
 

Draft Recommendation for 
Space Data System Standards 

XML FORMATTED DATA 
UNIT (XFDU) 

STRUCTURE AND 
CONSTRUCTION RULES 

DRAFT RECOMMENDED STANDARD 

CCSDS 661.0-R-0 

RED BOOK 
February 2008 





CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page i January 2008 

AUTHORITY 
 
 

    
 Issue: Red Book, Issue 0  
 Date: February 2008  
 Location: Not Applicable  
    

(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN 
THE FOLLOWING STATEMENT OF AUTHORITY:) 

This document has been approved for publication by the Management Council of the 
Consultative Committee for Space Data Systems (CCSDS) and represents the consensus 
technical agreement of the participating CCSDS Member Agencies.  The procedure for 
review and authorization of CCSDS documents is detailed in the Procedures Manual for the 
Consultative Committee for Space Data Systems, and the record of Agency participation in 
the authorization of this document can be obtained from the CCSDS Secretariat at the 
address below. 
 
 
This document is published and maintained by: 
 

CCSDS Secretariat 
Office of Space Communication (Code M-3) 
National Aeronautics and Space Administration 
Washington, DC  20546, USA 

 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page ii January 2008 

STATEMENT OF INTENT 

(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN 
THE FOLLOWING STATEMENT OF INTENT:) 

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially 
established by the management of its members. The Committee meets periodically to address 
data systems problems that are common to all participants, and to formulate sound technical 
solutions to these problems. Inasmuch as participation in the CCSDS is completely 
voluntary, the results of Committee actions are termed Recommended Standards and are 
not considered binding on any Agency. 

This Recommended Standard is issued by, and represents the consensus of, the CCSDS 
members.  Endorsement of this Recommendation is entirely voluntary. Endorsement, 
however, indicates the following understandings: 

o Whenever a member establishes a CCSDS-related standard, this standard will be in 
accord with the relevant Recommended Standard. Establishing such a standard 
does not preclude other provisions which a member may develop. 

o Whenever a member establishes a CCSDS-related standard, that member will 
provide other CCSDS members with the following information: 

 -- The standard itself. 

 -- The anticipated date of initial operational capability. 

 -- The anticipated duration of operational service. 

o Specific service arrangements shall be made via memoranda of agreement. Neither 
this Recommended Standard nor any ensuing standard is a substitute for a 
memorandum of agreement. 

No later than five years from its date of issuance, this Recommended Standard will be 
reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; 
(2) be changed to reflect the impact of new technologies, new requirements, or new 
directions; or (3) be retired or canceled. 

In those instances when a new version of a Recommended Standard is issued, existing 
CCSDS-related member standards and implementations are not negated or deemed to be 
non-CCSDS compatible.  It is the responsibility of each member to determine when such 
standards or implementations are to be modified.  Each member is, however, strongly 
encouraged to direct planning for its new standards and implementations towards the later 
version of the Recommended Standard. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page iii January 2008 

FOREWORD 

This document is a technical Recommendation to use for the packaging of data and metadata, 
including software, into a single package (e.g. file, document or message) to facilitate 
information transfer and archiving.  It provides a detailed specification of core packaging 
structures and mechanisms that meet current CCSDS agency requirements and that augment 
the current CCSDS packaging and language Recommendations to accommodate the current 
computing environment and meet evolving requirements.  This Recommendation leverages 
the wide community acceptance and usage of XML technologies by making the packaging 
manifest an XML document defined by the XML Schema specified in this Recommendation. 

Through the process of normal evolution, it is expected that expansion, deletion, or 
modification of this document may occur.  This Recommended Standard is therefore subject 
to CCSDS document management and change control procedures, which are defined in the 
Procedures Manual for the Consultative Committee for Space Data Systems.  Current 
versions of CCSDS documents are maintained at the CCSDS Web site: 

http://www.ccsds.org/ 

Questions relating to the contents or status of this document should be addressed to the 
CCSDS Secretariat at the address indicated on page i. 

 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page iv January 2008 

At time of publication, the active Member and Observer Agencies of the CCSDS were: 
 
Member Agencies 
 

– Agenzia Spaziale Italiana (ASI)/Italy. 
– British National Space Centre (BNSC)/United Kingdom. 
– Canadian Space Agency (CSA)/Canada. 
– Centre National d’Etudes Spatiales (CNES)/France. 
– Deutsches Zentrum für Luft- und Raumfahrt e.V.  (DLR)/Germany. 
– European Space Agency (ESA)/Europe. 
– Federal Space Agency (Roskosmos)/Russian Federation. 
– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil. 
– Japan Aerospace Exploration Agency (JAXA)/Japan. 
– National Aeronautics and Space Administration (NASA)/USA. 

 
Observer Agencies 
 

– Austrian Space Agency (ASA)/Austria. 
– Belgian Federal Science Policy Office (BFSPO)/Belgium. 
– Central Research Institute of Machine Building (TsNIIMash)/Russian Federation. 
– Centro Tecnico Aeroespacial (CTA)/Brazil. 
– Chinese Academy of Space Technology (CAST)/China. 
– Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia. 
– Danish Space Research Institute (DSRI)/Denmark. 
– European Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT)/Europe. 
– European Telecommunications Satellite Organization (EUTELSAT)/Europe. 
– Hellenic National Space Committee (HNSC)/Greece. 
– Indian Space Research Organization (ISRO)/India. 
– Institute of Space Research (IKI)/Russian Federation. 
– KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary. 
– Korea Aerospace Research Institute (KARI)/Korea. 
– MIKOMTEK:  CSIR (CSIR)/Republic of South Africa. 
– Ministry of Communications (MOC)/Israel. 
– National Institute of Information and Communications Technology (NICT)/Japan. 
– National Oceanic & Atmospheric Administration (NOAA)/USA. 
– National Space Organization (NSPO)/Taipei. 
– Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan. 
– Swedish Space Corporation (SSC)/Sweden. 
– United States Geological Survey (USGS)/USA. 

 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page v January 2008 

PREFACE 

This document is a draft CCSDS Recommended Standard.  Its ‘Red Book’ status indicates that 
the CCSDS believes the document to be technically mature and has released it for formal 
review by appropriate technical organizations.  As such, its technical contents are not stable, 
and several iterations of it may occur in response to comments received during the review 
process. 

Implementers are cautioned not to fabricate any final equipment in accordance with this 
document’s technical content. 

 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page vi January 2008 

DOCUMENT CONTROL 

 

Document Title Date Status 

CCSDS 
661.0-R-0 

XML Formatted Data Unit (XFDU) 
Structure and Construction Rules, 
Draft Recommended Standard, 
Issue 0 

December 
2006 

Current draft 

    

    

 

 

1 INTRODUCTION ..................................................................................................................................... 1-1 

1.1 PURPOSE AND SCOPE ............................................................................................................................ 1-1 
1.2 RATIONALE........................................................................................................................................... 1-1 
1.3 STRUCTURE OF THIS DOCUMENT........................................................................................................... 1-2 
1.4 SECURITY CONSIDERATIONS................................................................................................................. 1-4 
1.5 DEFINITIONS..................................................................................................................................... 1-4 

1.5.1 ACRONYMS and abbreviations ................................................................................................... 1-4 
1.5.2 TERMinology ............................................................................................................................... 1-4 

1.6 CONFORMANCE..................................................................................................................................... 1-8 
1.7 REFERENCES ......................................................................................................................................... 1-9 

2 OVERVIEW OF XFDU PACKAGING STRUCTURE......................................................................... 2-1 

2.1 ENVIRONMENT...................................................................................................................................... 2-1 
2.2 LOGICAL STRUCTURE ........................................................................................................................... 2-2 

3 PHASED RELEASE DESIGN DECISIONS .......................................................................................... 3-1 

4 XFDU MANIFEST COMPLEX TYPE ................................................................................................... 4-1 

4.1 OVERVIEW OF XFDU MANIFEST ..................................................................................................... 4-1 
4.2 XML SCHEMA ................................................................................................................................... 4-2 
4.3 UTILITY TYPES................................................................................................................................. 4-3 

4.3.1 Overview....................................................................................................................................... 4-3 
4.3.2 XML Schemas............................................................................................................................... 4-3 

5 PACKAGE HEADER ............................................................................................................................... 5-1 

5.1 OVERVIEW ............................................................................................................................................ 5-1 
5.2 XML SCHEMA  PACKAGEHEADER TYPE ............................................................................................... 5-1 
5.3 EXAMPLES ............................................................................................................................................ 5-3 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page vii January 2008 

5.3.1 Package  Header .......................................................................................................................... 5-3 

6 CONTENT UNIT ...................................................................................................................................... 6-4 

6.1 OVERVIEW............................................................................................................................................ 6-4 
6.2 XML SCHEMA FOR CONTENTUNITTYPE ................................................................................................ 6-4 
6.3 EXAMPLES............................................................................................................................................. 6-6 

6.3.1 Simple content unit....................................................................................................................... 6-6 
6.3.2 Information Package Content Unit .............................................................................................. 6-6 

6.4 SEMANTICS ........................................................................................................................................... 6-7 
6.4.1 Content Unit Types....................................................................................................................... 6-7 
6.4.2 Xfdu as A Content Unit ................................................................................................................ 6-7 

7 INFORMATION PACKAGE MAP ........................................................................................................ 7-1 

7.1 OVERVIEW............................................................................................................................................ 7-1 
7.2 XML SCHEMA INFORMATIONPACKAGEMAPTYPE............................................................................. 7-1 
7.3 EXAMPLES ............................................................................................................................................ 7-2 

7.3.1 an Information Package Map....................................................................................................... 7-2 
7.4 SEMANTICS ........................................................................................................................................... 7-2 

8 DATA OBJECTS....................................................................................................................................... 8-1 

8.1 OVERVIEW............................................................................................................................................ 8-1 
8.2 XML SCHEMA FOR DATA OBJECT  TYPE............................................................................................... 8-1 
8.3 EXAMPLES ............................................................................................................................................ 8-4 

8.3.1 Verify the checksum of the file...................................................................................................... 8-4 
8.3.2 Specification of Mimetype and checksum with transformations .................................................. 8-4 
8.3.3 Referencing  and inclusion of data content.................................................................................. 8-5 

8.4 SEMANTICS ........................................................................................................................................... 8-5 

9 METADATA OBJECTS........................................................................................................................... 9-1 

9.1 OVERVIEW............................................................................................................................................ 9-1 
9.2 XML SCHEMA FOR METADATA OBJECTS .......................................................................................... 9-2 
9.3 METADATA OBJECT EXAMPLES............................................................................................................. 9-4 

9.3.1 Metadata section using OAIS Information Model........................................................................ 9-4 

10 BEHAVIOR SECTION AND BEHAVIOR OBJECTS ..................................................................... 10-1 

10.1 OVERVIEW ........................................................................................................................................ 10-1 
10.2 XML SCHEMA FOR BEHAVIOR OBJECTS........................................................................................... 10-2 
10.3 EXAMPLE OF DEFINING AN INTERFACE AND PARAMETER .................................................................. 10-4 

11 FULL XML SCHEMA –NORMATIVE/RULING ............................................................................ 11-1 

 

Figure 

Figure 2-1:  Environment/Conceptual View of an XFDU..................................................... 2-2 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page viii January 2008 

Figure 2-2:  XFDU Manifest Logical View........................................................................... 2-4 

Figure 4-1: First level Decomposition of XFDUType........................................................... 4-2 

Figure 4-2:extensionType Schema Diagram ......................................................................... 4-4 

Figure 4-3: referenceType Schema Diagram......................................................................... 4-4 

Figure 4-4 : dataObjectPointerType Schema Diagram.......................................................... 4-4 

Figure 4-5: fileContentType/binaryData/xmlData Schema Diagram.................................... 4-5 

Figure 4-6:  checksumInformationType Schema Diagram.................................................... 4-6 

Figure 5-1: packageHeaderType Schema Diagram ............................................................... 5-1 

Figure 6-1: contentUnitType Schema Diagram..................................................................... 6-4 

Figure 7-1: informationPackageMapType Schema Diagram ................................................ 7-1 

Figure 8-1:  dataObjectType Schema Diagram ..................................................................... 8-1 

Figure 9-1: metadataObjectType and metadataSectionType Schema Diagram .................... 9-2 

Figure 10-1: behaviorObjectType Schema Diagram ........................................................... 10-2 

Figure 11-1: Full XFDU Schema Diagram.......................................................................... 11-1 

 

Table 

3-1 XFDU Functionality by Recommendation Issue 3-1 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 1-1 January 2008 

1 INTRODUCTION 

1.1 PURPOSE AND SCOPE 

The main purpose of this document is to define a CCSDS Recommended Standard for the 
packaging of data and metadata, including software, into a single package (e.g., file or 
message) to facilitate information transfer and archiving.  Another goal is to provide a 
detailed specification of core packaging structures and mechanisms that meets current 
CCSDS agency requirements, augment the current CCSDS packaging and language 
Recommended Standards (references [D1]-[D6]) to accommodate the current computing 
environment and meet evolving requirements, and that can be implemented to demonstrate 
practical, near-term results. 

The scope of application of this document is the entire space informatics domain from 
operational messaging to interfacing with science archives. 

1.2 RATIONALE 

The current CCSDS Standards for Data Packaging have not undergone a major revision in 15 
years. The computing environment and the understanding of metadata have changed 
radically: 

– Physical media Electronic Transfer: 

 The primary form of access to, and delivery of, both archived and recently produced 
data products has shifted from hard media to include substantial network delivery. 

– No standard language for metadata XML: 

 After 'bits' and 'ASCII', the language 'XML' can be viewed as the next universal data 
standard, as it has grown exponentially. 

– Homogeneous Remote Procedure Call (RPC) CORBA, SOAP: 

 Communicating heterogeneous systems are increasingly using standard remote 
procedure calls or messaging protocols. The primary RPC and messaging protocol for 
the WWW is SOAP, an XML based protocol. 

– Little understanding of long-term preservation OAIS Reference Model: 

 The OAIS Reference Model has become a widely adopted starting point for 
standardization addressing the preservation of digital information. The OAIS defines 
and situates within functional and conceptual frameworks the concepts of Information 
Packages for archiving (Archival Information Packages, or AIPs), producer 
submission to an archive (Submission Information Packages, or SIPs), and archives’ 
dissemination to consumers (Dissemination Information Packages, or DIPs). 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 1-2 January 2008 

– Record formats Self describing data formats: 

 Commensurate with XML, and rapidly growing computing power and storage 
capabilities, there has been an increasing tendency to use data formats that are more 
self-describing. 

Further, in the Space domain, there are a number of new requirements to facilitate such 
functions as being able to describe multiple encodings of a data object, and to better describe 
the relationships among a set of data objects.  Therefore it is necessary to define a new 
packaging standard while maintaining the existing functionality. 

1.3 STRUCTURE OF THIS DOCUMENT 

This document is divided into informative and normative sections and annexes. 

Sections 1-3 of this document are informative and give a high level view of the rationale, the 
conceptual environment, some of the important design issues and an introduction to the 
terminology and concepts. 

– Section 1 gives purpose and scope, rationale, a view of the overall document 
structure, and the acronym list, glossary, and reference list for this document. 

– Section 2 provides a high level view of the anticipated computing environment and 
the key concepts in the domain of information packaging for interchange or 
archiving. 

– Section 3 provides an overview of the functionality of the XML Formatted Data Unit 
(XFDU) and it identifies additional functionality proposed for future issues of this 
Recommendation. 

Sections 4-11 of this document are the normative portion of the specification.  The primary 
focus is on the specification of an XML document, called the Manifest document that must 
also conform to the XML schema defined in this document. 

– Section 4, entitled "XFDU Manifest Complex Type” is the transition from 
informative to normative sections. It provides a description and an XML schema 
diagram of the first level elements of the XFDU packaging specification material. It 
also discusses the “utility” types that are reused many times within the XML Schema 
sections of this recommendation. 

– Sections 5-10 present a detailed breakdown of the important entities represented in 
the schema. Each section is organized in the following manner: 

• N.1 – Overview; 

• N.2 – XML schema and XML Authority diagrams; 

• N.3 – XML Example (this subsection is informative and should not be considered 
normative); 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 1-3 January 2008 

• N.4 –Semantics (this optional section details semantics that cannot be expressed 
by the W3C XML Schema Language). 

There are several notation issues to be understood: 

a) The W3C XML Schema fragments in sections 5-10 are not intended to be complete. 
The complete and ruling XML Schema for the XFDU Manifest can be found in 
section 11. 

b) Each XML Schema section contains both an XML Authority schema diagram and the 
W3C XML Schema Language specification of a high level type. The developers of 
XML Authority Schema diagrams have decided on the following specific XML 
visualizations: 

– Expand declared attribute groups that are specified once and referenced many 
times in the W3C XML Schema Language Specification. For this reason it may 
appear that the XML Schema Diagrams have more specified attributes than the 
corresponding W3C XML Schema language specifications. 

