CCSDS RECOMMENDATION FOR PROXIMITY-1 SPACE LINK PROTOCOL

[image: image1.wmf]
RECOMMENDATION FOR SPACE

DATA SYSTEM STANDARDS

	SM&C Common Services

CCSDS [draft 0.3]

RED BOOK

August 2005
[image: image2.wmf]
AUTHORITY

	

	
	Issue:
	
	

	
	Date:
	
	

	
	Location:
	
	

	

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS Recommendations is detailed in Procedures Manual for the Consultative Committee for Space Data Systems, and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the address below.

This document is published and maintained by:

CCSDS Secretariat

Office of Space Communication (Code M-3)

National Aeronautics and Space Administration

Washington, DC 20546, USA

Statement of Intent
The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of member space Agencies. The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed Recommendations and are not considered binding on any Agency.

This Recommendation is issued by, and represents the consensus of, the CCSDS Plenary body. Agency endorsement of this Recommendation is entirely voluntary. Endorsement, however, indicates the following understandings:

· Whenever an Agency establishes a CCSDS-related standard, this standard will be in accord with the relevant Recommendation. Establishing such a standard does not preclude other provisions which an Agency may develop.

· Whenever an Agency establishes a CCSDS-related standard, the Agency will provide other CCSDS member Agencies with the following information:

· The standard itself.

· The anticipated date of initial operational capability.

· The anticipated duration of operational service.

· Specific service arrangements are made via memoranda of agreement. Neither this Recommendation nor any ensuing standard is a substitute for a memorandum of agreement.

No later than five years from its date of issuance, this Recommendation will be reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect the impact of new technologies, new requirements, or new directions; or, (3) be retired or cancelled.

In those instances when a new version of a Recommendation is issued, existing CCSDS-related Agency standards and implementations are not negated or deemed to be non-CCSDS compatible. It is the responsibility of each Agency to determine when such standards or implementations are to be modified. Each Agency is, however, strongly encouraged to direct planning for its new standards and implementations towards the later version of the Recommendation.

FOREWORD

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Recommendation is therefore subject to CCSDS document management and change control procedures which are defined in the Procedures Manual for the Consultative Committee for Space Data Systems. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· British National Space Centre (BNSC)/United Kingdom.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency(JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

· Russian Space Agency (RSA)/Russian Federation.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· Centro Tecnico Aeroespacial (CTA)/Brazil.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· Communications Research Laboratory (CRL)/Japan.

· Danish Space Research Institute (DSRI)/Denmark.

· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Federal Science Policy Office (FSPO)/Belgium.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space and Astronautical Science (ISAS)/Japan.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

· Korea Aerospace Research Institute (KARI)/Korea.

· Ministry of Communications (MOC)/Israel.

· National Oceanic & Atmospheric Administration (NOAA)/USA.

· National Space Program Office (NSPO)/Taipei.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· United States Geological Survey (USGS)/USA.

DOCUMENT CONTROL

	Document
	Title and Issue
	Date
	Status

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

CONTENTS

Section
Page

1-11
Introduction

1.1
Purpose and Scope
1-1
1.2
Document structure
1-1
1.3
Nomenclature
1-2
1.4
Normative references
1-2
1.5
Definition of Terms
1-2
1.6
Definition of Acronyms
1-2
2
Service COncept
2-4
2.1
Overview
2-4
2.2
Service Directory
2-5
2.3
Service Configuration Data Interfaces
2-6
2.4
Service Information Model
2-6
2.5
Service Layering
2-10
2.6
Multiplicity within the Service Interface
2-11
2.7
Common Patterns of Interaction
2-11
2.8
Concepts Definition
2-15
3
Service CONTEXT
3-20
3.1
Overview
3-20
3.2
Active
3-20
3.3
HistorY
3-21
3.4
Configuration
3-22
3.5
Service DIRECTORY
3-23
4
Service Use Cases
4-24
4.1
Active
4-25
4.2
History
4-29
4.3
Configuration
4-37
4.4
Directory
4-38
5
Service Specification
5-41
5.1
Generic Model
5-41
5.2
Generic Service
5-46
5.3
Active
5-53
5.4
Login
5-54
5.5
History
5-56
5.6
Configuration
5-59
5.7
Directory
5-60

