service Operations
4-3
4-2
Common Model Component Usage
4-4
4-3
Common Model Identifier Usage
4-4
4-4
Directory Service Operations
4-26
4-5
Directory Service Common Model Component Usage
4-27
4-6
Directory Service Common Model Identifier Usage
4-27
4-7
Login Service Operations
4-37
4-8
Login Service Common Model Component Usage
4-38
4-9
Login Service Common Model Identifier Usage
4-38
4-10
Interact Service Operations
4-45
4-11
Interact Service Common Model Component Usage
4-46
4-12
Interact Service Common Model Identifier Usage
4-47
4-13
Replay Service Operations
4-58
4-14
Replay Service Common Model Component Usage
4-59
4-15
Replay Service Common Model Identifier Usage
4-59
4-16
Retrieval Service Operations
4-73
4-17
Configuration Service Operations
4-85
4-18
Configuration Service Common Model Component Usage
4-86
4-19
Configuration Service Common Model Identifier Usage
4-86
5-1
Common Service Error Codes
5-1

1 Introduction

1.1 Purpose and Scope

This Recommended Standard defines the Spacecraft Monitor and Control (SM&C) Common service in conformance with the service framework specified in reference [A1], Mission Operations Services Concept.

The SM&C Common service is a set of services that provide support facilities to the Mission Operation services defined in reference [A1].

This Recommended Standard defines the SM&C Common service in terms of:
a) the operations necessary to provide the service;
b) the parameter data associated with each operation;
c) the required behaviour of each operation;
d) the use of the service.
It does not specify:
a) individual implementations or products;
b) the implementation of entities or interfaces within real systems;
c) the methods or technologies required for communications.
1.2 Document structure

This Recommended Standard is organised as follows:
a) section 1 provides purpose and scope, and lists definitions, conventions, and references used throughout the Recommended Standard;

b) section 2 presents an overview of the SM&C service concepts;
c) section 3 presents an overview of the Common Service concepts;
d) section 4 specifies the operations and the dynamic behaviour of the services;
e) section 5 is a formal specification of the service data types;

f) section 6 provides a reference list of supported services and operation;
g) annex A contains informative references;

h) annex B defines acronyms and abbreviations used in this document.
1.3 Definition of Terms

Service: A service is an operation, or set of operations, that is well defined, self-contained and does not depend on the state or context of another service. A service may be implemented in terms of, or may use another service, but this should not be apparent to a service consumer.

Service provider: A service provider is an entity that implements a service, equivalent to the target in a controller and target pattern. A service provider may also be a service consumer of lower-level services. However, this would and should be transparent to the consumers of the service; i.e., this is an implementation detail.

Service consumer: A service consumer is an entity that uses a service being supplied by a service provider. A service consumer may also be a service provider to higher-level service consumers. However, this would and should be transparent to the lower-level service being invoked; i.e., this is an implementation detail.

Service directory: A service directory is an entity that provides publish and lookup facilities to service providers and consumers. Strictly speaking a directory is not required if a well-known service is to be used; however, in most circumstances a directory provides required flexibility in the location of services. Service location can be statically configured, dynamically discovered through a service directory, or a combination of the two; this is an implementation choice. The service directory is itself, by definition, a service.

1.4 References
The following documents contain provisions which, through reference in this text, constitute provisions of this Recommended Standard. At the time of publication, the editions indicated were valid. All documents are subject to revision, and users of this Recommended Standard are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS Recommended Standards.
[1] Mission Operations Services Concept. Report Concerning Space Data System Standards, CCSDS 520.0-G-2. Green Book. Issue 2. Washington, D.C.: CCSDS, August 2006.
[2] Spacecraft Monitor and Control—Message Abstraction Layer. Draft Recommendation for Space Data System Standards, CCSDS 521.0-R-1. Red Book. Issue 1. Washington, D.C.: CCSDS, July 2007.
NOTE
–
Informative references are contained in annex A.
2 SM&C Service COncept

2.1 Overview

A service is an operation, or set of operations, that is well defined, self-contained, and does not depend on the state or context of another service.

The services given in reference [1] are based on a generic service pattern. This pattern covers not only the primary service interface but also includes the configuration data and history associated with the service. This is illustrated in the figure below:

[image: image2.emf]Service

History

Service

Configuration

Configuration interrogation

History population

History observation

Service invocation

Service Consumer

Service Provider

Service response

Figure 2‑12 TC \f G "-1
Generic Service Model"
: Generic Service Model

The pattern comprises four main components:

· The Service Provider is responsible for supporting the service functions.

· The Service Consumer is a user of the service functions, and is typically either a Human-Computer Interface, or another software application.

· The Service Configuration specifies the entities that exist for a specific instance of the service. This must be available to both Service Provider and Service Consumer if they are to communicate effectively; however for simple services this may be implicit for one component if the configuration is hard-coded into it.

· The Service History maintains persistent storage of service history, such that a Service Consumer can retrieve historical information for the service.

NOTE
–
The service specification does not define the actual implementation of any of these four collaborating components; it confines itself to definition of the high-level service layer that binds them together. This is represented in Figure 2‑1 by the shaded area and the arrows within it.

2.2 Patterns of Interaction

An operation of a service is composed of a set of messages exchanged between a service provider and consumer and form a pattern of interaction. Analysis of the services given in reference [1] shows that there are a limited number of these patterns of interaction that can be applied to all currently identified services.

Standardising a pattern of interaction, which defines the sequence of messages passed between consumer and provider, makes it possible to define a generic template for an operation of a service.

The Message Abstraction Layer (MAL) defines this limited set of generic interaction patterns (templates) that must be used by services defined in the SM&C service framework. Each operation of a service is defined in terms of one of the MAL interaction patterns.

By defining a pattern and stating that a given operation is an instance of that pattern, the service specification can focus on the specifics of that operation and rely on the standard pattern to define the messaging rules.

For example, if an operation named ‘sendCommand’ were defined and it were to be stated that it is an instance of a pattern called ‘SUBMIT’ then this operation can be separated into two parts, the pattern of messages that are exchanged (the ‘SUBMIT’ pattern) and the meaning of those messages and what ‘sendCommand’ does. By defining the pattern as a standard (‘SUBMIT’) the service specification that defines ‘sendCommand’ only need define the meaning of the messages and what the operation does. The MAL defines this standard set of patterns.

2.3 Message Abstraction

To provide implementation language and message transport independence all operations of a service must be defined by a language/platform/encoding agnostic specification for the sake of implementation language and message transport independence. The MAL defines this set of basic data types, and how they must be used to build up the messages that make up the operations of a service, as an abstract API. This only then has to be mapped once, in a SM&C standard, to a specific implementation language or transport encoding to apply to all services that are defined in terms of the MAL.

In addition to the patterns of interaction and the abstract API the MAL provides support for the following:

· generic concepts, such as domain, session and zone;

· generic facilities such as access control (authentication and authorisation) and Quality of Service. See R[2] for further information.
2.4 Common services

Whilst the MAL provides message abstraction and generic concepts such as access control and quality of service there is a set of facilities that are common to all missions that conceptually reside above the MAL as services. These facilities are split into a Common Model and the associated Common Services that support the model.

The Common Model defines a standard service model that, if exploited by a Mission Operations (MO) service, allows the Common Services to provide support facilities and functionality to the MO service.
The Common Services are defined in terms of the MAL and are used to support the specific MO services.
The Common Services are:

· Directory

Service publish and lookup.
· Login

Operator login.
· Configuration

Service configuration management.
· Interaction

Operator interaction.
· Retrieval

Historic archive retrieval and management.
· Replay

Replay session management and control.
The layering of the MAL, message transport, Common and MO services and the service provider and consumer is shown below (Each layer builds upon the layers below):

[image: image3.emf]Messaging Technology

Messaging Abstraction Layer

Common

Services

Mission Operations

Services

Service

History

Service

Configuration

Configuration interrogation

History population

Service invocation

Service response

Service Consumer

History observation

Service Provider

Figure 2‑22 TC \f G "-2
Service Stack View"
: Service Stack View

NOTE
–
A benefit of implementing multiple services over a message abstraction layer is that it is easier to bind these to different underlying technologies and protocol encodings. All that is required is an ‘adapter’ layer between the MAL and the underlying protocol to enable all services over that technology, this can either be an implementation of the MAL that is bound to a specific technology or an implementation that supports multiple technologies. Hence the same service can be implemented over ground-based network technologies and middleware, or it could even be carried across the space link itself.

The services, in the form of standard language specific APIs, themselves provide the ‘plug-and-play’ interface for applications, allowing them to be integrated and deployed wherever is appropriate for the mission.

2.5 SM&C Framework

The service specifications and the MAL are abstract in their definition; they do not contain any specific information on how to represent them for a particular implementation language or transport encoding.

However the service specifications are supplemented by a set of standard SM&C specifications for representing the MAL in specific implementation languages and also for mapping the MAL to a specific message encoding and transport:

[image: image4.emf]MessagingTechnology Messaging Abstraction Layer Generic Interaction Patterns, Access Control, Quality of Service Common Services Directory, Login, … Mapping to implementation language Mapping of the MAL to encoding and transport Abstract service specification defined in terms of the MA L Abstract service template and messaging infrastructure Mission Operations Services Core,Automation, Scheduling, Time, … Consumer/Provider

Figure 2‑32 TC \f G "-3
Service Layering"
: Service Layering

NOTE
–
Only the MAL specification needs to be mapped to a specific implementation language. The service specifications are defined in terms of the MAL and therefore the same language mapping applies to these services unmodified.

Of the Recommended Standards produced for the SM&C specification, each book falls into one of the following four categories:

a) Language mapping:

One book for each mapping from the MAL to the specific implementation language.
b) MAL specification:

Only one book exists defining the MAL.
c) Service specifications:

Only one book exists for each service specification.
d) Transport mapping:

One book for each mapping from the MAL to the specific transport and encoding.
Language-mapping Recommended Standards define a standard mapping of the MAL to a specific implementation language. This provides a standard API for application developers to develop against allowing the reuse of both applications and also MAL implementation.

Transport-mapping Recommended Standards define technology mappings to specific transports, such as CCSDS AMS (Asynchronous Messaging Service), and message encodings such as XML, ASCII and CCSDS Space Packets. This allows system engineers to choose a message transport and encoding appropriate for a specific deployment.

To provide a working implementation of a service one book of each category must be selected and used.

2.6 Interoperability

The MAL is defined in a language- and protocol-agnostic manner as it only standardises the message exchange at an information level; it leaves the language used to implement it, the encoding mechanism, and the transport used open to be selected in the system implementation phase.

This flexibility in the specification of the MAL allows two types of interoperability to be provided: firstly the choice of encoding and transport allows interoperability between entities such as cooperating agencies, and secondly the choice of language allows interoperability of an application with a specific implementation of the MAL (allow reuse of software across missions).

Using the book numbering from 2.5:

a) language mapping;

b) MAL specification;

c) service specifications;

d) transport mapping.

For two agencies to interoperate they must standardise on the transport and encoding selected (books selection BCD must match). The choice of implementation language chosen (book selection A) at each agency is hidden from the other by the MAL and therefore not required for entity interoperability:

[image: image5.emf]Entity Interoperability

Entity Interoperability

Application Interoperability

Application Interoperability

Application Interoperability

Application Interoperability

SOAP Message Transport SOAP Message Transport

Encoding to XML

Messaging Abstraction Layer

in C++

Mission Operations Service

in C++

Consumer Application

in C++

Encoding to XML

Messaging Abstraction Layer

in Java

Mission Operations Service

in Java

Provider Application

in Java

Figure 2‑42 TC \f G "-4
Example Entity Interoperability"
: Example Entity Interoperability

The key benefits of this approach are:

· support for heterogeneous implementations;

· ability to change the transport infrastructure within a system, without major re-work to the application level software. Only have to re-do the mapping to the transport encoding.

The separation of information interoperability (MAL and higher layers) and protocol interoperability (encoding and transport) allows simple processes to be created that allowing bridging from one encoding/transport choice to another:

[image: image6.emf]Entity Interoperability

Entity Interoperability

Entity Interoperability

Entity Interoperability

Protocol and Transport Bridging

Protocol and Transport Bridging

Application Interoperability

Application Interoperability

Application Interoperability

Application Interoperability

SOAP Message Transport AMS Message Transport

Encoding to XML

Messaging Abstraction Layer

in C++

Mission Operations Service

in C++

Consumer Application

in C++

Encoding to Space Packets

Messaging Abstraction Layer

in C

Mission Operations Service

in C

Provider Application

in C

SOAP Message Transport

Encoding to XML

AMS Message Transport

Encoding to Space Packets

Messaging Abstraction Layer

in Java

Figure 2‑52 TC \f G "-5
Protocol Bridge Example"
: Protocol Bridge Example

Figure 2‑5 shows that the two components are still fully interoperable even though they utilise different transports encodings. An implementation of the MAL may be fixed to one specific encoding and transport but the MAL specification permits this to still be interoperable with other implementations using a different transport/encoding through the use of the protocol bridge. It should be noted that a bespoke transport/encoding can be used, for example to utilise existing infrastructure, all that is required is a mapping from the MAL to that transport.
3 Common Service Concepts

3.1 Overview

The SM&C Common services build upon the layering concept outlined in Mission Operations Services Concept (reference [A1]) and are defined in terms of the SM&C Message Abstraction Layer (MAL) (reference [2]), so it is possible to deploy them over any supported protocol and message transport.

The Common Services provide infrastructure services to support the mission operations services referenced in [A1]. These Common services cover the following aspect of a system:

· Directory

· Service publish and lookup

· Login

· Operator login

· Configuration

· Service configuration management

· Interaction

· Operator interaction

·
·
·
·
The Common services provide functions that exist in the vast majority of systems but have previously been proprietary.
The Common specification also defines the Common Model which provides a standard model for services to extend, allowing the specification of standard operations that further simplify the specification of mission services and services that support this model such as a standard archive:
· Retrieval

· Historical archive retrieval and management

· Replay

· Replay session management and control

By specifying these service interfaces it allows not only intra-operability, where existing software can be used across an agency’s missions, but also inter-operability, where collaborating agencies can share resources and take advantage of each other’s facilities:

[image: image7.emf]Spacecraft X

Agency B

Login

Retrieval

Directory

Mission Ops

Agency A

Figure 3‑13 TC \f G "-1
Example Common Deployment"
: Example Common Deployment

In the above example Agency B is exporting basic services to Agency A. This could be because Agency A has an instrument on board Spacecraft X or for some other reason. Because all messages for the spacecraft are sent via Agency B (the controlling agency), it can restrict access and deny operations as it sees fit, maintaining appropriate security.

It should be noted that this is just an example deployment; the services themselves do not place any restriction on deployments.

3.2

3.3 Directory Service

The directory service provides publish and lookup facilities to service providers and consumers. It allows providers to publish their location in the form of a URI (Universal Resource Indicator) so that consumers can locate it without having to know in advance the location. Strictly speaking a directory is not required if a well-known service is to be used; however, in most circumstances a directory provides required flexibility in the location of services.

[image: image10.emf]Service consumer Service provider Service directory Publish Lookup Invoke

Figure 3‑23 TC \f G "-2
Directory Service Concept"
: Directory Service Concept

The Directory is organised in a hierarchical tree structure of directory Nodes. Each Node is identified by a Domain, Network Zone and Session and contains links to its services, sub-domains and also to alternate Networks and Sessions. Alternate networks and sessions are ones that have the same Domain identifier but reside in a different network or session. For example, for a specific domain there may be several sessions in the directory service and each of those has a different set of service providers, this is represented by Nodes having the same Domain and Network identifiers but different Session identifiers.
The figure below provides an example view of a directory:

[image: image11.emf]Alternate

Network or Session

Node

Node Node

Node

Node

Node

Services

Figure 3‑33 TC \f G "-3
Directory Service Structure"
: Directory Service Structure

Each service entry for a Node contains the associated service information such as capability sets, the QoS (Quality of Service) levels that it can provide, and the URIs required to locate it. Capability sets provide a quick way for service providers to inform consumers of which optional capabilities of a service they support.

The QoS and URI aspects are held as a list of addresses, this allows a service provider to support more than one type of QoS and message transport technology.
Table 3‑13 TC \f T "-1
Directory Service Capability Fields"
: Directory Service Address Fields
	Field
	Comment

	Supported QoS levels
	The set of possible QoS levels this service can provide.

	QoS Properties
	Any QoS property values that are required for successful communication using the various QoS levels and URIs.

	Priority QoS levels
	The number of priority QoS channels this service supports.

	Service URI
	The URI of the Service primary interface, used for all non-Publish/Subscribe interaction pattern operations.

	Data URI
	The data URI that identifies the physical location of the publish and subscribe interface. May be empty if service does not use publish and subscribe operations or if a shared data provider is to be used.

	Shared data provider name
	This field is used to identify a shared data provider (broker); if this field contains a value and the Data URI field is empty then the Data URI value of named provider shall be used.

For services that have operations based on the publish and subscribe interaction pattern there may be required a separate URI for the broker component. To support this the directory service holds two URIs for each service, the URI of the primary interface and also a secondary one which, if present, shall be used for publish and subscribe-based operations. It is also possible that a publish and subscribe broker component is shared between more than one provider, known as a shared data source, and in this case the broker should be published as a directory service entry without a primary interface URI. The sharing providers should reference it by naming it in the ‘Shared data provider name’ field in their directory service entry. See reference [2] for more information regarding the Publish/Subscribe interaction pattern.
The service directory does not contain any information about the relationships between services that are physically located in a single provider application. The simple reason is that services are offered by domain, session, zone, etc., and the actual implementation behind them is irrelevant.

The Directory service cannot be used by clients to locate the Directory service itself, and therefore another means of determining the address of it (usually configuration) is required.
3.3.1 Service provider properties

Each entry in the Directory service for a particular service contains a list of named properties that can be defined by the implementing service provider for passing of relevant information to a service consumer. This list is open ended in so much that any values can be added, however Table 3‑2 lists the standard properties and their meanings:

Table 3‑23 TC \f T "-2
Message Header Fields"
: Standard Service Provider Properties
	Property identifier
	Permitted values
	Default value
	Description

	TIMEREF
	UTC

TAI

GPS
	UTC
	Defines the epoch of the time values obtained from this service provider. It is possible an implementation specific time reference is used however this is outside the scope of this specification.