– #wildcard is used by XML Authority schema diagrams to indicate open content 
and is the diagrammatic form of ##any in the XML Schema Language. 

c) Since the XML Schema portions of this document only specify the XFDU Manifest 
the term XFDU is used rather than XFDU Manifest or xfdu Manifest. This is only 
true in the W3C XML Schema specification and the associated XML Authority 
schema diagrams. 

d) To help visually clarify this Recommendation, the XML instance examples are in 
Times 10 point italics and XML Schema fragments are in Arial 9 point. 

e) In the Definitions subsection (1.5), the use of italics indicated that the definition or 
acronym was initially defined in Reference Model for an Open Archival Information 
System (OAIS) (reference [D7]). 

Section 11 is the full XML Schema for this specification. In the case of differences between 
the full Schema in section 11 and the narratives and partial schemas in prior sections, the full 
XML Schema is the ruling specification. 

Annexes A-D are Informative: 

– Annex A provides an example XFDU Manifest, parts of which are the source of the 
examples in sections 5-10. 

– Annex B provides a Unified Modelling Language (UML) view of the XFDU 
Manifest. 

– Annex C is a legend for symbols for the XML Authority Diagrams that appear in 
sections 4 through 11 of this document. 

– Annex D provides Informative References 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 1-4 January 2008 

1.4 SECURITY CONSIDERATIONS 

XML was chosen as the Concrete implementation language for the XFDU manifest so any or 
all of the XML security technologies could be applied. Also, the transformation concept 
allows encryption of all the files in an XFDU or encryption to be applied individually to any 
of the contained or referenced files. 

1.5 DEFINITIONS 

1.5.1 ACRONYMS AND ABBREVIATIONS 
 
AIP Archival Information Package 
ASCII American Standard Code for Information Interchange 
CCSDS Consultative Committee for Space Data Systems 
CORBA Common Object Request Broker Architecture 
CRC Cyclical Redundancy Check 
DIP Dissemination Information Package 
ISBN International Standard Book Number 
ISO International Organization for Standardization 
METS Metadata Encoding and Transmission Standard 
MIME Multipurpose Internet Mail Extensions 
OAIS Open Archival Information System 
OWL Web Ontology Language 
PDI Preservation Description Information 
RDF Resource Description Framework 
RPC Remote Procedure Call 
SFDU Standard Formatted Data Unit 
SIP Submission Information Package 
SOAP SOAP Service Oriented Architecture Protocol 
UML Unified Modeling Language 
URI Uniform Resource Identifier 
URL Uniform Resource Locator 
URN Uniform Resource Name 
W3C World Wide Web Consortium 
WWW Worldwide Web 
XFDU XML Formatted Data Unit 
XML Extensible Markup Language 

1.5.2 TERMINOLOGY 

Archival Information Package (AIP):  An Information Package, consisting of the Content 
Information and the associated Preservation Description Information (PDI), which is 
preserved within an OAIS. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 1-5 January 2008 

Behavior Object: Contains an interface definition element that represents an abstract 
definition of the set of behaviors and (in future versions of this recommendation) one or more 
mechanisms that is a module of executable code that implements and runs those interfaces. 

Behavior Section: A container of zero or more behavior objects. 

Collection:  Refers to Components that are gathered together. This is analogous to files on a 
file system. 

Component: An object (i.e., file) that can be grouped together to be part of a Collection, or 
Package. 

Content Data Object:  The Data Object, which together with associated Representation 
Information is the original target of preservation. 

Content Information:  The set of information that is the original target of preservation.  It is an 
Information Object comprised of its Content Data Object and its Representation Information.  
An example of Content Information could be a single table of numbers representing, and 
understandable as, temperatures, but excluding the documentation that would explain its history 
and origin, how it relates to other observations, etc. 

Context Information:  The information that documents the relationships of the Content 
Information to its environment.  This includes why the Content Information was created and 
how it relates to other Content Information objects. 

Content Objects:  The data and/or metadata objects, and any Content Units, logically within 
a given Content Unit. 

Content Unit:  XML Structure that contains pointers to data objects and associated metadata 
objects, and possibly other Content Units. 

Data: A reinterpretable representation of information in a formalized manner suitable for 
communication, interpretation, or processing.  Examples of data include a sequence of bits, a 
table of numbers, the characters on a page, the recording of sounds made by a person 
speaking, or a moon rock specimen. 

Data Dictionary:  A formal repository of terms used to describe data. 

Data Object: Contains some file content and any data required to allow the information 
consumer to reverse any transformations that have been performed on the object and restore 
it to the byte stream intended for the original designated community and described by the 
Representation metadata pointed to by the repID attribute of the data object. 

Data Object Section: Contains a number of dataObject elements. 

Description Data Unit: A Content Unit where all the content objects are metadata objects. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 1-6 January 2008 

Descriptive Information:  The set of information, consisting primarily of Package 
Descriptions, which is provided to Data Management to support the finding, ordering, and 
retrieving of OAIS information holdings by Consumers. 

Designated Community:  An identified group of potential Consumers who should be able to 
understand a particular set of information.  The Designated Community may be composed of 
multiple user communities. 

Digital Object:  An object composed of a set of bit sequences. 

Dissemination Information Package (DIP):  The Information Package, derived from one or 
more AIPs, received by the Consumer in response to a request to the OAIS. 

Finding Aid:  A type of Access Aid that allows a user to search for and identify Archival 
Information Packages of interest. 

Fixity Information: The information that documents the authentication mechanisms and 
provides authentication keys to ensure that the Content Information object has not been 
altered in an undocumented manner.  An example is a Cyclical Redundancy Check (CRC) 
code for a file. 

Information:  Any type of knowledge that can be exchanged.  In an exchange, it is 
represented by data.  An example is a string of bits (the data) accompanied by a description 
of how to interpret a string of bits as numbers representing temperature observations 
measured in degrees Celsius (the representation information). 

Information Object:  A Data Object together with its Representation Information. 

Information Package:  The Content Information and associated Preservation Description 
Information that is needed to aid in the preservation of the Content Information.  The 
Information Package has associated Packaging Information used to delimit and identify the 
Content Information and Preservation Description Information. 

Information Package Map: Outlines a hierarchical structure, for the original object being 
encoded, by using a series of nested contentUnit elements. The information Package map is 
equivalent to highest level Content Unit included in the XFDU. 

Manifest: A document containing metadata about Components, and the relationships among 
them. This information is stored as a Component, using an XML language designed for just 
this purpose. 

Metadata: Data about other data. 

Metadata Section: Contains or References all of the static metadata for all items in the 
XFDU package. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 1-7 January 2008 

Open Archival Information System (OAIS): An archive, consisting of an organization of 
people and systems, that has accepted the responsibility to preserve information and make it 
available for a Designated Community.  It meets a set of responsibilities, as defined in 
subsection 3.1 of the OAIS Reference Model that allows an OAIS archive to be distinguished 
from other uses of the term ‘archive’.  The term ‘Open’ in OAIS is used to imply that this 
Recommendation and future related Recommendations and standards are developed in open 
forums, and it does not imply that access to the archive is unrestricted. 

Package: A collection that is bundled together, or packaged, into one file using a defined 
packaging scheme. All Packages are Collections, but not all Collections have been packaged, 
so they are not all Packages. 

Package Header: contains metadata that apply to the whole XFDU Package. This metadata 
may include data to inform the XFDU parsing software about volume metadata (e.g., logical 
volume information and specification version), administrative metadata (e.g., author and 
creation data) and technical data (e.g., hardware and operating system). 

Package Interchange File: A collection of files that have been bundled together into a 
single container that also contains a manifest describing the contained files and the 
relationships among those files. 

Physical Object: An object (such as a moon rock, bio-specimen, microscope slide) with 
physically observable properties that represent information that is considered suitable for 
being adequately documented for preservation, distribution, and independent usage. 

Preservation Description Information (PDI): The information which is necessary for 
adequate preservation of the Content Information and which can be categorized as 
Provenance, Reference, Fixity, and Context information. 

Process Description Unit: Contains a description that can range from an automated 
scripting language to an English language description of the steps a person /intelligent agent 
would take in performing a process. 

Provenance Information:  The information that documents the history of the Content 
Information.  This information tells the origin or source of the Content Information, any 
changes that may have taken place since it was originated, and who has had custody of it 
since it was originated.  Examples of Provenance Information are the principal investigator 
who recorded the data, and the information concerning its storage, handling, and migration. 

Reference Information: The information that identifies, and if necessary describes, one or 
more mechanisms used to provide assigned identifiers for the Content Information.  It also 
provides identifiers that allow outside systems to refer, unambiguously, to a particular 
Content Information.  An example of Reference Information is an ISBN. 

Representation Information: The information that maps a Data Object into more meaningful 
concepts.   An example is the ASCII definition that describes how a sequence of bits (i.e., a 
Data Object) is mapped into a symbol. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 1-8 January 2008 

Representation Network: The set of Representation Information that fully describes the 
meaning of a Data Object.  Representation Information in digital forms needs additional 
Representation Information so its digital forms can be understood over the Long Term. 

Structure Information: The information that imparts meaning about how other information 
is organized.  For example, it maps bit streams to common computer types such as 
characters, numbers, and pixels and aggregations of those types such as character strings and 
arrays. 

Submission Information Package (SIP): An Information Package that is delivered by the 
Producer to the OAIS for use in the construction of one or more AIPs. 

Transformation: A modification to the encoding of a file that is done independent of the 
definition of the Representation Information. A transformation is usually done to satisfy end-
to-end system requirements such as performance or security. A transformation must be 
reversed to restore the original digital object. 

Transformation Object: The part of a Data Object that contains required information (e.g., 
algorithms and parameters) to reverse any transformations applied to the digital content and 
restore that to the original binary data object. 

XFDU Manifest: A Manifest that is conformant to the XML Schema specified in this 
Recommendation. 

XFDU Package: A Package Interchange File that contains an XFDU Manifest and is 
conformant to the semantics specified in this document. An XFDU Package is a 
specialization of Package Interchange File. 

XML Formatted Data Unit (XFDU): The complete contents as specified by the 
Information Package Map (i.e., the highest level Content Unit) component of the XML 
Manifest. This includes the XML Manifest document, files contained in the XML Manifest, 
files referenced in the XFDU Manifest including those contained within the XFDU Package, 
and resources (i.e., files and XFDU Packages) external to the XFDU Package. The XFDU is 
a logical entity and may never exist as a physical entity. 

XML Schema: W3C schema specification for XML documents using XML syntax. 

1.6 CONFORMANCE 

An XFDU Manifest is a Manifest that is conformant to the XML Schema definition 
specified in this Recommendation. 

An XFDU Package is a Package Interchange File that contains an XFDU Manifest linking 
all files of the package. 

 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 1-9 January 2008 

1.7 REFERENCES 

The following documents contain provisions which, through reference in this text, constitute 
provisions of this Recommended Standard.  At the time of publication, the editions indicated 
were valid.  All documents are subject to revision, and users of this Recommended Standard 
are encouraged to investigate the possibility of applying the most recent editions of the 
documents indicated below.  The CCSDS Secretariat maintains a register of currently valid 
CCSDS Recommended Standards. 

[1] Tim Bray, et al., eds.  Extensible Markup Language (XML) 1.0.  2nd ed.  W3C 
Recommendation.  N.p.: W3C, October 2000.  <http://www.w3.org/TR/2000/REC-
xml-20001006> 

[2] Henry S. Thompson, et al., eds.  XML Schema Part 1: Structures.  W3C 
Recommendation.  N.p.: W3C, May 2001.  <http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/> 

[3] Paul V. Biron and Ashok Malhotra, eds.  XML Schema Part 2: Datatypes.  W3C 
Recommendation.  N.p.: W3C, May 2001.  <http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/> 

[4] [XML Authority] “TIBCO Turbo XML™.”  TIBCO.com.  
  <http://www.extensibility.com/software/metadata/turboxml.jsp>  (12/18/2006) 

NOTE – Informative references are listed in annex D. 

 

 





CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 2-1 January 2008 

2 OVERVIEW OF XFDU PACKAGING STRUCTURE 

This section provides an overview of some of the key concepts that are incorporated 
in the design of the XFDU packaging recommendation. 

2.1 ENVIRONMENT 

Figure 2-1 illustrates an abstract package in a generic computing environment to 
provide a basis for discussion of concepts relevant to this document. The focus of 
this diagram is a collection of physical files that have been bundled together because 
of some interrelationship. Several files have been bundled into a single container 
called a Package Interchange File with a specially named file called a Manifest 
Document included as one of the contained files.  The Manifest Document describes 
the relations among the files and indexes the locations of all the files within the 
Package Interface File containing data and metadata. The Manifest can also contain 
data and metadata files. 

The Manifest Document also references external files. The external files are shown 
as coming from various resources including other XFDUs, file systems and 
registries/repositories. In an environment with sufficient connectivity, reliability, and 
bandwidth the exchange of Package Interchange Files that include pointers to 
resources outside of the package allows the recipient to deal with the externally 
referenced files at its convenience. The resolution of these pointers is beyond the 
scope of this recommendation. 

The term ‘XML Formatted Data Unit’ or ‘XFDU’ is to be understood as referring to 
not only the Package Interchange File and those files contained within, but also to all 
the external files and packages referenced from within the included Manifest file.  
The entire figure represents a single XFDU instance. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 2-2 January 2008 

 

Figure 2-1:  Environment/Conceptual View of an XFDU 

2.2 LOGICAL STRUCTURE 

This section maps the Conceptual View presented in the previous section to the terms and 
concepts used within the normative sections of this Recommendation. 

Three high level entities are discussed in figure 2-1: the Manifest, the Package Interchange 
File and the XFDU. The normative sections of this Recommendation specify a concrete 
implementation of these conceptual high level entities. These entities are mapped into 
implementation specific entities as follows: 

An XFDU Manifest is a Manifest that is conformant to the XML Schema specified in this 
Recommendation (see section 11). 

An XFDU Package is a Package Interchange File that contains an XFDU Manifest and is 
conformant to the semantics specified in this document. figure Error! Reference source not 
found. provides an expanded view of the XFDU Manifest document showing the key entities 
and the possible references among them.  The arrowheads show the direction of the 
references (e.g., the contentUnit entity references the dataObject entity).  The Content Unit 
provides the primary view into the package as it refers to each of the data objects and it 
associates appropriate metadata with each data object.  The Content Unit reference to the 
metadata is via one or more metadata Category pointers.  For each such pointer, there is a set 
of metadata classes that may be chosen to further classify the metadata object. The actual 
Metadata Object may be included in the manifest file or referenced by URI. A Content Unit 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 2-3 January 2008 

may also contain other Content Units referencing external XFDUs.  The figure also 
introduces the names and XML Labels for some of the XML entities that are discussed in the 
next section. 

A simple structure which groups together all the information about each Information Object 
would work for a few objects but would lead to implementation difficulties when one has 
large numbers of large objects. A number of techniques are used to help alleviate the 
potential problems and to simplify further extraction, processing and repackaging of 
information contained in a package.  Similar types of components are grouped into Sections 
such as the metadataSection in order to help simplify parsing and referencing 
implementations. The wrapping of the referencing pointers allows uniform access by URI to 
information whether it is located within the package or outside. The XFDU Manifest allows 
the structure of the package to be viewed without having to parse the full structure. 

An XML Formatted Data Unit (XFDU) consists of the XFDU Manifest, all files contained 
in the Manifest and all files and XFDUs referenced from it. Some or all of the referenced 
files may be contained in an XFDU Package, such as through the use of a ZIP file.  However 
there may still be references in the Manifest to files outside the XFDU Package.  In this case, 
the XFDU is a logical entity and does not exist as a single physical entity. 

 

 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 2-4 January 2008 

 

 

Figure 2-2:  XFDU Manifest Logical View 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 3-1 January 2008 

3 PHASED RELEASE DESIGN DECISIONS 

The following table provides a brief summary of the functionality that should be supported 
by the XFDU packaging recommendation and the allocation of these requirements to this and 
future issues of this Recommendation.  If there is no entry in the Future Issues column all 
anticipated functionality is included in Issue 1.0. 

