DATA ENTITY DICTIONARY SPECIFICATION LANGUAGE (DEDSL)

 [image: image1.wmf]
DRAFT RECOMMENDATION FOR SPACE

DATA SYSTEM STANDARDS
	 Producer-Archive Interface Specification

CCSDS 651.1-W-02
DRAFT White BOOK
December 2005

[image: image2.wmf]TMG 8/92

AUTHORITY

	
	Issue:
	White book, Issue 1
	

	
	Date:
	September 2004
	

	
	Location:
	
	

(WHEN APPROVED FOR PUBLICATION AS A RECOMMENDATION, THE FOLLOWING TEXT WILL APPEAR)

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorisation of CCSDS Recommendations is detailed in Reference [E1], and the record of Agency participation in the authorisation of this document can be obtained from the CCSDS Secretariat at the address below.

This Recommendation is published and maintained by:

CCSDS Secretariat

Program Integration Division (Code‑OI)

National Aeronautics and Space Administration

Washington, DC 20546, USA

STATEMENT OF INTENT

(WHEN APPROVED FOR PUBLICATION AS A RECOMMENDATION, THE FOLLOWING TEXT WILL APPEAR)

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of the member space Agencies. The committee meets periodically to address data system problems that are common to all participants and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of the committee are termed Recommendations and are not considered binding on any Agency.

This Recommendation is issued by, and represents the consensus of, the CCSDS Plenary body. Agency endorsement of Recommendations is entirely voluntary. Endorsement, however, indicates the following understandings:

· Whenever an Agency establishes a CCSDS-related standard, this standard will be in accordance with the relevant Recommendation. Establishing such a standard does not preclude other provisions which an Agency may develop.

· Whenever an Agency establishes a CCSDS-related standard, the Agency will provide other CCSDS member Agencies with the following information:

—
The standard itself.

—
The anticipated date of initial operational capability.

—
The anticipated duration of operational service.

· Specific service arrangements shall be made via memorandum of agreement. Neither this Recommendation nor any ensuing standard is a substitute for a memorandum of agreement.

No later than five years from its date of issuance, this Recommendation will be reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect the impact of new technologies, new requirements, or new directions; or (3) be retired or cancelled.

In those instances when a new version of a Recommendation is issued, existing CCSDS-related Agency standards and implementation are not negated or deemed to be non-CCSDS compliant. It is the responsibility of each Agency to determine when such standards or implementation are to be modified. Each Agency is, however, strongly encouraged to direct planning of its new standards and implementations towards the later versions of this Recommendation.

FOREWORD

(WHEN THIS RECOMMENDATION IS FINALIZED, IT WILL CONTAIN THE FOLLOWING FOREWORD:)

This Recommendation is a technical Recommendation providing the XML implementation for the Abstract Syntax defined in the DEDSL—Abstract Syntax Recommendation (see reference [B2]) in order to provide a computer processable standardisation of the expression of the semantic information which is to be carried with data.

Through the process of normal evolution, it is expected that expansion, deletion or modification to this document may occur. This Recommendation is therefore subject to CCSDS document management and change control procedures. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relative to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
–
British National Space Centre (BNSC)/United Kingdom.

–
Canadian Space Agency (CSA)/Canada.

–
Centre National d'Etudes Spatiales (CNES)/France.

–
Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. (DLR)/Germany.

–
European Space Agency (ESA)/Europe.

–
Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

–
National Aeronautics and Space Administration (NASA)/USA.

–
National Space Development Agency of Japan (NASDA)/Japan.

–
Russian Space Agency (RSA)/Russian Federation.

Observer Agencies
–
Australian Space Office (ASO)/Australia.

–
Austrian Space Agency (ASA)/Austria.

–
Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

–
Centro Tecnico Aeroespacial (CTA)/Brazil.

–
Chinese Academy of Space Technology (CAST)/China.

–
Communications Research Laboratory (CRL)/Japan.

–
Danish Space Research Institute (DSRI)/Denmark.

–
European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

–
European Telecommunications Satellite Organization (EUTELSAT)/Europe.

–
Federal Service of Scientific, Technical & Cultural Affairs (FSST&CA)/Belgium.

–
Hellenic National Space Committee (HNSC)/Greece.

–
Indian Space Research Organization (ISRO)/India.

–
Industry Canada/Communications Research Centre (CRC)/Canada.

–
Institute of Space and Astronautical Science (ISAS)/Japan.

–
Institute of Space Research (IKI)/Russian Federation.

–
KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

–
MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

–
Korea Aerospace Research Institute (KARI)/South Korea.

–
Ministry of Communications (MOC)/Israel.

–
National Oceanic & Atmospheric Administration (NOAA)/USA.

–
National Space Program Office (NPSO)/Taiwan.

–
Swedish Space Corporation (SSC)/Sweden.

–
United States Geological Survey (USGS)/USA.

DOCUMENT CONTROL

	Document
	Title
	Date
	Status/Remarks

	CCSDS 651.1-W-0.1
	Recommendation for Space Data System Standards: Specification for the Formal Definition and Transfer Phase of a Producer-Archive Interface
	September 2004
	Original Draft

	CCSDS 651.1-W-0.2
	Recommendation for Space Data System Standards: Producer-Archive Interface Specification
	December 2005
	Original Draft

CONTENTS

Section
Page

11
INTRODUCTION

1.1
PURPOSE AND SCOPE
1
1.2
Applicability
1
1.3
Rationale
2
1.4 CONFORMANCE
2
1.5
Document StructurE
2
1.6
Definitions
2
1.6.1
ACRONYMS and abbreviations
2
1.6.2
Glossary of Terms
3
1.7 References
6
2 general frameworK
7
2.1 The producer-archive interface methodology
7
2.2 THE FORMAL DEFINITION PHASE
7
2.3 THE TRANSFER PHASE
8
2.4 the Validation Phase
8
3. general principles for implementing the producer-archive interface
9
3.1 objectiVES
9
3.2. objeCts AND sips
9
3.3 process description
10
3.4 PLAN OF OBJECTS TO BE TRANSFERRED (POT)
13
3.4.1 approACH
13
3.4.2 pot creation
14
3.4.3 POT constraint
14
3.4.4 POT REPRESENTATION
15
3.5 dictionary for project Descriptor Models
16
3.5.1 process for the dictionary development
16
3.5.2 Generic Descriptor Model definition
16
3.5.3 Specialisation of the generic Descriptor Model
19
3.5.4 Descriptor Model instances
19
3.6 SIPs
20
3.6.1 description
20
3.6.2 LInk between sip and descriptor
20
3.6.3 SIP models creation
21
3.6.4 sequencing CONSTRAINTS
23
4 FORMAL PHASE SPECIFICATION
25
4.1 Global view
25
4.2 pot creation
26
4.2.1 generic descriptor model implementation
26
4.2.2 generic descriptor specialisation
28
4.2.3 descriptor instances
28
4.2.4 pot implementation and validation
29
4.2.5 pot visualisation
30
4.3 SIP implementation
31
4.3.1 generic sip Model
31
4.3.2 generic sip model specialiZation
31
4.3.3 sip templates implementation
32
4.4 sequencing constraints
33
5. TRANSFER PHASE AND VALIDATION PHASE SPECIFICATION
34
5.1 global view
34
5.2 Transfer management
34
5.3 sip instances
35
5.4 transmission Sessions
35
5.5 sip reception and validation
36
5.5.1 sip reception
36
5.5.2 sip validation
36
5.6 Anomaly management
37
6.
MANAGING MODIFICATIONS
38
6.1 POT modification
38
6.2 Object modification
39
7. TOOLS
40
ANNEX A
1
A.1 generic Descriptor Model
1
A.2 generic sip Model
4
ANNEX B : INFORMATIVE REFERENCES
1

1
INTRODUCTION

1.1
PURPOSE AND SCOPE

The purpose of this recommendation is to provide a standard method to formally define the digital information objects to be transferred by an information Producer to an Archive and for effectively transferring these objects in the form of Submission Information Packages (SIPs).
This recommendation fits into the context defined by:

· The ‘Producer Archive Interface Methodology Abstract Standard’ recommendation (PAIMAS) (See reference [1]).

· The ‘Reference Model for an Open Archival Information System’ recommendation (OAIS) (See reference [2]).

· The ‘XML Formatted Data Unit (XFDU), Structure and Construction Rules’ draft White Book (see reference [5]).

The PAIMAS Recommendation (See Reference [1]) defines a methodology based on the four following phases: Preliminary, Formal Definition, Transfer, Validation.

This Recommendation applies specifically to the implementation of the Formal Definition Phase and the Transfer Phase, taking into account part of the Validation Phase.
The proposed implementation should help in the automation and the management of the Transfer and Validation Phases.

The proposed method may however be used, to some extent for the Preliminary Phase.

This Recommendation does not exclude other PAIMAS implementation Recommendations.

1.2 Applicability

The implementation method defined in this Recommendation applies both to information Producers and to Archives to which this information is to be transferred. These Archives are assumed to comply with the OAIS Reference Model.

It may be applied to Archives responsible for preserving both physical objects and digital objects.

This Recommendation assumes that both the Producer and the Archive agree on the methods and particularities related to their context.

1.3
Rationale

This recommendation aims at overcoming the many difficulties encountered during transactions between information Producers and the Archives.

Regarding the Formal Definition Phase, this Recommendation should enable:

· the Producer to have a very precise, unambiguous definition of the different digital objects to be produced, of the form and possibly the order in which they should be delivered,

· the Archive to be sure that the digital objects which are to be transferred to it will enable it to build Archival Information Packages which have all of the characteristics defined in the OAIS Reference Model,

· the respective Managers of the Producer and the Archive to be fully aware of all details of their commitments in terms of human and financial resources.

Regarding the Transfer Phase, this Recommendation should enable a high degree of automation and verification of the transfer process (respect of the schedule for the Data Submission Sessions, guarantee that the operation runs well technically, …).
Regarding the Validation Phase, this Recommendation should enable the use of tools for the systematic validation (necessary to check the conformity of the delivered objects with respect to the Plan of Objects to be Transferred (POT) and validate their contents).
1.4 CONFORMANCE

To be completed.

1.5
Document StructurE

To be completed later.