3.4 Login Service

The Login service allows an operator to provide authentication information to the system. It takes the operator’s credentials and uses a deployment-specific mechanism to authenticate the operator; the result of this is used by the MAL during access control.

The Login service and the access control provided by the MAL are fully dependent on a deployment-specific security architecture (for example the authentication protocol Kerberos). Both layers (Common and MAL) provide access to, and use of, this security service. Neither implement this themselves. See reference [2] for more information regarding access control.

3.5 Interact Service

When a component of the system requires some input from an operator that is not as a result of an action of the operator, for example, confirmation of a critical automated action, the interaction service allows a component to request that information from an appropriate operator.

Four types of operator interaction are supported:

· Acknowledge

Operator is required to acknowledge an operation (simple ‘Ok’ style interaction).
· Confirm

Operator is required to confirm or decline an operation (‘Yes/No’ style interaction).
· Choice

Operator is presented with a list of options to choose from (Drop down list of choices).
· Get values

Operator is required to provide a set of values (value entry boxes).
It is also possible that a software component targets a role rather than a specific user; it may be the case that the software component requires interaction from an operator, but one of several may provide the response. The username of the operator that responds to an interaction is returned to the component when the interaction is completed so that the operator in question can continue the interaction if appropriate.

How a component or application determines which role or operator to interact with is an implementation-specific detail that is outside the scope of the Recommended Standard.

3.6 Configuration Service

The configuration service provides the ability to transfer the configuration of a service to and from a service provider. It provides facilities for the management of configurations held by a provider if applicable to that implementation.

Implementations of the configuration service may support bespoke configuration upload mechanisms (such as file upload). This is supported by the configuration specification where consumers would be notified of a new configuration; however, the details of these upload methods are outside of the scope of the Recommended Standard.

The specific configuration of a service is not covered in this Recommended Standard; however, it is fully expected that services may require some degree of configuration, for example, the list of telemetry parameters. Both the consumer and the provider must agree on the contents of this configuration, but it is outside of the scope of the specification to define how this configuration is defined. This Recommended Standard only defines how configurations are exchanged and managed.

3.7 Common Model
Overview

The Common Model provides a standard service template for MO Services to utilise. It defines an entity model that MO services extend and an associated set of operations for the management and observation of that model. By defining this standard service entity model it allows not only the specification of standard operations but also the definition of a standard historical archive and the associated services that support the archive.
Common Model Structure

Services that utilise the Common Model must adhere to the basic structure that is shown in Figure 3‑4 REF _Ref188340634 \h
. This model is composed of four conceptual components, of which three (Definition, Occurrence, and Status) are represented in structures used by the Common Model:

[image: image12.emf]Identity

1 n 1 n 1 n

Definition Status Occurrence

Figure 3‑43 TC \f G "-4
Common Model Structure"
: Common Model Structure

The first conceptual component is the identity of the entity. The entity identity exists throughout the history of the archive and cannot change. For example, for a telemetered parameter, that would be the parameter name.

The second conceptual component is the definition of the entity. The definition of an entity may evolve over time, so there is a one-to-many relationship between the entity identity and its definition. For example, this would be the definition of the parameter containing aspects such as type and description.

The third conceptual component is the occurrence of the entity. The occurrence component holds attributes of the entity that exist at creation. There may be many occurrences for each definition of an entity, but each occurrence can have only one definition, so there exists a one-to-many relationship between definition and occurrence. For some types of entity there may only ever be one occurrence for each definition, which is the case with telemetered parameters, this does not violate the relationship but it must be noted during the specification of the relevant service. For other types of entity there may be a many occurrences concurrently for a definition. For example, with a telecommand, each sending of that telecommand (based on a specific definition) is an occurrence of that telecommand and is distinct from other occurrences. The occurrence would contain such information as the argument values of the telecommand.
The final conceptual component is the status of the entity. There may be many status updates for each occurrence of an entity, but each status is related to only a single occurrence, so there exists a one-to-many relationship between occurrence and status. For some types of entity there may be a one-to-one relationship between occurrence and status, for example an alert occurrence had no alert status as the occurrence does not change over time, this does not violate the relationship, but it must be noted during the specification of the relevant service. For example, the current value of a parameter or the current verification state of a telecommand occurrence are status attributes.
At any one instant in time there actually exists the following Common Model relationship:

[image: image13.emf]Identity

1 1 1 1 1 n

Definition Status Occurrence

Figure 3‑53 TC \f G "-5
Common Model Structure"
: Common Model Live Structure

It shows that that at any one point in time an entity can have only one active definition, each definition may have zero to n occurrences, and each occurrence has only one active status.

The Definition, Occurrence, and Status components are represented as abstract structures in the Common Model. A service specification must extend these abstract structures for it to be possible for it to use the Common Model operations. For example, for telecommands the structures used to represent the definition, any occurrences, and the evolving status of those occurrences must extend the abstract structures defined in 5.3.
Common Model Updates

Changes to the model are communicated to clients by the distribution of updates. The Common Model defines a base update message, one for each component of the model modelled, that all service updates must extend. These update structures are DefinitionUpdate, OccurrenceUpdate, and StatusUpdate. These structures extend the MAL::Update structure so that they may be used with the Publish/Subscribe pattern.
Updates to the Common Model are either full updates, where a new copy of the item is sent, or partial, where just an aspect of the item is sent. The model contains three predefined model complete update messages, CompleteDefinitionUpdate, CompleteOccurrenceUpdate, and CompleteStatusUpdate. These shall be used to distribute a complete copy of the relevant component. For example, the definition of a new telecommand would be sent as a MAL Creation update which would be extended by a CompleteDefinitionUpdate model update message containing the new telecommand Definition structure. If that definition were to be deleted then that would be distributed as a MAL Deletion update; in this case the update message would be extended by the CompleteDefinitionUpdate message but with an empty Definition as it has been deleted.
Partial updates are specified by extending the relevant Common Model update structure with a service specific structure containing the changed information. It is a service specific aspect how this is defined and what each partial update actually modifies.
3.7.1 Common Model Archive structure

Services that participate in the Common Model must adhere to a basic structure. This structure allows the definition of a common archive structure for the provision of historic retrieval and replay services.

As stated in 3.6.2, the Definition, Occurrence, and Status components are represented as abstract structures in the Common model. A service specification must extend these abstract structures for it to be possible for it to use the archive and the associated historical services. For example, for telecommands the structures used to represent the definition, any occurrences, and the evolving status of those occurrences must extend the abstract structures defined in 5.3 for the Common Model archive to be able to hold these service-specific structures:

[image: image14.emf]Definition Occurrence Occurrence Occurrence Status Status Status Status Identity Definition Status Occurrence 1 1 1 1 1 n Definition Status 1 1 n n Present Past

Figure 3‑63 TC \f G "-6
Historical Archive Model"
: Historical Archive Model

As changes are made during the lifetime of the items this information is distributed to consumers using the Common Model update structures and the normal MAL Interaction Patterns. These updates are also stored in the Common Model archive:
[image: image15.emf]Occurrence Identity Definition Status Present Past Definition Status Occurrence Define/Redefine/Delete Create/Update/Delete Update Update messages

Figure 3‑73 TC \f G "-7
Historical Archive Updates"
: Historical Archive Updates

By storing these updates in the archive the Common Model historical replay/retrieval operations can correctly reflect the history of the items.

3.8 Common Model Archive Services

There are three different data retrieval scenarios that an SM&C consumer function may use for historical archive access:

·
·
·

Snapshot
A snapshot of items existing at a given point in time is extracted in a single transaction.

Retrieval
A block of items updates covering a period of time is extracted in a single transaction. If no updates exist for an item in the time period no value is returned for that item.
Replay
Discrete items are forwarded dynamically to the consumer in accordance with an evolving timeframe.

Though all of the mechanisms return historical items to a consumer, they are distinct in their operation and therefore covered by two separate services.

3.8.1 Retrieval Service

The retrieval service provides a consumer with the ability to request data from the service archive in bulk. The service returns to the consumer the set of data that fulfils the criteria of the data request. The data request is split into two parts a base common part and an extended request specific part. The base data request contains a domain, service area/type, and time range for the selection of data and the extended request contains more specific filtering information. The service does not allow the selection of data by session or network zone as this is implicit to the service; domain selection is only allowed to the domain of the service or a sub-domain thereof.
The service has three main retrieval operations, a catalogue operation, a bulk retrieval operation, and a snapshot operation. The catalogue operation returns the set of entity identifiers that satisfy the request criteria, the bulk retrieval returns the Common Model updates that satisfy the selection criteria, and the snapshot operation returns the entity items that satisfy the selection criteria at a single point in time.
It also allows the consumer to specify how historical relationships are applied to the returned data. For example, it may be desirable to request that telemetry data is returned with current engineering conversions applied rather than, for example, erroneous ones applicable at the time the data was generated/stored.

3.8.2 Replay service

A historical replay is considered under SM&C to be a session distinct from other active sessions such as the current live session or simulation sessions. Each replay session is created based on an existing live or simulation session (limited to a specific domain and zone); the replay session is a read-only copy of the base session that can be ‘browsed’ under consumer control.

The replay service allows a consumer to create, control, and delete replay sessions. Once a replay has been created, a consumer can:

· single step through history forwards and backwards;
· play the history forwards and backwards;
· adjust the replay rate of the replay session;
· delete the replay session.
The creation of the replay session returns a set of service details, similar to what is returned by the directory service, detailing all the services supported by the replay session. It is entirely possible for a replay session to be published under a directory service, as it uses the directory service structures for detailing its location information.

It should be noted that the replay session is effectively read-only as far as the data is concerned: any service or operation that would result in a modification to history is not permitted (for example the sending of an action). However, operations that affect the delivery or representation of history (such as the History retrieval relationships) are still possible as they are just altering the state of the replay session service providers rather than the data itself.

The service specifications mark whether a specific operation is permitted during a replay session; if an operation is not supported during replay then any attempt to call it shall result in the standard error of NOT_IN_REPLAY being returned.

4 Common Service Specification

4.1 Overview

This section details the Common Services; the structures used by the services are detailed in section 5. The services and structures are defined in terms of the SM&C Message Abstraction Layer (MAL), so it is possible to deploy them over any supported protocol and message transport.

To aid comprehension, several tables are included for each service and operation definition. The formats are fully described in sections 4 and 5 of reference [2]. The text below provides an overview of the tables:

· Service overview – A service comprises a set of operations. The tables in the following subsections specify the operations in terms of the Interaction Patterns.

· Service Common Model component usage—Where a service complies with the Common Model is must define the structures it uses to represent the components of the Common Model.

· Service Common Model identifier usage—Where a service complies with the Common Model it must define the meaning and relationship between the four identifiers of the Common Model.

· Message Structures - The specification of the service will also detail the structures passed as the message bodies and message returns. If these structures are MAL types they will have the prefix ‘MAL::’ and be specified in reference [2]; otherwise they are specified in section 5 of this document.

All service specifications in this document are part of the Common Area. This has a short form number of ‘0’:

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	
	0
	
	

4.2 Common Model Service

4.2.1 General

The Common Model service provides standard operation definitions that services compliant to the model can use. The Common Model operations simplify the definitions and implementation of specific services by allowing common operations to be specified once, here, and also for generic infrastructure such as a Common History archive to be utilised. The Retrieval service (4.7) can be used to obtain historical values of the Common Model components.

Each service specification shall state its compliance to the model and which common operations it incorporates, as not all may be appropriate for a specific service.

When a service uses a Common Model operation, the service area/number/version shall be taken from that service; only the service operation identifier/number shall be taken from the Common Model operation. Services that use the Common Model should be careful not to overlap the operation and capability set numbers used by the Common Model; to this end all services that use the Common Model shall start their operations and capability set numbering at 100.

The services defined here are split into multiple capability sets. The first three contain operations that allow a consumer to request and monitor the components of the common model. The last capability set allows the consumer to modify the definitions of the service.
Each service specification shall also state its use of the Common Model update structures. The Common Model defines three abstract update structures, DefinitionUpdate, OccurrenceUpdate and StatusUpdate which are used by the three components of the Common Model to hold changes to these aspects. These structures allow a service to define a partial update that only modifies an aspect of the model by extending the relevant update structure.
The Common Model also contains three predefined update messages, CompleteDefinitionUpdate, CompleteOccurrenceUpdate, and CompleteStatusUpdate. These shall be used to hold a complete copy of the relevant component. For example, the definition of a new telecommand would be distributed and stored as a MAL Creation update which would be extended by a CompleteDefinitionUpdate model update message containing the new telecommand Definition structure. If that definition were to be deleted then that would be distributed and stored as a MAL Deletion update to the item’s definition; in this case the update message would be extended by the CompleteDefinitionUpdate message but that would not contain an actual Definition as it has been deleted.

Table 4‑14 TC \f T "-1
Common Model Service Operations"
: Common Model Service Operations
	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Service Specific
	Service specific
	Service specific
	Service specific
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	REQUEST
	requestDefinition
	0
	Yes
	0

	REQUEST
	listDefinition
	1
	Yes
	

	PUBSUB
	monitorDefinition
	2
	Yes
	

	REQUEST
	requestOccurrence
	3
	Yes
	1

	REQUEST
	listOccurrence
	4
	Yes
	

	PUBSUB
	monitorOccurrence
	5
	Yes
	

	REQUEST
	requestStatus
	6
	Yes
	2

	REQUEST
	listStatus
	7
	Yes
	

	PUBSUB
	monitorStatus
	8
	Yes
	

	SUBMIT
	addDefinition
	9
	No
	3

	SUBMIT
	modifyDefinition
	10
	No
	

	SUBMIT
	deleteDefinition
	11
	No
	

	SUBMIT
	deleteAllDefinitions
	12
	No
	

4.2.2 Common Model Usage

Each service shall specify its compliance to the Common Model as follows. Firstly, state which structures it uses to represent its definition, occurrence, and status components:

Table 4‑24 TC \f T "-2
Common Model Component Usage"
: Common Model Component Usage
	
	Definition
	Occurrence
	Status

	Structure
	Must extend Definition
	Must extend Occurrence
	Must extend Status

	Update structures
	Must extend DefinitionUpdate
	Must extend OccurrenceUpdate
	Must extend StatusUpdate

Not all components are necessarily required; the service specification shall identify the required components and their relationship. If a particular component is not used, then the associated Common Model operations shall not be supported either. For example, a specific service may not have a definition component because, for that service, one cannot change/add/delete the concepts that the definition represents. Therefore the definition component would be implicit and all definition operations redundant.

Secondly, the service specification shall define the meaning of and the relationship between the component identifiers in the table below (see 1.1 for an explanation of the components):

Table 4‑34 TC \f T "-3
Common Model Identifier Usage"
: Common Model Identifier Usage
	Identifier field
	Definition
	Occurrence
	Status

	entityId
	
	
	

	definitionId
	
	
	

	occurrenceId
	
	
	

	statusId
	
	
	

The table lists the identifiers provided by the abstract structures that are extended by the service-specific structures. The greyed-out cells permit only the relevant identifiers for the relevant structure; for example, a Definition structure only has an entityId and a definitionId. Each service specification must detail how these identifiers are used. In many cases an entry for Occurrence or Status may refer to the value in another column such as ‘From definition’, this means that whatever is specified for this identifier field in the Definition column is also used here.
Each operation shall also state its use of the Common Model update structures in terms of what updates are distributed both to consumers (over and above what is returned directly from the operation) and also what shall be archived and therefore available at a later date via historic replay or retrieval. For example, if an operation modifies the definition of an entity held by a provider then the relevant update shall be described in the ‘Common Model Updates’ section and this update shall be received by Publish/Subscribe consumers and also archived in the Common Model archive.

If an operation does not modify the state of the provider, for example it is only a query on the providers or object state, then there is nothing for the Common Model to distribute or archive and therefore the operations usage of the Common Model shall be marked as ‘Not applicable’.
4.2.3 OPERATION: requestDefinition
4.2.3.1 General

The requestDefinition operation allows a consumer to obtain the definition of a number of service entities in the service Domain, Session, and Zone.

	Operation Name
	requestDefinition

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	DefinitionKeyList

	OUT
	Response
	DefinitionList

4.2.3.2 Structures

The DefinitionKeyList holds one or more definition match requests.
The entityId field must not be NULL or empty (an INVALID error is return in this case). If it contains the wildcard value ‘*’ then a definition for all entities is required.

The definitionId field may be NULL or empty in which case it shall match the latest definition of the matched entity. The wildcard value ‘*’ is not permitted.

If the request specifies a definitionId that does not match the latest definition of an entity then the provider can either return that definition (if it has access to an archive) or return the HISTORIC error code.
The returned list has an entry for each requested entity. If a definition matches more than one request definition key then it shall only be returned once. If a value does not currently exist for a requested entity, then no entry shall be returned for that entity.

4.2.3.3 Common Model Updates
Not applicable.

4.2.3.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	One or more of the requested entities do not exist.

	INVALID
	See Table 5‑1
	One or more of the requests contain invalid values.

	HISTORIC
	See Table 5‑1
	One or more of the requested entities are only available via Historic Retrieval service.

4.2.4 OPERATION: requestOccurrence
4.2.4.1 General

The requestOccurrence operation allows a consumer to obtain the occurrences of a number of service entities in the service Domain, Session, and Zone.

	Operation Name
	requestOccurrence

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	OccurrenceKeyList

	OUT
	Response
	OccurrenceList

4.2.4.2 Structures

The OccurrenceKeyList holds one or more occurrence match requests.
The entityId field must not be NULL or empty (an INVALID error is return in this case). If it contains the wildcard value ‘*’ then occurrences for all entities is required.
The definitionId field may be NULL or empty in which case it shall match the latest definition of the matched entity. It also may contain the wildcard value ‘*’ in which case it shall match all definitions for the matched entity, this is for the case where a current occurrence is using a definition that is not the latest.
The occurrenceId field may be NULL or empty in which case it shall match the latest occurrence of the matched entity. It also may contain the wildcard value ‘*’ in which case it shall match all occurrences for the matched entity and definition that are not marked as deleted (MAL::UpdateType of Deletion).
If the request specifies an occurrence that is not current then the provider can either return that occurrence (if it has access to an archive) or return the HISTORIC error code.