Table 3-1:  XFDU Functionality by Recommendation Issue 

Function/Feature Version 1.0 Future Versions 
Packaging 
techniques 

1. Single XML Document 
2. Archive File (e.g., tar, zip) 

XML messaging form 
(e.g., SOAP with 
Attachments, XOP) 

Manifest Mandatory  
Format 
Description Types 

1. Markup Languages (XML and vocabularies) 
2. MIME types, 
3. Self describing formats 
4. Detached data descriptions (e.g., EAST)  

 

Metadata/data 
linkage options 

1. Inclusion in Manifest as base64 or XML, 
2. Referenced directly as binary or XML 
3. Referenced or included as Data Object 

 

Relationship 
Description 

1. Unit types indicate predefined relationships 
2. Classification of metadata pointers 
3. User defined metadata model support 
4. Predefined support of OAIS Information 
model 
5. Xlink attributes 

Formal Description 
Language 
• RDF 
• OWL 

Behaviors 1. Description of Abstract Interfaces 
2. Abstract element for mechanisms and 
substitution group to enable compatibility in 
future versions 
 

1. Inclusion of, or 
reference to, specific 
mechanisms/methods 
2. Invoking behavior 
as value of content 
units 
3. Scripting Behaviors 

Extensibility 1. Element substitution using XML Schema 
substitutionGroup 
2. Use of XML wildcards with namespace = 
other for extension 

1. Type Substitution 
using xsi: type 

Encodings and 
Transformations 

The ability to allow/reverse multiple 
transformations on files 

 

Instance 
Validation 

1. XML schema type validation 
2. Enumerated lists 
3. Constraints and business rules using 
Schematron 

Evolving enumerated 
lists 

 





CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 4-1 January 2008 

4 XFDU MANIFEST COMPLEX TYPE 

4.1 OVERVIEW OF XFDU MANIFEST 

The following are brief descriptions of the five complex types/elements that may be 
contained in an XFDU Manifest (XFDUType). A high level XML Authority (reference [4]) 
XML schema diagram of the XFDU is shown as figure Error! Reference source not 
found.. 

a) Package Header (packageHeader element of packageHeaderType): contains 
metadata that apply to the whole XFDU Package. This metadata may include data to 
inform the XFDU parsing software about volume metadata (e.g., logical volume 
information and specification version), administrative metadata (e.g., author and 
creation data) and technical data (e.g.., hardware and operating system). 

b) Information Package Map (informationPackageMap element of 
informationPackageMapType): provides a hierarchical view of the content of the 
XFDU using a series of nested contentUnit elements. Content units contain pointers 
to data objects and to the metadata associated with those data objects. 

c) Data Object Section (dataObjectSection element of dataObjectSectionType): 
contains any number of dataObject elements. A Data Object logically contains a byte 
stream and any data required to allow the information consumer to reverse any 
transformations.  Reversing the transforms will restore the byte stream to the original 
format described by the Representation metadata pointed to from the Content Unit. 

d) Metadata Section (metadataSection element of metadataSectionType): records all of 
the metadata for all items in the XFDU package. Multiple metadata objects are 
allowed so that the metadata can be recorded for each separate item within the XFDU 
object.  The metadata schema allows the package designer to define any metadata 
model by providing attributes for both metadata categories and a classification 
scheme for finer definition within categories. The XFDU also provides predefined 
metadata categories and classes via enumerated attributes that follow the OAIS 
information model. 

e) Behavior Section (behaviorSection element of behaviorSectionType): may contain 
any number of behavior objects. Each behavior object can be used to associate 
executable behaviors with one or more Content Units in the containing XFDU. A 
behavior object contains an interface definition element that represents an abstract 
definition of the set of behaviors and (in future issues of this Recommendation)  a 
mechanism that either contains or references a module of executable code that 
implements and runs those interfaces. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 4-2 January 2008 

4.2 XML SCHEMA 

 
Figure 4-1: First level Decomposition of XFDUType 

 
 <xsd:complexType name="XFDUType"> 
  <xsd:annotation> 
   <xsd:documentation> 
   XFDUType Complex Type. 
   A XFDU document consists of five possible subsidiary sections: 
   packageHeader (XFDU document header), informationPackageMap (content unit section), 
   metadataSection (container for metadata objects), 
   dataObjectSection (data object section),behaviorSection (behavior section). 
   It also has possible attributes: 
   1. ID (an XML ID); 
   2. objID: a primary identifier assigned to this XFDU instance by the producer of the XFDU 
   3. textInfo: a title/text string identifying the document for users; 
   4. version: version of the XFDU XML Schema this XFDU should be validated against. Currently this is a string but 
    when formal CCSDS XML Schema Naming and Versioning rules are defined it is expected that this type will be 
    specialized to conform to those rules 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="packageHeader" type="xfdu:packageHeaderType" minOccurs="0"/> 
   <xsd:element name="informationPackageMap" type="xfdu:informationPackageMapType"/> 
   <xsd:element name="metadataSection" type="xfdu:metadataSectionType" minOccurs="0"/> 
   <xsd:element name="dataObjectSection" type="xfdu:dataObjectSectionType" minOccurs="0"/> 
   <xsd:element name="behaviorSection" type="xfdu:behaviorSectionType" minOccurs="0"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" type="xsd:ID"/> 
  <xsd:attribute name="objID" type="xsd:string"/> 
  <xsd:attribute name="textInfo" type="xsd:string"/> 
  <xsd:attribute name="version" type="xfdu:versionType"/> 
 </xsd:complexType> 
 <xsd:element name="XFDU" type="xfdu:XFDUType"/> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 4-3 January 2008 

4.3 UTILITY TYPES 

4.3.1 OVERVIEW 

These complex types are reused throughout the XFDU schema to represent some recurring 
structures: 

– extensionType – A complex type that allows third parties to define extensions to the 
XFDU from a namespace that the third  party owns. This type insulates the extension 
elements from the non-deterministic properties of the “any wildcard”.  

– referenceType - Entity that can reference a resource via a URI; 

– dataObjectPointerType- An empty element that references dataObjects using the 
XMLID; 

– fileContentType - Complex type that encapsulates either binary or XML arbitrary 
content; 

• binaryData - Complex type that encapsulates base64 encoded data (e.g., binary 
data); 

• xmlData - Complex type that encapsulates 1 to many pieces of arbitrary XML 
data; 

– checksumInformationType - Complex type that identifies the checksum type. 

These simple types are reused throughout the XFDU schema to represent some 
recurring structures: 

– mimeTypeType - attribute containing the MIME type; 

– xmlDataType - a wrapper to include arbitrary XML data; 

– locatorTypeType - specifies a type of location ('URL' or 'OTHER'). 

These attribute groups are  used throughout the XFDU schema: 

– LOCATION - attributes dealing with location of referenced objects; 

– RegistrationGroup - attributes allowing identification of a registered item; 

– xlink:simpleLink - the normal simple xlink attributes (not detailed below). 

As discussed in 1.3, the XML Authority schema diagrams below show details of the XML 
attribute groups not shown in the associated W3C XML Schema language segments in the 
text. The full schema in section 11 provides the specification of these attribute groups. 

4.3.2 XML SCHEMAS 

extensionType 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 4-4 January 2008 

 
Figure 4-2:extensionType Schema Diagram 

 
 <xsd:complexType name="extensionType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    allows third parties to define extensions to the XFDU from a namespace  
    controlled by the third  party  
   </xsd:documentation> 
  </xsd:annotation 
  <xsd:sequence> 
   <xsd:any namespace="##other" processContents="lax"/> 
  </xsd:sequence> 
  <xsd:anyAttribute namespace="##other" processContents="lax"/> 
 </xsd:complexType>  

 

referenceType 

 

Figure 4-3: referenceType Schema Diagram 
 
<xsd:complexType name="referenceType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    locator attribute allows finer granularity within location specified in href 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:attribute name="ID" type="xsd:ID"/> 
  <xsd:attribute name="textInfo" type="xsd:string"/> 
  <xsd:attributeGroup ref="xfdu:LOCATION"/> 
  <xsd:attribute name="href" type="xsd:string"/> 
  <xsd:attribute name="locator" type="xsd:string" use="optional" default="/"/> 
 </xsd:complexType> 

 

 

Figure 4-4 : dataObjectPointerType Schema Diagram 

 
 <xsd:complexType name="dataObjectPointerType"> 
  <xsd:annotation> 
   <xsd:documentation> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 4-5 January 2008 

    The dataObjectPointerType is a type that can be used to reference dataObjects by dataObjectID. 
    The dataObjectPointerType has two attributes: 
    1. ID: an XML ID for this element; and 
    2. dataObjectID: an IDREF to a dataObject element 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:attribute name="ID" type="xsd:ID"/> 
  <xsd:attribute name="dataObjectID" use="required" type="xsd:IDREF"/> 
 </xsd:complexType> 
 
 

fileContentType 

 

Figure 4-5: fileContentType/binaryData/xmlData1 Schema Diagram 

 
<xsd:complexType  name = "fileContentType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    fileContentType encapsulates and aggregates a type that can have a choice of either 
    binary or xml data 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:choice> 
   <xsd:element name = "binaryData" type = "xsd:base64Binary" minOccurs = "0"> 
    <xsd:annotation> 
     <xsd:documentation>A wrapper to contain Base64 encoded metadata.</xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
   <xsd:element name = "xmlData" type = "xfdu:xmlDataType" minOccurs = "0"/> 
  </xsd:choice> 
  <xsd:attribute name = "ID" type = "xsd:ID"/> 
</xsd:complexType>fileContent 

checksumInformationType 
 

                                                 
1 #wildcard is used by XML Authority schema diagrams to indicate open content and is the 
diagrammatic form of ##any in XML Schema l 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 4-6 January 2008 

 

Figure 4-6:  checksumInformationType Schema Diagram 
 
<xsd:complexType name="checksumInformationType"> 
  <xsd:annotation> 
   <xsd:documentation>    An element of this type would convey checksum information: 
    The value of the checksum element is the result of the checksum 
    The value of the checksumName attribute is the name of checksum algorithm used to compute the value 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:simpleContent> 
   <xsd:extension base="xsd:string"> 
    <xsd:attribute name="checksumName" type="xfdu:checksumNameType" use="required"/> 
   </xsd:extension> 
  </xsd:simpleContent> 
 </xsd:complexType> 
 <xsd:simpleType name="checksumNameType"> 
  <xsd:restriction base="xsd:string"> 
  </xsd:restriction> 
 </xsd:simpleType> 

The following XML classes are also used throughout this document but cannot be illustrated 
by an XML Authority Schema diagram because they are XSD simple types or XSD attribute 
groups. 

mimeTypeType 
 
<xsd:simpleType name="mimeTypeType"> 
  <xsd:restriction base="xsd:string"> 
  </xsd:restriction> 
 </xsd:simpleType> 

xmlDataType 
 
<xsd:complexType name = "xmlDataType"> 
  <xsd:annotation> 
   <xsd:documentation>A wrapper to contain arbitrary XML content.</xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:any namespace="##any" processContents = "lax" maxOccurs = "unbounded"/> 
  </xsd:sequence> 
</xsd:complexType> 

LOCATION 
 
<xsd:attributeGroup name="LOCATION"> 
  <xsd:annotation> 
   <xsd:documentation> 
    This attribute group aggregates attributes that can be used for specifying type of location 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 4-7 January 2008 

    This group includes following attributes: 
    locatorType specifies location type (URL or OTHER) 
    otherLocatorType specifies location type in case locatorType has value of OTHER 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:attribute name="locatorType" use="required" type="xfdu:locatorTypeType"> 
  </xsd:attribute> 
  <xsd:attribute name="otherLocatorType" type="xfdu:otherLocatorTypeType"/> 
</xsd:attributeGroup> 

locatorTypeType 
 
<xsd:simpleType name="locatorTypeType"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="URL"/> 
   <xsd:enumeration value="OTHER"/> 
  </xsd:restriction> 
</xsd:simpleType> 

otherLocatorTypeType 
 
<xsd:simpleType name="otherLocatorTypeType"> 
  <xsd:restriction base="xsd:string"/> 
 </xsd:simpleType> 

registrationGroup 
 
<xsd:attributeGroup name="registrationGroup"> 
  <xsd:annotation> 
   <xsd:documentation> 
    This attribute group aggregates attributes that can be used for specifying 
    registration information. 
    This group includes following attributes: 
    registrationAuthority - the authority that issued the registration 
    registeredId - the id for the registration 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:attribute name="registrationAuthority" type="xsd:string"  use="optional"/> 
  <xsd:attribute name="registeredID" type="xsd:string" use="optional"/> 
</xsd:attributeGroup> 

 

 





CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 5-1 January 2008 

5 PACKAGE HEADER   

5.1 OVERVIEW 

The Package Header (packageHeader element of packageHeaderType) is an XML Complex 
Type that contains metadata that apply to the whole XFDU Package. This metadata may 
include data to inform the XFDU parsing software about volume metadata (e.g., logical 
volume information and specification version), administrative metadata (e.g., author and 
creation data) and technical data (e.g., hardware and operating system). 

The package header type has two elements: 

– environmentInfo – contains application specific information either defined by an 
extension of the XFDU Schema or by freeform XML; 

– volumeInfo – contains  XFDU volume related metadata such as XFDU specification 
version and logical volume sequence information. 

The package header type has a single attribute, ID: an XML ID. 

5.2 XML SCHEMA  packageHeader Type 

 
Figure 5-1: packageHeaderType Schema Diagram 

<xsd:complexType name="packageHeaderType"> 
  <xsd:annotation> 
   <xsd:documentation>packageHeaderType: Complex Type for metadata about the 
   mapping of the logical packages to the physical structures. The 
   package header type has two elements: 
    -volumeInfo – contains  XFDU volume related metadata (.i.e., XFDU specification version 
     and sequence information 
    - environmentInfo – contains application specific information either defined by an extension of the XFDU 
     Schema or by freeform XML. 
     packageHeaderType has a single attribute, ID: an XML ID. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="volumeInfo" type="xfdu:volumeInfoType"/> 
   <xsd:element name="environmentInfo" type="xfdu:environmentInfoType" minOccurs="0" maxOccurs="unbounded"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" type="xsd:ID" use="required"/> 
</xsd:complexType> 
<xsd:complexType name="volumeInfoType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    Contains XFDU software related system information, including one mandatory element 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 5-2 January 2008 

     - specificationVersion, which specifies the version of the XFDU specification to which this manifest complies. 
    Additionally it has one optional element-sequenceInformation that holds the information about sequence 
    of XFDUs and the position of the current one in it. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="specificationVersion" type="xfdu:specificationVersionType" minOccurs="1" maxOccurs="1"/> 
   <xsd:element name="sequenceInformation" type="xfdu:sequenceInformationType" minOccurs="0" maxOccurs="1"/> 
  </xsd:sequence> 
</xsd:complexType> 
<xsd:complexType name="environmentInfoType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    Environment info provides meta information related to the environment where the XFDU was created. 
    Since environment information may be specific to a concrete XFDU producer, environment information can have 
    only two optional elements: 
    -xmlData - can hold application specific information. 
    -extension -wild card that serves as extension point for other namespaces 
   </xsd:documentation> 
  </xsd:annotation> 
   <xsd:sequence> 
    <xsd:element name="xmlData" type="xfdu:xmlDataType" minOccurs="0" maxOccurs="unbounded"/> 
    <xsd:element name="extension" type="xfdu:extensionType" minOccurs="0"/>  
   </xsd:sequence> 
</xsd:complexType> 
 
<xsd:simpleType name="specificationVersionType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    An entity of this type is used to indicated CCSDS-bound version of XFDU specification 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:restriction base="xsd:string"/> 
</xsd:simpleType> 
<xsd:complexType name="sequenceInformationType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    An element of this type encapsulates information about the position of the encapsulating XFDU 
    package In a sequence of physical XFDU packages that form the identified logical XFDU unit. 
    The sequenceInformation element is a string that acts as an identifier for the logical XFDU. 
    SequenceInformationType has two mandatory attributes: 
    1. sequencePosition - the position of this XFDU package in the sequence; if 0 is specified 
    and sequenceSize is unknown, it means that it is last in the sequence 
    2. sequenceSize - the total number of packages in the sequence; if its value is 0 this means 
    size is unknown 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:simpleContent> 
   <xsd:extension base = "xsd:string"> 
    <xsd:attribute name = "sequencePosition" type = "xsd:nonNegativeInteger" use="required"/> 
    <xsd:attribute name = "sequenceSize" type = "xsd:nonNegativeInteger" use="required"/> 
   </xsd:extension> 
  </xsd:simpleContent> 
</xsd:complexType> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 5-3 January 2008 

5.3 EXAMPLES 

5.3.1 PACKAGE  HEADER  

In the following example, package header has two elements - volume info and environment info. 

Volume info has two elements: 

– specification version –specifies the value of XFDU specification to which this XFDU 
adheres; 

– sequence information - specifies that this XFDU is part of sequence of 10 XFDUs 
and it is first in the sequences XFDU. 

Environment info has two elements: 

– xml data – encapsulates information about platform where this XFDU has been 
created; 

– cip identification information – encapsulates an application specific information 
(CIP) that is beyond standard XFDU specification; this shows how XFDU producers 
can extend XFDU with information specific to their application. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<xfdu:XFDU xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xsi:schemaLocation="urn:ccsds:schema:xfdu:1 http://www.ccsds.org/xfdu/xfdu-1.0.xsd" 
    xmlns:xfdu="urn:ccsds:schema:xfdu:1"> 
 
    <packageHeader ID="packageHeader"> 
        <volumeInfo> 
            <specificationVersion>1.0</specificationVersion> 
            <!-- sequence information attribute is specified by producer--> 
            <sequenceInformation sequenceSize="10" 
sequencePosition="1">producer1.seq10</sequenceInformation>             
        </volumeInfo> 
        <environmentInfo> 
            <xmlData> 
                <platform>Linux2.4.22-1.2129.nptl</platform> 
            </xmlData> 
            <extension> 
                <cipIdentificationInformation xmlns="cip" 
                    producer_ID="NSSDC" 
                    project_ID="NSSDC_SPMS" 
                    cip_ID="NSSDC_SPMS-00216_PKG01" 
                    cip_template_ID="SPMS-00216-DO" 
                    cip_template_Location="complexTemplateCIP.xml"/> 
                </extension> 
      </environmentInfo>         
   </packageHeader> 
                 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 6-4 January 2008 

6 CONTENT UNIT 

6.1 OVERVIEW 

A Content Unit (contentUnit element of contentUnitType) is the basic structural unit of the 
XFDU. Content Unit elements may include other Content Units, may be internal pointers to 
elements in the Data Object section or may be external pointers to other XFDUs.  Therefore a 
Content Unit can be used to associate a Data Object with one or more Metadata Objects, and 
multiple Content Units can present a hierarchical view of these data/metadata associations. 