1.6
Definitions

1.6.1 ACRONYMS and abbreviations

This sub-section defines the acronyms and abbreviations which are used throughout this Recommendation:

	AIP

	Archival Information Package

	ASCII

	American Standard Code for Information Interchange

	CCSDS

	Consultative Committee for Space Data Systems

	CDO
	Complementary Data Object

	DED
	Data Entity Dictionary

	DEDSL
	Data Entity Dictionary Specification Language

	DO
	Data Object

	DTD
	Document Type Definition

	EAD

	Encoded Archival Description

	EAST
	Enhanced Ada Subset

	ID
	Identifier

	ISO
	International Organization for Standardization

	OAIS

	Open Archival Information System

	PAIMAS
	Producer Archive Interface Methodology Abstract Standard

	PDI
	Preservation Description Information

	PDF
	Portable Document Format

	POT
	Plan of Objects to be Transferred

	RM
	Reference Model

	SIP

	Submission Information Package

	UML

	Unified Modelling Language

	XFDU
	 XML Formatted Data Units

	XML

	eXtensible Markup Language

1.6.2
Glossary of Terms

Following is a short glossary of the OAIS terminology indispensable for this document. The terminology used is fully defined in references [2] and [1], except the definitions printed in italics. Only brief definitions are provided here. This terminology does not seek to replace existing terminology in the various domains related to archiving. Each domain should be able to apply this methodology while retaining their specific terminology.

When first used in the text, the terms defined in the terminology are shown in bold.

Archival Information Package: An Information Package, consisting of the Content Information and the associated Preservation Description Information (PDI), which is preserved within an OAIS.

Archive: An organization that intends to preserve information for access and use by a Designated Community.

Consumer: The role played by those persons, or client systems, who interact with OAIS services to find preserved information of interest and to access that information in detail. This can include other OAISs, as well as internal OAIS persons or systems.

Content Data Object: The Data Object, that together with associated Representation Information, is the original target of preservation.

Content Information: The set of information that is the primary target for preservation. It is an Information Object comprised of its Content Data Object and its Representation Information. An example of Content Information could be a single table of numbers representing, and understandable as, temperatures, but excluding the documentation that would explain its history and origin, how it relates to other observations, etc.

Data Dictionary: A formal repository of terms used to describe data.

Data Entity Dictionary (DED): A collection of semantic definitions of various data entities, together with a few mandatory and optional attributes about the collection as a whole. Data Entity Dictionaries may pertain to a single product, i.e., all the data entities within a single product are described in a corresponding single dictionary, or the Data Entity Dictionary may be a discipline-oriented dictionary that holds a number of previously defined data entity definitions which may be used by data designers and users as references.
Data Entity Dictionary Specification Language (DEDSL): A language designed to allow the specification of a DED (see [B1]).

Data Object: Either a Physical Object or a Digital Object.

Data Submission Session: A delivered set of media or a single telecommunications session that provides data to an OAIS. The Data Submission Session format/contents is based on a data model negotiated between the OAIS and the Producer in the Submission Agreement. This data model identifies the logical constructs used by the Producer and how these are represented on each media delivery or in the telecommunication session.

Descriptor (OR Object Descriptor): This is an information unit for describing a set of characteristics for a given Data Object. A Descriptor may come in the form of a model; in this case, it is used to identify the object category which can then be described as well as the attributes for this description. The Descriptor may have the state of an instance; in this case, it describes an object instance and supplies the attribute values defined in the Descriptor model.

Designated Community : An identified group of potential Consumers who should be able to understand a particular set of information. The Designated Community may be composed of multiple user communities.

EAST: The EAST language is a CCSDS and ISO norm. EAST offers means to describe the syntax of a data file, including:

· the fields in which it can be decomposed;

· structure (simple or composite);

· type (integer, real, enumerated, array, record, list);

· range (min value, max value);
· coding (ASCII, binary);

· location (rank, length);

· optionality (mandatory or not and, if not, presence condition);

· eventually, variable dimension (for arrays).

Fixity Information: The information which documents the authentication mechanisms and provides authentication keys to ensure that the Content Information Object has not been altered in an undocumented manner.

Identifier : An XML CDATA, that designates something (from DEDSL).
Information: Any type of knowledge that can be exchanged. In an exchange, it is represented by data. An example is a string of bits (the data) accompanied by a description of how to interpret a string of bits as numbers representing temperature observations measured in degrees Celsius (the Representation Information).

Information Object: A Data Object together with its Representation Information.

Information Package: The Content Information ans associated Preservation Description Information which is needed to aid in the preservation of the Content Information.

Ingest: The OAIS entity that contains the services and functions that accept Submission Information Packages from Producers, prepares Archival Information Packages for storage, and ensures that Archival Information Packages and their supporting Descriptive Information become established within the OAIS.

Meta-data: Data about the content, the quality, condition and other characteristics of the data (from the FGDC Standards Reference Model

Model : A data entity described independently from any instance in a data product and corresponding to a re-usable data entity definition from which other data entities may inherit the attributes and apply some specialization rule. (from DEDSL).
Packaging Information: The information that is used to bind and identify the components of an Information Package. For example, it may be the ISO 9660 volume and directory information used on a CD-ROM to provide the content of several files containing Content Information and Preservation Description Information.

Plan of Objects to be Transferred (POT): The Plan of Objects to be Transferred gives a complete and overall view of all digital objects to be transferred as part of the Producer-Archive project. These objects are described by ‘Descriptors’.
Preservation Description Information (PDI): The information which is necessary for adequate preservation of the Content Information and which can be categorized as Provenance, Reference, Fixity, and Context Information.
Producer: The role played by those persons or client systems who provide the information to be preserved. This can include other OAISs or internal OAIS persons or systems.

Producer-Archive Project: A Producer-Archive Project is a set of activities and the means used by the information Producer as well as the Archive to ingest a given set of information into the Archive.

Representation Information: The information that maps a Data Object into more meaningful concepts. An example is the ASCII definition that describes how a sequence of bits (i.e., a Data Object) is mapped into a symbol.

Submission Agreement: The agreement reached between an OAIS and the Producer that specifies a data model for the Data Submission Session. This data model identifies format/contents and the logical constructs used by the Producer and how they are represented on each media delivery or in a telecommunication session.

In the framework of this abstract methodology, the Submission Agreement will also deal with other aspects such as validation, change management and schedule.

Submission Information Package (SIP): An Information Package that is delivered by the Producer to the OAIS for use in the construction of one or more AIPs.

Transfer: The act involved in a change of physical custody of SIPs. This definition is derived from the International Council on Archives [ICA] Dictionary on Archival Terminology

The terms 'class', 'association', and 'aggregation' refer to UML terminology.
1.7 References

The following documents contain provisions (through references within this text) which constitute provisions of this Recommendation. At the time of the publication the indicated editions were valid. All documents are subject to revision, and users of this Recommendation are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below. The CCSDS Secretariat maintains a register of currently available CCSDS Recommendations.

[1]
Producer Archive Interface methodology Abstract Standard Recommendation for Space Data System Standards, CCSDS 651.0-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS, May 2004.

[2]
Reference Model for an Open Archival Information System (OAIS) Recommendation for Space Data System Standards, CCSDS 650.0-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS, January 2002.

[3]
Extensible Markup Language (XML) 1.0 (Third Edition) - W3C Recommendation 6 February 2004. http://www.w3.org/TR/2004/REC-xml-20040204 /

[4]
XML Schema specification, part 1 (structure) and part 2 (data types) - W3C Recommendation 2 May 2001 http://www.w3.org/XML/Schema#dev

[5]
XML Formatted Data Unit (XFDU), Structure and Construction Rules, White Book, 15 September 2004.
2 general frameworK

2.1 The producer-archive interface methodology

The general context is that of the transfer of digital objects from a data Producer to an Archive. The methodology for defining, specifying, performing and validating this transfer is defined in the PAIMAS Recommendation (see Reference [1]).

The term ‘Producer’ designates the persons who, and systems which, supply the Archive with information to be preserved.

The Archive is an OAIS Archive. The main responsibility of an Archive is to preserve information and to make it available, in an intelligible and usable form, to a defined Designated Community.

Both Producer and Archive are assumed to be involved in a Producer-Archive Project: A Producer-Archive Project refers to both a set of activities and the means used by the information Producer as well as the Archive to ingest a given set of information into the Archive.
The Producer-Archive interactions, in a given Producer-Archive Project, consist of four different phases:

–
The Preliminary Phase, also known as a pre-ingest or pre-accessioning phase, includes the initial contacts between the Producer and the Archive and any resulting feasibility studies, preliminary definition of the scope of the project, a draft of the Submission Information Package (SIP) definition and finally a draft Submission Agreement.

–
The Formal Definition Phase includes completing the SIP design with precise definitions of the digital objects to be delivered, completing the Submission Agreement with precise, contractual transfer conditions such as restrictions on access and establishing the delivery schedule.

–
The Transfer Phase performs the actual transfer of the SIP from the Producer to the Archive and the preliminary processing of the SIP by the Archive, as defined in the agreement.

–
The Validation Phase includes the actual validation processing of the SIP by the Archive and any required follow-up action with the Producer. Different systematic or in-depth levels of validation may be defined. Validations may be performed after each delivery, or later, depending on the validation constraints.

Phases are carried out in chronological order. However, the Transfer Phase may overlap the Validation Phase.

Each phase is divided into a number of sub-phases that must also be carried out in chronological order.

Each of these sub-phases is made up of one or more action tables. The action tables and the actions can be carried out in any order.

2.2 THE FORMAL DEFINITION PHASE

The Formal Definition Phase consists of 3 sub-phases:

· An organizational sub-phase during which the Producer and the Archive have to define together the work organization and scheduling, the documents to be produced and the points which require more in-depth analysis.

· A formal definition sub-phase which is the most crucial part of the phase. It may be broken down into two parts:

· A complete and precise definition of the data to be transferred and the way they are organised in the form of a SIP. This aspect will be formally specified in this recommendation.

· A set of complementary points on contractual and legal aspects, the transfer schedule, validation conditions, etc. which will be covered by one or more appropriate documents.

· Another sub-phase during which the two parties will draw up and approve a ‘Submission Agreement’ defining the data to be transferred, the conditions for the transfer (for instance a specification of the Data Submission Session) and the validation.

2.3 THE TRANSFER PHASE

The Transfer Phase consists of two parts for:

· Implementing tests in order to validate the whole transfer chain.
· Performing the transfer itself. A key aspect of this part is the packaging of the digital objects in SIPs.
Packaging of the data to be transformed in SIPs is also specified in this Recommendation in section 5 “Transfer Phase and Validation Phase Specification”.