Because many occurrences may concurrently exist for a specific entity, all matches shall be returned.

4.2.4.3 Common Model Updates
Not applicable.

4.2.4.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	One or more of the requested entities do not exist.

	INVALID
	See Table 5‑1
	One or more of the requests contain invalid values.

	HISTORIC
	See Table 5‑1
	One or more of the requested entities are only available via Historic Retrieval service.

4.2.5 OPERATION: requestStatus
4.2.5.1 General

The requestStatus operation allows a consumer to obtain the status of a number of service entities in the service Domain, Session, and Zone.

	Operation Name
	requestStatus

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	StatusKeyList

	OUT
	Response
	StatusList

4.2.5.2 Structures

The StatusKeyList holds one or more status match requests.
The entityId field must not be NULL or empty (an INVALID error is return in this case). If it contains the wildcard value ‘*’ then status for all entities is required.

The definitionId field may be NULL or empty in which case it shall match the latest definition of the matched entity. It also may contain the wildcard value ‘*’ in which case it shall match all definitions for the matched entity, this is for the case where a current status is using a definition that is not the latest.
The occurrenceId field may be NULL or empty in which case it shall match the latest occurrence of the matched entity. It also may contain the wildcard value ‘*’ in which case it shall match all occurrences for the matched entity and definition.
The statusId field may be NULL or empty in which case it shall match the latest status of the matched entity. It also may contain the wildcard value ‘*’ in which case it shall match all statuses for the matched entity, definition, and occurrence that are not marked as deleted (MAL::UpdateType of Deletion).
If the request specifies a status that is not current then the provider can either return that status (if it has access to an archive) or return the HISTORIC error code.

The returned list has an entry for each requested entity. If a value does not currently exist for a requested entity, then no entry shall be returned for that entity.

4.2.5.3 Common Model Updates
Not applicable.

4.2.5.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	One or more of the requested entities do not exist.

	INVALID
	See Table 5‑1
	One or more of the requests contain invalid values.

	HISTORIC
	See Table 5‑1
	One or more of the requested entities are only available via Historic Retrieval service.

4.2.6 OPERATION: listDefinition
4.2.6.1 General

The listDefinition operation allows a consumer to obtain the definition keys of a number of service entities in the service Domain, Session, and Zone. It provides basic catalogue information without returning the complete entities, just the keys.
	Operation Name
	listDefinition

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	DefinitionKeyList

	OUT
	Response
	DefinitionKeyList

4.2.6.2 Structures

The DefinitionKeyList holds one or more definition match requests.
The entityId field must not be NULL or empty (an INVALID error is return in this case). If it contains the wildcard value ‘*’ then a definition key for all entities is required.

The definitionId field may be NULL or empty in which case it shall match the latest definition key of the matched entity. The wildcard value ‘*’ is permitted, the operation shall return all available definition keys (which may only be the most current) that are not marked as deleted (MAL::UpdateType of Deletion).

If the request specifies a definitionId that does not match the latest definition key of an entity then the provider can either return that definition key (if it has access to an archive) or return the HISTORIC error code.

The returned list has an entry for each requested entity. If a definition key matches more than one request definition key then it shall only be returned once. If a value does not currently exist for a requested entity, then no entry shall be returned for that entity.

4.2.6.3 Common Model Updates

Not applicable.

4.2.6.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	One or more of the requested entities do not exist.

	INVALID
	See Table 5‑1
	One or more of the requests contain invalid values.

	HISTORIC
	See Table 5‑1
	One or more of the requested entities are only available via Historic Retrieval service.

4.2.7 OPERATION: listOccurrence
4.2.7.1 General

The listOccurrence operation allows a consumer to obtain the occurrence keys of a number of service entities in the service Domain, Session, and Zone. It provides basic catalogue information without returning the complete entities, just the keys.
	Operation Name
	listOccurrence

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	OccurrenceKeyList

	OUT
	Response
	OccurrenceKeyList

4.2.7.2 Structures

The OccurrenceKeyList holds one or more occurrence match requests.
The entityId field must not be NULL or empty (an INVALID error is return in this case). If it contains the wildcard value ‘*’ then occurrence keys for all entities is required.

The definitionId field may be NULL or empty in which case it shall match the latest definition of the matched entity. It also may contain the wildcard value ‘*’ in which case it shall match all definitions for the matched entity, this is for the case where a current occurrence is using a definition that is not the latest.

The occurrenceId field may be NULL or empty in which case it shall match the latest occurrence key of the matched entity. It also may contain the wildcard value ‘*’ in which case it shall match all occurrence keys for the matched entity and definition that are not marked as deleted (MAL::UpdateType of Deletion).

If the request specifies an occurrence key that is not current then the provider can either return that occurrence key (if it has access to an archive) or return the HISTORIC error code.

Because many occurrences may concurrently exist for a specific entity, all matches shall be returned.

4.2.7.3 Common Model Updates

Not applicable.

4.2.7.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	One or more of the requested entities do not exist.

	INVALID
	See Table 5‑1
	One or more of the requests contain invalid values.

	HISTORIC
	See Table 5‑1
	One or more of the requested entities are only available via Historic Retrieval service.

4.2.8 OPERATION: listStatus
4.2.8.1 General

The listStatus operation allows a consumer to obtain the status keys of a number of service entities in the service Domain, Session, and Zone. It provides basic catalogue information without returning the complete entities, just the keys.
	Operation Name
	listStatus

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	StatusKeyList

	OUT
	Response
	StatusKeyList

4.2.8.2 Structures

The StatusKeyList holds one or more status match requests.
The entityId field must not be NULL or empty (an INVALID error is return in this case). If it contains the wildcard value ‘*’ then status keys for all entities is required.

The definitionId field may be NULL or empty in which case it shall match the latest definition of the matched entity. It also may contain the wildcard value ‘*’ in which case it shall match all definitions for the matched entity, this is for the case where a current status is using a definition that is not the latest.

The occurrenceId field may be NULL or empty in which case it shall match the latest occurrence of the matched entity. It also may contain the wildcard value ‘*’ in which case it shall match all occurrences for the matched entity and definition.

The statusId field may be NULL or empty in which case it shall match the latest status of the matched entity. It also may contain the wildcard value ‘*’ in which case it shall match all statuses for the matched entity, definition, and occurrence that are not marked as deleted (MAL::UpdateType of Deletion).

If the request specifies a status that is not current then the provider can either return that status key (if it has access to an archive) or return the HISTORIC error code.

The returned list has an entry for each requested entity. If a value does not currently exist for a requested entity, then no entry shall be returned for that entity.

4.2.8.3 Common Model Updates

Not applicable.

4.2.8.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	One or more of the requested entities do not exist.

	INVALID
	See Table 5‑1
	One or more of the requests contain invalid values.

	HISTORIC
	See Table 5‑1
	One or more of the requested entities are only available via Historic Retrieval service.

4.2.9 OPERATION: monitorDefinition
4.2.9.1 General

The monitorDefinition operation allows a consumer to subscribe for definition updates. The key in the EntityRequest of the subscription (in the register) contains the entityId and the definitionId identifiers from the DefinitionKey for the service entities to be monitored. The ‘*’ identifier can be used in the entityId to indicate that updates are required for all entities in the service Domain, Session, and Zone. The ‘*’ identifier can be used in the definitionId to indicate that updates are required for all definitions for a specific entity in the service Domain, Session, and Zone.
	Operation Name
	monitorDefinition

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	IP Sequence
	Message
	Field Type

	OUT
	Publish/Notify
	DefinitionUpdate

4.2.9.2 Structures

The DefinitionUpdate is used to report the change to a definition.

4.2.9.3 Common Model Updates
Not applicable.

4.2.9.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	One or more of the entities identified in the registration do not exist.

4.2.10 OPERATION: monitorOccurrence
4.2.10.1 General

The monitorOccurrence operation allows a consumer to subscribe for occurrence updates. The key in the EntityRequest of the subscription (in the register) contains the entityId, definitionId and the occurrenceId identifiers from the OccurrenceKey for the service entities to be monitored. The ‘*’ identifier can be used in the entityId to indicate that updates are required for all entities in the service Domain, Session, and Zone. The ‘*’ identifier can be used in the DefinitionId to indicate that updates are required for all definitions for a specific entity in the service Domain, Session, and Zone The ‘*’ identifier can be used in the OccurrenceId to indicate that updates are required for all occurrences for a specific definition and entity in the service Domain, Session, and Zone.

	Operation Name
	monitorOccurrence

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	IP Sequence
	Message
	Field Type

	OUT
	Publish/Notify
	OccurrenceUpdate

4.2.10.2 Structures

The OccurrenceUpdate is used to report the change to an occurrence.

4.2.10.3 Common Model Updates
Not applicable.

4.2.10.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	One or more of the entities identified in the registration do not exist.

4.2.11 OPERATION: monitorStatus
4.2.11.1 General

The monitorStatus operation allows a consumer to subscribe for the status of one or more entities. The key in the EntityRequest of the subscription (in the register) contains the service entityId, definitionId, occurrenceId, and statusId identifiers from the StatusKey for the entities to be monitored. The ‘*’ identifier can be used in the entityId to indicate that updates are required for all entities in the service Domain, Session, and Zone. The ‘*’ identifier can be used in the DefinitionId to indicate that updates are required for all definitions for a specific entity in the service Domain, Session, and Zone The ‘*’ identifier can be used in the OccurrenceId to indicate that updates are required for all occurrences for a specific definition and entity in the service Domain, Session, and Zone. The ‘*’ identifier can be used in the StatusId to indicate that updates are required for all status items for a specific occurrence, definition and entity in the service Domain, Session, and Zone.
	Operation Name
	monitorStatus

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	IP Sequence
	Message
	Field Type

	OUT
	Publish/Notify
	StatusUpdate

4.2.11.2 Structures

The StatusUpdate is used to report the status update of a service entity.

4.2.11.3 Common Model Updates
Not applicable.

4.2.11.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	One or more of the entities identified in the registration do not exist.

4.2.12 OPERATION: addDefinition
4.2.12.1 General

The addDefinition operation allows a consumer to define one or more entities that do not currently exist in the service Domain, Session, and Zone. If a definition for a specified entity already exists this operation shall fail.

	Operation Name
	addDefinition

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	DefinitionList

4.2.12.2 Structures

The DefinitionList holds the definitions to be added. For each entity the definitionId field of the key may be NULL, in which case the provider shall generate a unique definition identifier, or use the definitionId specified in the submission.

4.2.12.3 Common Model Updates
The service-specific definition structure shall be archived and distributed using a CompleteDefinitionUpdate structure using a MAL::UpdateType of Creation.

4.2.12.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	One or more of the entities specified in the operation contain invalid values.

	DUPLICATE
	See Table 5‑1
	One or more of the entities specified in the operation already exist.

4.2.13 OPERATION: modifyDefinition
4.2.13.1 General

The modifyDefinition operation allows a consumer to replace the active definition for one or more existing entities in the service Domain, Session, and Zone . The new definitions completely replace the existing ones as the current definitions for the entities. It should be noted that there can only ever be one current definition for an entity.

	Operation Name
	modifyDefinition

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	DefinitionList

4.2.13.2 Structures

The DefinitionList holds the definitions to be modified. The definitionId of the new definitions may be NULL, in which case the provider shall generate a new definition identifier, or it may be provided by the consumer, in which case it must not conflict with any existing definition identifiers used for that entity (in which case a DUPLICATE error shall be raised) (the same definition identifier may be used for different entities as it forms a compound key).
4.2.13.3 Common Model Updates
The service-specific definition structure shall be archived and distributed using a CompleteDefinitionUpdate structure using a MAL::UpdateType of Modification.

4.2.13.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	One or more of the definitions specified in the operation do not exist.

	INVALID
	See Table 5‑1
	One or more of the provided definitions contained invalid values.

	DUPLICATE
	See Table 5‑1
	One or more of the provided definitions uses an existing definition identifier for an entity.

4.2.14 OPERATION: deleteDefinition
4.2.14.1 General

The deleteDefinition operation allows a consumer to delete one or more definitions in the service Domain, Session, and Zone. This removes the entity from the list of active entities. If the entity is referenced by another service or entity (such as argument referenced by an Action) then this operation shall fail.
	Operation Name
	deleteDefinition

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	DefinitionKeyList

4.2.14.2 Structures

The key list holds the keys of the definitions to be deleted. The entityId and definitionId fields cannot be NULL.

4.2.14.3 Common Model Updates
The definitions shall be marked as deleted by distributing and archiving a CompleteDefinitionUpdate structure with the definition field set to NULL using a MAL::UpdateType of Deletion.

4.2.14.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	One or more of the definitions specified in the operation do not exist.

	INVALID
	See Table 5‑1
	One or more of the definition key values contained invalid NULL values.

	REFERENCED
	See Table 5‑1
	One or more of the definitions specified in the operation are referenced by other service definitions.

4.2.15 OPERATION: deleteAllDefinitions
4.2.15.1 General

The deleteAllDefinitions operation allows a consumer to delete all definitions in the service Domain, Session, and Zone. It should be noted that this operation shall delete all definitions for a service regardless of whether they were created by the addDefinition operation or not.
	Operation Name
	deleteAllDefinitions

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	Empty

4.2.15.2 Structures

No message body is passed.

4.2.15.3 Common Model Updates
All the definitions shall be marked as deleted by distributing and archiving a CompleteDefinitionUpdate structure with the definition field set to NULL using a MAL::UpdateType of Deletion for each entry.

4.2.15.4 Errors

Not applicable.

4.3 Directory Service

4.3.1 Overview

The Directory service allows service providers to publish information about their services and consumers to discover services to connect to.

In a layered architecture with mission operation services being underpinned by common services the following sequence of directory use may be seen:

a) Mission operation service provider publishes its services in a domain, network zone, and session using a previously known Directory service provider.

b) Mission operation service consumer ‘looks up’ a service using a previously known Directory service provider.

c) Mission operation service consumer interacts with service provider directly.

d) Mission operation service provider can reject interactions it cannot satisfy.

e) Mission operation service provider may withdraw via the Directory service any services that are no longer available.
The service directory is represented as a set of Nodes. Each Node is identified by a Domain, Network and Session identifier. Each Node potentially contains links to other Nodes that can be either the same Domain in a different Network/Session or a sub Domain in the same Network/Session. The Nodes form a Domain tree. A sub Domain is a Domain that is contained inside another Domain, for example for the domain ‘agency.craft’ the Domain of ‘craft’ is a sub Domain of ‘agency’.

Each service is associated to a specific Domain/Network/Session and therefore is located at a specific Node in the Directory Service.

Directory services can be linked together; each link to another Domain/Network/Session in a particular Node is marked as internal or external. External Nodes reside in another Directory Service. When a Node is marked as external the resolveNodeURI operation can be used to determine the URI of the external Directory Service.
Table 4‑44 TC \f T "-4
Directory Service Operations"
: Directory Service Operations
	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	Directory
	0
	1
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	All Common Model Occurrence Operations

	All Common Model Status Operations

	SUBMIT
	createNode
	100
	No
	100

	SUBMIT
	removeNode
	101
	No
	

	REQUEST
	resolveNodeURI
	102
	Yes
	

	SUBMIT
	addLink
	103
	No
	101

	SUBMIT
	removeLink
	104
	No
	

	SUBMIT
	publishService
	105
	No
	102

	REQUEST
	lookupService
	106
	Yes
	

	SUBMIT
	withdrawService
	107
	No
	

4.3.2 Usage

The Directory service allows mission operation providers to publish information about their services. Mission operations consumers can discover services to connect to by using the Directory service.

4.3.3 Common Model Usage

The Directory service complies with the common model as follows:

Table 4‑54 TC \f T "-5
Directory Service Common Model Component Usage"
: Directory Service Common Model Component Usage
	
	Definition
	Occurrence
	Status

	Structure
	Not used
	DomainOccurrence
	NodeStatus

	Update structures
	Not used
	SubDomainUpdate
NetworkUpdate
SessionUpdate
ServiceUpdate
	ServiceProviderUpdate

Table 4‑64 TC \f T "-6
Directory Service Common Model Identifier Usage"
: Directory Service Common Model Identifier Usage
	Identifier field
	Definition
	Occurrence
	Status

	entityId
	Not used
	Domain identifier
	From Occurrence

	definitionId
	Not used
	Network identifier
	From Occurrence

	occurrenceId
	
	Session name
	From Occurrence

	statusId
	
	
	Generated by the Service provider

The Directory service represents the domain hierarchy using the Common Model Occurrence component. Each Node in the Directory service tree has three fields that form its primary key; these are its domain identifier, its network identifier, and its session name. The domain identifier is formed by using the MAL::Identifier representation of a DomainIdentifier and forms the entityId of the OccurrenceKey. The Network identifier forms the definitionId of the OccurrenceKey, and the Session Name forms the occurrenceId of the OccurrenceKey. Using these key values it is possible to request/monitor a Directory tree node using the Common Model Occurrence operations.

When a Node is affected by a change to the directory tree one or more of the update structures shall be distributed. A SubDomainUpdate is sent when the list of Nodes directly associated as Subdomains is modified. A NetworkUpdate is sent when the lists of parallel networks of the Domain Node is modified. A SessionUpdate is sent when the list of parallel sessions of the Domain Node is modified. A ServiceUpdate is sent when the list of services at that Domain Node is modified.

Services are represented in the directory using the Common Model Status component.

Using the Common Model Status operations it is possible to request/monitor the services at a specific Node.

The NodeStatus structure contains a list of ServiceDetails structures, each one detailing a particular service and its providers using the ProviderInformation structure. Each ProviderInformation then contains one or more ServiceAddress, each of these defines one way to contact that service provider. It is possible for a provider to offer more than one ServiceAddress as it allows the provider to support multiple message transports and encodings. Each service address defines the QoS levels and associated QoS properties (see section 3.4.5 of R[2]), a service consumer indicates the required QoS level and priority to a service provider by using these values in the initial message to that provider.
4.3.4 OPERATION: createNode
4.3.4.1 General

The createNode operation adds new Node to the directory service.