The Content Unit attributes allow reference to associated Metadata Objects by internal 
pointers to elements in the Metadata Object section. Several of these attributes may be used 
to categorize the referenced Metadata Object distinguishing among Representation 
Information, Preservation Description Information (PDI), and Descriptive Information as 
defined in the OAIS reference model. 

6.2 XML SCHEMA FOR contentUnitType 

 

 

Figure 6-1: contentUnitType Schema Diagram 
 
 
  <xsd:complexType name="contentUnitType"> 
  <xsd:annotation> 
   <xsd:documentation>ContentUnit Complex Type The XFDU standard 
   represents a data package structurally as a series of nested 
   content units, that is, as a hierarchy (e.g., a data product, 
   which is composed of datasets, which are composed of time 
   series, which are composed of records). Every content node in 
   the structural map hierarchy may be connected (via subsidiary 
   XFDUPointer or dataObjectPointer elements) to information objects which 
   represent that unit as a portion of the whole package. The contentUnitType 
   is declared as a base type for concrete implementations of contentUnit; 
   The content unit element has the following attributes: 
   1.ID (an XML ID); 
   2.order: a numeric string (e.g., 1.1, 1.2.1, 3,) representation 
   of this unit's order among its siblings (e.g., its sequence); order attribute is not meant to be used 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 6-5 January 2008 

   for processing purposes. It is here only for visualization purposes of the potential reader of XML instance. 
   It is not guaranteed that any software will take value of order attribute into account. contentUnit nesting is 
   the primary means for determining order and level of the content information. 
   3.textInfo: a string label to describe this contentUnit to an end 
   user viewing the document, as per a table of contents entry 
   4.repID: a set of IDREFs to representation information sections 
   within this XFDU document applicable to this contentUnit. 
   5.dmdID: a set of IDREFS to descriptive information sections 
    within this XFDU document applicable to this contentUnit. 
   6.pdiID: a set of IDREFS to preservation description information 
    sections within this XFDU document applicable to this 
    contentUnit 
   7.anyMdID: a set of IDREFS to any other metadata sections that do not fit 
    rep,dmd or pdi meatdata related to this  contentUnit 
   8.unitType: a type of content unit (e.g., Application 
    Data Unit, Data Description Unit, Software Installation Unit, etc.). 
   9. behaviorID-an XML ID reference pointing to associate behavior. 
    
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="extension" type="xfdu:extensionType" minOccurs="0"/> 
   <xsd:element name="XFDUPointer" type="xfdu:referenceType" minOccurs="0" maxOccurs="unbounded"> 
    <xsd:annotation> 
     <xsd:documentation>XFDUPointer:XFDU Pointer. The XFDUPointer element allows a 
     content unit to be associated with a separate XFDU containing 
     the content corresponding with that contentUnit, rather than 
     pointing to one or more internal dataObjects. A typical instance of 
     this would be the case of a thematic data product that collects 
     data products from several instruments observe an event of 
     interest. The content units for each instrument datasets might 
     point to separate XFDUs, rather than having dataObjects and dataObject 
     groups for every dataset encoded in one package. The XFDUPointer 
     element may have the following attributes: 
     1. ID: an XML ID for this element; 
     2. locatorType: the type of location contained in the href attribute; 
     3. otherLocatorType: a string to indicate an alternative locator type 
       if the locatorType attribute itself has a value of "OTHER." 
     NOTE: The XFDUPointer is an empty element. The location of the resource pointed to 
     Must be stored in the href attribute. 
     </xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
   <xsd:element name="dataObjectPointer" type="xfdu:dataObjectPointerType" minOccurs="0" maxOccurs="unbounded"/> 
   <xsd:element ref="xfdu:abstractContentUnit" minOccurs="0" maxOccurs="unbounded"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" type="xsd:ID" use="optional"/> 
  <xsd:attribute name="order" type="xsd:string"/> 
  <xsd:attribute name="unitType" type="xsd:string"/> 
  <xsd:attribute name="textInfo" type="xsd:string"/> 
  <xsd:attribute name="repID" type="xsd:IDREFS"/> 
  <xsd:attribute name="dmdID" type="xsd:IDREFS"/> 
  <xsd:attribute name="pdiID" type="xsd:IDREFS"/> 
  <xsd:attribute name="anyMdID" type="xsd:IDREFS"/> 
  <xsd:attribute name="behaviorID" type="xsd:IDREF"/> 
 </xsd:complexType> 
 <xsd:element name="abstractContentUnit" type="xfdu:contentUnitType" abstract="true"> 
  <xsd:annotation> 
   <xsd:documentation>abstractContentUnit is abstract implementation of 
   contentUnitType. It cannot be instantiated in the instance 
   document. Instead, concrete implementations would have to be 
   used which are declared part of contentUnit substitutionGroup 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 6-6 January 2008 

   </xsd:documentation> 
  </xsd:annotation> 
 </xsd:element> 
 <xsd:element name="contentUnit" type="xfdu:contentUnitType" substitutionGroup="xfdu:abstractContentUnit"> 
  <xsd:annotation> 
   <xsd:documentation>contentUnit is a basic concrete 
    implementation of an abstract contentUnit. Its instance can be used 
    in the instance document in the place where contentUnit declared 
    to be present. 
   </xsd:documentation> 
  </xsd:annotation> 
 </xsd:element> 

6.3 EXAMPLES 

6.3.1 SIMPLE CONTENT UNIT 

In the following example, the content unit points to several types of metadata: 

– representation metadata with XML ID 'atdMD'; this metadata is categorized as 
representation metadata; thus, it is referred to by placing its  XML ID as value of 
repID attribute; 

– preservation metadata with XML ID 'provenance', this metadata is categorized as 
preservation metadata; thus, it is referred to by placing its  XML ID as value of pdiID 
attribute; 

– description metadata with XML ID ECSDMD, this metadata is categorized as 
descriptive metadata; thus, it is referred to by placing its  XML ID as value of pdiID 
attribute. 

 
<contentUnit repID = "atdMD" pdiID = "provenance" dmdID = "ECSDMD"> 
 <dataObjectPointer dataObjectID = "mpeg21"/> 
</contentUnit> 

6.3.2 INFORMATION PACKAGE CONTENT UNIT 

The following example demonstrates how different types of content units may be used via the 
content unit substitution group provided by the XFDU schema. The following content unit is an 
extension of the contentUnitType and part of the abstractContentUnit substitution group.  In 
this example an archive has specialized the contentUnit schema and added standard elements 
for describing the generic designs and relationships for submissions to that archive. 
 
<informationPackageMap xmlns=""> 
    <cip:cipContentUnit xmlns:cip="cip"> 
        <xfdu:contentUnit ID="NSSDC_SPMS-00216_PKG01" anyMdID="SPMS-00216-DO"> 
            <xfdu:contentUnit ID="DATA" anyMdID="SPMS-00216-DO"> 
                <xfdu:contentUnit ID="DATA01" dmdID="METADATA01" anyMdID="SPMS-00216-DO"> 
                    <dataObjectPointer dataObjectID="DATA_FILE01" /> 
                </xfdu:contentUnit> 
                <xfdu:contentUnit ID="DATA02" dmdID="METADATA02" anyMdID="SPMS-00216-DO"> 
                    <dataObjectPointer dataObjectID="DATA_FILE02" /> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 6-7 January 2008 

                </xfdu:contentUnit> 
                <xfdu:contentUnit ID="DATA03" dmdID="METADATA03" anyMdID="SPMS-00216-DO"> 
                    <dataObjectPointer dataObjectID="DATA_FILE03" /> 
                </xfdu:contentUnit> 
                <xfdu:contentUnit ID="DATA04" dmdID="METADATA04" anyMdID="SPMS-00216-DO"> 
                    <dataObjectPointer dataObjectID="DATA_FILE04" /> 
                </xfdu:contentUnit> 
            </xfdu:contentUnit> 
        </xfdu:contentUnit> 
        <!-- cipDescriptor and cipTemplate are part of specialized cipContentUnit --> 
        <cip:cipDescriptor locType="URL" xlink:href="SPMS_00216.xml" /> 
        <cip:cipTemplate locType="URL" xlink:href="complexTemplateCIP.xml" /> 
    </cip:cipContentUnit> 
</informationPackageMap> 
 
 
<!-- Corresponding schema fragment--> 
<xsd:element name="cipContentUnit" type="cipContentUnitType" substitutionGroup="xfdu:abstractContentUnit"/> 
 <xsd:complexType name="cipContentUnitType"> 
     <xsd:complexContent> 
         <xsd:extension base="xfdu:contentUnitType"> 
             <xsd:sequence> 
                 <xsd:element name="cipDescriptor" type="cipDescriptorLocationType"/> 
                 <xsd:element name="cipTemplate" type="cipTemplateLocationType"/> 
             </xsd:sequence> 
         </xsd:extension> 
     </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name="cipDescriptorLocationType"> 
     <xsd:complexContent> 
         <xsd:extension base="xfdu:referenceType"/> 
     </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name="cipTemplateLocationType"> 
     <xsd:complexContent> 
         <xsd:extension base="xfdu:referenceType"/> 
     </xsd:complexContent> 
 </xsd:complexType> 

6.4 SEMANTICS 

6.4.1 CONTENT UNIT TYPES 

In this version of the Recommended Standard , the unitType attribute of the Content Unit is 
allowed to be free text with the suggested values and the semantics for each unit type being 
discussed in the XFDU Green Book. It is anticipated that in future issues of this 
Recommended Standard this list may become an enumerated type and the semantics of each 
Content Unit type may be specified and enforced by Schematron-like mechanisms. 

6.4.2 XFDU AS A CONTENT UNIT 

The xfduPointer element allows any contentUnit to reference an external XFDU. In this 
Recommendation the semantics of an XFDU being referenced within from within a 
contentUnit is that the internal structure of the referenced XFDU is not visible  through the 
containing content Unit. In other words there is no implication that the hierarchical structure 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 6-8 January 2008 

of the referencing XFDU is extended by the hierarchical structure of the refererenced XFDU. 
Future versions of this Recommendation may provide this capability but the semantics are 
not well understood and there were no current requirements for this construct.



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 7-1 January 2008 

7 INFORMATION PACKAGE MAP 

7.1 OVERVIEW 

The Information Package Map (informationPackageMap element of 
informationPackageMapType) outlines a hierarchical structure for the collection of content 
objects being packaged, by a series of nested contentUnit elements. The Information Package 
Map is the highest level Content Unit of the nested Content Units in XFDU. The order and 
the nesting of the contained Content Units provide the Information Model for the XFDU and 
should provide an access path to all the data and metadata objects within the XFDU. 

The Information Package Map provides attributes for identifying, classifying, and describing itself. 

7.2 XML SCHEMA informationPackageMapType 

 

Figure 7-1: informationPackageMapType Schema Diagram 

 <xsd:complexType name="informationPackageMapType"> 
  <xsd:annotation> 
   <xsd:documentation>informationPackageMapType Complex Type The Information Package Map 
    outlines a hierarchical structure for the original object being encoded, using a series of nested contentUnit elements. 
      An element of informationPackageMapType has the following attributes: 
    1. ID: an XML ID for the element; 
    2. packageType: a type for the object. Typical values will be "AIP" for a map which describes 
     a complete AIP obeying all constraints and cardinalities in the OAIS reference model. 
     "SIP" for a map which describes a Submission Information Package. 
    3. textInfo: a string to describe the informationPackageMap to users. 
    4. anyAttribute - wild-carded attribute extension point 
     Concrete implementations of abstractContentUnit (contentUnit etc.) must be used in the instance document. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element ref="xfdu:abstractContentUnit" maxOccurs="unbounded"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" type="xsd:ID" use="optional"/> 
  <xsd:attribute name="packageType" type="xsd:string"/> 
  <xsd:attribute name="textInfo" type="xsd:string"/> 
  <xsd:anyAttribute namespace="##other" processContents="lax"/> 
 </xsd:complexType> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 7-2 January 2008 

7.3 EXAMPLES 

7.3.1 AN INFORMATION PACKAGE MAP 

The following example demonstrates information package map with both nested and non-
nested content units. It has two top level content units representing two data objects. Data 
objects are pointed to via dataObjectPointer element. The first content unit relates its data 
object to representation, provenance and descriptive metadata via repID, pdiID and dmdID 
attributes respectively. The first content unit has number of nested content units each of 
which represents its data object and associated metadata. 
 
<informationPackageMap ID="informationPackageMap"> 
    <xfdu:contentUnit ID="cu1" repID = "atdMD" pdiID = "provenance" dmdID = "ECSDMD"> 
        <dataObjectPointer dataObjectID = "mpeg21"/> 
        <xfdu:contentUnit ID="cu2" order = "1" textInfo = "Root content unit for HDF data"> 
            <xfdu:contentUnit ID="cu3" order = "1.1" pdiID = "provenance" textInfo = "content unit for hdfFile0"dmdID = "ECSDMD"> 
                <dataObjectPointer dataObjectID = "hdfFile0"/> 
            </xfdu:contentUnit> 
            <xfdu:contentUnit ID="cu4" order = "1.2" pdiID = "provenance" textInfo = "content unit for hdfFile1" dmdID = "ECSDMD"> 
                <dataObjectPointer dataObjectID = "hdfFile1"/> 
            </xfdu:contentUnit> 
            <xfdu:contentUnit ID="cu5" order = "1.3" pdiID = "provenance" textInfo = "content unit for hdfFile2"dmdID = "ECSDMD"> 
                <dataObjectPointer dataObjectID = "hdfFile2"/> 
            </xfdu:contentUnit> 
        </xfdu:contentUnit> 
        <xfdu:contentUnit ID="cu6" textInfo = "content unit for orbit data"> 
            <dataObjectPointer dataObjectID = "orbitalData"/> 
        </xfdu:contentUnit> 
    </xfdu:contentUnit> 
    <xfdu:contentUnit ID="cu7" textInfo = "content unit ATD metadata"> 
        <dataObjectPointer dataObjectID = "ATDMD"/> 
    </xfdu:contentUnit> 
</informationPackageMap> 

7.4 SEMANTICS 

Future issues of this Recommendation may allow multiple Information Package Maps in an 
XFDU. The semantics of multiple Information Package Maps in an XFDU are not well 
understood and there were no requirements for this construct. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 8-1 January 2008 

8 DATA OBJECTS 

8.1 OVERVIEW 

The Data Object Section (dataObjectSection element of dataObjectSectionType) contains 
one or more Data Object elements (dataObject element of dataObjectType). Each Data 
Object contains one or more Byte Stream (byteStream) elements that reference or contain the 
current digital object content and any number of optional Transformation 
Objects(transformObject) that contain required information (e.g., algorithms and parameters) 
to reverse any transformations to the digital content and restore them to the original binary 
data object. 

The dataObject element  provides access to the current content files for a XFDU document. 