2.4 the Validation Phase
The Validation Phase consists of two parts for:
· Implementing tests in order to validate the systematic validation part.
· Performing the systematic and in-depth validation.
The purpose at this stage is to be able to check that the objects delivered are those which are expected and that they comply with what was defined during the Formal Definition Phase.

3. general principles for implementing the producer-archive interface

3.1 objectiVES

There is a twofold objective which may be summed up as follows:

During the Formal Definition Phase: develop a Plan for the data to be transferred later (Plan of Data Objects to be Transferred – POT), which is sufficiently precise to meet the Producer’s and the Archive’s needs:

· For the Producer, ‘sufficiently precise’ means that he knows clearly which digital objects he will have to produce, that he knows how to do it and by which means.

· For the Archive, ‘sufficiently precise’ means that it knows that it will be capable of creating the Archival Information packages (AIPs) in compliance with the OAIS Model using the Submission Information Packages (SIPs) to be transmitted to it (possibly with additional digital objects from other Producers).

In addition, it should be possible:

· to use the POT with software for automation, checking and validation purposes,

· to represent the POT visually in a way that makes it easy for human beings to understand,

· to create such a POT for the most varied contexts, disciplines and organizations.

During the Transfer Phase: the means used should enable to check:

· that the schedule is respected,
· that the procedures previously defined are respected (e.g., session contents, packaging),

· that the operation runs well technically.

During the Validation Phase: the means used should enable to check:

· that any digital object transferred is an expected object in the previously defined POT,

· that this object complies with the characteristics defined in the POT, including the number of expected objects,
· that the objects have been transferred in the right order (sequencing constraints).
3.2. objeCts AND sips
Data Objects, in the widest meaning of the word consist of one or more digital objects, in other words, one or more bit sequences.

In this recommendation, Data Objects refer to their information content as well as to the technical characteristics of the corresponding bit sequences: size of these sequences, fixity status, grouping together of different sequences within a ‘tar’ type file, compression of bit sequences , etc.

The data are transferred between the Producer and the Archive in the form of SIPs. These SIPs are simply groups of Data Objects which are transferred in the same packet.

These Data Objects may be grouped together for very different reasons:

· It may be necessary for the Archive to have several Data Objects made available within the same package in order to be able to create the corresponding AIPs.
· It might be useful to optimise the transfer: if the Data Objects are very small, a decision may be taken to group several of these objects together in a single package so as not to have too many packages.
· Etc.

We shall consider each Data Object as a whole, which means in particular that the different bit sequences thet make up the Data Object may not be separated into elements transferred in separate SIPs.

3.3 process description
The PAIMAS (see [1]) describes the actions to be treated by the Archive and the Producer during the Formal Definition, Transfer and Validation Phases. The following process is based on the action tables and the chronology defined in [1]. Our main concern here is how to obtain the POT and create the SIPs
. See sections 4 and 5 for the implementation of the Formal Definition Phase, Transfer and Validation Phases.

The main steps of the global formalization process are the following:

During the Formal Definition Phase:

· POT design.

· SIP content description.
· Sequencing constraints definition.

During the Transfer and Validation Phases:

· SIP creation by the Producer.
· SIP transfer by the Producer to the Archive.
· SIP reception by the Archive.
· Initial validation of the received SIPs by the Archive.
· Messages management between Archive and Producer.
· Anomaly management by the Archive.

· Transfer follow-up by the Archive.

See section 6 for the “Change management after completion of Submission Agreement” part.

Figures 1 and 2 show the global formalization process (detailed in the following paragraphs).
During the Formal Definition Phase:

1. POT:
One of the objectives of the Formal Definition Phase is to define the Plan of digital Objects to be Transferred (POT). This POT is used to identify and describe the objects to be transferred and must thus define in a sufficiently clear and precise way what the Data Objects created by the Producer within a Producer-Archive Project will be. All of the Descriptors are used to build the Plan of Objects to be transferred, which is the basis for negotiating a Submission Agreement.

The section 3.4 “Plan of Objects to be Transferred” describes precisely how to build a POT based on Descriptors.

The POT is not an information organization Model within the Archive. It should simply enable the two partners to agree on the content on the information to be transferred and should facilitate the way this transfer is done. The POT creation follows the chronological steps below:

· Object content description.
· Descriptor Models Creation. The Descriptor contains a set of information for describing an object and for defining its relations with other objects within the POT.
These Models are themselves derived from a generic Model described in this document. They may be specialised with respect to the particular domain in question. This is why we distinguish between:

· A ‘Generic Model’ which is part of this standard.
· ‘Domain Models’ which are derived from the previous one using the specialisation process described in section 4 of PAIMAS.
· and ‘Project specific Models’ which, whenever specialisation proves necessary, are negotiated by the Archive and the Producer during the Formal Definition Phase.

· Descriptor instances are then created from the Models adapted to the project. Each digital object category to be transferred is then described by a Descriptor instance. A Descriptor instance is created from the Models adapted to the project.
2. Creation of SIP Models:
This step should be done at the same time as the Descriptor Models creation.

The possible grouping or groupings of objects within SIPs is agreed on at this stage. Each object will be transferred within a SIP. The Descriptor instance refers to a SIP Model which describes the effective and expected content of the SIP at the time of delivery. This SIP Model identifies the indispensable information for effective retrieval of bit sequences: these are object identifiers, reference to data containers, etc. These SIP Models are then instantiated during the Transfer Phase.
3. Definition of the sequencing constraints between SIPs.
At this stage of negotiation between the Producer and the Archive, some characteristics of the objects to be delivered may not be known. However, both the Archive and the Producer should each have the necessary information for defining and approving this Plan.

During the Transfer and Validation Phases:

SIPs are used to group one or more objects, described by the same Descriptor or by different Descriptors, in a single package.
During the Transfer Phase, the SIP Models defined during the Formal Definition Phase are instantiated according to the objects to be delivered.

After the reception of a SIP, the Archive will open it, send an acknowledgement to the Producer, and perform the initial validations
 to check that:
· The SIP conforms to the associated SIP Model.

· The SIP meets the sequencing constraints.

· The embedded digital objects conform to the associated Descriptor Model and the POT (content and number).

· The objects embedded in the SIP are those expected.
In case of detection of an anomaly, the Archive sends a message to the Producer and waits for a new delivery.
Lastly the Archive manages and follows the Transfer Phase: transfer progress according to schedule, log, date, number of expected and delivered objects update, …
[image: image3.jpg]Object content
description
promportiods
FOT

Descriptor | ____—"
instances |~

|, SIP Modsls
SIP content | ———]
description

Sequencing

SIP constraints | ————~* constiaits

Digital Objects

Formal Definition Phase Submission Agreement

Rulbs

Data

SIP Model instances

Transfer and validation Phases

Tons

>

Figure 1: general process, from Object description to SIP Model instances

[image: image4.jpg]Dot [SIP Model

[

N S

SIP creation

Producer

SIP transfer
/

[

Transfer management

Feception acknowldgerment

Anomaly acknowledgement

SIP reception

SIP validation

Anomaly
‘management

Yo Yes

Archive

Transfer and validation Phases

o

Figure 2: general process, from SIP creation to SIP acceptance

3.4 PLAN OF OBJECTS TO BE TRANSFERRED (POT)

Preliminary remark:

We assume that it is not necessary for the Producer to know and understand the information model and the typology of the OAIS information categories in detail, for instance Content Information, Representation Information, Preservation Description Information, etc. Indeed, it is the Archive’s task to create AIPs from the SIPs transferred and thus to establish the suitable link between a given object coming from the Producer and any particular information category in the AIP within which this object will be inserted. In this document, we’ll simply make a distinction between the main Data Objects to be preserved, which we shall call Data Objects and other objects which may be related to them and which will be called Complementary Data Objects (for example, syntactical descriptors for Data Objects, written in EAST language, data dictionaries describing the semantics for information contained in the Data Objects, documentary information, documentary references). Data Objects and Complementary Data Objects may be grouped together in sets which will be called Collections. These collections will make it possible to organise all of the objects to be delivered into an easily understandable set.
3.4.1 approACH

The creation of the POT is a difficult task:
On the one hand, this Plan must be sufficiently clear and precise for both partners to be able to make a formal commitment in the framework of the ‘Producer-Archive Project’.

On the other hand, the idea is not to produce significant information content even before the Submission Agreement has been reached.

To describe a Collection, it would for instance be suitable:

· To define in writing what this Collection would include.

· To give this Collection a unique identifier and an explicit name.

· To specify what the parent Collection is.

· To specify that the Collection description will take the form of metadata in compliance with a specified metadata standard.

But this does not, however, mean creating the metadata file, ahead of time, during the Formal Definition Phase.

To describe the objects in this Collection, it would for instance be suitable to:

· Give the essential information on the content of these objects: for instance, to indicate that the data contain the calibrated magnetic field vector expressed in a given inertial coordinate system;

· If necessary specify the spatial or temporal resolution;

· Indicate whether the file format will be binary or ASCII or whether this format will comply with a specific standard format;

· Give average quantitative indications of the size of the files;

· Specify that a syntactical description will be created in EAST language;

· Specify that a dictionary complying with the DEDSL Recommendation (see [B1] and [B2]) and describing the semantics of the fields will be made;

· etc.

This does not mean, however, creating the EAST description (see [B3]) and the semantic description during the Formal Definition Phase.

However, in another context, the Archive might require the complete semantic description before any Submission Agreement.

We can see through these examples that the boundary between supplying sufficiently precise and clear information in the Plan of Objects to be Transferred and the supply of metadata during the Transfer Phase may vary and that both partners in the project will have to agree on the level of detail required.

The Modelling method proposed is thus very flexible and can be adapted to varying levels of detail required for given projects.

Moreover, in this Recommendation, we deliberately do not tie the description of the object (object Descriptor instance) to the way in which this object is transferred. This is described in the SIP Model whose ID is referenced in the object Descriptor instance. A given SIP Model may in fact be applied to several object categories.
In the following of the document, the term ‘Descriptor’ is used instead of ‘object Descriptor’ (for a Data Object as well as for a Complementary Data Object).
The Plan of Objects to be Transferred (POT) gives a complete and overall view of all digital objects to be transferred as part of the project. These objects are described by ‘Descriptors’.