	Operation Name
	createNode

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	DomainOccurrenceList

4.3.4.2 Structures

The createNode operation takes a DomainOccurrenceList structure that contains the list of Nodes to add.

All fields must have a valid value; if one element fails the check, then all updates will be ignored, and an error is returned.

4.3.4.3 Common Model Updates

The DomainOccurrence structures shall be archived and distributed using a CompleteOccurrenceUpdate structure. It shall use a MAL::UpdateType of Creation. Where an existing domain Node will require to be updated, when a new sub-domain is added for example, the existing domain Node shall be updated by the archival and distribution of the appropriate update structure as listed in Table 4‑5 (isExternal is set to False). It shall use a MAL::UpdateType of Creation.
4.3.4.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	Submitted values are invalid.

	DUPLICATE
	See Table 5‑1
	Submitted values already exist.

4.3.5 OPERATION: resolveNodeURI
4.3.5.1 General

The resolveNodeURI operation returns the service provider information, including URI address information, about the Directory service that is responsible for hosting a specific Node.

	Operation Name
	resolveNodeURI

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	OccurrenceKey

	OUT
	Response
	ServiceDetails

4.3.5.2 Structures

The resolveNodeURI operation takes an OccurrenceKey which identifies a specific Node, all fields must be populated and wildcards are not permitted.
If a match is made to an existing Node then a ServiceDetails structure is returned containing all the relevant service provider information about the Directory service that is hosting that Node. If a requested Node is not known about then an error is returned.
4.3.5.3 Common Model Updates

None.
4.3.5.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	Submitted values are invalid.

	UNKNOWN
	See R[2]
	Request Node is not known.

4.3.6 OPERATION: removeNode
4.3.6.1 General

The removeNode operation removes existing Nodes from the directory service. If no match is found for the removeNode request, then nothing is changed.

	Operation Name
	removeNode

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	OccurrenceKeyList

4.3.6.2 Structures

The removeNode operation takes a OccurrenceKeyList structure that contains the list of Nodes to remove from the directory. All fields must have a valid value and match an existing entry; if no match is found, then all elements of this request are ignored, and an error is returned.

4.3.6.3 Common Model Updates

The matched DomainOccurrence nodes shall be marked as deleted by the distribution and archiving of a CompleteOccurrenceUpdate structure but setting the occurrence field to NULL. The update shall use a MAL::UpdateType of Deletion. Where an existing domain Node will require to be updated, when a sub-domain is removed for example, the existing domain Node shall be updated by the archival and distribution of the appropriate update structure as listed in Table 4‑5. It shall use a MAL::UpdateType of Deletion.
4.3.6.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Node to withdraw was not found.

4.3.7 OPERATION: addLink
4.3.7.1 General

The addLink operation adds new external Nodes to a directory service. The Nodes are not created in the Directory service but are marked as external, the URIs are stored for the resolveNodeURI operation, and any Node links are updated.
	Operation Name
	addLink

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	DomainLinkList

4.3.7.2 Structures

The addLink operation takes a DomainLinkList structure that contains the list of external Nodes to add and their URIs. For each external link being added the contained DomainOccurrence should be populated with the correct information and the NodeStatus should be populated with the details of the external Directory service.
All fields must have a valid value; if one element fails the check, then all updates will be ignored, and an error is returned.

4.3.7.3 Common Model Updates

The DomainOccurrence structures shall be archived and distributed using a CompleteOccurrenceUpdate structure and the NodeStatus structures shall be archived and distributed using a CompleteStatusUpdate structure. Both shall use a MAL::UpdateType of Creation. Where an existing domain Node will require to be updated the existing domain Node shall be updated by the archival and distribution of the appropriate update structure as listed in Table 4‑5 (isExternal is set to TRUE). It shall use a MAL::UpdateType of Creation.
4.3.7.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	Submitted values are invalid.

	DUPLICATE
	See Table 5‑1
	Submitted values already exist.

4.3.8 OPERATION: removeLink
4.3.8.1 General

The removeLink operation removes existing external Nodes from the directory service. If no match is found for the removeLink request, then nothing is changed.

	Operation Name
	removeLink

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	OccurrenceKeyList

4.3.8.2 Structures

The removeLink operation takes a OccurrenceKeyList structure that contains the list of external Nodes to remove from the directory. All fields must have a valid value and match an existing entry; if no match is found, or one of the matches is not an external node, then all elements of this request are ignored, and an error is returned.

4.3.8.3 Common Model Updates

The matched DomainOccurrence nodes and the corresponding NodeStatus nodes (created by the addLink operation) shall be marked as deleted by the distribution and archiving of a CompleteOccurrenceUpdate structure and CompleteStatusUpdate but setting the occurrence or status field to NULL. The update shall use a MAL::UpdateType of Deletion. Where an existing domain Node will require to be updated by the removal of the link the existing domain Node shall be updated by the archival and distribution of the appropriate update structure as listed in Table 4‑5. It shall use a MAL::UpdateType of Deletion.
4.3.8.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Node to withdraw was not found.

4.3.9 OPERATION: publishService
4.3.9.1 General

The publishService operation adds new, or updates existing, entries in the list of services held in the directory service.

	Operation Name
	publishService

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	NodeStatusList

4.3.9.2 Structures

The publishService operation takes a NodeStatusList structure that contains the list of services to add/modify. The statusId field shall be set to NULL in the submission and populated by the service provider.
All fields must have a valid value; if one element fails the check, then all updates will be ignored, and an error is returned.

4.3.9.3 Common Model Updates
The NodeStatus structures shall be archived and distributed using a CompleteStatusUpdate structure if the StatusKey is new, otherwise one or more ServiceProviderUpdate structures shall be created, archived and distributed. New entries in the directory shall use a MAL::UpdateType of Creation; modified entries shall use a MAL::UpdateType of Modification. The domain Node shall be updated by the archival and distribution of a ServiceUpdate. It shall use a MAL::UpdateType of Creation.
4.3.9.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	Submitted values are invalid.

4.3.10 OPERATION: lookupService
4.3.10.1 General

The lookup operation allows a service consumer to query the directory service to determine if a specific service is available.

If no match is found, then an empty list is returned.
	Operation Name
	lookupService

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	ServiceFilter

	OUT
	Response
	ServiceDetailsList

4.3.10.2 Structures

The lookup operation takes a single ServiceFilter structure. A service is uniquely identified by its domain, session, zone, service area/type/version, and service provider name. In the request, for the domain part, if the final identifier of the domain is the wildcard ‘*’, then all sub-domains are searched for matches. The wildcard may only be used for the final component of the domain.

For all other identifier fields in the ServiceFilter the wildcard ‘*’ may be used or NULL.
It returns a list of possible matches to the query.

4.3.10.3 Common Model Updates

Not applicable.

4.3.10.4 Errors

None.

4.3.11 OPERATION: withdrawService
4.3.11.1 General

The withdrawService operation removes existing entries from the list of services held in the directory service. If no match is found for the withdraw request, then nothing is changed.

	Operation Name
	withdrawService

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	NodeStatusList

4.3.11.2 Structures

The withdrawService operation takes a NodeStatusList structure that contains the list of entries to remove from the directory. All fields must have a valid value and match an existing entry; if no match is found, then all elements of this request are ignored, and an error is returned.

4.3.11.3 Common Model Updates
The matched NodeStatus shall have the provider entries removed. If the NodeStatusList matches all provider entries of the NodeStatus it shall be marked as deleted by the distribution and archiving of a CompleteStatusUpdate structure but setting the status field to NULL, otherwise each service provider being removed shall be archived and distributed in a ServiceProviderUpdate. The update shall use a MAL::UpdateType of Deletion. The domain Node shall be updated by the archival and distribution of a ServiceUpdate. It shall use a MAL::UpdateType of Deletion.
4.3.11.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Service to withdraw was not found.

4.4 Login Service

4.4.1 Overview

The Login service provides the facility for authentication information to be provided.

This service is closely tied to the Access Control aspect of the MAL. The Login service is used primarily to authenticate a user with an implementation-specific authentication system; the result of this is used by the MAL in all messages to authenticate sent messages.

NOTE
–
The form in which the password is sent to the Login service provider must be agreed upon before hand and is dependent on the security system implemented. For example, most security implementations do not recommend the use of plain text passwords but rather some encrypted version of the password. For this reason the contents of the messages sent between the login service consumer and provider during authentication handshaking are implementation-specific.

Table 4‑74 TC \f T "-7
Login Service Operations"
: Login Service Operations
	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	Login
	0
	2
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	All Common Model Definition Operations

	All Common Model Occurrence Operations

	REQUEST
	login
	100
	No
	100

	SUBMIT
	logout
	101
	No
	

	REQUEST
	reportRoles
	102
	No
	

	REQUEST
	handover
	103
	No
	101

4.4.2 Usage

The Login Interface allows users to log in as operators of the system. Operators log in with a configured role; the meaning of a specific role is mission-specific. However, it is expected that a specific role allocates them privileges to invoke operations on mission operation services.

4.4.3 Common Model Usage

The Login service complies with the common model as follows:

Table 4‑84 TC \f T "-8
Login Service Common Model Component Usage"
: Login Service Common Model Component Usage
	
	Definition
	Occurrence
	Status

	Structure
	LoginDefinition
	LoginOccurrence
	Not used

	Update structures
	None
	None
	Not used

Table 4‑94 TC \f T "-9
Login Service Common Model Identifier Usage"
: Login Service Common Model Identifier Usage
	Identifier field
	Definition
	Occurrence
	Status

	entityId
	User name
	From definition
	Not used

	definitionId
	Generated by provider
	From definition
	Not used

	occurrenceId
	
	Generated by provider
	Not used

	statusId
	
	
	Not used

The entity identifier shall be the unique operator name. The definitionId is generated by the service provider. The occurrence identifier is generated by the service provider and set when an operator logs in to the system.

4.4.4 OPERATION: login
4.4.4.1 General

The login operation allows an operator to log in to the system. An operator can log in more than once by using a different role; however, a specific implementation may place limits on the number of operators that may use a specific role, and in that case will fail the login operation.

	Operation Name
	login

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	Profile

	OUT
	Response
	MAL::Blob

4.4.4.2 Structures

The login operation takes a single Profile structure. All fields must have a valid value.

It returns a Blob session token that is used as the Authentication Id field in future messages by the MAL for authentication. The token is specific to the operator and role in use.

NOTE
–
The form in which the password is sent to the Login service provider must be agreed upon before hand and is dependent on the security system implemented. For example, most security implementations do not recommend the use of plain text passwords but rather some encrypted version of the password. For this reason the contents of the messages sent between the login service consumer and provider during authentication handshaking are implementation-specific.

4.4.4.3 Common Model Updates
A LoginOccurrence structure shall be archived and distributed using a CompleteOccurrenceUpdate structure using a MAL::UpdateType of Creation.

4.4.4.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	Submitted profile contains invalid values.

	UNKNOWN
	See R[2]
	Unknown operator/role/password combination.

	DUPLICATE
	See Table 5‑1
	Operator/role combination already logged in.

	TOO_MANY
	See Table 5‑1
	Role concurrent session limit count exceeded.

NOTE
–
The errors returned from the login operation are not designed to be descriptive. Many different error messages (such as ‘Invalid role for specified username’) would allow a malicious user to discover valid usernames and therefore aid any attack.
4.4.5 OPERATION: logout
4.4.5.1 General

The logout operations allows an operator to log out from a service provider. No information is passed in the message as the MAL authentication Id is enough to identify the login occurrence.

	Operation Name
	logout

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	Empty

4.4.5.2 Structures

Not used.

4.4.5.3 Common Model Updates
The matched LoginOccurrence shall be marked as deleted in the archive using a CompleteOccurrenceUpdate structure but setting the occurrence field to NULL. The update shall use a MAL::UpdateType of Deletion.

4.4.5.4 Errors

None.

4.4.6 OPERATION: reportRoles
4.4.6.1 General

The reportRoles operation returns the list of available roles for a specific operator. This operation is expected to be called before an operator logs in so that the software can provide a list of possible roles.
	Operation Name
	reportRoles

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	Profile

	OUT
	Response
	MAL::IdentifierList

4.4.6.2 Structures

The reportRoles operation takes a single Profile structure. All fields must have a valid value except the role field, which shall be ignored.
 The operation returns a list of available roles for that user.
NOTE
–
The form in which the password is sent to the Login service provider must be agreed upon before hand and is dependent on the security system implemented. For example, most security implementations do not recommend the use of plain text passwords but rather some encrypted version of the password. For this reason the contents of the messages sent between the login service consumer and provider during authentication handshaking are implementation-specific.
4.4.6.3 Common Model Updates
Not applicable.

4.4.6.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	Submitted profile contains invalid values.

	UNKNOWN
	See R[2]
	Unknown operator/password combination.

4.4.7 OPERATION: handover
4.4.7.1 General

The handover operation allows an existing login to be transferred to a new login. Two cases are expected here, the first is where an operator uses this operation to change the role that they are using, and the second is where an operations session is handed over to another operator.
	Operation Name
	handover

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	Profile

	OUT
	Response
	MAL::Blob

4.4.7.2 Structures

The handover operation takes a single Profile structure of the new username and role. All fields must have a valid value.

It returns a Blob session token that is used as the Authentication Id field in future messages by the MAL for authentication. The token is specific to the new operator and role in use.
NOTE
–
The form in which the password is sent to the Login service provider must be agreed upon before hand and is dependent on the security system implemented. For example, most security implementations do not recommend the use of plain text passwords but rather some encrypted version of the password. For this reason the contents of the messages sent between the login service consumer and provider during authentication handshaking are implementation-specific.

4.4.7.3 Common Model Updates

The matched existing LoginOccurrence shall be marked as deleted by the distribution and archiving of a CompleteOccurrenceUpdate structure but setting the occurrence field to NULL. The update shall use a MAL::UpdateType of Deletion. A new LoginOccurrence structure shall then be archived and distributed using a CompleteOccurrenceUpdate structure using a MAL::UpdateType of Creation. Both CompleteOccurrenceUpdate structures shall have exactly the same timestamp and be distributed and archived together.
4.4.7.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	Submitted profile contains invalid values.

	UNKNOWN
	See R[2]
	Unknown operator/role/password combination.

	DUPLICATE
	See Table 5‑1
	Operator/role combination already logged in.

	TOO_MANY
	See Table 5‑1
	Role concurrent session limit count exceeded.

NOTE
–
The errors returned from the handover operation are not designed to be descriptive. Many different error messages (such as ‘Invalid role for specified username’) would allow a malicious user to discover valid usernames and therefore aid any attack.
4.5 Interact Service

4.5.1 Overview

The Interact service provides service consumers with the facility to interact with an operator of the system.

Table 4‑104 TC \f T "-10
Interact Service Operations"
: Interact Service Operations
	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	Interact
	0
	3
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	All Common Model Occurrence Operations

	INVOKE
	acknowledge
	100
	No
	100

	INVOKE
	confirm
	101
	No
	

	INVOKE
	choice
	102
	No
	

	INVOKE
	getValues
	103
	No
	

	SUBMIT
	cancelInteraction
	104
	No
	

4.5.2 Usage

This service allows a consumer to raise interactions with an operator when it requires operator acknowledgement or an operator decision.

An interaction service provider implementation is responsible for determining which operators should provide the interaction response and also for managing the situation where several operators attempt to provide a response. For each interaction operation only one response must be returned to the consumer that initiated the interaction; it is the responsibility of the interaction service provider to ensure this is the case and also to inform the failed operators that their interaction response was not used.

The interaction requests contain a response timeout field that provides the interaction service provider with an upper time in which a response must be provided. This is an optional feature, and if no timeout is required, then the value of zero must be specified. In the case that a timeout is provided, if a response is not received in this time period, then the provider shall return a RESP_TIMEOUT error. The consumer must wait for this response, if it has requested a timeout, before assuming no response is provided.

NOTE
–
The mapping of responsibilities to roles is an implementation detail. One approach would be to have an always-logged-in default/automatic operator to whom an ‘interaction’ can be directed in the event that no human operators are available. The default operator can be used to support an automatic control function or automatic alarm system.

4.5.3 Common Model Usage

The Interact service complies with the common model as follows:

Table 4‑114 TC \f T "-11
Interact Service Common Model Component Usage"
: Interact Service Common Model Component Usage
	
	Definition
	Occurrence
	Status

	Structure
	Not used
	InteractAcknowledgeOccurrence
InteractConfirmOccurrence
InteractChoiceOccurrence
InteractValueOccurrence
	Not used

	Update structures
	Not used
	InteractAcknowledgeResponse
InteractConfirmResponse
InteractChoiceResponse
InteractValueResponse
InteractCancelled
	Not used

Table 4‑124 TC \f T "-12
Interact Service Common Model Identifier Usage"
: Interact Service Common Model Identifier Usage
	Identifier field
	Definition
	Occurrence
	Status

	entityId
	Not used
	‘Acknowledge’

‘Confirm’

‘Choice’

‘Value’
	Not used

	definitionId
	Not used
	Not used
	Not used

	occurrenceId
	
	Generated by service provider
	Not used

	statusId
	
	
	Not used

The entity identifier shall take one of the values listed above (without quote marks), matching the type of interaction; for example, for a confirmation interaction, the entity identifier shall be ‘Confirm’. The definitionId is not used and shall be set to NULL. The occurrence identifier is generated by the service provider and shall be unique for that domain, and updates of the occurrence shall match on these fields.

When an interaction is responded to, the relevant occurrence update is generated. It shall use the same identifier fields as the occurrence it is updating.

4.5.4 OPERATION: acknowledge
4.5.4.1 General

The acknowledge operation allows a consumer to raise an acknowledge interaction for the attention or action of an (optional) specific operator/role.

The operator can only acknowledge the interaction; it cannot be declined (confirm is used in this case). It is expected to be used to allow an operator to acknowledge that a specific operation can proceed.

If no operator or role is specified, then the interaction is for any operator, group, or role.