8.2 XML SCHEMA FOR DATA OBJECT  TYPE 

 

Figure 8-1:  dataObjectType Schema Diagram 
 
 <xsd:complexType name="keyDerivationType"> 
  <xsd:annotation> 
   <xsd:documentation>keyDerivationType contains the information 
   that was used to derive the encryption key for this dataObject. 
   Key derivation type contains: 
    name - name of algorithm used 
   salt - 16-byte random seed used for that algorithm initialization 
   iterationCount - number of iterations used by the algorithm to derive the key 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:attribute name="name" use="required" type="xsd:string"/> 
  <xsd:attribute name="salt" use="required"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:string"> 
     <xsd:length value="16"/> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 8-2 January 2008 

    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:attribute> 
  <xsd:attribute name="iterationCount" use="required" type="xsd:long"/> 
 </xsd:complexType> 
 <xsd:element name="abstractKeyDerivation" type="xfdu:keyDerivationType" abstract="true"> 
  <xsd:annotation> 
   <xsd:documentation> 
   abstractKeyDerivation is declared abstract 
   so that it can be used for element substitution in cases when the default keyDerivation is not 
   sufficient. In order for creating more specific key derivation constructs, one would have to 
   extend from keyDerivationType to a concrete type, and then create an element of that new type. Finally, 
   in an instance of XML governed by this schema, the reference to keyDerivation in an instance of 
   transformObject element would point not to an instance of keyDerivation element, but rather to an instance of the 
   custom element. In other words, keyDerivation would be SUBSTITUTED with a concrete key derivation element. 
   In cases where default functionality is sufficient, the provided defaultKeyDerivation element can be used for the 
   substitution. 
   </xsd:documentation> 
  </xsd:annotation> 
 </xsd:element> 
 <xsd:element name="keyDerivation" type="xfdu:keyDerivationType" substitutionGroup="xfdu:abstractKeyDerivation"> 
  <xsd:annotation> 
   <xsd:documentation> 
    Default implementation of key derivation type. 
   </xsd:documentation> 
  </xsd:annotation> 
 </xsd:element> 
 <xsd:complexType name="transformObjectType"> 
  <xsd:annotation> 
   <xsd:documentation>transformObjectType: transformation information: An element 
   of transformObjectType contains all of the information required to reverse the 
   transformations applied to the original contents of the dataObject. It 
   has two possible subsidiary elements: The algorithm element 
   contains information about the algorithm used to encrypt the 
   data. The key-derivation element contains the information that 
   was used to derive the encryption key for this dataObject It has three 
   attributes: 
    1. ID: an XML ID 
    2. transformType: one of n predefined transformations types. 
     Current valid types are compression, 
     encryption, authentication. 
    3. order: If there are more than one transformation elements in an dataObject 
     this integer indicates the order in which the reversal transformations should be applied. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="algorithm" type="xsd:string"> 
    <xsd:annotation> 
     <xsd:documentation>algorithm element contains information 
      about the algorithm used to encrypt the data. 
     </xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
   <xsd:element ref="xfdu:abstractKeyDerivation" minOccurs="0" maxOccurs="unbounded"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" type="xsd:ID"/> 
  <xsd:attribute name="order" type="xsd:string"/> 
  <xsd:attribute name="transformType" use="required"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:string"> 
     <xsd:enumeration value="COMPRESSION"/> 
     <xsd:enumeration value="AUTHENTICATION"/> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 8-3 January 2008 

     <xsd:enumeration value="ENCRYPTION"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:attribute> 
 </xsd:complexType> 
 <xsd:complexType name="byteStreamType"> 
  <xsd:annotation> 
   <xsd:documentation>byteStreamType: An element of  byteStreamType 
   provides access to the current content of dataObjects for a XFDU 
   document. The byteStreamType: has the following four attributes: ID (an XML ID); 
   mimeType: the MIME type for the dataObject; size: the size of the dataObject 
   in bytes. 
   Checksum information provided via option checksum element. 
   The data contained in these attributes is relevant to the final state of data object 
   after all possible transformations of the original data. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="fileLocation" type="xfdu:referenceType" minOccurs="0" maxOccurs="unbounded"/> 
   <xsd:element name="fileContent" type="xfdu:fileContentType" minOccurs="0"/> 
   <xsd:element name="checksum" type="xfdu:checksumInformationType" minOccurs="0" maxOccurs="1"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" use="optional" type="xsd:ID"/> 
  <xsd:attribute name="mimeType" type="xfdu:mimeTypeType"/> 
  <xsd:attribute name="size" type="xsd:long"/> 
 </xsd:complexType> 
 <xsd:complexType name="dataObjectType"> 
  <xsd:annotation> 
   <xsd:documentation>dataObjectType: An element of dataObjectType 
   contains current byteStream content and any required data to restore 
   them to the form intended for the original designated community. 
   It has two possible subsidiary elements: The byteStream element 
   provides access to the current content dataObjects for an XFDU 
   document. An element of dataObjectType must contain 1 or many byteStream elements 
   that may contain a fileLocation element, which provides a pointer to 
   a content byteStream, and/or a fileContent element, which wraps an 
   encoded version of the dataObject. An element of dataObjectType may contain one or 
   more transformation elements that contain all of the 
   information required to reverse each transformation applied to 
   the dataObject and return the original binary data object. 
   The dataObjectType has the following attributes: 
   1. ID: an XML ID 
   2. mimeType: the MIME type for the dataObject 
   3. size: the size of the dataObject in bytes 
   4. checksum: a checksum for dataObject. Checksum information provided via optional checksum element. 
   5. repID list of representation metadata IDREFs. 
   NB: The size, checksum, and mime type are related to the original data before any transformations occurred. 
   6. combinationName - specifies how multiple byteStream objects in a single dataObject should be concatenated 
   7. registrationGroup attribute group that provides registration information 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="byteStream" type="xfdu:byteStreamType" minOccurs="1" maxOccurs="unbounded"/> 
   <xsd:element name="checksum" type="xfdu:checksumInformationType" minOccurs="0" maxOccurs="1"/> 
   <xsd:sequence> 
    <xsd:element name="transformObject" type="xfdu:transformObjectType" minOccurs="0" 
     maxOccurs="unbounded"/> 
   </xsd:sequence> 
  </xsd:sequence> 
  <xsd:attribute name="ID" type="xsd:ID" use="required"/> 
  <xsd:attribute name="repID" type="xsd:IDREFS"/> 
  <xsd:attribute name="mimeType" type="xfdu:mimeTypeType"/> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 8-4 January 2008 

  <xsd:attribute name="size" type="xsd:long"/> 
  <xsd:attribute name="combinationName" type="xfdu:combinationMethodType" use="optional"/> 
  <xsd:attributeGroup ref="xfdu:registrationGroup"/> 
 </xsd:complexType> 
 <xsd:complexType name="dataObjectSectionType"> 
  <xsd:annotation> 
   <xsd:documentation>dataObjectSectionType : a container for one or more elements of dataObjectType 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="dataObject" type="xfdu:dataObjectType" maxOccurs="unbounded"/> 
  </xsd:sequence> 
 </xsd:complexType> 
 <xsd:simpleType name="combinationMethodType"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="concat"/> 
  </xsd:restriction> 
 </xsd:simpleType> 

8.3 EXAMPLES 

8.3.1 VERIFY THE CHECKSUM OF THE FILE 

Reader of the document can verify checksum of animation file by comparing its checksum 
with checksum value specified in checksum element of dataObject element. 
 
<dataObject repID = "mathMLAlgRepMD" ID = "mpeg21"> 
    <byteStream mimeType = "video/mpeg" ID = "mpeg21AnimData" size = "414131"> 
        <fileLocation locatorType = "URL" href = "file:packagesamples/scenario1/mpeg21.mpg"/> 
        <checksum checksumName="CRC32">b3eb4b34</checksum> 
    </byteStream> 
</dataObject> 

8.3.2 SPECIFICATION OF MIMETYPE AND CHECKSUM WITH 
TRANSFORMATIONS 

Mime type and checksum are specified at two levels. The values of the mimeType attribute 
and checksum element of the Data Object specify the mime type and checksum of the 
original data object, (i.e.,byte stream before any transformations were applied). The values of 
the mimeType and checksum attributes of the byteString object are those of the received data 
object before any transformations are reversed (i.e., this encoded byte stream). 
 
<dataObject size = "151672" mimeType = "application/pdf" ID = "ATDMD"> 
    <byteStream mimeType = "application/octetstream" ID = "atdMDbs" size = "110874"> 
        <fileLocation locatorType = "URL" href = "file:packagesamples/scenario1/atd.pdf" /> 
        <checksum checksumName="CRC32">ad78ad5d</checksum> 
    </byteStream> 
    <checksum checksumName="CRC32">6d0e30ea</checksum> 
    <transformObject transformType = "ENCRYPTION"> 
        <algorithm>blowfish</algorithm> 
    </transformObject> 
</dataObject> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 8-5 January 2008 

8.3.3 REFERENCING  AND INCLUSION OF DATA CONTENT 

The data object that existed at the moment of packaging is base64 encoded within a 
fileContent element and included physically in the Manifest. The fileLocation element 
specifies an HTTP GET URL to request the latest version of data from an online 
registry/repository. 
 
<dataObject mimeType = "application/octetstream" ID = "orbitalData"> 
    <byteStream ID = "orbitData"> 
        <fileLocation locatorType = "URL" href = "http://coin.gsfc.nasa.gov:8080/ims-bin/3.0.1/nph-ims.cgi? 
msubmit=yes&amp;lastmode=SRCHFORM"/> 
<fileContent> 
<binaryData>UEsDBBQACAAIAKqMBC8AAAAAAAAAAAAAAAAPAAAAeGZkdS8uY2xhc3NwYXRotZXfS8MwEMff/StK35OugqCw
H4hO0I... 
</binaryData> 
        </fileContent> 
        <checksum checksumName="CRC32">b3eb4b34</checksum> 
    </byteStream> 
</dataObject> 

8.4 SEMANTICS 

These are the semantics for the existence of: 

a) Multiple fileLocation or fileContent elements in a single byteStream: 

1) One fileContent and one fileLocation means the fileContent should serve as 
backup if the fileLocation is not accessible. 

2) One fileLocation referencing an object in the XFDU Package and one 
fileLocation accessing an object outside the XFDU Package means the object 
located within the package should serve as backup if the remote fileLocation is 
not accessible. 

3) Other forms of multiple fileLocations are undefined at this time.  Implementers 
are cautioned against defining semantics for this construct. 

4) One fileContent and multiple fileLocation semantics are undefined at this time.  
Implementers are cautioned against defining semantics for this construct. 

b) Multiple byteStreams in a single dataObject: 

1) The combinationName attribute in the data object specifies how the byteStreams 
are to be combined. Currently the only allowed value of the combinationName 
attribute is “concat”. This indicates the multiple byteStreams (i.e., multiple 
physical files) must be concatenated to form a single described object (e.g., an 
image).  

2) It is anticipated that in future issues of this Recommendation this list of 
combination will include other methods for combining multiple  byteStreams into 
a single described object. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 8-6 January 2008 

c) Multiple byteStreams, combined into a single byteStream by the use of a 
transformation algorithm (e.g., ZIP or TAR): 

1) Each contained byteStreams will be treated as if they were each contained in a 
single dataObject. 

2) Any additional transformations specified in the original data Object will be 
performed on each byteStream independently. 

 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 9-1 January 2008 

9 METADATA OBJECTS 

9.1 OVERVIEW 

The Metadata Section (metadataSection element of metadataSectionType) contains zero or 
more Metadata Object elements (metadataObject element of metadataObjectType) that 
record all of the static metadata for all entities in the XFDU package. The metadata schema 
allows the package designer to define any metadata model by providing attributes for both 
the metadata categories discussed in section 6 Content Units and a classification scheme for 
finer definition within categories. The XFDU Manifest Schema  provides predefined 
metadata categories and classes via enumerated attributes that follow the OAIS information 
model as follows: 

– Descriptive Information, intended for the use of Finding Aids such as Catalogs or 
Search Engines, may be categorized as ‘DMD’ and further classified as 
‘DESCRIPTION’ or ‘OTHER’. 

– Representation Information may be categorized as ‘REP’ and then further classified 
as ‘SYNTAX’, 'DED' (data entity dictionary ), or ‘OTHER’. 

– Preservation Description Information may be categorized as ‘PDI’ and then further 
classified as ‘REFERENCE’, ‘CONTEXT’, ‘PROVENANCE’, ‘FIXITY’ or 
‘OTHER’. 

The elements describing Metadata Objects are used to either encapsulate the actual object in 
base64 or XML, to point to a file either within the XFDU Package or contained in an 
external resource, or to point to a Data Object in the Data Object section.  This allows a 
Metadata Object to also be described as Data Object in the Data Objects section.  Since the 
dataObject includes an attribute that is an internal pointer to Representation Information, a 
Metadata Object can be associated with its own Representation Information. Note that this 
mechanism allows the construction of OAIS defined ‘Representation Nets’ when the 
associated Representation Metadata Objects are also held as Data Objects. The attributes of a 
Metadata Object, like those of a Content Unit, can be used to categorize and classify the 
objects, including the ability to distinguish among Representation Information, Preservation 
Description Information (PDI), and Descriptive Information as shown in figure Error! 
Reference source not found.. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 9-2 January 2008 

9.2 XML SCHEMA FOR METADATA OBJECTS 

 

Figure 9-1: metadataObjectType and metadataSectionType Schema Diagram 
 
 <xsd:complexType name="metadataObjectType"> 
  <xsd:annotation> 
   <xsd:documentation>metadataObjectType Complex Type A generic 
   framework for pointing to/including metadata within a XFDU 
   document, a la Warwick Framework. A metadataObject element may have the 
   following attributes: 
   1. ID: an XML ID for this element. 
   2. classification - concrete type of metadata represented by this element of metadataObjectType 
   3. category - type of metadata class to which this metadata belongs (e.g., DMD.REP, etc.) 
   4. otherClass - type of metadata in case classification contains value of "OTHER" 
   5. otherCategory - type of metadata class in case category contains value of "OTHER" 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="metadataReference" type="xfdu:metadataReferenceType" minOccurs="0"/> 
   <xsd:element name="metadataWrap" type="xfdu:metadataWrapType" minOccurs="0"/> 
   <xsd:element name="dataObjectPointer" type="xfdu:dataObjectPointerType" minOccurs="0"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" use="required" type="xsd:ID"/> 
  <xsd:attribute name="classification"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:string"> 
     <xsd:enumeration value="DED"/> 
     <xsd:enumeration value="SYNTAX"/> 
     <xsd:enumeration value="FIXITY"/> 
     <xsd:enumeration value="PROVENANCE"/> 
     <xsd:enumeration value="CONTEXT"/> 
     <xsd:enumeration value="REFERENCE"/> 
     <xsd:enumeration value="DESCRIPTION"/> 
     <xsd:enumeration value="OTHER"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:attribute> 
  <xsd:attribute name="category"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:string"> 
     <xsd:enumeration value="REP"/> 
     <xsd:enumeration value="PDI"/> 
     <xsd:enumeration value="DMD"/> 
     <xsd:enumeration value="OTHER"/> 
     <xsd:enumeration value="ANY"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:attribute> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 9-3 January 2008 

  <xsd:attribute name="otherClass" type="xsd:string"/> 
  <xsd:attribute name="otherCategory" type="xsd:string"/> 
 </xsd:complexType> 
 

 <xsd:complexType name="metadataReferenceType"> 
  <xsd:annotation> 
   <xsd:documentation>metadataReferenceType: metadata reference. 
   An element of metadataReferenceType is a 
   generic element used throughout the XFDU schema to provide a 
   pointer to metadata which resides outside the XFDU document. 
   MetadataReferenceType has the following attributes: 
   1. ID: an XML ID; 
   2. locatorType: the type of locator contained in the body of the element; 
   3. otherLocatorType: a string indicating an alternative type of locator when 
    the locatorType attribute value is set to "OTHER."; 
   4. href: actual location (e.g., URL) 
   5. mimeType: the MIME type for the metadata being pointed at; 
   6. vocabularyName: the name of the well known standard vocabulary (e.g., Dublin Core)  
    of the metadata being pointed at; 
   7. textInfo: a label to display to the viewer of the XFDU document identifying the metadata 
   NB: metadataReference is an empty element. The location of the 
   metadata must be recorded in the href attribute. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:complexContent> 
   <xsd:extension base="xfdu:referenceType"> 
    <xsd:attribute name="vocabularyName" type="xfdu:vocabularyNameType"/> 
    <xsd:attribute name="mimeType" type="xfdu:mimeTypeType"/> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 

 <xsd:complexType name="metadataWrapType"> 
  <xsd:annotation> 
   <xsd:documentation>metadataWrapType: metadata wrapper. An element of metadataWrapType is a 
   generic element used throughout the XFDU schema to allow the 
   encoder to place arbitrary metadata conforming to other 
   standards/schema within a XFDU document.  The metadataWrapType 
   can have the following attributes: 
   1. ID: an XML ID for this element; 
   2. mimeType: the MIME type for the metadata contained in the element; 
   3. vocabularyName: the type of metadata contained (e.g., MARC, EAD, etc.); 
   4. textInfo: a label to display to the viewer of the XFDU document identifying the metadata. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:complexContent> 
   <xsd:extension base="xfdu:fileContentType"> 
    <xsd:attribute name="mimeType" type="xfdu:mimeTypeType"/> 
    <xsd:attribute name="textInfo" type="xsd:string"/> 
    <xsd:attribute name="vocabularyName" type="xfdu:vocabularyNameType"/> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 

 <xsd:simpleType name="vocabularyNameType"> 
  <xsd:restriction base="xsd:string"/> 
 </xsd:simpleType> 
 <xsd:complexType name="metadataSectionType"> 
  <xsd:sequence> 
   <xsd:element name="metadataObject" type="xfdu:metadataObjectType" minOccurs="0" maxOccurs="unbounded"/> 
  </xsd:sequence> 
 </xsd:complexType> 
 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 9-4 January 2008 

9.3 METADATA OBJECT EXAMPLES 

9.3.1 METADATA SECTION USING OAIS INFORMATION MODEL 

In this example, several metadata objects are presented that show usage of different 
categories and classes: 

– Metadata object with XML ID 'ECSDMD' is categorized as descriptive metadata of 
class OTHER; thus, its category attribute has a value of DMD and classification 
attribute has a value of OTHER. 

– Metadata object with XML ID 'provenance' is categorized as preservation metadata of 
class PROVENANCE; thus, its category attribute has a value of PDI and 
classification attribute has a value of PROVENANCE. 

– Metadata object with XML ID 'atdMD' is categorized as representation metadata of 
class OTHER; thus, its category attribute has a value of REP and classification 
attribute has a value of  OTHER. 