Important remark: the leaves of the POT are the granules of the plan (the description of a Data Object and its Metadata can be grouped in the same Descriptor: that means that this set represents a granule of information. This set can’t be separated in the POT and later in the SIP).
The Plan will thus be structured into Descriptor instances. By Descriptor instance, we mean the supply of a set of information which characterizes the described objects with the required level of details. The content of a Descriptor instance may vary greatly according to the Projects and the information available during the negotiation. These Descriptor instances are built from Descriptor Models adapted for the project. These project specific Models are themselves derived from domain specific Models and /or the generic specific Model defined in this recommendation. This is why each Archive Project should create specialised versions of the proposed generic Model by adding, eliminating or modifying the attributes of this Model.
3.4.2 pot creation
For a given Producer-Archive Project, the Plan of Objects to be Transferred is developed during the Formal Definition Phase which consists of 3 work stages:

· Development of the dictionary for project Descriptor Models which may have been specialised for the project in question.
· Development of the SIP Models.
· Development of Descriptor instances describing what is to be delivered during the Archive Project.
This is a fairly simplified view because when developing instances, it is always possible, depending on the needs, to modify, complete or specialise Model dictionaries.

The development of the POT assumes that the Producer and the Archive have done their iterative groundwork.

The formal representation built from the previously defined Models and Instances is described in detail in section 4 “Formal Phase Specification”.

3.4.3 POT constraint
All the Objects defined in a Descriptor must be delivered together in the same SIP
.
In the case where the Object described by the Descriptor has many occurrences, the same SIP must contain all the digital objects associated with at least one occurrence.

However this constraint will greatly simplify the management of the progress of the actual delivery of Objects compared to the POT content.
3.4.4 POT REPRESENTATION

The Plan of Objects to be Transferred should enable the Producer and the Archive to have a clear view and understanding of the objects to be transferred. This Model should also enable them to use automatic processing for monitoring the project and validating deliveries, whereas the implementation of the Model in computer language (XML for example) does not allow for visual displays which are easily understandable to the human eye.

The POT as previously defined is a tree structure to which all of the Descriptor instances are linked (there are no orphan elements). This tree structure consists of descending hierarchical relations between Collections of Collections, Collections of objects and terminal objects, as well as transversal relations between Complementary Objects and Data Objects (or respective Collections). Finally, each node of the tree structure, whether this involves Collections or objects is defined by information contained in its corresponding Descriptor.

The POT may thus be represented with the following levels of detail:
· Hierarchical tree structure representation.

· Hierarchical tree structure representation and transversal relations.

· Complete description of each Plan node.

Moreover, it is interesting that the graphic representation of the POT is used to distinguish between the different object categories and the number of times each object occurs, as it is the case in the example shown in figure 3.

Figure 3 below represents in the form of a tree structure the WIND WAVES space project.
· The WIND_WAVES node is a Collection of Data Object collections.
· The WIND_WAVES_TNR_L2 node is a Collection of Data Objects.
· The WIND_WAVES_CC node is a Collection of Complementary Data Objects.
· The WIND_WAVES_TNR_L2, EAST_DESCRIPTION and DOCUMENTATION nodes are leaves of the tree corresponding to Data Objects or Complementary Data Objects.

· The dotted lines show transversal relations (see “association” in section 3.5.2 “Generic Descriptor Model definition).
[image: image5.jpg]ROOT

WIND_WAVES

- WIND_WAVES_cC

WIND_WAVES_TNR_L2

/

WIND_WAVES_TNR_L2 DATA(N) EAST DESCRIPTION (1) DOCUMENTATION (1)

Figure 3: Example of hierarchical tree structure representation
3.5 dictionary for project Descriptor Models
3.5.1 process for the dictionary development
[image: image6.jpg]Generic Deseriptor Model

Domain DescriptorModels

Producer-Archive Project Descriptor Models

b -

-

Figure 4: Process for the development of the Project Descriptor Models
Figure 4 shows the process for the specialisation of a Generic dictionary in a Producer-Archive Project Dictionary (see also section 4 in [1]). This recommendation proposes a generic Descriptor Model (described in the following paragraph).
This Descriptor can describe a Data Object, a Collection or a Complementary Data Object.

The Producer-Archive Project Descriptors will be built from Descriptor Models specialized for a domain. These Descriptor Models are themselves built from the standardized Generic Descriptor.

The objective is thus to define a Generic Descriptor Model including the different information categories, which can easily be specialized by the suppression of optional attributes or addition of attributes.
Other specialisation levels that those in figure 4 may exist.

The following sections describe:
· the generic Descriptor Model structure.

· the specialisation phase.

· The instantiation phase of the Project Descriptor Models in question.

3.5.2 Generic Descriptor Model definition

We are not referring at this stage to a particular implementation choice (see section 4.2 “POT creation”).
On the one hand, the generic Descriptor is expected to be complete enough to cover the needs for the description of different object categories, Data Objects or Complementary Data Objects. On the other hand, it is expected to be flexible enough to adapt to the specialisations required by each Producer-Archive Project.
The Descriptor is made up of a set of attributes and values which are assigned to these attributes in order to characterize the described Digital Objects. These attributes are divided into the following sections (the sections “Relationships” and “Object content” are made up of sub-sections):

· Descriptor identification.
· Content description: set of attributes giving all the information needed to describe the content of the Descriptor, such as the title, the content, and the size.
· Relationships within the POT: location of the Descriptor inside the POT, and transverse links between the nodes of the POT (links between Data Objects and Complementary Data Objects).
· Object content: describes all the Data and Metadata included in this Descriptor, even complex objects made up of several parts. Each part is identified by an ID, as well as the Data and Metadata included in this part. Thus, the packaging will be easier and the validation will be possible. The “Object content” section can be repeated if necessary. In the case of a Collection description, there is no “Object content”.
· Non definite section : specialisation section (to be defined if necessary).

· SIP Model reference.

Each of the previous sections is composed of attributes described below.
Each attribute is associated with a status (M for Mandatory, O for Optional), and an occurrence. The attributes themselves belong to groups that can be mandatory or optional. Inside an optional (resp. mandatory) group, an attribute may be mandatory (resp. optional).
· Identification (M, 1..1)
· descriptor_type (M, 1..1): defines the type of Object Model and is constant for a given type of Descriptor.

· descriptor_ID (M, 1..1): Descriptor Identifier, used to identify the nodes in the POT. This ID is used in the associated SIP Model ID to refer to the Descriptor.
· object_occurrence (M, 1..1): number of Data Objects described by this descriptor_ID. This Descriptor instance may describe a unique Object (this is often the case for a Data Collection, or a syntactical description of a Data Collection), or a representative of a category containing a certain number of Objects. This number may not be known ahead of time (value 1..n).

· version (M, 1..1).
· Content description (M, 1..1)
· title (M, 1..1): extensive name of the Object.
· content (M, 1..1): explanatory text specifying the content and main characteristics of the described Object.

· size (O, 0..1): estimated volume of an object and unit. For a collection of collections, this attribute may be omitted (to the extent that the size of the terminal collections is known).

· Non definite attribute (O, 0..1): specialization attribute (to be defined if necessary). The name and form of this attribute depends on the future implementation.

· Relationships within the POT (M, 1..1)
· parent_collection (M, 1..1): identifier of Collection Descriptor to which this object belongs. This attribute defines the relations between the Object described and the other Plan Objects. The Object is tied to the higher level node in the POT (possibly ROOT). The ROOT of the POT must refer to the project.
· association (O, 0..N): this is used when the Descriptor describes a Complementary Data Object or a Complementary Collection. These are transversal links specifying the type of relation between a Complementary Data Object and the Objects to which it is tied and the identifier of the Objects in question.
· related_descriptor_ID (M, 1..1) : Descriptor identifier for the Data Object Collection or Data Object to which this Object refers
· relation_with_DO (O, 0..1): type of relation between the Object in question and the related_descriptor_ID. For instance if the Complementary Data Object is an EAST file, the type of the relation might be a ‘syntactical description’.
· Object content (O, 0..N).

· content_ID (O, 0..1): the Data section describes the Data Object itself, while the Metadata section describes the Metadata attached to the Data. If a Metadata section and Data section have been defined in the same content, they must be delivered together (“POT constraint”).
· data (O, 0..1):
· data_ID (M, 1..1): Data Identifier. Needed if the object is composed of several different data sets.
· data_content (O, 0..1): Explanatory text specifying the content and main characteristics of the described Data
· data_format (O, 0..1): Format of objects in the collection (PNG, PDF, CDF, Flat Binary, Flat ASCII, …)
· Metadata (O, 0..1)
· metadata_ID (M, 1..1): Metadata Identifier. Needed if the object is composed of several different metadata sets.
· metadata_content (O, 0..1): Explanatory text specifying the content and main characteristics of the described Metadata.
· metadata_format (O, 0..1): Enumerated list (DIF, SPASE, DUBLIN_CORE, EAD, ISO_19115, etc.). Used to specify the metadata standard to be applied.
· metadata_schema (O, 0..1): Enumerated list (XML Schema-name, etc). Used to specify the ‘catalogue’ data characterising the object: for instance in the form of an XML document specified by an XML Schema.
· Non definite section : optional section in which can be included any attributes to specialise the Descriptor, and that can’t fit in the other sections).

· SIP Model reference: SIP Model Identifier. For a collection of collections, there may not be a corresponding delivery during the Transfer Phase, and hence no applicable SIP Model: the attribute value is then NONE.

3.5.3 Specialisation of the generic Descriptor Model
The previous generic Model is intended to cover the different possible situations and contains a minimum set of mandatory attributes, a larger set of optional attributes and two “non defined” attributes.

This Descriptor Model may be specialised to achieve the applicable level desired by the Producer-Archive Project:

· Specialisation of a domain generic Model from a generic Model towards (see section 4 of [1]).
· Domain generic specialisation for creating a Project Archive Model (other intermediary levels may be considered if necessary).

To do this, the standard generic Model may undergo the following modifications:

· Addition of an attribute by using the:
· “Non definite attribute” in the “Content description” section if the attribute is related to information description.
· “Non definite section”: made up of a unique attribute, or a set of attributes.
· Elimination of an optional attribute.

· Modification of existing attributes: by occurrence restriction, by modification of status attribute (e.g. optional changed in mandatory). The name of an attribute should not be modified (to adapt to the project terminology for example), in order that the tools manipulating Descriptors remain usable.