	Operation Name
	acknowledge

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	InteractAcknowledgeOccurrence

	OUT
	Acknowledgement
	MAL::Identifier

	OUT
	Response
	InteractAcknowledgeResponse

4.5.4.2 Structures

The acknowledge operation takes a single InteractAcknowledgeOccurrence structure and returns an Identifier as the INVOKE acknowledgement. The Identifier returned at this stage can be used by the cancelInteraction operation and matches the occurrenceId generated by the service provider. If this operation is cancelled, then a CANCELLED error is returned.

Once the interaction has been acknowledged by an operator the username identifier of that operator is returned to the interaction service consumer using an InteractAcknowledgeResponse update structure.

The use of the INVOKE pattern is required because it cannot be determined when the operator may respond to the interaction. The acknowledgement is returned when the message has been displayed to a specific operator, and the response message when the operator has completed the interaction.

All fields must have a valid value, destination field may contain either an empty value or NULL.
4.5.4.3 Common Model Updates
An InteractAcknowledgeOccurrence structure shall be archived and distributed using a CompleteOccurrenceUpdate structure for this interaction using a MAL::UpdateType of Creation. Upon reception of an appropriate response, an InteractAcknowledgeResponse occurrence update structure shall be archived and distributed and shall use a MAL::UpdateType of Deletion. If an interaction is cancelled, then an InteractCancelled occurrence update structure shall be archived and distributed and shall use a MAL::UpdateType of Deletion.

4.5.4.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	TIMEDOUT
	See Table 5‑1
	No response received in specified duration.

	UNKNOWN
	See R[2]
	Operator could not be found to satisfy interaction.

	INVALID
	See Table 5‑1
	Invalid values were provided.

	CANCELLED
	See Table 5‑1
	Interaction was cancelled using cancelInteraction.

4.5.5 OPERATION: confirm
4.5.5.1 General

The confirm operation allows a consumer to raise a confirm interaction for the attention or action of an (optional) specific operator/role.

The operator can confirm or decline the interaction; it is expected to be used to present an operator with a ‘Yes/No’ confirmation choice.

If no operator or role is specified, then the interaction is for any operator, group, or role.

	Operation Name
	confirm

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	InteractConfirmOccurrence

	OUT
	Acknowledgement
	MAL::Identifier

	OUT
	Response
	InteractConfirmResponse

4.5.5.2 Structures

The confirm operation takes a single InteractConfirmOccurrence structure and returns an Identifier as the INVOKE acknowledgement. The Identifier returned at this stage can be used by the cancelInteraction operation and matches the occurrenceId generated by the service provider. If this operation is cancelled, then a CANCELLED error is returned.

Once the interaction has been confirmed or declined by an operator, an InteractConfirmResponse structure is returned to the interaction service consumer. Within the returned structure, the username identifier of that operator is returned with a Boolean value indicating the response (true if confirmed, false if declined).

The use of the INVOKE pattern is required because it cannot be determined when the operator may respond to the interaction. The acknowledgement is returned when the message has been displayed to a specific operator and the response message when the operator has completed the interaction.

All fields must have a valid value, destination field may contain either an empty value or NULL.
4.5.5.3 Common Model Updates
An InteractConfirmOccurrence structure shall be archived and distributed using a CompleteOccurrenceUpdate structure for this interaction using a MAL::UpdateType of Creation. Upon reception of an appropriate response an InteractConfirmResponse occurrence update structure shall be archived and distributed and shall use a MAL::UpdateType of Deletion. If an interaction is cancelled, then an InteractCancelled occurrence update structure shall be archived and distributed and shall use a MAL::UpdateType of Deletion.

4.5.5.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	TIMEDOUT
	See Table 5‑1
	No response received in specified duration.

	UNKNOWN
	See R[2]
	Operator could not be found to satisfy interaction.

	INVALID
	See Table 5‑1
	Invalid values were provided.

	CANCELLED
	See Table 5‑1
	Interaction was cancelled using cancelInteraction.

4.5.6 OPERATION: choice
4.5.6.1 General

The choice operation allows a consumer to present a choice interaction for the attention or action of an (optional) specific operator/role.

The operator must pick one of the presented list of options; it is expected to be used to allow an operator to select an option from the list of possible choices.

If no operator or role is specified, then the interaction is for any operator, group, or role.

	Operation Name
	choice

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	InteractChoiceOccurrence

	OUT
	Acknowledgement
	MAL::Identifier

	OUT
	Response
	InteractChoiceResponse

4.5.6.2 Structures

The choice operation takes a single InteractChoiceOccurrence structure and returns an Identifier as the INVOKE acknowledgement. The Identifier returned at this stage can be used by the cancelInteraction operation and matches the occurrenceId generated by the service provider. If this operation is cancelled, then a CANCELLED error is returned.

Once the choice has been made by an operator an InteractChoiceResponse structure is returned to the interaction service consumer. Within the returned structure, the username identifier of that operator is returned with a String value indicating the chosen response.

The use of the INVOKE pattern is required because it cannot be determined when the operator may respond to the interaction. The acknowledgement is returned when the message has been displayed to a specific operator and the response message when the operator has acknowledged the interaction.

All fields must have a valid value, destination field may contain either an empty value or NULL.
4.5.6.3 Common Model Updates
An InteractChoiceOccurrence structure shall be archived and distributed using a CompleteOccurrenceUpdate structure for this interaction using a MAL::UpdateType of Creation. Upon reception of an appropriate response an InteractChoiceResponse occurrence update structure shall be archived and distributed and shall use a MAL::UpdateType of Deletion. If an interaction is cancelled, then an InteractCancelled occurrence update structure shall be archived and distributed and shall use a MAL::UpdateType of Deletion.

4.5.6.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	TIMEDOUT
	See Table 5‑1
	No response received in specified duration.

	UNKNOWN
	See R[2]
	Operator could not be found to satisfy interaction.

	INVALID
	See Table 5‑1
	Invalid values were provided.

	CANCELLED
	See Table 5‑1
	Interaction was cancelled using cancelInteraction.

4.5.7 OPERATION: getValues
4.5.7.1 General

The getValues operation allows a consumer to request a set of new values from an (optional) specific operator/role. The operator must supply the set of values; it is expected to be used to allow an operator to provide input values for an operation.

If no operator or role is specified, then the interaction is for any operator, group, or role.

	Operation Name
	getValues

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	InteractValueOccurrence

	OUT
	Acknowledgement
	MAL::Identifier

	OUT
	Response
	InteractValueResponse

4.5.7.2 Structures

The getValues operation takes a single InteractValueOccurrence structure and returns an Identifier as the INVOKE acknowledgement. The Identifier returned at this stage can be used by the cancelInteraction operation and matches the occurrenceId generated by the service provider. If this operation is cancelled, then a CANCELLED error is returned.

The defaultValues list in the InteractValueOccurrence is a list of NamedValue pairs. The name Identifier must be unique within the request so that the return values can be matched. The value attribute of this must also be provided, even if it is empty (not NULL), so that the software used to request the value from an operator can determine the type of value required (Integer, Boolean, etc.). For example, if a MAL::String is required then at least an empty string “” must be provided as this allows the receiving software to determine that a String value is required. Setting this value to NULL is not permitted as NULL does not have a type and therefore the receiving software would not be able to determine the desired value type.
Once the new value set has been provided by an operator, an InteractValueResponse structure is returned to the interaction service consumer. Within the returned structure, the username identifier of that operator is returned with a list of name value pairs, each containing an identifier and an attribute containing the new value; the type of the new value must match that of the default value in the criteria.

The use of the INVOKE pattern is required because it cannot be determined when the operator may respond to the interaction. The acknowledgement is returned when the message has been displayed to a specific operator and the response message when the operator has acknowledged the interaction.

All fields must have a valid value, destination field may contain either an empty value or NULL.
4.5.7.3 Common Model Updates
An InteractValueOccurrence structure shall be archived and distributed using a CompleteOccurrenceUpdate structure for this interaction using a MAL::UpdateType of Creation. Upon reception of an appropriate response, an InteractValueResponse occurrence update structure shall be archived and distributed and shall use a MAL::UpdateType of Deletion. If an interaction is cancelled, then an InteractCancelled occurrence update structure shall be archived and distributed and shall use a MAL::UpdateType of Deletion.

4.5.7.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	TIMEDOUT
	See Table 5‑1
	No response received in specified duration.

	UNKNOWN
	See R[2]
	Operator could not be found to satisfy interaction.

	INVALID
	See Table 5‑1
	Invalid values in the request.

	CANCELLED
	See Table 5‑1
	Interaction was cancelled using cancelInteraction.

4.5.8 OPERATION: cancelInteraction
4.5.8.1 General

The cancelInteraction operation allows a consumer to cancel an existing interaction.

	Operation Name
	cancelInteraction

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	MAL::Identifier

4.5.8.2 Structures

The cancelInteraction operation takes a single Identifier that has been returned by a previous interaction request.

The wildcard ‘*’ can be used to cancel all outstanding interactions.

4.5.8.3 Common Model Updates
If an interaction is cancelled, then an InteractCancelled occurrence update structure shall be archived and distributed and shall use a MAL::UpdateType of Deletion.

4.5.8.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown interaction.

4.6 Replay Service

4.6.1 Overview

The Replay service allows a consumer to create a replay session based on an existing session. The replay session is a duplicate of the session on which it is based except that it is read only and that it may have its current time controlled.

As well as specifying the initial retrieval condition, the replay can be controlled in a similar way to a video player (play, pause, fast forward, rewind, single step, etc.). When the end of a replay session is reached, either before the first entry for backwards replay and after the last entry for forwards replay, the state of a replay is automatically switched to STOPPED.
Access control for a replay session is provided via standard MAL access control. The replay service provider can determine who created a specific replay and can therefore limit further replay operations internally. The specific replay access control policy is a deployment-dependent issue.

Table 4‑134 TC \f T "-13
Replay Service Operations"
: Replay Service Operations
	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	Replay
	0
	4
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	All Common Model Occurrence Operations

	All Common Model Status Operations

	SUBMIT
	forwardReplay
	100
	No
	100

	SUBMIT
	forwardStep
	101
	No
	

	SUBMIT
	backwardReplay
	102
	No
	

	SUBMIT
	backwardStep
	103
	No
	

	SUBMIT
	stopReplay
	104
	No
	

	SUBMIT
	setRate
	105
	No
	

	SUBMIT
	setTime
	106
	No
	

	SUBMIT
	setTargetTime
	107
	No
	

	SUBMIT
	setStepInterval
	108
	No
	

	INVOKE
	createReplay
	109
	No
	101

	SUBMIT
	deleteReplay
	110
	No
	

It should be noted that the ‘Support in Replay’ flag is set to ‘No’ for all replay operations. This is because these operations are used to control a replay session and cannot be issued inside a replay session.
4.6.2 Usage

The Replay service allows a consumer to create a read-only copy of a session, limited to a specific domain and zone, for browsing of the historical archive.
4.6.3 Common Model Usage

The Replay service complies with the common model as follows:

Table 4‑144 TC \f T "-14
Replay Service Common Model Component Usage"
: Replay Service Common Model Component Usage
	
	Definition
	Occurrence
	Status

	Structure
	Not used
	ReplayOccurrence
	ReplayStatus

	Update structures
	Not used
	None
	ReplayRateUpdate
ReplayTimeUpdate
ReplayTargetUpdate
ReplayIntervalUpdate

Table 4‑154 TC \f T "-15
Replay Service Common Model Identifier Usage"
: Replay Service Common Model Identifier Usage
	Identifier field
	Definition
	Occurrence
	Status

	entityId
	Not used
	Replay Session Name
	Not used

	definitionId
	Not used
	Replay Source Session Name
	Not used

	occurrenceId
	
	Generated by service provider
	From occurrence

	statusId
	
	
	Generated by service provider

The entity identifier shall be the Identifier name for the replay session (as used in the MAL::MessageHeader), only one occurrence with the same entityId can be current at any one time. The definition identifier shall be the Identifier name of the session used as a source for the replay session. The occurrence identifier is generated by the service provider (see createReplay operation for more information) and shall be unique for that domain. When the state (replay state, replay rate etc) of a replay is modified, the relevant status update is generated. It shall use the same identifier fields as the occurrence it is updating.
For all model updates the sourceURI shall be set to the URI of the Replay service provider.
4.6.4 OPERATION: forwardReplay
4.6.4.1 General

The forwardReplay operation allows the service consumer to instruct the replay to advance time from its current position at the managed rate. The provider re-publishes the stored items to observing service consumers in accordance with their registered interests. The targetTime value, if set, is then set to NULL to indicate that no target exists.
	Operation Name
	forwardReplay

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	OccurrenceKey

4.6.4.2 Structures

The forwardReplay operation takes a single occurrence key of the replay to advance forward.

4.6.4.3 Common Model Updates
A ReplayStatus structure shall be archived and distributed using a CompleteStatusUpdate structure for this replay using a MAL::UpdateType of Modification.

4.6.4.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown replay session.

4.6.5 OPERATION: forwardStep
4.6.5.1 General

The forwardStep operation allows the service consumer to instruct the replay to advance historical time from its current position to the time of either the next item or by the current step interval. The provider re-publishes the stored items to observing service consumers in accordance with their registered interests.

The replay session must currently be in the STOPPED state.

	Operation Name
	forwardStep

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	ReplayStep

4.6.5.2 Structures

The forwardStep operation takes a single ReplayStep structure which contains the key of the replay to step forward and a Boolean indicating whether to step to the next item (value true) or forward by the current step interval (value false).

4.6.5.3 Common Model Updates
A ReplayStatus structure shall be archived and distributed using a CompleteStatusUpdate structure for this replay using a MAL::UpdateType of Modification.

4.6.5.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown replay session.

	INVALID
	See Table 5‑1
	Session was not in the STOPPED state.

4.6.6 OPERATION: backwardReplay
4.6.6.1 General

Allows the service consumer to instruct the replay to move historical time backwards from its current position at the managed rate. The provider re-publishes the stored items to observing service consumers in accordance with their registered interests. The targetTime value, if set, is then set to NULL to indicate that no target exists.
	Operation Name
	backwardReplay

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	OccurrenceKey

4.6.6.2 Structures

The backwardReplay operation takes a single OccurrenceKey of the replay to move backwards.

4.6.6.3 Common Model Updates
A ReplayStatus structure shall be archived and distributed using a CompleteStatusUpdate structure for this replay using a MAL::UpdateType of Modification.

4.6.6.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown replay session.

4.6.7 OPERATION: backwardStep
4.6.7.1 General

The backwardStep operation allows the service consumer to instruct the replay to step historical time backwards from its current position to the time of either the previous item or by the current step interval. The provider re-publishes the stored items to observing service consumers in accordance with their registered interests.

The replay session must currently be in the STOPPED state.

	Operation Name
	backwardStep

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	ReplayStep

4.6.7.2 Structures

The backwardStep operation takes a single ReplayStep structure which contains the key of the replay to step backwards and a Boolean indicating whether to step to the previous item (value true) or backwards by the current step interval (value false).

4.6.7.3 Common Model Updates
A ReplayStatus structure shall be archived and distributed using a CompleteStatusUpdate structure for this replay using a MAL::UpdateType of Modification.

4.6.7.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown replay session.

	INVALID
	See Table 5‑1
	Session was not in the STOPPED state.

4.6.8 OPERATION: stopReplay
4.6.8.1 General

The stopReplay operation allows the service consumer to instruct the replay to stop advancing historical time (in either direction), leaving it at its current position. The provider stops re-publishing stored items to observing service consumers. The targetTime value, if set, is then set to NULL to indicate that no target exists.
	Operation Name
	stopReplay

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	OccurrenceKey

4.6.8.2 Structures

The stopReplay operation takes the OccurrenceKey of the replay to stop.

4.6.8.3 Common Model Updates
A ReplayStatus structure shall be archived and distributed using a CompleteStatusUpdate structure for this replay using a MAL::UpdateType of Modification.

4.6.8.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown replay session.

4.6.9 OPERATION: setRate
4.6.9.1 General

The setRate operation allows the service consumer to set the rate, as a multiplier of the real-time rate, at which the replay should advance historical time when instructed to play forwards and backwards.

For example, setting the rate to 2.5 would play the items at two and a half times the normal replay rate.

	Operation Name
	setRate

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	ReplayRateUpdate

4.6.9.2 Structures

The setRate operation takes a single ReplayRateUpdate structure. The structure contains a new rate Float that is a multiplier of the normal replay rate for this session.

All fields must have a valid value.

4.6.9.3 Common Model Updates
The ReplayRateUpdate structure shall be archived and distributed for this replay status using a MAL::UpdateType of Modification.

4.6.9.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown replay session.

	INVALID
	See Table 5‑1
	Invalid values used.

4.6.10 OPERATION: setTime
4.6.10.1 General

The setTime operation allows the service consumer to instruct the replay to change the current position of its historical time to a specific position. The replay state shall then be set to STOPPED.
	Operation Name
	setTime

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	ReplayTimeUpdate

4.6.10.2 Structures

The setTime operation takes a single ReplayTimeUpdate structure.

All fields must have a valid value.

4.6.10.3 Common Model Updates
The ReplayTimeUpdate structure shall be archived and distributed for this replay status using a MAL::UpdateType of Modification.

4.6.10.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown replay session.

	INVALID
	See Table 5‑1
	Invalid values used.

4.6.11 OPERATION: setTargetTime
4.6.11.1 General

The setTargetTime operation allows the service consumer to instruct the replay to change the target time to a specific position. The replay shall then start playback in the correct direction to the target time at the current rate.
	Operation Name
	setTargetTime

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	ReplayTargetUpdate

4.6.11.2 Structures

The setTargetTime operation takes a single ReplayTargetUpdate structure.

All fields must have a valid value.

4.6.11.3 Common Model Updates

The ReplayTargetUpdate structure shall be archived and distributed for this replay status using a MAL::UpdateType of Modification.

4.6.11.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown replay session.

	INVALID
	See Table 5‑1
	Invalid values used.

4.6.12 OPERATION: setStepInterval
4.6.12.1 General

The setStepInterval operation allows the service consumer to set the step interval by which the replay should advance historical time when instructed to step forwards and backwards.

	Operation Name
	setStepInterval

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	ReplayIntervalUpdate

4.6.12.2 Structures

The setStepInterval operation takes a single ReplayIntervalUpdate structure.