 
<metadataSection> 
    <metadataObject ID = "ECSDMD" classification = "OTHER" category = "DMD"> 
        <metadataReference vocabularyName="OTHER" mimeType = "text/xml" textInfo = "spacecraft description" locatorType = "URL" 
href = "file:packagesamples/scenario1/ecsdmd.xml"/> 
    </metadataObject> 
    <metadataObject ID = "provenance" classification = "PROVENANCE" category = "PDI"> 
        <metadataReference vocabularyName = "OTHER" mimeType = "text/xml" textInfo = "processing  history  XML file" locatorType = 
"URL" href = "file:packagesamples/scenario1/pdi.xml" /> 
    </metadataObject> 
    <metadataObject ID = "atdMD" classification = "OTHER" category = "REP"> 
        <dataObjectPointer dataObjectID = "ATDMD"/> 
    </metadataObject> 
</metadataSection> 

 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 10-1 January 2008 

10 BEHAVIOR SECTION AND BEHAVIOR OBJECTS 

10.1 OVERVIEW 

The Behavior Section (behaviorSection element of behaviorSectionType) contains zero or 
more Behavior Object elements (behaviorObject element of  behaviorObjectType) that 
associate executable behaviors with content in the XFDU object. A Behavior Object contains 
an Interface Definition element  (interfaceDefinition element of interfaceDefinitionType) that 
represents an abstract definition of the set of behaviors represented by a particular Behavior 
Object. A Behavior Object also may contain zero or more Mechanism elements that are 
modules of executable code that implement and run the behaviors defined abstractly by the 
interface definition. In the current XML schema a Mechanism is represented by the element 
abstractMechanism. An abstract element cannot be instantiated in the instance document. 
Instead, concrete implementations based on techniques such as JAVA, WSDL or Ant would 
be declared as part of the mechanism substitution group and be used. Behavior Objects may 
be nested to indicate chaining of execution. There are currently no concrete implementations 
of mechanism objects but the element abstractMechanism and the related substitution group 
have been included to enable consistent evolution in this important area. The ability to 
monitor and control the application of behaviors to data objects is a major goal of the XFDU 
Version 2 Recommended Standard. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 10-2 January 2008 

10.2 XML SCHEMA FOR BEHAVIOR OBJECTS 

 

Figure 10-1: behaviorObjectType Schema Diagram 
 
 <xsd:complexType name="interfaceDefinitionType"> 
  <xsd:annotation> 
   <xsd:documentation>interfaceDefinitionType: interface definition object. The 
    interface definition type contains a pointer to an abstract 
    definition of a set of related behaviors. These abstract 
    behaviors can be associated with the content of a XFDU object. 
    The interface definition element will be a pointer to another 
    object (an interface definition object). An interface definition 
    object could be another XFDU object, or some other entity (e.g., 
    a WSDL source). Ideally, an interface definition object should 
    contain metadata that describes a set of behaviors or methods. 
    It may also contain files that describe the intended usage of 
    the behaviors, and possibly files that represent different 
    expressions of the interface definition. 
    interfaceDefinition extends from referenceType and adds ability of specifying inputParameter 
    that can be either just a string value or pointer to the content in this package 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:complexContent> 
   <xsd:extension base="xfdu:referenceType"> 
    <xsd:sequence> 
     <xsd:element name="inputParameter" minOccurs="0" maxOccurs="unbounded"> 
      <xsd:complexType mixed="true"> 
       <xsd:sequence> 
        <xsd:element name="dataObjectPointer" type="xfdu:dataObjectPointerType" minOccurs="0"/> 
       </xsd:sequence> 
       <xsd:attribute name="name" use="required" type="xsd:string"/> 
       <xsd:attribute name="value" type="xsd:string"/> 
      </xsd:complexType> 
     </xsd:element> 
    </xsd:sequence> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name="behaviorObjectType"> 
  <xsd:annotation> 
   </xsd:documentation> 
    behaviorObjectType: Complex Type for Behaviors. A 
    behavior object can be used to associate executable behaviors 
    with content in the XFDU object. A behavior object has an 
     interface definition element that represents an abstract 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 10-3 January 2008 

     definition of the set of behaviors represented by a particular 
    behavior object. An behavior object may have the following 
    attributes: 
     1. ID: an XML ID for the element 
     2. structID: IDREF Enables Behavior to point to Content Units or other Manifest types 
     3. behaviorType: a behavior type identifier for a given set of related behaviors. 
     4. created: date this behavior object of the XFDU object was created. 
     5. textInfo: a description of the type of behaviors this object  represents. 
     6. groupID: an identifier that establishes a correspondence between this behavior object and other behavior 
    Behavior  object may also include another behavior object for chaining of behaviors. 
    Concrete implementation of mechanism have to be used in the instance document. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="interfaceDefinition" type="xfdu:interfaceDefinitionType"/> 
   <xsd:element ref="xfdu:abstractMechanism" minOccurs="0" maxOccurs="unbounded"/> 
   <xsd:element name="behaviorObject" type="xfdu:behaviorObjectType" minOccurs="0" maxOccurs="unbounded"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" use="required" type="xsd:ID"/> 
  <xsd:attribute name="contentUnitID" use="required" type="xsd:IDREFS"/> 
  <xsd:attribute name="behaviorType" type="xsd:string"/> 
  <xsd:attribute name="created" type="xsd:dateTime"/> 
  <xsd:attribute name="textInfo" type="xsd:string"/> 
  <xsd:attribute name="groupID" type="xsd:string"/> 
 </xsd:complexType> 
 
 <xsd:element name="abstractMechanism" type="xfdu:mechanismType" abstract="true"> 
  <xsd:annotation> 
   <xsd:documentation>abstractMechanism is abstract implementation of 
    mechanismType. It cannot be instantiated in the instance 
    document. Instead, concrete implementations would have to be 
    used which are declared part of mechanism substitutionGroup 
   </xsd:documentation> 
  </xsd:annotation> 
 </xsd:element> 
 
 <xsd:complexType name="mechanismType"> 
  <xsd:annotation> 
   <xsd:documentation>mechanismType: executable mechanism. An element of  mechanismType 
    contains a pointer to an executable code module that 
    implements a set of behaviors defined by an interface 
    definition. The mechanism element will be a pointer to another 
    object (a mechanism object). A mechanism object could be another 
    XFDU object, or some other entity (e.g., a WSDL source). A 
    mechanism object should contain executable code, pointers to 
    executable code, or specifications for binding to network 
    services (e.g., web services). 
    mechanismType is declared as base type for concrete implementations of mechanism 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:complexContent> 
   <xsd:extension base="xfdu:referenceType"/> 
  </xsd:complexContent> 
 </xsd:complexType> 
 
 <xsd:complexType name="behaviorSectionType"> 
  <xsd:sequence> 
   <xsd:element name="behaviorObject" type="xfdu:behaviorObjectType" minOccurs="0" maxOccurs="unbounded"/> 
  </xsd:sequence> 
 </xsd:complexType> 

 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 10-4 January 2008 

10.3 EXAMPLE OF DEFINING AN INTERFACE AND PARAMETER 

The following example demonstrates a behavior object that encapsulates behavior for mpeg 
processing. The interface for the behavior is described via WSDL content pointed to by 
interfaceDefinition element. InputParameter element specifies an mpeg21 data object as 
input for this behavior. 
 
<behaviorSection> 
        <behaviorObject ID="behaviorObject" contentUnitID="cu1"> 
            <interfaceDefinition locatorType="URL" href="http://sindbad.gsfc.nasa.gov/processmpg21.wsdl"> 
                <inputParameter name="mpeg21Input"> 
                    <dataObjectPointer dataObjectID="mpeg21"/> 
                </inputParameter> 
            </interfaceDefinition> 
        </behaviorObject> 
    </behaviorSection> 

 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-1 January 2008 

11 FULL XML SCHEMA –NORMATIVE/RULING 

  

Figure 11-1: Full XFDU Schema Diagram 
 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-2 January 2008 

<?xml version="1.0" encoding="UTF-8"?> 
<!--Conforms to w3c http://www.w3.org/2001/XMLSchema--><xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xfdu="urn:ccsds:schema:xfdu:1" targetNamespace="urn:ccsds:schema:xfdu:1" elementFormDefault="unqualified" 
attributeFormDefault="unqualified"> 
 <xsd:simpleType name="locatorTypeType"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="URL"/> 
   <xsd:enumeration value="OTHER"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:simpleType name="otherLocatorTypeType"> 
  <xsd:restriction base="xsd:string"/> 
 </xsd:simpleType> 
 <xsd:attributeGroup name="LOCATION"> 
  <xsd:annotation> 
   <xsd:documentation> 
    This attribute group aggregates attributes that can be used for specifying type of location 
    This group includes following attributes: 
    locatorType specifies location type (URL or OTHER) 
    otherLocatorType specifies location type in case locatorType has value of OTHER 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:attribute name="locatorType" use="required" type="xfdu:locatorTypeType"> 
  </xsd:attribute> 
  <xsd:attribute name="otherLocatorType" type="xfdu:otherLocatorTypeType"/> 
 </xsd:attributeGroup> 
 <xsd:attributeGroup name="registrationGroup"> 
  <xsd:annotation> 
   <xsd:documentation> 
    This attribute group aggregates attributes that can be used for specifying  
    registration information. 
    This group includes following attributes: 
    registrationAuthority - the authority that issued the registration 
    registeredId - the id for the registration 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:attribute name="registrationAuthority" type="xsd:string"  use="optional"/>  
  <xsd:attribute name="registeredID" type="xsd:string" use="optional"/> 
 </xsd:attributeGroup> 
 <xsd:simpleType name="vocabularyNameType"> 
  <xsd:restriction base="xsd:string"/> 
 </xsd:simpleType> 
 <xsd:simpleType name="versionType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    Entity of this type is used to indicated version of XFDU XML schema 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:restriction base="xsd:string"/> 
 </xsd:simpleType> 
 <xsd:simpleType name="mimeTypeType"> 
  <xsd:restriction base="xsd:string"> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:simpleType name="checksumNameType"> 
  <xsd:restriction base="xsd:string"> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:simpleType name="combinationMethodType"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="concat"/> 
  </xsd:restriction> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-3 January 2008 

 </xsd:simpleType> 
 <xsd:attribute name="namespace" type="xsd:string"/> 
 <xsd:complexType name="extensionType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    allows third parties to define extensions to the XFDU from a namespace  
    controlled by the third  party  
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:any namespace="##other" processContents="lax"/> 
  </xsd:sequence> 
  <xsd:anyAttribute namespace="##other" processContents="lax"/> 
 </xsd:complexType>  
 
 <xsd:complexType name="sequenceInformationType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    An element of this type encapsulates information about the position of the encapsulating XFDU 
    package In a sequence of physical XFDU packages that form the identified logical XFDU unit. 
    The sequenceInformation element is a string that acts as an identifier for the logical XFDU. 
    SequenceInformationType has two mandatory attributes: 
    1. sequencePosition - the position of this XFDU package in the sequence; if 0 is specified 
    and sequenceSize is unknown, it means that it is last in the sequence 
    2. sequenceSize - the total number of packages in the sequence; if its value is 0 this means 
    size is unknown 
 </xsd:documentation> 
  </xsd:annotation> 
  <xsd:simpleContent> 
   <xsd:extension base = "xsd:string"> 
    <xsd:attribute name = "sequencePosition" type = "xsd:nonNegativeInteger" use="required"/> 
    <xsd:attribute name = "sequenceSize" type = "xsd:nonNegativeInteger" use="required"/> 
   </xsd:extension> 
  </xsd:simpleContent> 
</xsd:complexType> 
 <xsd:complexType name="referenceType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    locator attribute allows finer granularity within location specified in href 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:attribute name="ID" type="xsd:ID"/> 
  <xsd:attribute name="textInfo" type="xsd:string"/> 
  <xsd:attributeGroup ref="xfdu:LOCATION"/> 
  <xsd:attribute name="href" type="xsd:string"/> 
  <xsd:attribute name="locator" type="xsd:string" use="optional" default="/"/> 
 </xsd:complexType> 
 <xsd:complexType name="checksumInformationType"> 
  <xsd:annotation> 
   <xsd:documentation> 
   An element of this type would convey checksum information: 
     The value of the checksum element is the result of the checksum 
     The value of the checksumName attribute is the name of checksum algorithm used to compute the value 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:simpleContent> 
   <xsd:extension base="xsd:string"> 
    <xsd:attribute name="checksumName" type="xfdu:checksumNameType" use="required"/> 
   </xsd:extension> 
  </xsd:simpleContent> 
 </xsd:complexType> 
 <xsd:complexType name="metadataObjectType"> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-4 January 2008 

  <xsd:annotation> 
   <xsd:documentation>metadataObjectType Complex Type A generic 
   framework for pointing to/including metadata within a XFDU 
   document, a la Warwick Framework. An metadataObject element may have the 
   following attributes: 
   1. ID: an XML ID for this element. 
   2. classification - concrete type of metadata represented by this element of metadataObjectType 
   3. category - type of metadata class to which this metadata belongs (e.g., DMD.REP, etc.) 
   4. otherClass - type of metadata in case classification contains value of "OTHER" 
   5. otherCategory - type of metadata class in case category contains value of "OTHER" 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="metadataReference" type="xfdu:metadataReferenceType" minOccurs="0"/> 
   <xsd:element name="metadataWrap" type="xfdu:metadataWrapType" minOccurs="0"/> 
   <xsd:element name="dataObjectPointer" type="xfdu:dataObjectPointerType" minOccurs="0"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" use="required" type="xsd:ID"/> 
  <xsd:attribute name="classification"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:string"> 
     <xsd:enumeration value="DED"/> 
     <xsd:enumeration value="SYNTAX"/> 
     <xsd:enumeration value="FIXITY"/> 
     <xsd:enumeration value="PROVENANCE"/> 
     <xsd:enumeration value="CONTEXT"/> 
     <xsd:enumeration value="REFERENCE"/> 
     <xsd:enumeration value="DESCRIPTION"/> 
     <xsd:enumeration value="OTHER"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:attribute> 
  <xsd:attribute name="category"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:string"> 
     <xsd:enumeration value="REP"/> 
     <xsd:enumeration value="PDI"/> 
     <xsd:enumeration value="DMD"/> 
     <xsd:enumeration value="OTHER"/> 
     <xsd:enumeration value="ANY"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:attribute> 
  <xsd:attribute name="otherClass" type="xsd:string"/> 
  <xsd:attribute name="otherCategory" type="xsd:string"/> 
 </xsd:complexType> 
 <xsd:simpleType name="specificationVersionType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    An entity of this type is used to indicated CCSDS-bound version of XFDU specification 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:restriction base="xsd:string"/> 
 </xsd:simpleType> 
<xsd:complexType name="packageHeaderType"> 
  <xsd:annotation> 
   <xsd:documentation>packageHeaderType: Complex Type for metadata about the 
   mapping of the logical packages to the physical structures. The 
   package header type has two elements: 
-volumeInfo – contains  XFDU volume related metadata (.i.e., XFDU specification version 
and sequence information 
    - environmentInfo – contains application specific information either defined by an extension of the XFDU 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-5 January 2008 

     Schema or by freeform XML. 
          packageHeaderType has a single attribute, ID: an XML ID. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="volumeInfo" type="xfdu:volumeInfoType"/> 
   <xsd:element name="environmentInfo" type="xfdu:environmentInfoType" minOccurs="0" maxOccurs="unbounded"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" type="xsd:ID" use="required"/> 
 </xsd:complexType> 
<xsd:complexType name="volumeInfoType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    Contains XFDU software related system information, including one mandatory element 
      - specificationVersion, which specifies the version of the XFDU specification to which this manifest complies. 
    Additionally it has one optional element 
      -sequenceInformation that holds information about the sequence 
    of XFDUs and the position of the current one in it. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="specificationVersion" type="xfdu:specificationVersionType" minOccurs="1" maxOccurs="1"/> 
   <xsd:element name="sequenceInformation" type="xfdu:sequenceInformationType" minOccurs="0" maxOccurs="1"/> 
  </xsd:sequence> 
 </xsd:complexType> 
<xsd:complexType name="environmentInfoType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    Environment info provides meta information related to the environment where the XFDU was created. 
    Since environment information may be specific to a concrete XFDU producer, environment information can have 
    only two optional elements: 
    -xmlData - can hold application specific information.as well-formed XML 
    - extension element -that serves as extension point for other applications 
   </xsd:documentation> 
  </xsd:annotation> 
   <xsd:sequence> 
    <xsd:element name="xmlData" type="xfdu:xmlDataType" minOccurs="0" maxOccurs="unbounded"/> 
    <xsd:element name="extension" type="xfdu:extensionType" minOccurs="0"/> 
 
   </xsd:sequence> 
 </xsd:complexType> 
 <xsd:complexType name="metadataReferenceType"> 
  <xsd:annotation> 
   <xsd:documentation>metadataReferenceType: metadata reference. 
   An element of metadataReferenceType is a 
   generic element used throughout the XFDU schema to provide a 
   pointer to metadata which resides outside the XFDU document.  
   metadataReferenceType 
   has the following attributes: 
   1. ID: an XML ID; 
   2. locatorType: the type of locator contained in the body of the element; 
   3. otherLocatorType: a string indicating an alternative type of locator when 
    the locatorType attribute value is set to "OTHER."; 
   4. href: actual location (e.g., URL) 
   5. mimeType: the MIME type for the metadata being pointed at; 
   6. vocabularyName: the name of the well known metadata standard vocabulary used to being pointed at (e.g., FITS); 
   7. textInfo: a label to display to the viewer of the XFDU document identifying the metadata; 
   and NB: metadataReference is an empty element. The location of the 
   metadata must be recorded in the href attribute. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:complexContent> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-6 January 2008 