3.5.4 Descriptor Model instances

The creation of Descriptor instances is definitely the most crucial task during the Formal Definition Phase since it is at this stage that we clearly define the objects to be transferred. This creation allows for the POT to be built.

This task will consist for example of:

· Identifying all of the project data Collections.

· Organising these Collections in a hierarchical tree structure.

· Defining a Descriptor instance for each of the Collections.

· Defining a Data Object Descriptor for the objects in each Collection.

· etc.

Descriptors can be instantiated by different persons and in several times during the Formal Definition Phase (all information are not necessarily available at the same time).
Figure 5 shows an example of a Descriptor instance for a Complementary Data Object for space physics.
[image: image7.jpg]descriptor_type

DOCUMENTATION

descriptor_ID

WAVES_DOCUMENTATION

abject_occurence

1.1

title

WAVES;: The Radio and Plasta Investigation on the
WIND spacecraft

content

WIND XAVES mission description

‘parent_collection

WIND_WAVES_CC

related_descriptor_ID

WIND_WAVES

relation_with DO

Experimental textual description

tmetadata_schema

doc_waves xsd

SIP descriptor ID

EXPERIMENT_DESCRIPTION_SIP

Thi part cotains syt that i
Koo ot the bject at th i of
the Foral Defiiion Phise
(chersclerists of the

oot aud s ltions o tter
dojcts)

The SIP dsscriptor deseribes the
ongenisation of the Unit Package

Figure 5: Example of a Descriptor instance
3.6 SIPs

3.6.1 description

The SIP is a coherent group of Digital Objects in a package to be transferred between the Producer and the Archive.
The SIP may also contain a pointer towards the Digital Objects location in the case these are not physically transferred.
In the case the Digital Objects are of very small size, they may be grouped in a single package inside the SIP. On the contrary, the Digital Objects may be of such a big size that they must be split over several SIPs. The Archive should be able to reconstruct the final Object after transfer.
A SIP may contain several objects of the same type or of different types, depending on the grouping rules defined by the Producer and the Archive. The rules for grouping objects within a SIP must be defined during the Formal Definition Phase.

These rules depend on the different project constraints:
· constraints linked to the Producer (production planning, …);
· constraints linked to the Archive (validation, …);
· constraints linked to the object occurrence number;
· constraints linked to the transfer (transfer capacity, …).
These rules impact on the one hand the grouping of the Objects inside a SIP, on the other hand the sequencing constraints between the SIPs.
These rules are then used to define the different SIP categories for the project. These categories are built from the same standard SIP Model.

3.6.2 LInk between sip and descriptor

Reminder:
· All the Objects defined in a Descriptor must be delivered together in the same SIP.
[image: image8.jpg]Transfer Phase

Delivered SIP

SIP descriptor
Attribute = descriptor_ID
Formal Definition Phase

SIP Model ID =sipC

descriptor_ D=4 |
SIP Mol ID = sipC
descriptor_ID =B
SIP Mol ID = sipC

Attribute = descriptor_ID
Attribute = STP Model ID.

Descritor
Model
Instantiated
Desciptor

Figure 6: links between Descriptor and SIP

Figure 6 shows the links between Descriptor and SIP:
· Each Descriptor instance refers to a SIP Model. A SIP may contain several different objects, thus the same SIP Model may be referenced by different Descriptors.
· On the other side, each SIP contains the Descriptor_ID of each embedded object (needed in particular to validate that each embedded object is conform to the POT).
3.6.3 SIP models creation
[image: image9.jpg]Generic SIP Model

Domain SIP Models

-

Producer-Archive Project SIP Models

.

Figure 7: Process for the development of the Project SIP Models
Figure 7 shows the specialisation process to obtain Producer-Archive Project SIP Models from a generic Model. Other specialisation levels may exist.
This recommendation proposes a generic SIP Model (see section 4.2.1 “Generic Descriptor Model implementation”).

[image: image10.jpg]SPD

Producer ID.
Project ID

Sip Model ID

SIP Mol location

Each sub-package
| is associated! to
1 Descriptor instance

descriptor_ID
Descriptor location
ast_object
updated_object

Other SIP attributes

Digital Object

Figure 8: SIP structure
The Archive must analyze each SIP content and perform the initial validations. Each SIP should contain the information required for this analysis and for these validations (and to automate the process):
· Global SIP.
· Information associated to each embedded object (granule described in the POT).
Each attribute is associated with a status (M for Mandatory, O for Optional), and an occurrence:
· Global information (M, 1..1) :

· SIP ID (M, 1..1): identifier of the delivered SIP.

· Producer ID (M, 1..1): this identifier (related to the Producer name and address) should enable the Archive to identify the origin of the SIP -the Producer, and should enable the Archive to send an acknowledgement,
· Project ID (O, 0..1),

· SIP Model ID (M, 1..1) and SIP Model location (M, 1..1): required for validation tests (SIP must comply with the SIP Model).
· Information associated with each embedded object (M, 1..N):

· Descriptor_ID (M, 1..1) and Descriptor location (M , 1..1) : object Descriptor identifier and file name and location: required for validation tests (each embedded object must comply with the POT content).
· Last object (O, 0..1): Indicator specifying that it is the last object (among the Data Objects, Complementary Data Objects or Collections corresponding to the same POT node). This attribute is useful if the number of objects in a collection is not known ahead of time and is not defined in the POT. When it is used, a sequence management rule has to be specified for transferring the objects (case in which, during transfer, the last object would not arrive last).
· Updated object (O, 0..1): in case of a new object version, due to the detection of an error in an archived object, or due to dictionary changes.
· Other information (M, 1..1): this list is not exhaustive:
· Map of links between Descriptor ID and delivered files names (content_ID, data_ID, metadata_ID).
· Way of retrieving the object (e.g. in the case of tar or zip files inside the SIP),
· Way of reconstructing the object (e.g. in the case of an object split in several SIPs: number of SIPs, pointer towards the following SIP, « nil » pointer for the last, name of a reconstruction software if necessary),
· SIP sequence number: needed in the case of a collection of objects to check the order of arrivals (in particular for the last objects), and in the case of an object split in several SIPs.
· Digital Object (O, 0..N): delivered files. In certain cases, the object is not be physically delivered (e.g. files already archived in a different site). In that case, the SIP will contain a link towards the object.
Apart from specific procedures to be used for renewing transfer of an object which has already been transferred (for instance following observation of an anomaly in the initial object), we have assumed that an object identified in the POT is transferred only once. The Producer and Archive thus have to ensure that the SIP definitions are coherent from this point of view.

3.6.4 sequencing CONSTRAINTS

If there is no sequencing constraint, the SIPs may be transferred independently of each other in any order.

It may be necessary to specify in the Submission Agreement that a given digital object must be transmitted before or after another. For instance, in the case of a Collection of files of scientific data all having the same syntactical structure described with EAST language, the archive might want to systematically verify the conformance of each file in the collection in relation to the EAST description of the files in this Collection. In this case, the EAST description should be sent before the data files.

The sequencing systems may be complex but it appears clear to us that the sequencing constraints for a Producer-Archive Project should remain simple.

This is why we shall only define here a limited number of possibilities for expressing sequencing constraints, given that the specialisation mechanism allows for more complex cases to be dealt with.

Remark: it is not possible to impose constraints between specific objects belonging to 2 different groups each associated to a Descriptor. The sequencing constraints may apply between the 2 groups (and not between elements inside). Furthermore, in the case of constraints between 2 collections C1 and C2, if C1 must be delivered before C2, that means that the first object of C2 may be delivered only after the last delivery of C1.
The constraints that exist between two objects A and B may be totally independent of the constraints that exist between two other objects C and D. This has led us to define the concept of constraints group as being the set of objects related to each other by a set of dependent sequencing constraints.

The example referred to above concerning an EAST syntactical descriptor can in practice apply to several Collections of distinct Data Objects, each having its own EAST description and belonging to the same Producer-Archive Project. We may thus define several independent constraint groups:

Constraint group Groupe_1:

The EAST description of the files in the A Collection must be delivered before the files in this Collection.

Constraint group Groupe_2:

The EAST description of the files in the B Collection must be delivered before the files in this Collection.

These constraints between SIPs are expressed during the Formal Definition Phase, using the following attributes.
	Attribute name
	Meaning
	Value syntax
	Occurrence

	TIME_CONSTRAINT_GROUP
	define the groups
	identifier
	0..1

	SERIAL_NUMBER_IN_CONSTRAINT
	define the constraints within the same group
	integer
	0..1

The use of these two attributes is optional.

If TIME_CONSTRAINT_GROUP is defined in the « SIP sequencing constraint table “, then SERIAL_NUMBER_IN_CONSTRAINT is mandatory for this SIP.

If there is no time constraint, they are omitted.

If there are time constraints, but a unique group, TIME_CONSTRAINT_GROUP may be omitted.

If two SIPs SIP1 and SIP2 belong to the same group with:

SERIAL_NUMBER_IN_CONSTRAINT = 1 for SIP1 and

SERIAL_NUMBER_IN_CONSTRAINT = 2 for SIP2,
this means that the digital object(s) corresponding to SIP1 must be transferred before the digital object(s) corresponding to SIP2.

If 3 SIPs SIP1, SIP2 and SIP3 belong to the same group with:

SERIAL_NUMBER_IN_CONSTRAINT = 1 for SIP1,

SERIAL_NUMBER_IN_CONSTRAINT = 2 for SIP2 and

SERIAL_NUMBER_IN_CONSTRAINT = 2 for SIP3,
this means that the digital object(s) corresponding to SIP1 must be transferred before the digital object(s) corresponding to SIPs, SIP2 and SIP3 and that there is no constraint between the digital object(s) of SIP2 and SIP3.

Example:

This example defines two groups of sequencing constraints which are independent of each other.

For each group, it specifies:

· that the EAST Descriptor must be transferred first,

· that the objects corresponding to the Collection descriptions (metadata describing the collection) and the Data Objects for these collections can then be transferred in any order for each collection.

	
	SIP constraint description

	Sip Model ID
	SIP1
	SIP2
	SIP3
	SIP4
	SIP5
	SIP6

	Descriptor_ID
	Collection_1
	Collection_2
	do_collection_1
	do_collection_2
	EAST_descriptor_collection_1
	EAST_descriptor_collection_2

	TIME_CONSTRAINT_GROUP
	Group_1
	
	Group_1
	Group_2
	Groupe_1
	Groupe_2

	SERIAL_NUMBER_IN_CONSTRAINT
	2
	
	2
	2
	1
	1

Tableau 1: example of sequencing constraints
4 FORMAL PHASE SPECIFICATION

In this section, we propose a particular implementation of the concepts described previously.