All fields must have a valid value.

4.6.12.3 Common Model Updates
The ReplayIntervalUpdate structure shall be archived and distributed for this replay status using a MAL::UpdateType of Modification.

4.6.12.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown replay session.

	INVALID
	See Table 5‑1
	Invalid values used.

4.6.13 OPERATION: createReplay
4.6.13.1 General

The createReplay operation creates a new replay session based on an existing LIVE or SIMULATION session. The operation returns a set of service details that provide the look-up information, as if from the Directory service, for the consumer to use for accessing services in that replay session.

	Operation Name
	createReplay

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	ReplayInformation

	OUT
	Acknowledgement
	OccurrenceKey

	OUT
	Response
	NodeStatusList

4.6.13.2 Structures

The createReplay operation takes a single ReplayInformation structure detailing the new replay session and returns a NodeStatusList of the replay session interfaces. As part of the ReplayInformation the consumer can suggest an entity identifier for the new replay session by setting the entityId of the key; however, as this may already be in use the service provider may reject this and return an error. If the replay session that used the entityId has been deleted then the entityId may be reused. The occurrenceId for the new replay session can be suggested by setting the key value; however, as this may already be in use the service provider may reject this and replace it with another value.
The key returned in the Acknowledgement message is sent if the create request is valid and is the OccurrenceKey of the replay session. The INVOKE pattern is used as it may take an indeterminate amount of time to create the replay session depending on the implementation.

All fields must have a valid value. The entityId value of ‘LIVE’ is reserved for the LINE session and shall not be permitted.

Care must be taken when setting the initialTarget time value, if this value is set then the initialState value MUST be set to NULL. If the initialState field is to be populated then the initialTarget value MUST be NULL.
4.6.13.3 Common Model Updates
A ReplayOccurrence structure shall be archived and distributed using a CompleteOccurrenceUpdate structure for this replay using a MAL::UpdateType of Creation. An initial ReplayStatus shall also be archived and distributed using the same timestamp as the occurrence containing the initial state of the replay using a MAL::UpdateType of Creation.

4.6.13.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	Invalid values were present in the criteria.

	DUPLICATE
	See Table 5‑1
	Replay with requested entityId already in existence.

4.6.14 OPERATION: deleteReplay
4.6.14.1 General

The deleteReplay operation allows the service consumer to delete an existing replay. Once deleted, any registered service consumers will cease to receive replayed items.

	Operation Name
	deleteReplay

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	OccurrenceKey

4.6.14.2 Structures

The deleteReplay operation takes a single OccurrenceKey of the replay session to delete.

All fields must have a valid value.

4.6.14.3 Common Model Updates
If a replay is deleted, then the relevant ReplayOccurrence shall have a CompleteOccurrenceUpdate structure archived and distributed with the occurrence field set to NULL and shall use a MAL::UpdateType of Deletion. The same shall be done for the ReplayStatus of the replay.

4.6.14.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown replay session.

4.7 Retrieval Service

4.7.1 Overview

The Retrieval service allows a consumer to request blocks of historical data from a specific domain and set of services. The service does not allow the selection of data by session or network zone as this is implicit to the service, domain selection is only allowed to the domain of the service or a sub-domain thereof. The retrieval service is split into three capability sets.

The first capability of the retrieval service allows the requesting of bulk (or block) data of historical items using a selection criteria which includes a time range or a snapshot of items in existence at a point in time. The returned item data is prepared as a set of updates.
 The first capability set also provides an operation for the cancellation of active retrieval/snapshot requests.

The second capability set allows other service components to store service update events in the archive.

The third capability of the service controls the selection of which associations should be used when providing historical data to a consumer. There are two options available, the associations that were in use at the time of archive or the ones currently being used for live data. A service specification shall identify which relationships are affected by this setting. For example, this allows a consumer to use the historical conversion for status information or the current live ones.MERGEFIELD Element.Notes
Table 4‑164 TC \f T "-16
Retrieval Service Operations"
: Retrieval Service Operations
	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	Retrieval
	0
	5
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	PROGRESS
	retrieve
	100
	Yes
	100

	PROGRESS
	snapshot
	101
	Yes
	

	PROGRESS
	catalogue
	102
	Yes
	

	SUBMIT
	cancelRequest
	103
	Yes
	

	SUBMIT
	store
	104
	No
	101

	SUBMIT
	useHistoricalRelationships
	105
	Yes
	102

	SUBMIT
	useLatestRelationships
	106
	Yes
	

	REQUEST
	getRelationships
	107
	Yes
	

4.7.2 Usage

Blocks of item data delivered and packaged in this way are primarily intended to support offline analysis tools. Additionally, it is also intended that they may be used to subsequently re-store the items to a history archive that is missing them.

4.7.3 Common Model Usage

The Retrieval service does not participate in the common model; however, it presents the front end of the common model archive to consumers.

4.7.4 OPERATION: retrieve
4.7.4.1 General

The retrieve operation retrieves from the archive a report of a packaged ‘block’ of service updates that match a specific set of criteria, if no updates exist in the specified time range for a specific entity then no updates/values are returned for that entity, if an initial value for an entity is required then the snapshot operation should be used.

A PROGRESS pattern is used so that the returned data may be delivered in chunks to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	retrieve

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	SelectionCriteriaList

	OUT
	Acknowledgement
	RetrievalAcknowledgement

	OUT
	Update
	ArchiveReportList

	OUT
	Response
	ArchiveReportList

4.7.4.2 Structures

The retrieve operation takes a single SelectionCriteriaList structure detailing the retrieval request and returns one or more ArchiveReportList structures containing the retrieval data. The SelectionCriteria structure is an abstract structure, and one of the extension structures defines the actual request. The extension structures define the specific request required, allowing the filtering of the data to be tailored to the type of data being requested.

For the selection criteria, if the final identifier of the domain is the wildcard ‘*’, then all sub-domains are searched for matches. The wildcard may only be used for the final component of the domain; for more advanced retrievals the custom retrieval must be used. The time range must be in the past; it cannot extend into the future, and the start time must be before the end time.

The acknowledgement message returns a unique identifier of the retrieval request and an estimated duration if no problems are detected during the validation of the retrieve request. The identifier can be used to cancel the request at a later date. The duration estimate is for guidance only and the actual retrieval may take less or more time.

All fields must have a valid value.

4.7.4.3 Common Model Updates
Not applicable.

4.7.4.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	Invalid data request.

	CANCELLED
	See Table 5‑1
	Data request was cancelled using the cancel operation.

	TIMEDOUT
	See Table 5‑1
	Delivery of the response was not able to start inside the requested timeout.

4.7.5 OPERATION: snapshot
4.7.5.1 General

The snapshot operation returns from the archive a snapshot report of a packaged ‘block’ of service items that were in existence at the requested time and that match a specific set of criteria. A PROGRESS pattern is used so that the returned data may be delivered in chunks to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	snapshot

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	SelectionCriteriaList

	OUT
	Acknowledgement
	RetrievalAcknowledgement

	OUT
	Update
	ArchiveReportList

	OUT
	Response
	ArchiveReportList

4.7.5.2 Structures

The snapshot operation takes a single SelectionCriteriaList structure detailing the retrieval request and returns one or more ArchiveReportList structures containing the retrieval data. The SelectionCriteria structure is an abstract structure, and one of the extension structures defines the actual request.

For the selection criteria, if the final identifier of the domain is the wildcard ‘*’, then all sub-domains are searched for matches. The wildcard may only be used for the final component of the domain. Only the start time field is used (end time is ignored and may be set to NULL) and must be in the past.

The acknowledgement message returns a unique identifier of the retrieval request and an estimated duration if no problems are detected during the validation of the retrieve request. The identifier can be used to cancel the request at a later date. The duration estimate is for guidance only, and the actual retrieval may take less or more time.

All fields must have a valid value.

The returned data for a specific item may contain more than one update. This is when the archive is not able to reconstruct the complete state of the component and therefore is forced to return the last complete update (CompleteDefinitionUpdate, CompleteOccurrenceUpdate, or CompleteStatusUpdate) followed by any update and modification updates.

4.7.5.3 Common Model Updates
Not applicable.

4.7.5.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	Invalid data request.

	CANCELLED
	See Table 5‑1
	Data request was cancelled using the cancel operation.

	TIMEDOUT
	See Table 5‑1
	Delivery of the response was not able to start inside the requested timeout.

4.7.6 OPERATION: catalogue
4.7.6.1 General

The catalogue operation retrieves from the archive a count of the number of service updates that match a specific set of criteria. A PROGRESS pattern is used so that the returned data may be delivered in chunks to reduce the load on the provider and transport in case of a large catalogue request.

	Operation Name
	catalogue

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	SelectionCriteriaList

	OUT
	Acknowledgement
	RetrievalAcknowledgement

	OUT
	Update
	ArchiveCatalogueList

	OUT
	Response
	ArchiveCatalogueList

4.7.6.2 Structures

The catalogue operation takes a single SelectionCriteriaList structure detailing the catalogue request and returns one or more ArchiveCatalogueList structures containing the catalogue data. The SelectionCriteria structure is an abstract structure, and one of the extension structures defines the actual request. The extension structures define the specific request required, allowing the filtering of the data to be tailored to the type of data being requested.

For the selection criteria, if the final identifier of the domain is the wildcard ‘*’, then all sub-domains are searched for matches. The wildcard may only be used for the final component of the domain; for more advanced retrievals the custom retrieval must be used. The time range must be in the past; it cannot extend into the future, and the start time must be before the end time.

The acknowledgement message returns a unique identifier of the catalogue request and an estimated duration if no problems are detected during the validation of the catalogue request. The identifier can be used to cancel the request at a later date. The duration estimate is for guidance only, and the actual catalogue request may take less or more time.

All fields must have a valid value.

4.7.6.3 Common Model Updates
Not applicable.

4.7.6.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	Invalid catalogue request.

	CANCELLED
	See Table 5‑1
	Catalogue request was cancelled using the cancel operation.

	TIMEDOUT
	See Table 5‑1
	Delivery of the response was not able to start inside the requested timeout.

4.7.7 OPERATION: cancelRequest
4.7.7.1 General

The cancelRequest operation requests that the provider cancel the delivery and processing of an existing retrieval, catalogue, or snapshot request.

	Operation Name
	cancelRequest

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	MAL::Identifier

4.7.7.2 Structures

The cancelRequest operation takes a single identifier of the historical retrieval, catalogue, or snapshot to be cancelled.

The identifier can contain the wildcard ‘*’ to apply to all active data requests.

4.7.7.3 Common Model Updates
Not applicable.

4.7.7.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown retrieval/catalogue/snapshot id.

4.7.8 OPERATION: store
4.7.8.1 General

The store operation allows a service consumer to store a set of updates in the archive.

	Operation Name
	store

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	ArchiveSubmission

4.7.8.2 Structures

The store operation takes a list of updates to store in the archive. The submission can specify whether to overwrite any existing matched items, leave the original matched items or return an error in the submission. Items are matched on their relevant key, timestamps, and update types.
If any submitted aspect is not correct, then the complete store operation shall fail.

4.7.8.3 Common Model Updates
Not applicable.

4.7.8.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	INVALID
	See Table 5‑1
	Invalid data being stored.

	DUPLICATE
	See Table 5‑1
	Duplicate data has been detected.

4.7.9 OPERATION: useHistoricalRelationships
4.7.9.1 General

The useHistoricalRelationships operation informs the provider to use the historical relationships applicable at the specified time, this affects all current retrievals.

	Operation Name
	useHistoricalRelationships

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	HistoricalRelationshipCriteria

4.7.9.2 Structures

The useHistoricalRelationships operation takes a single HistoricalRelationshipCriteria structure of the historical relationships to be applied. It contains a list of identifiers of the Common Model entities to apply to and a time to which the historical relationships should be set.

All fields must have a valid value. The identifier list in the structure can contain the wildcard ‘*’ to apply to all entities.

4.7.9.3 Common Model Updates
Not applicable.

4.7.9.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown item id.

4.7.10 OPERATION: useLatestRelationships
4.7.10.1 General

The useLatestRelationships operation informs the provider to use the latest relationships, this affects all current retrievals.

	Operation Name
	useLatestRelationships

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	HistoricalRelationshipCriteria

4.7.10.2 Structures

The useLatestRelationships operation takes a single HistoricalRelationshipCriteria structure of items that shall have the latest relationships applied. It contains a list of identifiers of the Common Model entities to apply to; the time field shall be ignored.
All fields must have a valid value. The identifier list in the structure can contain the wildcard ‘*’ to apply to all entities.

4.7.10.3 Common Model Updates
Not applicable.

4.7.10.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown item id.

4.7.11 OPERATION: getRelationships
4.7.11.1 General

The getRelationships operation returns the relationships that are currently applied.

	Operation Name
	getRelationships

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	HistoricalRelationshipCriteria

	OUT
	Response
	HistoricalRelationshipCriteriaList

4.7.11.2 Structures

The getRelationships operation takes a single HistoricalRelationshipCriteria structure that contains the Common Model entities to be examined; the time field shall be ignore and may be set to NULL. It returns a HistoricalRelationshipCriteriaList of the entities requested and their relationship time.

A NULL time value means the latest relationship is in use, if it is an actual value then the relationship that was applicable at the time is in effect.
All fields must have a valid value. The identifier list in the structure can contain the wildcard ‘*’ to apply to all entities.

4.7.11.3 Common Model Updates
Not applicable.

4.7.11.4 Errors

The operation may return the following errors:

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Unknown item id.

4.8 Configuration Service

4.8.1 Overview

The Configuration service allows service providers to publish information about their configuration and consumers to manage the configuration of the provider.

The contents of the configuration of a service is implementation-specific, but the management of these configurations has been standardised in this service. Implementations of this service may also use bespoke methods for configuration upload (such as files) which is outside the scope of this specification; however, the status and management of these uploaded configurations can still be managed with this service.

Some other services may offer online update/modification of aspects of their definitions and configuration through the definition aspects of the Common Model; this is separate from the facilities provided by this service, which is to allow the management of implementation specific configurations in a standard way.

Table 4‑174 TC \f T "-17
Configuration Service Operations"
: Configuration Service Operations
	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	Configuration
	0
	6
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	All Common Model Definition Operations

	All Common Model Status Operations

	INVOKE
	activate
	100
	No
	100

4.8.2 Usage

The service allows a consumer to manage configuration definitions and also monitor the status of those definitions. A service-specific capability set allows the activation of specific configuration if more than one is supported.

4.8.3 Common Model Usage

The Configuration service complies with the common model as follows:

Table 4‑184 TC \f T "-18
Configuration Service Common Model Component Usage"
: Configuration Service Common Model Component Usage
	
	Definition
	Occurrence
	Status

	Structure
	ConfigurationDefinition
	Not used
	ConfigurationStatus

	Update structures
	None
	Not used
	None

Table 4‑194 TC \f T "-19
Configuration Service Common Model Identifier Usage"
: Configuration Service Common Model Identifier Usage
	Identifier field
	Definition
	Occurrence
	Status

	entityId
	Implementation-specific
	Not used
	From definition

	definitionId
	Implementation-specific
	Not used
	From definition

	occurrenceId
	
	Not used
	NULL

	statusId
	
	
	Generated by the service provider

Each configuration held by the service is a unique configuration definition. As there is no need to represent multiple instances of the same configuration Occurrence is not used and the configuration status links directly to the configuration definition.

The entity and definition identifiers are not tied to anything else in the SM&C architecture. Therefore their meaning is completely implementation dependent. The Configuration service provider defines the status identifiers.

4.8.4 OPERATION: activate
4.8.4.1 General

The activate operation instructs a service provider to make a specific configuration active. It is possible that it may take an indeterminate amount of time to activate a specific configuration, and because of this the INVOKE pattern is used.

	Operation Name
	activate

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	DefinitionKey

	OUT
	Acknowledgement
	Empty

	OUT
	Response
	Empty

4.8.4.2 Structures

The activate operation takes a DefinitionKey structure that identifies the configuration to activate. The service provider returns an empty acknowledgement if the values of the invoke request are valid and finally returns an empty response when the configuration has been made active. All fields must have a valid value.

4.8.4.3 Common Model Updates
When a new configuration is activated up to two status changes shall be recorded with the same timestamp, one for the previously active configuration (if one exists) and one for the newly active configuration. The ConfigurationStatus structures shall be archived and distributed using a CompleteStatusUpdate structure. Entries shall use a MAL::UpdateType of Modification.

4.8.4.4 Errors

	Error
	Error #
	Comments

	UNKNOWN
	See R[2]
	Requested configuration is unknown.

	INVALID
	See Table 5‑1
	Requested configuration is invalid.

5 Common Service Structures

5.1 Overview

This section details the types and structures used and provided to other services by the Common Service.

5.2 Common Service Error Codes

Each operation shall list any errors specific to that operation, over and above any standard errors, that can be raised by an implementation. Error codes for an operation should start at zero (‘0’) and increment; standard errors start at 65536, 0x10000 in hexadecimal, and increment; operation-specific errors shall therefore remain inside the inclusive range of 0 to 65535.

The following table lists the standard errors defined by the Common services:

Table 5‑15 TC \f T "-1
Common Service Error Codes"
: Common Service Error Codes
	Error
	Error #
	Comments

	INVALID
	70000
	Operation specific

	DUPLICATE
	70001
	Operation specific

	REFERENCED
	70002
	Operation specific

	CANCELLED
	70003
	Operation specific

	TIMEDOUT
	70004
	Operation specific

	TOO_MANY
	70005
	Operation specific

	NOT_IN_REPLAY
	70006
	Operation is not supported in Replay.

	HISTORIC
	70007
	Requested Common Model item is only available via Retrieval service.

5.3 Common Model Structures

5.3.1 DefinitionKey
The DefinitionKey structure holds all information required by the Common Model to identify a definition.

	Structure Name
	DefinitionKey

	Extends
	MAL::Composite

	Short form
	cMDK

	Field
	Type
	Comment

	entityId
	MAL::Identifier
	The identifier of this entity.

	definitionId
	MAL::Identifier
	The identifier of this definition.