   <xsd:extension base="xfdu:referenceType"> 
    <xsd:attribute name="vocabularyName" type="xfdu:vocabularyNameType"/> 
    <xsd:attribute name="mimeType" type="xfdu:mimeTypeType"/> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name="xmlDataType"> 
  <xsd:annotation> 
   <xsd:documentation>A wrapper to contain arbitrary XML content.</xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:any namespace="##any" processContents="lax" maxOccurs="unbounded"/> 
  </xsd:sequence> 
 </xsd:complexType> 
 <xsd:complexType name="fileContentType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    fileContentType encapsulates and aggregates a type that can have a choice of either 
    binary or xml data 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:choice> 
   <xsd:element name="binaryData" type="xsd:base64Binary" minOccurs="0"> 
    <xsd:annotation> 
     <xsd:documentation>A wrapper to contain Base64 encoded metadata.</xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
   <xsd:element name="xmlData" type="xfdu:xmlDataType" minOccurs="0"/> 
  </xsd:choice> 
  <xsd:attribute name="ID" type="xsd:ID"/> 
 </xsd:complexType> 
 <xsd:complexType name="metadataWrapType"> 
  <xsd:annotation> 
   <xsd:documentation>metadataWrapType: metadata wrapper. An element of metadataWrapType is a 
   generic element used throughout the XFDU schema to allow the 
   encoder to place arbitrary metadata conforming to other 
   standards/schema within a XFDU document.  The metadataWrapType 
   can have the following attributes: 
   1. ID: an XML ID for this element; 
   2. mimeType: the MIME type for the metadata contained in the element; 
   3. vocabularyName: the type of metadata contained (e.g., MARC, EAD, etc.); 
   4. textInfo: a label to display to the viewer of the XFDU document identifying the metadata. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:complexContent> 
   <xsd:extension base="xfdu:fileContentType"> 
    <xsd:attribute name="mimeType" type="xfdu:mimeTypeType"/> 
    <xsd:attribute name="textInfo" type="xsd:string"/> 
    <xsd:attribute name="vocabularyName" type="xfdu:vocabularyNameType"/> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name="dataObjectPointerType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    The dataObjectPointerType is a type that can be used to reference dataObjects by dataObjectID. 
    The dataObjectPointerType has two attributes: 
    1. ID: an XML ID for this element; and 
    2. dataObjectID: an IDREF to a dataObject element 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:attribute name="ID" type="xsd:ID"/> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-7 January 2008 

  <xsd:attribute name="dataObjectID" use="required" type="xsd:IDREF"/> 
 </xsd:complexType> 
 <xsd:complexType name="keyDerivationType"> 
  <xsd:annotation> 
   <xsd:documentation>keyDerivationType contains the information 
   that was used to derive the encryption key for this dataObject. 
   Key derivation type contains: 
    name - name of algorithm used 
   salt - 16-byte random seed used for that algorithm initialization 
   iterationCount - number of iterations used by the algorithm to derive the key 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:attribute name="name" use="required" type="xsd:string"/> 
  <xsd:attribute name="salt" use="required"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:string"> 
     <xsd:length value="16"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:attribute> 
  <xsd:attribute name="iterationCount" use="required" type="xsd:long"/> 
 </xsd:complexType> 
 <xsd:element name="abstractKeyDerivation" type="xfdu:keyDerivationType" abstract="true"> 
  <xsd:annotation> 
   <xsd:documentation> 
   abstractKeyDerivation is declared abstract  so that it can be used 
   for element substitution in cases when the default keyDerivation is not 
   sufficient. In order for creating more specific key derivation constructs, one would have to 
   extend from keyDerivationType to a concrete type, and then create an element of that new type. Finally, 
   in an instance of XML governed by this schema, the reference to keyDerivation in an instance of 
   transformObject element would point not to an instance of keyDerivation element, but rather to an instance of the 
   custom element. In other words, keyDerivation would be SUBSTITUTED with a concrete key derivation element. 
   In cases where default functionality is sufficient, the provided defaultKeyDerivation element can be used for the 
   substitution. 
   </xsd:documentation> 
  </xsd:annotation> 
 </xsd:element> 
 <xsd:element name="keyDerivation" type="xfdu:keyDerivationType" substitutionGroup="xfdu:abstractKeyDerivation"> 
  <xsd:annotation> 
   <xsd:documentation> 
    Default implementation of key derivation type. 
   </xsd:documentation> 
  </xsd:annotation> 
 </xsd:element> 
 <xsd:complexType name="transformObjectType"> 
  <xsd:annotation> 
   <xsd:documentation>transformObjectType: transformation information. An element 
   of transformObjectType contains all of the information required to reverse the 
   transformations applied to the original contents of the dataObject. It 
   has two possible subsidiary elements: The algorithm element 
   contains information about the algorithm used to encrypt the 
   data. The key-derivation element contains the information that 
   was used to derive the encryption key for this dataObject It has three 
   attributes: 
    1. ID: an XML ID 
    2. transformType: one of n predefined transformations types. 
     Current valid types are compression, encryption, authentication. 
    3. order: If there are more than one transformation elements in an dataObject 
     this integer indicates the order in which the reversal transformations should be applied. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-8 January 2008 

   <xsd:element name="algorithm" type="xsd:string"> 
    <xsd:annotation> 
     <xsd:documentation>algorithm element contains information 
      about the algorithm used to encrypt the data. 
     </xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
   <xsd:element ref="xfdu:abstractKeyDerivation" minOccurs="0" maxOccurs="unbounded"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" type="xsd:ID"/> 
  <xsd:attribute name="order" type="xsd:string"/> 
  <xsd:attribute name="transformType" use="required"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:string"> 
     <xsd:enumeration value="COMPRESSION"/> 
     <xsd:enumeration value="AUTHENTICATION"/> 
     <xsd:enumeration value="ENCRYPTION"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:attribute> 
 </xsd:complexType> 
 <xsd:complexType name="byteStreamType"> 
  <xsd:annotation> 
   <xsd:documentation>byteStreamType: An element of  byteStreamType 
   provides access to the current content of dataObjects for a XFDU 
   document. The byteStreamType: has the following four attributes: ID (an XML ID); 
   mimeType: the MIME type for the dataObject; size: the size of the dataObject 
   in bytes. 
   Checksum information provided via optional checksum element. 
   The data contained in these attributes is relevant to final state of the data object 
   after all possible transformations of the original data. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="fileLocation" type="xfdu:referenceType" minOccurs="0" maxOccurs="unbounded"/> 
   <xsd:element name="fileContent" type="xfdu:fileContentType" minOccurs="0"/> 
   <xsd:element name="checksum" type="xfdu:checksumInformationType" minOccurs="0" maxOccurs="1"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" use="optional" type="xsd:ID"/> 
  <xsd:attribute name="mimeType" type="xfdu:mimeTypeType"/> 
  <xsd:attribute name="size" type="xsd:long"/> 
 </xsd:complexType> 
 <xsd:complexType name="dataObjectType"> 
  <xsd:annotation> 
   <xsd:documentation>dataObjectType: An element of dataObjectType 
   contains current byteStream content and any required data to restore 
   them to the form intended for the original designated community. 
   It has two possible subsidiary elements: The byteStream element 
   provides access to the current content dataObjects for an XFDU 
   document. An element of dataObjectType must contain 1 or many byteStream elements 
   that may contain a fileLocation element, which provides a pointer to 
   a content byteStream, and/or a fileContent element, which wraps an 
   encoded version of the dataObject. An element of dataObjectType may contain one or 
   more transformation elements that contain all of the 
   information required to reverse each transformation applied to 
   the dataObject and return the original binary data object. 
   The dataObjectType has the following attributes: 
   1. ID: an XML ID 
   2. mimeType: the MIME type for the dataObject 
   3. size: the size of the dataObject in bytes 
   4. checksum: a checksum for dataObject. Checksum information provided via optional checksum element. 
   5. repID list of representation metadata IDREFs. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-9 January 2008 

     NB: The size, checksum, and mime type are related to the original data before any transformations occurred. 
   6. combinationName - specifies how multiple byteStream objects in a single dataObject should be concatenated 
   7. registrationGroup attribute group that provides registration information 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="byteStream" type="xfdu:byteStreamType" minOccurs="1" maxOccurs="unbounded"/> 
   <xsd:element name="checksum" type="xfdu:checksumInformationType" minOccurs="0" maxOccurs="1"/> 
   <xsd:sequence> 
    <xsd:element name="transformObject" type="xfdu:transformObjectType" minOccurs="0" 
     maxOccurs="unbounded"/> 
   </xsd:sequence> 
  </xsd:sequence> 
  <xsd:attribute name="ID" type="xsd:ID" use="required"/> 
  <xsd:attribute name="repID" type="xsd:IDREFS"/> 
  <xsd:attribute name="mimeType" type="xfdu:mimeTypeType"/> 
  <xsd:attribute name="size" type="xsd:long"/> 
  <xsd:attribute name="combinationName" type="xfdu:combinationMethodType" use="optional"/> 
  <xsd:attributeGroup ref="xfdu:registrationGroup"/> 
 </xsd:complexType> 
 <xsd:complexType name="dataObjectSectionType"> 
  <xsd:annotation> 
   <xsd:documentation>dataObjectSectionType: a container for one or more elements of dataObjectType 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="dataObject" type="xfdu:dataObjectType" maxOccurs="unbounded"/> 
  </xsd:sequence> 
 </xsd:complexType> 
 <xsd:complexType name="contentUnitType"> 
  <xsd:annotation> 
   <xsd:documentation>ContentUnit Complex Type The XFDU standard 
   represents a data package structurally as a series of nested 
   content units, that is, as a hierarchy (e.g., a data product, 
   which is composed of datasets, which are composed of time 
   series, which are composed of records). Every content node in 
   the structural map hierarchy may be connected (via subsidiary 
   XFDUPointer or dataObjectPointer elements) to information objects which 
   represent that unit as a portion of the whole package. The contentUnitType 
   is declared as a base type for concrete implementations of contentUnit; 
   The content unit element has the following attributes: 
   1.ID (an XML ID); 
   2.order: a numeric string (e.g., 1.1, 1.2.1, 3,) representation 
   of this unit's order among its siblings (e.g., its sequence); order attribute is not meant to be used 
   for processing purposes. It is here only for visualization purposes of the potential reader of XML instance. 
   It is not guaranteed that any software will take value of order attribute into account. contentUnit nesting is 
   the primary means for determining order and level of the content information. 
   3.textInfo: a string label to describe this contentUnit to an end 
   user viewing the document, as per a table of contents entry 
   4.repID: a set of IDREFs to representation information sections 
   within this XFDU document applicable to this contentUnit. 
   5.dmdID: a set of IDREFS to descriptive information sections 
    within this XFDU document applicable to this contentUnit. 
   6.pdiID: a set of IDREFS to preservation description information 
    sections within this XFDU document applicable to this 
    contentUnit 
   7.anyMdID: a set of IDREFS to any other metadata sections that do not fit 
    rep,dmd or pdi metadata related to this  contentUnit 
   8.unitType: a type of content unit (e.g., Application 
    Data Unit, Data Description Unit, Software Installation Unit, etc.). 
   9. behaviorID-an XML ID reference pointing to associate behavior. 
      </xsd:documentation> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-10 January 2008 

  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="extension" type="xfdu:extensionType" minOccurs="0"/> 
   <xsd:element name="XFDUPointer" type="xfdu:referenceType" minOccurs="0" maxOccurs="unbounded"> 
    <xsd:annotation> 
     <xsd:documentation>XFDUPointer:XFDU Pointer. The XFDUPointer element allows a 
     content unit to be associated with a separate XFDU containing 
     the content corresponding with that contentUnit, rather than 
     pointing to one or more internal dataObjects. A typical instance of 
     this would be the case of a thematic data product that collects 
     data products from several instruments observe an event of 
     interest. The content units for each instrument datasets might 
     point to separate XFDUs, rather than having dataObjects and dataObject 
     groups for every dataset encoded in one package. The XFDUPointer 
     element may have the following attributes: 
     1. ID: an XML ID for this element; 
     2. locatorType: the type of location contained in the href attribute; 
     3. otherLocatorType: a string to indicate an alternative locator type 
      if the locatorType attribute itself has a value of "OTHER." 
     NOTE: XFDUPointer is an empty element. The location of the resource pointed to 
     MUST be stored in the href attribute. 
     </xsd:documentation> 
    </xsd:annotation> 
   </xsd:element> 
   <xsd:element name="dataObjectPointer" type="xfdu:dataObjectPointerType" minOccurs="0" maxOccurs="unbounded"/> 
   <xsd:element ref="xfdu:abstractContentUnit" minOccurs="0" maxOccurs="unbounded"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" type="xsd:ID" use="optional"/> 
  <xsd:attribute name="order" type="xsd:string"/> 
  <xsd:attribute name="unitType" type="xsd:string"/> 
  <xsd:attribute name="textInfo" type="xsd:string"/> 
  <xsd:attribute name="repID" type="xsd:IDREFS"/> 
  <xsd:attribute name="dmdID" type="xsd:IDREFS"/> 
  <xsd:attribute name="pdiID" type="xsd:IDREFS"/> 
  <xsd:attribute name="anyMdID" type="xsd:IDREFS"/> 
  <xsd:attribute name="behaviorID" type="xsd:IDREF"/> 
      
 </xsd:complexType> 
 <xsd:element name="abstractContentUnit" type="xfdu:contentUnitType" abstract="true"> 
  <xsd:annotation> 
   <xsd:documentation>abstractContentUnit is abstract implementation of 
   contentUnitType. It cannot be instantiated in the instance 
   document. Instead, concrete implementations would have to be 
   used which are declared part of contentUnit substitutionGroup 
   </xsd:documentation> 
  </xsd:annotation> 
 </xsd:element> 
 <xsd:element name="contentUnit" type="xfdu:contentUnitType" substitutionGroup="xfdu:abstractContentUnit"> 
  <xsd:annotation> 
   <xsd:documentation>contentUnit is a basic concrete 
    implementation of an abstract contentUnit. Its instance can be used 
    in the instance document in the place where contentUnit declared 
    to be present. 
   </xsd:documentation> 
  </xsd:annotation> 
 </xsd:element> 
 <xsd:complexType name="informationPackageMapType"> 
  <xsd:annotation> 
   <xsd:documentation>informationPackageMapType Complex Type The Information Package Map 
    outlines a hierarchical structure for the original object being encoded, using a series of nested contentUnit elements. 
   An element of informationPackageMapType has the following attributes: 
    1. ID: an XML ID for the element; 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-11 January 2008 

    2. packageType: a type for the object. Typical values will be "AIP" for a map which describes 
     a complete AIP obeying all constraints and cardinalities in the OAIS reference model. 
     "SIP" for a map which describes a Submission Information Package. 
    3. textInfo: a string to describe the informationPackageMap to users. 
    4. anyAttribute - wild-carded attribute extension point 
     Concrete implementations of abstractContentUnit (contentUnit etc.) must be used in the instance document. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element ref="xfdu:abstractContentUnit" maxOccurs="unbounded"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" type="xsd:ID" use="optional"/> 
  <xsd:attribute name="packageType" type="xsd:string"/> 
  <xsd:attribute name="textInfo" type="xsd:string"/> 
  <xsd:anyAttribute namespace="##other" processContents="lax"/> 
 </xsd:complexType> 
 <xsd:complexType name="interfaceDefinitionType"> 
  <xsd:annotation> 
   <xsd:documentation>interfaceDefinitionType: interface definition object. The 
    interface definition type contains a pointer to an abstract 
    definition of a set of related behaviors. These abstract 
    behaviors can be associated with the content of a XFDU object. 
    The interface definition element will be a pointer to another 
    object (an interface definition object). An interface definition 
    object could be another XFDU object, or some other entity (e.g., 
    a WSDL source). Ideally, an interface definition object should 
    contain metadata that describes a set of behaviors or methods. 
    It may also contain files that describe the intended usage of 
    the behaviors, and possibly files that represent different 
    expressions of the interface definition. 
    interfaceDefinition extends from referenceType and adds ability of specifying inputParameter 
    that can be either just a string value or pointer to the content in this package 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:complexContent> 
   <xsd:extension base="xfdu:referenceType"> 
    <xsd:sequence> 
     <xsd:element name="inputParameter" minOccurs="0" maxOccurs="unbounded"> 
      <xsd:complexType mixed="true"> 
       <xsd:sequence> 
        <xsd:element name="dataObjectPointer" type="xfdu:dataObjectPointerType" minOccurs="0"/> 
       </xsd:sequence> 
       <xsd:attribute name="name" use="required" type="xsd:string"/> 
       <xsd:attribute name="value" type="xsd:string"/> 
      </xsd:complexType> 
     </xsd:element> 
    </xsd:sequence> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name="behaviorObjectType"> 
  <xsd:annotation> 
   <xsd:documentation> 
    behaviorObjectType: Complex Type for Behaviors. A 
    behavior object can be used to associate executable behaviors 
    with content in the XFDU object. A behavior object has an 
    interface definition element that represents an abstract 
    definition of the set of behaviors represented by a particular 
    behavior object. An behavior object may have the following attributes: 
     1. ID: an XML ID for the element 
     2. structID: IDREF Enables Behavior to point to Content Units or other Manifest types 
     3. behaviorType: a behavior type identifier for a given set of related behaviors. 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-12 January 2008 