The proposed implementation is based on XML Schema and XML files.

4.1 Global view
Figure 9 shows the main steps and the links between them. The attributes cited here are detailed in the following sections.
All the information coming from the Descriptor instances and the sequencing constraints populate an Ingest Base. This information is used on the one hand by the functions creating the POT, on the other hand by the functions managing and validating the transfer (e.g. object_occurrence, sip_template_ID).
This Ingest base contains as well other information not cited here and necessary for the ingest process (coordinates of producer_ID, …).
[image: image11.jpg]SIP templates creation|

SIP templtes

N\

sip teraplate_ID
tine_constraint_group

[Data dictionary mzﬁnn%\/‘w

Descriptor instances

Producer

nessage

serial_ yumber_i_constraint

POT creation }\‘ deseriptor ID U1 1)

| Sorptor 1D

Valiion | desrptor_type
ot secuonce

e
pant_colbction
Content D
s 1D
eta ID

aoraly_ID
date

Anomaly management

Figure 9: global view of the Formal Definition Phase Specification
4.2 pot creation
[image: image12.jpg]Data Dictionary

Descriptor
instances

Validation

c—

POT

Figure 10: POT creation

The following sections describe the steps for the POT creation (step 4.2.1 has already been done, the given XML schema is the input for the next step in 4.2.2).
4.2.1 generic descriptor model implementation

Figure 11 shows the Generic Descriptor Model given in this recommendation. It is implemented with an XML Schema (see Annex A.1 for the XML source code).
This schema contains the attributes specified in section 3.5.2 “Generic Descriptor Model definition”.
It is based on a hierarchical structure identifying the main descriptive parts of the Object. The schema itself contains comments on each field. It is divided in 6 parts (that can be divided in their turn) « identification, content_description, relation, content, any, sip_template_ID »:
· identification : cf. « Identification » section 3.5.2,
· content_description : cf. “Content description” section 3.5.2. other is the “Non definite attribute”, to be defined if necessary according to the Producer-Archive Project needs.

· relation : cf. “Relationships within the POT” section 3.5.2.

· content : cf. “Object content” section 3.5.2.

· any : cf . « Non definite section » section 3.5.2. This element may contain itself a sequence of elements (or another sequence) depending on the Producer-Archive Project needs.
· sip_template_ID : cf. « SIP Model reference » section 3.5.2. Identifier of the template
 (see section 4.3.3 “SIP templates implementation”).
[image: image13.png]Faescriptor_type

Defines he ype o sbjct
desebed by e
DESCRIPTOR: conzant for
3 given tpe of
BESCRIPTOR

fescriptor_ID

Descrptor rtier, used o
idanty the nodes 1 the
PO, This 10 i ssed i the
Sezocated AP 1 e 1
he Desator,

| dentinication

Descrptor denheaton

object_occurrence.

The dscrbed cbjet_can be
i, or o e
52 f abjects having the
i charaaenies

itle

Objec e o give the wer
s of the Deserpror
comant (otensive name of
the Gbjec)

ontent

Testual dascpion o the
Desciptor cotent and s
prncpa harscaics

[-{ content_deseription

Toormation par o the Data

Eatmaad sie of the Dats
bjecs

parent_collection

Tocaton e PO Parent
Cecion antver

[{ vetation

rolated_descriptor_ID

Relatorstips withi the POT

Taertr of e Dezrptor
which the obact i question

association iy

Relaionstips batween
Objecs Foiation_with_D0
Descipion of the

reltonship it the Data

{"data_ID

Logal Henferfor the
desebed Dats Ot

estual descpion of the
D Object and s pincpal
it

D zen

Descripon of the acual T
Digtal Objacs dscrbad by

hi Descpor Ths i nked

wih what e 10 b

wasfand by the STP

i Ghiect wype binary

Frmetadata_iD

Lol eniferof he
desibed Metsdas Objet

Testual dascpion o the
Witadats Objec and 15
prncpal harsctecs

Hiradinscocion
Enimaraed 12 OFF,
SPASE, DUBLIN_CORE,
EAD, 150_15115, tc)
Used 1o spacy he
matadits andnd tobe
oo

Wi of e szt
Sama

Optona Gt of atvbutts)

L Fsip_template_iD

Taerfar of o #7DLL
emplae used 1o ansfr the
Dt and Metadas o this
Desciptor No templte
Cona" Fno nformatin
a1 b anFned

Generated with XMLSpy Schema Editor ™ T B

Figure 11: Generic Descriptor Model XML Schema

4.2.2 generic descriptor specialisation
The purpose here is to create the Descriptor Models adapted to the Producer-Archive Project.

These Descriptor Models are themselves XML schema derived from the Generic XML schema previously defined.
The Producer and the Archive should both access these XML schemas (copied, or one repository deposed in a shared space).
The generic Descriptor can be specialized by:
· suppression of optional elements ;
· modification of occurrence numbers (for example 10..15 instead of 1..n);
· addition of new elements (or sequence of elements) by the use of the groups « other » or « any »;
· definition of a list (enumerate) for the elements « descriptor_type » or « sip_template_ID »;
· definition of patterns for identifiers (imposed nomenclature) or restriction of string length.

The creation of the Descriptor Models can be simplified by using an XML editor (e.g. XML Spy).
This kind of tool enables XML schemas manipulation in a graphic (and convivial) way without need for strong XML knowledge.

At the end, the set of Descriptor Models forms the Project Data Dictionary. They are supposed to be gathered in the same repository. They must be accessible for the people in charge of the creation of Descriptor instances.

4.2.3 descriptor instances
This is the final stage for building the Plan of Objects to be Transferred and the representation of this Model according to needs.

The instances of the Descriptors, used to build the POT, are XML files. They are based on the specialised schemas defined in the previous stage.

It is recommended that the root name of the POT be the project name (« parent_collection » value at the highest level). Thus, the Producer-Archive Project is immediately recognised.

In principle it is the Producer task to instantiate the Descriptors because it is supposed to know best the Object information. These Descriptors can be instantiated in several times during the Formal Definition Phase (all information is not necessarily available at the same time). Moreover, different and distant people may access and instantiate the Descriptors. Nevertheless there should be One person responsible for the POT (receives, gathers and manages all the XML instances).
The persons filling the Descriptors may not be expert in XML. This is why it is possible to use forms proposed by XML editors (e.g. XML Spy or Xample) to create the instances and to check that the produced XML file is conform to the initial XML schema. In case the XML file is produced in several times and with an XML editor, usually all the mandatory fields should have been filled to check the conformity
.
Each Descriptor instance is linked:

· to the type of Objects via the « descriptor_type »;
· to the XML schema (access path hand file name) in the header of the XML file;
· to the other objects of the POT via the node identifiers (« relation » element);
· to the delivered Object by the reference to a SIP template (see section 4.3.2 “Generic SIP Model specialisation”). The SIP template is an XML file, ready to be filled, and containing the information necessary to the transfer of the Object in question. This link is important to perform validation tests by the Archive and to check that the delivered Object is conform to the attached Descriptor.

Figure 12 is an example of a form used to describe a node using Xample editor (using values of figure 5). A short description of the attributes, which is a more ‘user-friendly’, replaces the attribute names. One might also imagine a set of formulas written in HTML describing each of the nodes in the POT.
[image: image14.jpg]1% Descriptor Type [DOCUMENTATION|
(% Descriptor ldentifier [waVES_DOCUMENTATION
| @ Number of Objects |

B3 ContentDescription

@ Te

L size

L Other

] 1&g Relton

(@ Collection dentifier [WiND_wAVES_CC|
VIEg Association

[7I115)) tableau 1..Non limité) de Sequence Groups

[=] Seauence Groupe

1 Related Collection” [WiND_WAVES

[v] (@ Mature of the relation |Experimental textual description

] &8 Coterunn

lon limité) de Sequence Groups.

Iu) tableau (1.

1@ LastObject

o@
[71(@ SIPtemplate identifier [EXPERIMENT_DESCRIPTION_SIF|

Figure 12: Description of DOCUMENTATION node
4.2.4 pot implementation and validation

POT implementation consists in building a base of the information contained in the Descriptor instances. This information can thus be access by the different functions of the Archive to insure the ingest function.
There are several POT validation levels to perform:

1. Validation of each XML instance with the associated XML schema (this can usually be done automatically by an XML capture tool or an XML editor).

2. SIP template identifiers validation: check that the template IDs exist in SIP Models and have been previously defined by the Producer and the Archive (list of sip_template_IDs).
3. Check the existence of « descriptor_types » (list of descriptor_types).
4. Global POT validation: Descriptors are inter dependent via the node identifiers. Check the coherence of the nodes:
· No isolated node.
· No duplicated descriptor_ID.

· The nodes cited in the « relation » part must exist.

· No ring.

4.2.5 pot visualisation

The POT gives the Producer and the Archive a clear and non ambiguous vision of the expected objects.
The graphical representation of the POT shows at least:

· The type and number of expected objects (1..N if the number is unknown during the Formal Definition Phase).
· The links between these objects.
4.3 SIP implementation
The SIPs construction is based on XFDU (see [5]) whose definition is in progress.

[image: image15.jpg]XFDUasd

SPawsd SIPTempla.sml s

Figure 13: SIP process
Figure 13 shows the process detailed in the following sections:

· Specialization of the XFDU standard towards a schema adapted to the SIP needs. The XML schema thus created applies to all types of SIPs.
· Creation of SIP templates adapted to the Producer-Archive Project. The future SIPs to be delivered during the Transfer Phase will be created from these templates.
4.3.1 generic sip Model
(see Annex A.1 for the XML schema and source code).

Document [5] gives the generic XFDU XML schema.
An XFDU is a zip file including a “manifest” (XML file) and a set of Digital Objects. The manifest contains all the information describing the package content et how to access to the delivered objects (or referenced objects). The XFDU organization will not be described in further detail here.
We are waiting for a specialization of this generic XFDU XML schema to take into account all the SIP needs (see 4.2.2): SIP global information, links between the Digital Objects and the Descriptors of the objects actually expected in the POT.