5.3.2 DefinitionKeyList
	List Name
	DefinitionKeyList

	Short form
	cMDk

	List of
	DefinitionKey

5.3.3 Definition
The Definition structure holds all information required by the Common Model for a definition.

	Structure Name
	Definition

	Extends
	MAL::Composite

	Abstract

	Field
	Type
	Comment

	key
	DefinitionKey
	The key for this definition.

	timestamp
	MAL::Time
	The creation time of the definition.

	description
	MAL::String
	The description of the definition.

5.3.4 DefinitionList
	List Name
	DefinitionList

	Short form
	cMDL

	List of
	Definition

5.3.5 DefinitionUpdate
The DefinitionUpdate structure denotes a Common Model definition update. The definition key of the update is held in MAL::Update key field as a list of two Identifiers, the entityId is first and the definitionId is second.
	Structure Name
	DefinitionUpdate

	Extends
	MAL::Update

	Abstract

	Field
	Type
	Comment

	updateSource
	UpdateSource
	The source of this definition update.

5.3.6 DefinitionUpdateList
	List Name
	DefinitionUpdateList

	Short form
	cMDl

	List of
	DefinitionUpdate

5.3.7 CompleteDefinitionUpdate
The CompleteDefinitionUpdate structure holds a complete Common Model definition update. Used by services to distribute and archive a complete update of a definition.
	Structure Name
	CompleteDefinitionUpdate

	Extends
	DefinitionUpdate

	Short form
	cMDU

	Field
	Type
	Comment

	definition
	Definition
	The complete definition.

5.3.8 OccurrenceKey
The OccurrenceKey structure holds all information required by the Common Model to identify an occurrence.

	Structure Name
	OccurrenceKey

	Extends
	MAL::Composite

	Short form
	cMOK

	Field
	Type
	Comment

	entityId
	MAL::Identifier
	The identifier of this entity.

	definitionId
	MAL::Identifier
	The identifier of this definition.

	occurrenceId
	MAL::Identifier
	The identifier of this occurrence.

5.3.9 OccurrenceKeyList
	List Name
	OccurrenceKeyList

	Short form
	cMOk

	List of
	OccurrenceKey

5.3.10 Occurrence
The Occurrence structure holds all information required by the Common Model for an occurrence.

	Structure Name
	Occurrence

	Extends
	MAL::Composite

	Abstract

	Field
	Type
	Comment

	key
	OccurrenceKey
	The key for this occurrence.

	timestamp
	MAL::Time
	The creation time of the occurrence.

5.3.11 OccurrenceList
	List Name
	OccurrenceList

	Short form
	cMOL

	List of
	Occurrence

5.3.12 OccurrenceUpdate
The OccurrenceUpdate structure denotes a Common Model occurrence update. The occurrence key of the update is held in MAL::Update key field as a list of three Identifiers, the entityId is first, the definitionId is second and the occurrenceId is third.
	Structure Name
	OccurrenceUpdate

	Extends
	MAL::Update

	Abstract

	Field
	Type
	Comment

	updateSource
	UpdateSource
	The source of this occurrence update.

5.3.13 OccurrenceUpdateList
	List Name
	OccurrenceUpdateList

	Short form
	cMOl

	List of
	OccurrenceUpdate

5.3.14 CompleteOccurrenceUpdate
The CompleteOccurrenceUpdate structure holds a complete Common Model occurrence update. Used by services to distribute and archive a complete update of an occurrence.
	Structure Name
	CompleteOccurrenceUpdate

	Extends
	OccurrenceUpdate

	Short form
	cMOU

	Field
	Type
	Comment

	occurrence
	Occurrence
	The complete occurrence.

5.3.15 StatusKey
The StatusKey structure holds all information required by the Common Model to identify a status.

	Structure Name
	StatusKey

	Extends
	MAL::Composite

	Short form
	cMSK

	Field
	Type
	Comment

	entityId
	MAL::Identifier
	The identifier of this entity.

	definitionId
	MAL::Identifier
	The identifier of this definition.

	occurrenceId
	MAL::Identifier
	The identifier of this occurrence.

	statusId
	MAL::Identifier
	The identifier of this status.

5.3.16 StatusKeyList
	List Name
	StatusKeyList

	Short form
	cMSk

	List of
	StatusKey

5.3.17 Status
The Status structure holds all information required by the Common Model for a status.

	Structure Name
	Status

	Extends
	MAL::Composite

	Abstract

	Field
	Type
	Comment

	key
	StatusKey
	The key for this status.

	timestamp
	MAL::Time
	The creation time of the status.

5.3.18 StatusList
	List Name
	StatusList

	Short form
	cMSL

	List of
	Status

5.3.19 StatusUpdate
The StatusUpdate structure denotes a Common Model status update. The status key of the update is held in MAL::Update key field as a list of four Identifiers, the entityId is first, the definitionId is second, the occurrenceId is third and the statusId is fourth.
	Structure Name
	StatusUpdate

	Extends
	MAL::Update

	Abstract

	Field
	Type
	Comment

5.3.20 StatusUpdateList
	List Name
	StatusUpdateList

	Short form
	cMSl

	List of
	StatusUpdate

5.3.21 CompleteStatusUpdate
The CompleteStatusUpdate structure holds a complete Common Model status update. Used by services to distribute and archive a complete update of a status.
	Structure Name
	CompleteStatusUpdate

	Extends
	StatusUpdate

	Short form
	cMSU

	Field
	Type
	Comment

	status
	Status
	The complete status.

5.3.22 UpdateSource
The updateSource structure holds all information required to identify the source of an update. This is normally expected to point to a LoginOccurrence but may also point to future service objects such as Automation etc. Provides traceability of objects back to their triggering source.
	Structure Name
	UpdateSource

	Extends
	MAL::Composite

	Short form
	cMUS

	Field
	Type
	Comment

	domain
	MAL::DomainIdentifier
	The Domain of the source of this update, NULL if the same as the update itself.

	networkZone
	MAL::Identifier
	The Network Zone of the source of this update, NULL if the same as the update itself.

	area
	MAL::Short
	The service area of the source of this update, NULL if the same as the update itself.

	service
	MAL::Short
	The Service of the source of this update, NULL if the same as the update itself.

	sourceKey
	OccurrenceKey
	The OccurrenceKey of the source of this update, if it was triggered by a Definition then the occurrenceId part shall be set to NULL.

5.4 Directory Service Structures

5.4.1 DomainOccurrence
The DomainOccurrence structure holds all information required by the Directory service to uniquely identify a Node in the Directory service tree.

	Structure Name
	DomainOccurrence

	Extends
	Occurrence

	Short form
	cDO

	Field
	Type
	Comment

	sessionType
	MAL::SessionType
	The session type of this service.

	sourceSessionName
	MAL::Identifier
	If this is part of a replay session, this field holds the session name of the source session. NULL otherwise

	isExternal
	MAL::Boolean
	If this Node represents a Node held on another Directory Service this value is set to TRUE. FALSE otherwise.

	subDomains
	MAL::IdBooleanList
	The list of subDomains of this Node. If the associated Boolean is TRUE then it is an external Node.

	alternateNetworks
	MAL::IdBooleanList
	The list of alternate Network Zones of this Node. If the associated Boolean is TRUE then it is an external Node.

	alternateSessions
	MAL::IdBooleanList
	The list of alternate Sessions of this Node. If the associated Boolean is TRUE then it is an external Node.

	services
	MAL::IdentifierList
	The list of services available at this Node. The value is formed by concatenating the service Area number and the service type number, separated by a ‘::’ value. For example ‘0::3’ for the Common Interaction service.

5.4.2 DomainOccurrenceList
	List Name
	DomainOccurrenceList

	Short form
	cDo

	List of
	DomainOccurrence

5.4.3 SubDomainUpdate
The SubDomainUpdate structure holds update information for a DomainOccurrence when a sub domain is added/removed from the directory tree. The Identifier aspect contains only the extra Domain part rather than the complete Domain path as this can be reconstructed by using the entityId of the OccurrenceUpdate.
	Structure Name
	SubDomainUpdate

	Extends
	OccurrenceUpdate

	Short form
	cDOD

	Field
	Type
	Comment

	subDomain
	MAL::IdBooleanPair
	The Identifier of the sub-domain, the Boolean field shall be set to true if the sub-domain is marked as external.

5.4.4 NetworkUpdate
The NetworkUpdate structure holds update information for a DomainOccurrence when a Network Zone is added/removed from the directory tree.

	Structure Name
	NetworkUpdate

	Extends
	OccurrenceUpdate

	Short form
	cDON

	Field
	Type
	Comment

	alternateNetwork
	MAL::IdBooleanPair
	The Identifier of the network, the Boolean field shall be set to true if the network is marked as external.

5.4.5 SessionUpdate
The SessionUpdate structure holds update information for a DomainOccurrence when a Session is added/removed from the directory tree.

	Structure Name
	SessionUpdate

	Extends
	OccurrenceUpdate

	Short form
	cDOS

	Field
	Type
	Comment

	alternateSession
	MAL::IdBooleanPair
	The Identifier of the session, the Boolean field shall be set to true if the session is marked as external.

5.4.6 ServiceUpdate
The ServiceUpdate structure holds update information for a DomainOccurrence when a Service is added/removed from the directory tree.

	Structure Name
	ServiceUpdate

	Extends
	OccurrenceUpdate

	Short form
	cDOP

	Field
	Type
	Comment

	area
	MAL::Identifier
	The Area of the Service.

	service
	MAL::Identifier
	The Identifier of the service.

5.4.7 NodeStatus
The NodeStatus structure holds all information required by the Directory service for the services held at a Node.

	Structure Name
	NodeStatus

	Extends
	Status

	Short form
	cDS

	Field
	Type
	Comment

	services
	ServiceDetailsList
	The list of services at this Node in the directory tree.

5.4.8 NodeStatusList
	List Name
	NodeStatusList

	Short form
	cDs

	List of
	NodeStatus

5.4.9 ServiceDetails
The ServiceDetails structure holds all information required by the Directory service for a single service.

	Structure Name
	ServiceDetails

	Extends
	MAL::Composite

	Short form
	cDD

	Field
	Type
	Comment

	area
	MAL::Identifier
	The area of this service taken from the Area Identifier of the service specification.

	service
	MAL::Identifier
	The service taken from the Service Identifier of the service specification.

	version
	MAL::Short
	The version of this service taken from the Service Version of the service specification.

	providers
	ProviderInformationList
	The list of providers of this service.

5.4.10 ServiceDetailsList
	List Name
	ServiceDetailsList

	Short form
	cDd

	List of
	ServiceDetails

5.4.11 ServiceProviderUpdate
The ServiceProviderUpdate structure holds update information for a NodeStatus when a new Service provider is added/removed from a service.

	Structure Name
	ServiceProviderUpdate

	Extends
	StatusUpdate

	Short form
	cDSP

	Field
	Type
	Comment

	provider
	ServiceDetails
	The information of the provider of the service.

5.4.12 ProviderInformation
The ProviderInformation structure holds all information required by the Directory service about a provider of a service and its capabilities. The structure contains a list of ServiceAddress structures; a service may support more than one transport technology and therefore can be reached using more than one address.

	Structure Name
	ProviderInformation

	Extends
	MAL::Composite

	Short form
	cDI

	Field
	Type
	Comment

	serviceProviderName
	MAL::Identifier
	The provider-defined name of the service; allows multiple service providers of the same service type to coexist in the directory service. This value is the unique service provider name.

	
	
	

	supportedCapabilities
	MAL::IntegerList
	The set of capabilities set numbers that this service occurrence supports.

	serviceProperties
	MAL::NamedValueList
	Allows the passing of deployment specific service properties.

	serviceAddresses
	ServiceAddressList
	List of service address for this service provider.

5.4.13 ProviderInformationList
	List Name
	ProviderInformationList

	Short form
	cDi

	List of
	ProviderInformation

5.4.14 ServiceAddress
The ServiceAddress structure holds all information required by the Directory service about a service URI and attributes relating to QoS. If the dataName field contains a value and the dataURI field is NULL, then the dataURI value of the named provider shall be used. The named provider shall exist as another ProviderInformation entry in the NodeStatus.

	Structure Name
	ServiceAddress

	Extends
	MAL::Composite

	Short form
	cDA

	Field
	Type
	Comment

	supportedLevels
	MAL::QoSLevelList
	The set of possible QoS levels this service can provide.

	QoSproperties
	MAL::NamedValueList
	Any QoS properties relevant to this address URIs and the specified transport.

	priorityLevels
	MAL::Integer
	Number of QoS priority levels that this provider supports.

	serviceURI
	MAL::URI
	The Service URI that identifies the physical location of this service. NULL if represents a shared data provider (Broker).

	dataURI
	MAL::URI
	The data URI that identifies the physical location of the publish and subscribe interface. NULL if service does not use publish and subscribe operations or if a shared data provider is to be used.

	dataName
	MAL::Identifier
	This field is used to identify a shared data provider (broker). NULL if not using a shared data provider.

5.4.15 ServiceAddressList
	List Name
	ServiceAddressList

	Short form
	cDa

	List of
	ServiceAddress

5.4.16 DomainLink
The DomainLink structure holds the link information for linking one directory service to another. It holds a DomainOccurrence structure that is the Node on the Directory service tree that is actually held in the external directory service, it also holds a ProviderInformation structure that provides all the information required to contact that external directory service.
	Structure Name
	DomainLink

	Extends
	MAL::Composite

	Short form
	cDL

	Field
	Type
	Comment

	domainInfo
	DomainOccurrence
	The DomainOccurrence that represents the Directory Node that is being linked in externally.

	directoryInfo
	ProviderInformation
	The relevant information about the Directory Service that is providing the external nodes.

5.4.17 DomainLinkList
	List Name
	DomainLinkList

	Short form
	cDl

	List of
	DomainLink

5.4.18 ServiceFilter
The ServiceFilter structure holds all information required by the Directory service for service lookup operation.

	Structure Name
	ServiceFilter

	Extends
	MAL::Composite

	Short form
	cDF

	Field
	Type
	Comment

	domainOccurrence
	OccurrenceKey
	The Domain node to query.

	area
	MAL::Identifier
	The area of this service taken from the Area Identifier of the service specification. Can be NULL.

	service
	MAL::Identifier
	The service taken from the Service Identifier of the service specification. Can be NULL.

	version
	MAL::Short
	The version of this service taken from the Service Version of the service specification. Can be NULL.

	requiredCapabilities
	MAL::IntegerList
	List of required capabilities. If NULL then matches any.

	serviceProviderName
	MAL::String
	The required service provider. Can be NULL.

5.5 Login Service Structures

5.5.1 Profile
The Profile structure contains details of the operator who is logging on to take a specified role. The password will be used to verify the identity of the operator.

	Structure Name
	Profile

	Extends
	MAL::Composite

	Short form
	cLP

	Field
	Type
	Comment

	userName
	MAL::Identifier
	The name of the user.

	role
	MAL::Identifier
	The role of the user.

	password
	MAL::String
	The password of the user.

5.5.2 LoginDefinition
The LoginDefinition structure holds a single login operator definition.

	Structure Name
	LoginDefinition

	Extends
	Definition

	Short form
	cLD

	Field
	Type
	Comment

	permittedRoles
	MAL::IdentifierList
	List of permitted roles for this operator.

5.5.3 LoginOccurrence
The LoginOccurrence structure holds a login occurrence.

	Structure Name
	LoginOccurrence

	Extends
	Occurrence

	Short form
	cLO

	Field
	Type
	Comment

	role
	MAL::Identifier
	The role for this login occurrence

5.6 Interact Service Structures

5.6.1 InteractAcknowledgeOccurrence
The InteractAcknowledgeOccurrence structure holds the fields required for an interaction acknowledgement.

	Structure Name
	InteractAcknowledgeOccurrence

	Extends
	Occurrence

	Short form
	cIA

	Field
	Type
	Comment

	destination
	MAL::Identifier
	Username of operator or role to interact with, set to NULL if for anyone.

	destinationIsRole
	MAL::Boolean
	True if destination is a role name, value ignored if no destination supplied.

	responseTimeout
	MAL::Duration
	Duration in which response must be received. NULL if no timeout required.

	displayMessage
	MAL::String
	Message to present to operator.

5.6.2 InteractAcknowledgeResponse
The InteractAcknowledgeResponse structure holds the fields required for a response to an interaction acknowledge query. The responding operator credentials shall be held in the UpdateSource of the OccurrenceUpdate.
	Structure Name
	InteractAcknowledgeResponse

	Extends
	OccurrenceUpdate

	Short form
	cIa

	Field
	Type
	Comment

5.6.3 InteractConfirmOccurrence
The InteractConfirmOccurrence structure holds the fields required for an interaction confirmation.

	Structure Name
	InteractConfirmOccurrence

	Extends
	Occurrence

	Short form
	cIF

	Field
	Type
	Comment

	destination
	MAL::Identifier
	Username of operator or role to interact with, set to NULL if for anyone.

	destinationIsRole
	MAL::Boolean
	True if destination is a role name, value ignored if no destination supplied.

	responseTimeout
	MAL::Duration
	Duration in which response must be received. NULL if no timeout required.

	displayMessage
	MAL::String
	Message to present to operator.

5.6.4 InteractConfirmResponse
The InteractConfirmResponse structure holds the fields required for a response to an interaction confirm query. The responding operator credentials shall be held in the UpdateSource of the OccurrenceUpdate.
	Structure Name
	InteractConfirmResponse

	Extends
	OccurrenceUpdate

	Short form
	cIf

	Field
	Type
	Comment

	confirmation
	MAL::Boolean
	Response to interaction.

5.6.5 InteractChoiceOccurrence
The InteractChoiceOccurrence structure holds the fields required for an interaction choice query.

	Structure Name
	InteractChoiceOccurrence

	Extends
	Occurrence

	Short form
	cIC

	Field
	Type
	Comment

	destination
	MAL::Identifier
	Username of operator or role to interact with, set to NULL if for anyone.

	destinationIsRole
	MAL::Boolean
	True if destination is a role name, value ignored if no destination supplied.

	responseTimeout
	MAL::Duration
	Duration in which response must be received. NULL if no timeout required.

	displayMessage
	MAL::String
	Message to present to operator.

	allowedResponses
	MAL::StringList
	Set of responses for operator to select from.