     4. created: date this behavior object of the XFDU object was created. 
     5. textInfo: a description of the type of behaviors this object  represents. 
     6. groupID: an identifier that establishes a correspondence between this behavior object and other behavior 
    Behavior  object may also include another behavior object for chaining of behaviors. 
    Concrete implementation of mechanism have to be used in the instance document. 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="interfaceDefinition" type="xfdu:interfaceDefinitionType"/> 
   <xsd:element ref="xfdu:abstractMechanism" minOccurs="0" maxOccurs="unbounded"/>    
   <xsd:element name="behaviorObject" type="xfdu:behaviorObjectType" minOccurs="0" maxOccurs="unbounded"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" use="required" type="xsd:ID"/> 
  <xsd:attribute name="contentUnitID" use="required" type="xsd:IDREFS"/> 
  <xsd:attribute name="behaviorType" type="xsd:string"/> 
  <xsd:attribute name="created" type="xsd:dateTime"/> 
  <xsd:attribute name="textInfo" type="xsd:string"/> 
  <xsd:attribute name="groupID" type="xsd:string"/> 
 </xsd:complexType> 
 <xsd:element name="abstractMechanism" type="xfdu:mechanismType" abstract="true"> 
  <xsd:annotation> 
   <xsd:documentation>abstractMechanism is abstract implementation of 
    mechanismType. It cannot be instantiated in the instance 
    document. Instead, concrete implementations would have to be 
    used which are declared part of mechanism substitutionGroup 
   </xsd:documentation> 
  </xsd:annotation> 
 </xsd:element> 
 <xsd:complexType name="mechanismType"> 
  <xsd:annotation> 
   <xsd:documentation>mechanismType: executable mechanism. An element of  mechanismType 
    contains a pointer to an executable code module that 
    implements a set of behaviors defined by an interface 
    definition. The mechanism element will be a pointer to another 
    object (a mechanism object). A mechanism object could be another 
    XFDU object, or some other entity (e.g., a WSDL source). A 
    mechanism object should contain executable code, pointers to 
    executable code, or specifications for binding to network 
    services (e.g., web services). 
    mechanismType is declared as base type for concrete implementations of mechanism 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:complexContent> 
   <xsd:extension base="xfdu:referenceType"/> 
  </xsd:complexContent> 
 </xsd:complexType> 
 <xsd:complexType name="metadataSectionType"> 
  <xsd:sequence> 
   <xsd:element name="metadataObject" type="xfdu:metadataObjectType" minOccurs="0" maxOccurs="unbounded"/> 
  </xsd:sequence> 
 </xsd:complexType> 
 <xsd:complexType name="behaviorSectionType"> 
  <xsd:sequence> 
   <xsd:element name="behaviorObject" type="xfdu:behaviorObjectType" minOccurs="0" maxOccurs="unbounded"/> 
  </xsd:sequence> 
 </xsd:complexType> 
 <xsd:complexType name="XFDUType"> 
  <xsd:annotation> 
   <xsd:documentation> 
   XFDUType Complex Type. 
   A XFDU document consists of five possible subsidiary sections: 
   packageHeader (XFDU document header), informationPackageMap (content unit section), 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page 11-13 January 2008 

   metadataSection (container for metadata objects), 
   dataObjectSection (data object section),behaviorSection (behavior section). 
   It also has possible attributes: 
   1. ID (an XML ID); 
   2. objID: a primary identifier assigned to the original source document; 
   3. textInfo: a title/text string identifying the document for users; 
   4. version: version to which this XFDU document conforms 
   </xsd:documentation> 
  </xsd:annotation> 
  <xsd:sequence> 
   <xsd:element name="packageHeader" type="xfdu:packageHeaderType" minOccurs="0"/> 
   <xsd:element name="informationPackageMap" type="xfdu:informationPackageMapType"/> 
   <xsd:element name="metadataSection" type="xfdu:metadataSectionType" minOccurs="0"/> 
   <xsd:element name="dataObjectSection" type="xfdu:dataObjectSectionType" minOccurs="0"/> 
   <xsd:element name="behaviorSection" type="xfdu:behaviorSectionType" minOccurs="0"/> 
  </xsd:sequence> 
  <xsd:attribute name="ID" type="xsd:ID"/> 
  <xsd:attribute name="objID" type="xsd:string"/> 
  <xsd:attribute name="textInfo" type="xsd:string"/> 
  <xsd:attribute name="version" type="xfdu:versionType"/> 
 </xsd:complexType> 
 <xsd:element name="XFDU" type="xfdu:XFDUType"/> 
</xsd:schema> 

 





CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page A-1 January 2008 

ANNEX A 
 

COMPLETE EXAMPLE   XFDU 

 
<?xml version="1.0" encoding="UTF-8"?> 
<xfdu:XFDU xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xsi:schemaLocation="urn:ccsds:schema:xfdu:1 http://www.ccsds.org/xfdu/xfdu-1.0.xsd 
  cip http://www.ccsds.org/cip/cip-1.0.xsd " 
    xmlns:xfdu="urn:ccsds:schema:xfdu:1" 
  xmlns:cip="cip"> 
 
    <packageHeader ID="packageHeader"> 
        <volumeInfo> 
            <specificationVersion>1.0</specificationVersion> 
            <!-- sequence information attribute is specified by producer--> 
            <sequenceInformation sequenceSize="10" 
sequencePosition="1">producer1.seq10</sequenceInformation>             
        </volumeInfo> 
        <environmentInfo> 
            <xmlData> 
                <platform>Linux2.4.22-1.2129.nptl</platform> 
            </xmlData> 
            <extension> 
                <cipIdentificationInformation xmlns="cip" 
                    producer_ID="NSSDC" 
                    project_ID="NSSDC_SPMS" 
                    cip_ID="NSSDC_SPMS-00216_PKG01" 
                    cip_template_ID="SPMS-00216-DO" 
                    cip_template_Location="complexTemplateCIP.xml"/> 
                </extension>                 
        </environmentInfo>         
    </packageHeader> 
  <informationPackageMap ID="informationPackageMap"> 
        <xfdu:contentUnit ID="cu1" repID = "atdMD" pdiID = "provenance" dmdID = "ECSDMD"> 
            <dataObjectPointer dataObjectID = "mpeg21"/> 
            <xfdu:contentUnit ID="cu2" order = "1" textInfo = "Root content unit for HDF data"> 
                <xfdu:contentUnit ID="cu3" order = "1.1" pdiID = "provenance" textInfo = "content unit for hdfFile0" dmdID = "ECSDMD"> 
                    <dataObjectPointer dataObjectID = "hdfFile0"/> 
                </xfdu:contentUnit> 
                <xfdu:contentUnit ID="cu4" order = "1.2" pdiID = "provenance" textInfo = "content unit for hdfFile1" dmdID = "ECSDMD"> 
                    <dataObjectPointer dataObjectID = "hdfFile1"/> 
                </xfdu:contentUnit> 
                <xfdu:contentUnit ID="cu5" order = "1.3" pdiID = "provenance" textInfo = "content unit for hdfFile2" dmdID = "ECSDMD"> 
                    <dataObjectPointer dataObjectID = "hdfFile2"/> 
                </xfdu:contentUnit> 
            </xfdu:contentUnit> 
            <xfdu:contentUnit ID="cu6" textInfo = "content unit for orbit data"> 
                <dataObjectPointer dataObjectID = "orbitalData"/> 
            </xfdu:contentUnit> 
        </xfdu:contentUnit> 
        <xfdu:contentUnit ID="cu7" textInfo = "content unit ATD metadata"> 
            <dataObjectPointer dataObjectID = "ATDMD"/> 
        </xfdu:contentUnit> 
    </informationPackageMap> 
    <metadataSection> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page A-2 January 2008 

        <metadataObject ID = "ECSDMD" classification = "OTHER" category = "DMD"> 
            <metadataReference vocabularyName="OTHER" mimeType = "text/xml" textInfo = "spacecraft description" locatorType = "URL" 
href = "file:packagesamples/scenario1/ecsdmd.xml"/> 
        </metadataObject> 
        <metadataObject ID = "provenance" classification = "PROVENANCE" category = "PDI"> 
            <metadataReference vocabularyName = "OTHER" mimeType = "text/xml" textInfo = "processing  history  XML file"  
     locatorType= "URL" href = "file:packagesamples/scenario1/pdi.xml" /> 
        </metadataObject> 
        <metadataObject ID = "atdMD" classification = "OTHER" category = "REP"> 
            <dataObjectPointer dataObjectID = "ATDMD"/> 
        </metadataObject> 
        <metadataObject ID = "mathMLAlgRepMD" classification = "OTHER" category = "REP"> 
            <metadataWrap vocabularyName = "OTHER" textInfo = "mathML encoding of the algorithm"> 
                <xmlData> 
                    <math> 
                        <mrow> 
                            <mo>det</mo> 
                            <mo symmetric = "false" rspace = "0" lspace = "0">|</mo> 
                            <mfrac linethickness = "0"> 
                                <mi>a</mi> 
                                <mi>c</mi> 
                            </mfrac> 
                            <mfrac linethickness = "0"> 
                                <mi>b</mi> 
                                <mi>d</mi> 
                            </mfrac> 
                            <mo symmetric = "false" rspace = "0" lspace = "0">|</mo> 
                            <mo>=</mo> 
                            <mi>a</mi> 
                            <mi>d</mi> 
                            <mo>-</mo> 
                            <mi>b</mi> 
                            <mi>c</mi> 
                            <mo>,</mo> 
                        </mrow> 
                    </math> 
                </xmlData> 
            </metadataWrap> 
        </metadataObject> 
    </metadataSection> 
    <dataObjectSection> 
        <dataObject repID = "mathMLAlgRepMD" ID = "mpeg21"> 
            <byteStream mimeType = "video/mpeg" ID = "mpeg21AnimData" size = "414131"> 
                <fileLocation locatorType = "URL" href = "file:packagesamples/scenario1/mpeg21.mpg"/> 
                <checksum checksumName="CRC32">b3eb4b34</checksum> 
            </byteStream> 
        </dataObject> 
        <dataObject size = "151672" mimeType = "application/pdf" ID = "ATDMD"> 
            <byteStream mimeType = "application/octetstream" ID = "atdMDbs" size = "110874"> 
                <fileLocation locatorType = "URL" href = "file:packagesamples/scenario1/atd.pdf" /> 
                <checksum checksumName="CRC32">ad78ad5d</checksum> 
            </byteStream> 
            <checksum checksumName="CRC32">6d0e30ea</checksum> 
            <transformObject transformType = "ENCRYPTION"> 
                <algorithm>blowfish</algorithm> 
            </transformObject> 
        </dataObject> 
        <dataObject mimeType = "application/octetstream" ID = "orbitalData"> 
            <byteStream ID = "orbitData"> 
                <fileLocation locatorType = "URL" href = "http://coin.gsfc.nasa.gov:8080/ims-bin/3.0.1/nph-
ims.cgi?msubmit=yes&amp;lastmode=SRCHFORM"/> 



CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page A-3 January 2008 

                <fileContent> 
                    
<binaryData>UEsDBBQACAAIAKqMBC8AAAAAAAAAAAAAAAAPAAAAeGZkdS8uY2xhc3NwYXRotZXfS8MwEMff/StK35OugqCwH4hO
0I...</binaryData> 
                </fileContent> 
                <checksum checksumName="CRC32">b3eb4b34</checksum> 
            </byteStream> 
        </dataObject> 
        <dataObject repID = "atdMD" ID = "hdfFile0"> 
            <byteStream mimeType = "application/x-hdf" ID = "hdfFile0bs" size = "10455471"> 
                <fileLocation locatorType = "URL" href = "file:packagesamples/scenario1/mod1.hdf"/> 
                <checksum checksumName="CRC32">acab6535</checksum> 
            </byteStream> 
        </dataObject> 
        <dataObject repID = "atdMD" ID = "hdfFile1"> 
            <byteStream mimeType = "application/x-hdf" ID = "hdfFile1bs" size = "10455471"> 
                <fileLocation locatorType = "URL" href = "file:packagesamples/scenario1/mod2.hdf"/> 
                <checksum checksumName="CRC32">acab6535</checksum> 
            </byteStream> 
        </dataObject> 
        <dataObject repID = "atdMD" ID = "hdfFile2"> 
            <byteStream mimeType = "application/x-hdf" ID = "hdfFile2bs" size = "10455471"> 
                <fileLocation locatorType = "URL" href = "file:packagesamples/scenario1/mod3.hdf"/> 
                <checksum checksumName="CRC32">acab6535</checksum> 
            </byteStream> 
        </dataObject> 
    </dataObjectSection> 
    <behaviorSection> 
        <behaviorObject ID="behaviorObject" contentUnitID="cu1"> 
            <interfaceDefinition locatorType="URL" href="http://sindbad.gsfc.nasa.gov/processmpg21.wsdl"> 
                <inputParameter name="mpeg21Input"> 
                    <dataObjectPointer dataObjectID="mpeg21"/> 
                </inputParameter> 
            </interfaceDefinition> 
        </behaviorObject> 
    </behaviorSection> 
</xfdu:XFDU> 

 

 





CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page B-1 January 2008 

ANNEX B 
 

UML FOR XFDU 

The following UML Diagram is not Normative. It is included to help in understanding the XFDU schema. 

 

 

 





CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page C-1 January 2008 

ANNEX C 
 

LEGEND FOR XML AUTHORITY FIGURES 

Main Graphical Elements 
 
Element, includes the element name in top portion of box and the 
element type in bottom portion.  (Note square corners and 
diamond in upper left corner of rectangle.) 
 
Attribute, includes the attribute name in top portion of box and the
attribute type in bottom portion.  (Note square corners and circle in
upper left corner of rectangle.) 
Type indicators in right of element/attribute 
indicates ID or IDREF type 
 
indicates String type (or enumeration of URI) 
 
indicates Numeric type (integer or long) 
 
indicates a Complex Type (i.e., a type made up of other elements) 
 
indicates an empty element (only attributes included with this element) 
 

Occurrence indicator left of element/attribute 
 
Indicates 0 or 1 occurrence (Optional) 
 
Indicates 0 or more occurrences (Optional, but multivalued) 
 
Indicates 1 or more occurrences (Multi-valued mandatory) 
 
Indicates a Default value (may also see an F indicating a Fixed value) 
 
Indicates a 1 to many relationship between elements 
 
If none of these appear before the element or attribute, the indication is that it 
appears exactly once (Mandatory) 
 
 

Line connectors 
 
Indicates a set of attributes (rectangles for each of the attributes 
appears inside the connected box. 
 
 
 
Indicates a sequence, all elements between the rectangle 
connected to the top line and the rectangle connected to the 
bottom line are included in the sequence.  A single line is used if 
there is only a single child. 
 
Indicates a choice 

 





CCSDS RECOMMENDED STANDARD FOR XFDU STRUCTURE AND CONSTRUCTION RULES 

CCSDS 661.0-R-0 Page D-1 January 2008 

ANNEX D 
 

INFORMATIVE REFERENCES 

 

[D1] Standard Formatted Data Units — Structure and Construction Rules.  
Recommendation for Space Data System Standards, CCSDS 620.0-B-2.  Blue Book.  
Issue 2.  Washington, D.C.: CCSDS, May 1992. 

[D2] ASCII Encoded English (CCSD0002).  Recommendation for Space Data System 
Standards, CCSDS 643.0-B-1.  Blue Book.  Issue 1.  Washington, D.C.: CCSDS, 
November 1992. 

[D3] Standard Formatted Data Units — Control Authority Procedures.  Recommendation 
for Space Data System Standards, CCSDS 630.0-B-1.  Blue Book.  Issue 1.  
Washington, D.C.: CCSDS, June 1993. 

[D4] Standard Formatted Data Units — Control Authority Data Structures.  
Recommendation for Space Data System Standards, CCSDS 632.0-B-1.  Blue Book.  
Issue 1.  Washington, D.C.: CCSDS, November 1994. 

[D5] Standard Formatted Data Units—Referencing Environment.  Recommendation for 
Space Data System Standards, CCSDS 622.0-B-1.  Blue Book.  Issue 1.  Washington, 
D.C.: CCSDS, May 1997. 

[D6] Parameter Value Language Specification (CCSD0006 and CCSD0008).  
Recommendation for Space Data System Standards, CCSDS 641.0-B-2.  Blue Book.  
Issue 2.  Washington, D.C.: CCSDS, June 2000. 

[D7] Reference Model for an Open Archival Information System (OAIS).  Recommendation 
for Space Data System Standards, CCSDS 650.0-B-1.  Blue Book.  Issue 1.  
Washington, D.C.: CCSDS, January 2002. 

[D8] Steve DeRose, Eve Maler, and David Orchard, eds.  XML Linking Language (XLink) 
Version 1.0.  W3C Recommendation.  N.p.: W3C, June 2001.  
<http://www.w3.org/TR/2001/REC-xlink-20010627/> 

[D9] “METS—Metadata Encoding and Transmission Standard: Official Web Site.”  
December 11, 2006.  The Library of Congress.  Network Development and MARC 
Standards Office of the Library of Congress.  <http://www.loc.gov/standards/mets/>   
(12/18/2006) 

NOTE – Normative references are listed in 1.7. 