4.3.2 generic sip model specialiZation
This part related to the XFDU standard is in progress, and will be completed later (description of the specific parts linked to the SIP, description of the specific schema elements, how to take into account big files). An extract of the XML schema will also be provided.
A SIP is described by an XFDU package complying with the XFDU standard.
The SIP schema organization is the same as the XFDU schema organization. The difference is that in the SIP schema, the “InformationPackageMap” includes a section specialized for the SIP “sipContentUnit”.

The sipContentUnit refers to the SIP Template identifier (and the location file), the Descriptor identifier (and the location file) and takes into account the last object of a collection.
SIP.xsd is a generic schema for all SIP types, and can be used as it is. Furthermore it is compliant with the XDFU standard, and with the tools related to this standard.
List of the specific SIP elements in an XFDU (see also section 3.6.3 « SIP Models creation »):
· Global information:

· sip_ID;
· producer_ID;
· project_ID;
· sip_template_ID;
· sip_template_location.
· Information associated with each embedded object:

· descriptor_ID;
· descriptor_location;
· last_object;
· updated_object.
4.3.3 sip templates implementation
A SIP is made up of a set of data and metadata delivered together, as well as links towards other information objects. The data may be grouped, or split into packages linked together in case they are too big. In some cases, extraction software may be required.

The SIP can contain:

· Data and metadata in the form of files inside the package (no path given), or URL addresses. For XLM metadata, the content may be expanded inside the XFDU (“FContent” tag).

· Different units associated with different Descriptors.
It is not possible to generate XML schemas specialised by type of groupings with the previous SIP XML schema. To do this, the method consist in creating SIP templates from this SIP XML schema.

A SIP template is an XML file compliant with the SIP XML schema, describing completely the structure and content of a SIP type. This XML file contains all the information required for the transfer of an object (file identifiers, file names, access path to the file), and is ready to be filled: blank spaces inside a sequence {$ information } for automated filling process.
Producer and Archive must create SIP types (templates) for their Archive Project. These templates are models identified by a SIP template identifier. Depending on the Producer-Archive project, one or several SIP templates may exist. To simplify, The Producer and the Archive may as well decide to have only one type of Object per SIP. In this case, the number of SIP templates and Descriptor Models will be the same.
Each Descriptor instance is linked to the delivered Object by the reference to the SIP template including the object in question (“sip_template_ID” in the Descriptor XML schema), or none if there is no object to deliver. This link is important to perform validation tests by the Archive and to check that the delivered Object is conform to the attached Descriptor.

These SIP templates will be filled during the Transfer Phase, for the delivery of Digital Objects.

The way the SIP templates will be filled is to be discussed between the Producer and the Archive. It is recommended to use the XFDU available tools. The current standard and prototypes will progress during the next year.

4.4 sequencing constraints

The « time_constraint_group » and « serial_number_in_constraint » elements, described in section 3.6.4 “Sequencing constraints”, belong to a separate file. This file could be a simple organized text file. We recommend to use the following simple XML schema to implement the list of constraints between SIPs.
This file will be used later during the Validation Phase for each received SIP.
[image: image16.png]Sip_template_1D

sequencing_constraints
ot o Produce chive Poget

sequending constans bawaan
i

Generated with XMLSpy Schema Editor @™ T "

5. TRANSFER PHASE AND VALIDATION PHASE SPECIFICATION
Preliminary remark: only the initial validation defined in the PAIMAS [1] is taken into account here. Hence, Transfer and Validation Phases are strongly nested.
5.1 global view

Figure 2 shows the main functions whose content and implementation are described in the following sections:
· Transfer Management.
· Transmission Session Management.
· SIP reception.
· SIP validation.
· Anomaly management.
The figure below shows the links between the previous functions, the POT and the different attributes used by these functions.
[image: image17.jpg]session D)

Anomaly management

proccer ID |

poject 1D |

ranefer_date drseriptor ID ;

sip_list e ;

trasefer_reposito oceunence e |

Lot nuber validated_objects ||

sip_teraplate_ID ; :

SIP reception ie_constraint_gowp :

seral murber i constrsint |

SIPs dsseriptor_ID(! 1) :
T content ID (0.1 A ;
data 1D (0.2) |

netadata 1D (0.1) ;

POT—projet_ID; |

i e I 3
sp st | i IngestBase |

s trasefer_date i :
session 1D ;

anomaly ID ;

e Bl !

aate :

Figure 14: global view of the Transfer and Validation Phases

5.2 Transfer management
The Archive should have at any moment a clear vision of the Transfer Phase progress. That’s why each descriptor_ID is associated to the indicators below:
· Status : expected (no object delivered), pending (case of a collection whose object delivery spreads over a time period), closed.
· Number_validated_objects : number of objects already received and validated.
Reminder: object_occurrence (number of objects with the same« descriptor_ID » initially expected) is a static information known during the Formal Definition Phase.
These indicators are updated after each validated SIP. With the object type (« descriptor_ID ») and the node in the POT (« parent_collection », they may be used to graphically follow the progress of the Transfer Phase.
5.3 sip instances
It is necessary to automate the filling of the SIP templates and the creation of the package if the production becomes important. This implies a software layer capable of identifying the key words in the SIP template, and capable of writing at the right place the information for the transferred file.
For each SIP to be transferred, the Producer has to:
· Give the SIP an identifier « SIP_ID » and a sequence number.

· Get the XML SIP Template file associated to this SIP.

· Create the XML Manifest file with the instances of the different SIP template fields, in particular with the link between the logical identifiers defined in the Descriptor(s) - « descriptor_ID, content_ID, data_ID, metadata_ID, sip_template_ID ».- and the transferred file names.
· Create the zip file containing the XML Manifest and the Digital files to be transferred.
If the transferred object is the last of a collection of Objects, the value of the “last_object” element is 1.
If the transferred file is a big one split over several SIPs, the elements needed for the reconstruction of the object must be instantiated.
As soon as the SIP is ready, it can be transferred by the Producer via the defined communication procedure, in a transmission session.
5.4 transmission Sessions

Producer and Archive have agreed on a delivery schedule for the transfer during the Formal Definition Phase, depending on the planned production of the data.

Inside this schedule, the delivery is organised in transmission sessions. A transmission session contains one or several SIPs. For example in the case of space data produced every day, the Producer may decide to transfer only once a month the production in a single transmission session.
Transmission sessions can be automated and periodically delivered in a deposit place defined by the Producer and the Archive.
The Producer informs the Archive of each transmission session delivery (if not, Producer and Archive have agreed on a different procedure. In some cases of automated delivery, the Archive regularly scrutinizes a deposit repository to detect data arrival).
The Producer sends the Archive a message with the following information:
· session_ID (M, 1..1): session identifier ;
· producer_ID (O, 0..1): Producer identifier;
· project_ID (O, 1..0): Producer-Archive Project identifier;
· transfer_date (M, 1..1): date for the transfer of the SIPs;
· sip_list (M, 1..1): list of the transferred files of this session (file names, number of files);
· checksum, file size or other useful indicator
 (O, 0..1);
· transfer_repository (O, 0..1): the location where the Archive can get the transferred files (for example a deposit repository on the Archive side). In the case of media sending, the “transfer_repository” is the list and references of the sent media.
5.5 sip reception and validation
5.5.1 sip reception

On delivery (see 5.4), the Archive:

· Checks the delivery content in comparison with the expected objects (file names, number of files, sequence number). The Archive checks in particular that the inter-dependant SIPs have arrived (one object split over several SIPs). If an anomaly is detected (for example the file file_name does not exist), the Archive sends the Producer –“Producer_ID”- a message (see 5.6).
· Sends the Producer -“Producer_ID”- an ackowledgement of receipt (this acknowledgement can be sent later with the validation message once the validation has been performed) with the following information:
· Session « session_ID » reception.
· List of received objects.

· Updates the log of the Producer-Archive Project transmission sessions (session reference, date of delivery, content).

5.5.2 sip validation

The Archive recovers the information contains in the SIPs, and performs initial validations (compliance with the SIP template, respect for the sequencing contraints, compliance with the POT). Thus, the Archive follows the process:
1. Dezip each XFDU, and for each XFDU.
2. Opens the Manifest.
3. Gets the « sip_template_ID » value, the file location, and checks:

a. If the Manifest complies with the SIP Model
.

b. If the SIP respects the sequencing constraints by comparison between the SIP « sip_template_ID » and the « sip_template_ID » of already transferred and validated SIPs.
4. Checks that each embedded object is an expected one:
a. Reads the value of each “descriptor_ID”.
b. Gets the value of “status” element, the number of objects already transferred and validated “number_validated_objects”, and the number of expected objects “object_occurrence”.
c. Compares the values: for an expected object, “number_validated_objects” + 1 lower or equal to “object_occurrence”. If the element “last_object’’ = 1, then “number_validated_objects” + 1 = “object_occurrence” (except if this value was unknown at the beginning).
5. Reads the different embedded objects identifiers, compares these ID with the corresponding ID in the POT, and checks that all the mandatory information are present.
If no error has been detected during the validation, the Archive send the Producer a message containing the following information:

· Validation of the session « session_ID » of the project « project_ID ».
· Validation date.

Lastly, the Archive updates the follow-up indicators (« status », « number_validated_objects »), before creating the AIPs.
If an error occurs during the previous validation process for one object (the process goes on for the other objects):
· This object is rejected (if a SIP contains an erroneous object, it should be possible, by setting precise management rules, to deliver this SIP again).
· An anomaly message is sent to the Producer (see section 5.6 “Anomaly management”), with a text such as « the metadata file metadata_filename does not exist ».

· The folow-up indicators are not updates for this object.
See section « Change management » if the delivered object was an already archived one (“updated”). This means that this object may belong to a collection whose status is “closed”. This object will be checked on each point except point 4. If this object is validated, the indicators “status” and “number_validated_objects” won’t be updated (object already counted). There is no notion of object version in this document.
The process is the same for automated and periodic deliveries.
5.6 Anomaly management

During the Formal Definition Phase, the Producer and the Archive have defined the initial validation performed on the received SIPs.

For each detected anomaly, the Archive:
· Sends an anomaly message to the Producer with the following information:
· anomaly_ID (M, 1..1): anomaly identifier;
· session_ID (M, 1..1): session identifier ;
· project_ID (O, 0..1): Producer-Archive Project identifier;
· error_level (O, 0..1): error level (from serious to informative);
· validation_function (M, 1..1): function where the anomaly has been detected (transmission session validation, SIPsvalidation, …);
· error_number (O, 0..1) ;
· text (M, 1..1): error explanation (with reference to the erroneous object);
· date.