5.6.6 InteractChoiceResponse
The InteractChoiceResponse structure holds the fields required for a response to a choice interaction query. The responding operator credentials shall be held in the UpdateSource of the OccurrenceUpdate.
	Structure Name
	InteractChoiceResponse

	Extends
	OccurrenceUpdate

	Short form
	cIc

	Field
	Type
	Comment

	
	
	

	response
	MAL::Integer
	Index of chosen value from provided list.

5.6.7

	
	

	
	

	
	

	
	
	

	
	
	

	
	
	

5.6.8

	
	

	
	

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

5.6.9

	
	

	
	

	
	

	
	
	

	
	
	

5.6.10

	
	

	
	

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

5.6.11 InteractValueOccurrence
The InteractValueOccurrence structure holds the fields required for an interaction value query.

	Structure Name
	InteractValueOccurrence

	Extends
	Occurrence

	Short form
	cIV

	Field
	Type
	Comment

	destination
	MAL::Identifier
	Username of operator or role to interact with, set to NULL if for anyone.

	destinationIsRole
	MAL::Boolean
	True if destination is a role name, value ignored if no destination supplied.

	responseTimeout
	MAL::Duration
	Duration in which response must be received. NULL if no timeout required.

	displayMessage
	MAL::String
	Message to present to operator.

	defaultValues
	MAL::NamedValueList
	Default values to provide to operator. Both parts of the NamedValues structure must be populated as it provides the value type required.

5.6.12 InteractValueResponse
The InteractValueResponse structure holds the fields required for a response to a value interaction query. The responding operator credentials shall be held in the UpdateSource of the OccurrenceUpdate.
	Structure Name
	InteractValueResponse

	Extends
	OccurrenceUpdate

	Short form
	cIv

	Field
	Type
	Comment

	
	
	

	newValues
	MAL::NamedValueList
	New values provided by operator. Type of attribute returned must match that of default value sent in request.

5.6.13 InteractCancelled
The InteractCancelled structure is used to notify of an interaction being cancelled. The responding operator credentials shall be held in the UpdateSource of the OccurrenceUpdate if cancelled by an operator.
	Structure Name
	InteractCancelled

	Extends
	OccurrenceUpdate

	Short form
	cIx

	Field
	Type
	Comment

5.7 Replay Service Structures

5.7.1 ReplayInformation
The ReplayInformation structure contains the initial replay details.

	Structure Name
	ReplayInformation

	Extends
	MAL::Composite

	Short form
	cRN

	Field
	Type
	Comment

	key
	OccurrenceKey
	Suggested occurrence key value.

	sourceSessionType
	MAL::SessionType
	Type of the session used as a source for the replay session (cannot be REPLAY).

	initialState
	ReplayState
	Initial state of the replay session.

	initialTime
	MAL::Time
	Initial time of the replay session.

	initialTarget
	MAL::Time
	Initial target time of the replay session.

	initialRate
	MAL::Float
	Initial replay rate for the replay session.

	initialInterval
	MAL::Duration
	Initial replay step interval for the replay session.

5.7.2 ReplayOccurrence
The ReplayOccurrence structure contains the replay occurrence details.

	Structure Name
	ReplayOccurrence

	Extends
	Occurrence

	Short form
	cRO

	Field
	Type
	Comment

	sourceSessionType
	MAL::SessionType
	Type of the session used as a source for the replay session (cannot be REPLAY).

	serviceDetails
	NodeStatusList
	List of service details that are providing the replay session.

5.7.3 ReplayStatus
The ReplayStatus structure contains status information about a replay session.

	Structure Name
	ReplayStatus

	Extends
	Status

	Short form
	cRS

	Field
	Type
	Comment

	replayState
	ReplayState
	Current state of the replay session.

	replayTime
	MAL::Time
	Current time of the replay session.

	targetTime
	MAL::Time
	The target time that this replay shall stop at when reached. May be NULL if no target time set.

	replayRate
	MAL::Float
	Current replay rate for the replay session.

	replayInterval
	MAL::Duration
	Current replay step interval for the replay session.

5.7.4 ReplayState Enumeration
The ReplayState enumeration represents the possible states of a replay.

	Enumeration Name
	ReplayState

	Short form
	cRs

	Enumeration Value
	Short form
	Comment

	STOPPED
	1
	Replay is stopped.

	FORWARDS
	2
	Replay is playing forwards.

	BACKWARDS
	3
	Replay is playing backwards.

5.7.5 ReplayIntervalUpdate
The ReplayIntervalUpdate structure holds the criteria when selecting a new step interval for a replay session.

	Structure Name
	ReplayIntervalUpdate

	Extends
	StatusUpdate

	Short form
	cRI

	Field
	Type
	Comment

	newInterval
	MAL::Duration
	New replay step interval for the replay session.

5.7.6 ReplayRateUpdate
The ReplayRateUpdate structure holds the criteria when selecting a new rate.

	Structure Name
	ReplayRateUpdate

	Extends
	StatusUpdate

	Short form
	cRR

	Field
	Type
	Comment

	newRate
	MAL::Float
	New replay rate as a multiplier of the normal rate.

5.7.7

	
	

	
	

	
	
	

	
	
	

	
	
	

	
	
	

5.7.8

	
	

	
	

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

5.7.9

	
	

	
	

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

5.7.10 ReplayTimeUpdate
The ReplayTimeUpdate structure holds the criteria when selecting a new time point for a replay session.

	Structure Name
	ReplayTimeUpdate

	Extends
	StatusUpdate

	Short form
	cRt

	Field
	Type
	Comment

	newTime
	MAL::Time
	The required time for the replay session.

5.7.11

	
	

	
	

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

5.7.12 ReplayTargetUpdate
The ReplayTargetUpdate structure holds the criteria when selecting a new target time point for a replay session.

	Structure Name
	ReplayTargetUpdate

	Extends
	StatusUpdate

	Short form
	cRA

	Field
	Type
	Comment

	newTarget
	MAL::Time
	The required target for the replay session.

5.7.13 ReplayStep
The ReplayStep structure contains the replay step details.

	Structure Name
	ReplayStep

	Extends
	MAL::Composite

	Short form
	cRT

	Field
	Type
	Comment

	key
	OccurrenceKey
	Occurrence key of Replay session.

	stepToNext
	MAL::Boolean
	Boolean indicating whether to step to the next item (value true) or by the current step interval (value false).

5.8 Retrieval Service Structures

5.8.1

	
	

	
	

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

5.8.2
	
	

	
	

	
	

5.8.3

	
	

	
	

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

5.8.4 SelectionCriteria
The abstract SelectionCriteria structure provides the specification of a selection filter for the retrieval of archive data from a service archive. The filter contains two parts, the first part (this base structure) provides a simple boundary of start and end times and the domain and service to request archive data from. The second part (defined in one of the structures that extend this structure) allow the specific filtering of archive data.

	Structure Name
	SelectionCriteria

	Extends
	MAL::Composite

	Abstract

	Field
	Type
	Comment

	responseTimeout
	MAL::Duration
	The amount of time from reception of the request in which delivery of the response must start.

	domain
	MAL::DomainIdentifier
	The domain to retrieve from.

	serviceArea
	MAL::Short
	The service area to retrieve from.

	serviceType
	MAL::Short
	The service type to retrieve from.

	startTime
	MAL::Time
	The start time of the requested data. Data with a matching timestamp shall be included.

	endTime
	MAL::Time
	The end time of the requested data. Data with a matching timestamp shall NOT be included.

5.8.5 SelectionCriteriaList
	List Name
	SelectionCriteriaList

	Short form
	cAs

	List of
	SelectionCriteria

5.8.6 RetrievalDefinitionSelection
The RetrievalDefinitionSelection structure provides the specification of a selection filter for the retrieval of Common Model definition archive data from a service archive.

	Structure Name
	RetrievalDefinitionSelection

	Extends
	SelectionCriteria

	Short form
	cARD

	Field
	Type
	Comment

	definitionKeys
	DefinitionKeyList
	The set of definitions to retrieve.

5.8.7 RetrievalOccurrenceSelection
The RetrievalOccurrenceSelection structure provides the specification of a selection filter for the retrieval of Common Model occurrence archive data from a service archive.

	Structure Name
	RetrievalOccurrenceSelection

	Extends
	SelectionCriteria

	Short form
	cARO

	Field
	Type
	Comment

	occurrenceKeys
	OccurrenceKeyList
	The set of occurrences to retrieve.

5.8.8 RetrievalStatusSelection
The RetrievalStatusSelection structure provides the specification of a selection filter for the retrieval of Common Model status archive data from a service archive.

	Structure Name
	RetrievalStatusSelection

	Extends
	SelectionCriteria

	Short form
	cARS

	Field
	Type
	Comment

	statusKeys
	StatusKeyList
	The set of statuses to retrieve.

5.8.9 RetrievalCustomSelection
The RetrievalCustomSelection structure allows more advanced implementations of the Retrieval service to filter the data using an implementation-dependent filter criteria.

	Structure Name
	RetrievalCustomSelection

	Extends
	SelectionCriteria

	Short form
	cARc

	Field
	Type
	Comment

	format
	MAL::String
	String holding the format of the selection criteria string.

	criteria
	MAL::String
	String holding the selection criteria. The format is unspecified to allow mission-specific referencing schemes to be utilised.

5.8.10
	
	

	
	

	
	

5.8.11 RetrievalAcknowledgement
The RetrievalAcknowledgement structure contains the acknowledgement details to a retrieval/snapshot/catalogue request.

	Structure Name
	RetrievalAcknowledgement

	Extends
	MAL::Composite

	Short form
	cAA

	Field
	Type
	Comment

	retrievalId
	MAL::Identifier
	Identifier of the retrieval.

	expectedDuration
	MAL::Duration
	Expected duration of the request.

5.8.12 ArchiveReport
The ArchiveReport structure contains a set of common model updates that have been retrieved from a common model archive.

	Structure Name
	ArchiveReport

	Extends
	MAL::Composite

	Short form
	cAR

	Field
	Type
	Comment

	domain
	MAL::DomainIdentifier
	The domain for this set of updates.

	serviceArea
	MAL::Short
	The service area that this set of updates came from.

	serviceType
	MAL::Short
	The service type that this set of updates came from.

	updates
	MAL::UpdateList
	The list of updates that were retrieved for the specified service.

5.8.13 ArchiveReportList
	List Name
	ArchiveReportList

	Short form
	cAr

	List of
	ArchiveReport

5.8.14 ArchiveCatalogue
The ArchiveCatalogue report structure contains a count of Common Model updates present in a Common Model archive.

	Structure Name
	ArchiveCatalogue

	Extends
	MAL::Composite

	Short form
	cAC

	Field
	Type
	Comment

	domain
	MAL::DomainIdentifier
	The domain for this set of updates.

	serviceArea
	MAL::Short
	The service area that this set of updates came from.

	serviceType
	MAL::Short
	The service type that this set of updates came from.

	firstEntryTime
	MAL::Time
	The timestamp of the first entry in the selection.

	lastEntryTime
	MAL::Time
	The timestamp of the last entry in the selection.

	definitionCount
	MAL::Long
	Number of definition updates in the selection.

	occurrenceCount
	MAL::Long
	Number of occurrence updates in the selection.

	statusCount
	MAL::Long
	Number of status updates in the selection.

5.8.15 ArchiveCatalogueList
	List Name
	ArchiveCatalogueList

	Short form
	cAc

	List of
	ArchiveCatalogue

5.8.16 HistoricalRelationshipCriteria
The HistoricalRelationshipCriteria structure allows a consumer to specify the relationships to use in historical replay sessions.

	Structure Name
	HistoricalRelationshipCriteria

	Extends
	MAL::Composite

	Short form
	cAH

	Field
	Type
	Comment

	domain
	MAL::DomainIdentifier
	The domain to apply to.

	serviceArea
	MAL::Short
	The service area to apply to.

	serviceType
	MAL::Short
	The service type to apply to.

	entityIds
	MAL::IdentifierList
	Set of entities to apply to.

	relationshipTime
	MAL::Time
	Use the relationship applicable at this time.

5.8.17 HistoricalRelationshipCriteriaList
	List Name
	HistoricalRelationshipCriteriaList

	Short form
	cAh

	List of
	HistoricalRelationshipCriteria

5.8.18 ArchiveSubmission
The ArchiveSubmission structure contains the update data to be inserted into the archive.

	Structure Name
	ArchiveSubmission

	Extends
	MAL::Composite

	Short form
	cAS

	Field
	Type
	Comment

	overwriteExisting
	MAL::Boolean
	If TRUE then any matches to existing records shall be replaced.

	errorOnMatch
	MAL::Boolean
	If overwriteExisting is set to FALSE and this is set to TRUE then an error shall be returned if any of the submitted updates match existing archive data.

	definitionUpdates
	DefinitionUpdateList
	Set of Definition updates.

	occurrenceUpdates
	OccurrenceUpdateList
	Set of Occurrence updates.

	statusUpdates
	StatusUpdateList
	Set of Status updates.

5.9 Configuration Service Structures

5.9.1 ConfigurationDefinition
The ConfigurationDefinition structure holds a single configuration upload.

	Structure Name
	ConfigurationDefinition

	Extends
	Definition

	Short form
	cCD

	Field
	Type
	Comment

	activate
	MAL::Boolean
	Activate this configuration when uploaded.

	configuration
	MAL::Element
	The configuration.

5.9.2 ConfigurationStatus
The ConfigurationStatus structure holds summary status information about a single configuration.

	Structure Name
	ConfigurationStatus

	Extends
	Status

	Short form
	cCS

	Field
	Type
	Comment

	description
	MAL::String
	The description of the configuration.

	uploadTime
	MAL::Time
	The time the configuration was uploaded.

	isActive
	MAL::Boolean
	Is the configuration currently being used.

6 Service and operation Summary

6.1 Common Model Operations

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Service specific
	Service specific
	Service specific
	Service specific
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	REQUEST
	requestDefinition
	0
	Yes
	0

	REQUEST
	listDefinition
	1
	Yes
	

	PUBSUB
	monitorDefinition
	2
	Yes
	

	REQUEST
	requestOccurrence
	3
	Yes
	1

	REQUEST
	listOccurrence
	4
	Yes
	

	PUBSUB
	monitorOccurrence
	5
	Yes
	

	REQUEST
	requestStatus
	6
	Yes
	2

	REQUEST
	listStatus
	7
	Yes
	

	PUBSUB
	monitorStatus
	8
	Yes
	

	SUBMIT
	addDefinition
	9
	No
	3

	SUBMIT
	modifyDefinition
	10
	No
	

	SUBMIT
	deleteDefinition
	11
	No
	

	SUBMIT
	deleteAllDefinitions
	12
	No
	

6.2 Directory service operations

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	Directory
	0
	1
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	All Common Model Occurrence Operations

	All Common Model Status Operations

	SUBMIT
	createNode
	100
	No
	100

	SUBMIT
	removeNode
	101
	No
	

	REQUEST
	resolveNodeURI
	102
	Yes
	

	SUBMIT
	addLink
	103
	No
	101

	SUBMIT
	removeLink
	104
	No
	

	SUBMIT
	publishService
	105
	No
	102

	REQUEST
	lookupService
	106
	Yes
	

	SUBMIT
	withdrawService
	107
	No
	

6.3 Login service operations

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	Login
	0
	2
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	All Common Model Definition Operations

	All Common Model Occurrence Operations

	REQUEST
	login
	100
	No
	100

	SUBMIT
	logout
	101
	No
	

	REQUEST
	reportRoles
	102
	No
	

	REQUEST
	handover
	103
	No
	101

6.4 Interact service operations

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	Interact
	0
	3
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	All Common Model Occurrence Operations

	INVOKE
	acknowledge
	100
	No
	100

	INVOKE
	confirm
	101
	No
	

	INVOKE
	choice
	102
	No
	

	INVOKE
	getValues
	103
	No
	

	SUBMIT
	cancelInteraction
	104
	No
	

6.5 Replay service operations

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	Replay
	0
	4
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	All Common Model Occurrence Operations

	All Common Model Status Operations

	SUBMIT
	forwardReplay
	100
	No
	100

	SUBMIT
	forwardStep
	101
	No
	

	SUBMIT
	backwardReplay
	102
	No
	

	SUBMIT
	backwardStep
	103
	No
	

	SUBMIT
	stopReplay
	104
	No
	

	SUBMIT
	setRate
	105
	No
	

	SUBMIT
	setTime
	106
	No
	

	SUBMIT
	setTargetTime
	107
	No
	

	SUBMIT
	setStepInterval
	108
	No
	

	INVOKE
	createReplay
	109
	No
	101

	SUBMIT
	deleteReplay
	110
	No
	

6.6 Retrieval service operations

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	Retrieval
	0
	5
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	PROGRESS
	retrieve
	100
	Yes
	100

	PROGRESS
	snapshot
	101
	Yes
	

	PROGRESS
	catalogue
	102
	Yes
	

	SUBMIT
	cancelRequest
	103
	Yes
	

	SUBMIT
	store
	104
	No
	101

	SUBMIT
	useHistoricalRelationships
	105
	Yes
	102

	SUBMIT
	useLatestRelationships
	106
	Yes
	

	REQUEST
	getRelationships
	107
	Yes
	

6.7 Configuration service operations

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	Common
	Configuration
	0
	6
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	All Common Model Definition Operations

	All Common Model Status Operations

	INVOKE
	activate
	100
	No
	100

ANNEX A

Informative References

(Informative)

[A

 SEQ iref * MERGEFORMAT 1]
Mission Operations Services Concept. Report Concerning Space Data System Standards, CCSDS 520.0-G-2. Green Book. Issue 2. Washington, D.C.: CCSDS, August 2006.
NOTE
–
Normative references are listed in 1.4
ANNEX B

Acronyms

(Informative)

AMS

Asynchronous Messaging System

API

Application Programmers’ Interface

ASCII

American Standard Code for Information Interchange

MAL

Message Abstract Layer
MO

Mission Operations

QoS

Quality of Service

SM&C
CCSDS Spacecraft Monitoring and Control

SOAP

Simple Object Access Protocol

URI

Universal Resource Indicator

XML

eXtensible Markup Language