· Updates the log of transmission sessions (identifier, session_ID, file name).

The Archive holds the anomaly list used by the anomaly function. The consequences of an anomaly depends on the level of error and the validation function concerned.
6. MANAGING MODIFICATIONS

This includes all modifications which occur once the Submission Agreement has been approved. Some modifications may lead to a re-negotiation of the Submission Agreement (see document [1], section 3.2.2.6).
There are two categories of modifications:
· Category 1: The POT modifications: modification of Model dictionaries and Descriptor instances. These modifications should be done in compliance with the rules defined in the PAIMAS. The rules for managing these modifications may moreover have been specified in the Submission Agreement.

These modifications concern for instance:
· The addition or suppression of a Collection of Data Objects (or Complementary Data Objects).

· The addition or suppression of types of Data Objects (or Complementary Data Objects).

· The modification of Collection or object Descriptor instances which have already been defined.

· The addition, suppression or modification of elements of dictionary elements and the consequences on the POT negotiated for the Archive Project.

· Category 2: data modification, or data error detected after the initial validation.
6.1 POT modification
The dictionary may evolve during the Producer-Archive Project.
Each modification on a Descriptor Model may impact the existing Descriptor instances and the future ones.

Each modification on a Descriptor instance may impact the POT and the tools using the POT.

In each case, the impact on the existing instances and the POT on the one hand, on the POT and dictionary tools on the other hand, should be analyzed (list not exhaustive):
· Impact on the data to be delivered.
· Technical impact on the current functions and tools.

· Suppression of objects already delivered.

· Possible re-negotiation of the Submission Agreement.

Here are the possible POT modifications:
1 Dictionary modification by the addition of a new Descriptor Model, and addition of new instances associated with this new Model: a possible impact is the creation of a new SIP Model (or the modification of an existing one). This implies:
· Dictionary update.
· List of Descriptor types and SIP templates update.
· POT update and visualisation update (new descriptor_ID and new type of information), POT validation.
· The new attributes are inserted in the different system functions (Formal Definition Phase, Transfer and Validation Phases).

2 Dictionary modification by the modification of an existing Model: this may impact the existing instances of this Descriptor, and thus may imply a new version of these instances:
· Update of existing Descriptor instances (and existing links) by using the Descriptor Model “version” element. The descriptor_ID and the links towards it remain unchanged
.
3 No dictionary modification, addition of a new instance of an existing Descriptor Model: same as case 1.
4 No dictionary modification, modification of an existing instance : same as case 2.
6.2 Object modification

The Producer indicates the transfer of an object already transferred and validated by the element « updated » in the Manifest of the SIP. The reception and validation process remains the same. The processing of the follow-up indicators will be different because the object has already be counted in a previous delivery.
We assume that the new object replaces the older one (all the links towards this object remain the same).

It’s up to the Archive to decide to keep a backup of the versions of the objects already delivered.

7. TOOLS

The Producer and the Archive should identify the needs for tools at the outset and should evaluate development efforts if the tools have to be developed or adapted.

The implementation suggested in this document, is based on XML Schemas. The practical use of this implementation by an Archive Project involves setting up a certain number of tools for this implementation.
The list given below is not exhaustive.
The Formal Definition Phase:

· Tool for creating specialised dictionaries from the generic Models proposed (a tool such as XML Spy can be used to specialise an XML Schema).
· Tool for generating Descriptor instances. For the information acquisition, it is possible to use forms generating XML files from the initial XML Schemas. This acquisition should be done by different persons and in several times.

· Tool for creating and validating the POT. The tool should :

1. Create the POT from the dictionary (Descriptor Models). To do this, the information contained in the instances are inserted in an ingest base. This base will provide a complete view on the nodes of the POT and the links between these nodes.

2. Validate the POT by checking the coherence between all the described elements (identifiers, links, …).

3. The previous tool should be completed to produce a graphic and written representation of the POT which can be understood by the Producer and the Archive. This representation will be useful to facilitate the dialog between the Archive and the Producer. This representation will also be used for the follow-up of the Transfer Phase.

The Transfer Phase:
· Tool for generating SIP instances (for the moment we are waiting for a prototype to create XFDU instances):
· Software generation when there are many instances.
· Generation by forms for the other cases.
· Tool for the transfer validation and management. The tool should:
1. Validate the content of each received SIP according to the initial validation plan (object expected and conforms to the associated Descriptor).
2. Check the order of SIP arrival respects the sequencing constraints.
3. Monitoring project progress for the Producer and for the Archive, taking into account: the management of the log of deliveries, the update of the follow-up indicators.
4. Propose a follow-up graphical view by using, if possible, the POT graphical view. This view should be shared by the Producer and the Archive.

ANNEX A

(This annex is part of the Recommendation)

A.1 generic Descriptor Model
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="descriptor">

<xs:annotation>

<xs:documentation>Root element</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="identification">

<xs:annotation>

<xs:documentation>Descriptor identification</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="descriptor_type" type="xs:string">

<xs:annotation>

<xs:documentation>Defines the type of object described by this DESCRIPTOR: constant for a given type of DESCRIPTOR.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="descriptor_ID" type="xs:string">

<xs:annotation>

<xs:documentation>Descriptor Identifier, used to identify the nodes in the POT. This ID is used in the associated XFDU to refer to the Descriptor.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="object_occurrence" type="xs:string">

<xs:annotation>

<xs:documentation>The described object can be unique, or can represent a set of objects having the same characteristics</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="version" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="content_description">

<xs:annotation>

<xs:documentation>Information part of the Data</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="title" type="xs:string">

<xs:annotation>

<xs:documentation>Object title to give the user an idea of the Descriptor content (extensive name of the Object)</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="content" type="xs:string">

<xs:annotation>

<xs:documentation>Textual description of the Descriptor content and its principal characteristics</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="size" type="xs:string" minOccurs="0">

<xs:annotation>

<xs:documentation>Estimated size of the Data Objects</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="other" type="xs:anyType" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="relation">

<xs:annotation>

<xs:documentation>Relationships within the POT</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="parent_collection" type="xs:string">

<xs:annotation>

<xs:documentation>Location in the POT: Parent Collection Identifier </xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="association" minOccurs="0">

<xs:annotation>

<xs:documentation>Relationships between Objects</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element name="related_descriptor_ID" type="xs:string">

<xs:annotation>

<xs:documentation>Identifier of the Descriptor which the object in question describes</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="relation_with_DO" type="xs:string" minOccurs="0">

<xs:annotation>

<xs:documentation>Description of the relationship with the Data Object</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="content" minOccurs="0">

<xs:annotation>

<xs:documentation>Description of the actual Digital Objects described by this Descriptor. This is linked with what has to be transferred by the SIP</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element name="content_ID" type="xs:string" minOccurs="0">

<xs:annotation>

<xs:documentation>Logical Identifier for the described unit</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="data" minOccurs="0">

<xs:annotation>

<xs:documentation>Data section</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="data_ID" type="xs:string">

<xs:annotation>

<xs:documentation>Logical Identifier for the described Data Object</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="data_content" type="xs:string" minOccurs="0">

<xs:annotation>

<xs:documentation>Textual description of the Data Object and its principal characteristics</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="data_format" type="xs:string" minOccurs="0">

<xs:annotation>

<xs:documentation>Data Object type: binary ...</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="metadata" minOccurs="0">

<xs:annotation>

<xs:documentation>Metadata section</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="metadata_ID" type="xs:string">

<xs:annotation>

<xs:documentation>Logical Identifier of the described Metadata Object</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="metadata_content" type="xs:string" minOccurs="0">

<xs:annotation>

<xs:documentation>Textual description of the Metadata Object and its principal characteristics</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="metadata_format" type="xs:string" minOccurs="0">

<xs:annotation>

<xs:documentation>Enumerated list (DIF, SPASE, DUBLIN_CORE, EAD, ISO_19115, etc.). Used to specify the metadata standard to be applied</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="metadata_schema" type="xs:string" minOccurs="0">

<xs:annotation>

<xs:documentation>Name of the associated Schema</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="any" type="xs:anyType" minOccurs="0">

<xs:annotation>

<xs:documentation>Optional (set of) attribute(s)</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="sip_template_ID" type="xs:string">

<xs:annotation>

<xs:documentation>Identifier of the XFDU template used to transfer the Data and Metadata of this Descriptor. No template ("None") if no information has to be transferred.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>
</xs:schema>
(This annex is part of the Recommendation)

A.2 generic sip Model

This part will be completed later according to the XFDU standard with the SIP needs.

ANNEX B : INFORMATIVE REFERENCES

(This annex is not part of the Recommendation)

This annex provides a list of references that may be valuable to the user of this Recommendation as background material or to provide implementation guidelines for using this Recommendation.

[B1]
Data Entity Dictionary Specification Language (DEDSL)—Abstract Syntax (CCSD0011). Recommendation for Space Data System Standards, CCSDS 647.1-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS, June 2001.

[B2]
Data Entity Dictionary Specification Language (DEDSL)— XML/DTD Syntax

 (CCSD0013). Recommendation for Space Data System Standards, CCSDS 647.3-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS, January 2002.

[B3]
The Data Description Language EAST Specification—

 (CCSD0010). Recommendation for Space Data System Standards, CCSDS 644.0-B-2. Blue Book. Issue 2. Washington, D.C.: CCSDS, November 2000.

� The sub-phases « Delivery schedule, Definition of Transfer Conditions, Validation Definition » of the Formal Definition Pahse are not detailed in this document.

� These steps can be grouped. In this case, the Archive sends an acknowledgement for the SIP reception and validation as soon as the initial validations have been performed (or an anomaly message).

� However, a single SIP may contain several Objects described by different Descriptors.

� The SIP Model is an XML file issued from the generic XML schema.

�If no tool is available to instantiate the Descriptors, it is always possible to generate a conform template from a Descriptor, and to fill it with a text editor.

�If no already taken into account by the XFDU itself.

� To do this use a tool such as “Schematron” (it is necessary to insert instructions in the source code to perform test with this tool).

� Another solution is to change the descriptor_ID value. It is then considered as a new object (case 1).

PAGE
CCSDS 647.0-R-1.0
 II
14 November 1996