Figure

2-4Figure 2‑1 : Generic Service Model

Figure 2‑2 : Service Directory Concept
2-5
Figure 2‑3 : Information Model for a Mission Operations Service Object
2-6
Figure 2‑4 : Service Layering
2-10
Figure 2‑5 : Operations Pattern
2-12
Figure 2‑6 : Operator Interaction Pattern
2-14
Figure 4‑1 : Basic Use Cases
4-24
Figure 4‑2 : Active Use Cases
4-25
Figure 4‑3 : Retrieval
4-29
Figure 4‑4 : Replay Control
4-30
Figure 4‑5 : History Management
4-34
Figure 4‑6 : Configuration
4-37
Figure 4‑7 : Directory
4-38
Figure 5‑1 : Common Model
5-41
Figure 5‑2 : Element
5-42
Figure 5‑3 : Attributes
5-44
Figure 5‑4 : Generic Services
5-46
Figure 5‑5 : Service Data Units
5-49
Figure 5‑6 : Events
5-51
Figure 5‑7 : Subscriptions
5-52
Figure 5‑8 : Selection Criteria
5-57

Table

3-20Table 3‑1 : Common Service functional areas

1 Introduction
This Recommendation defines the Spacecraft Monitor and Control (SM&C) Common service in conformance with the service framework specified in reference [1], Mission Operations Services Concept.

The SM&C Common service is a service that provides a common service pattern and support facilities to the Mission Operation services defined in reference [1]. These Mission Operations services will be implemented in terms of the common layer and exposed common services provided by the SM&C Common service.
1.1 Purpose and Scope

This Recommendation defines, in an abstract manner, the SM&C Common service in terms of:

a) the operations necessary to provide the service;

b) the parameter data associated with each operation;

c) the behaviours that result from the invocation of each operation

d) the relationship between, and the valid sequence of, the operations and resulting behaviours.

It does not specify:

a) individual implementations or products;

b) the implementation of entities or interfaces within real systems;

c) the methods or technologies required for communications;

1.2 Document structure

This Recommendation is organised as follows:

a) section 1 provides purpose and scope, and lists definitions, nomenclature, conventions, and references used throughout the Recommendation;

b) section 2 presents an overview of the service concept, the service management context, and protocol considerations and also defines key service concepts;

c) section 3 specifies the functional capabilities of the service;
d) section 4 specifies the operations, information model, and the dynamic behaviour of the service in terms of the state transitions of the service provider;

e) section 5 is a formal specification of the service data types.
1.3 Nomenclature
The use of the Unified Modelling Language (UML) in this recommendation allows the service to be defined using standard diagrams.
The service capability sets are defined initially using UML Use Case diagrams as this shows the service from the service consumer point of view. It allows the service to be defined in terms of the requirements of the service consumer.

The information model of the service is defined using UML data diagrams.
The behaviour aspect of the service model is shown using state, sequence and other UML behaviour views.
1.4 Normative references

The following documents are referenced in the text of this Recommendation. At the time of publication, the editions indicated were valid. All documents are subject to revision, and users of this Recommendation are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS Recommendations.

[1] Mission Operations Services Concept Green Book. CCSDS Mission Operations and Information Management Systems Working Group. Issue 1, November 2004.

1.5 Definition of Terms

Controller

Interaction pattern where a service consumer invokes control operations on the service provider.
Manager

Interaction pattern where a service consumer invokes operations on the service provider to modify its behaviour in a non persistent manner.
Observer

Interaction pattern where a service consumer observes values.
Service Data Unit
An amount of information whose identity is preserved when transferred between peer entities in a given layer and which is not interpreted by the supporting entities in that layer.

1.6 Definition of Acronyms

API
Application Programmers’ Interface [implementation of SAP]

CFDP
CCSDS File Delivery Protocol

FDS
Flight Dynamics System

MC
CCSDS Core Monitoring and Control Service

MCS
Mission Control System

MDA
OMG Model Driven Architecture

OMG
Object Management Group

SDU
Service Data Unit

SOA
Service Oriented Architecture

UML
OMG Unified Modelling Language

2 Service COncept
2.1 Overview
The SM&C Common services build upon the layering concept outlined in the Mission Operations Services Concept [1]. The SM&C Common services are designed to exploit the SM&C Protocol but it will also be possible to deploy them over other protocols.

The services given in document R[1] are based on a generic service model. The generic service model includes the configuration data and history associated with the service, as well as the primary service interface:
[image: image3.emf]Service Layer

Service

Consumer

Service Editor

Configuration Maintenance

Configuration Interrogation History Population

History Observation Configuration Interrogation

Service

Configuration

Service

History

Service

Provider

Service Invocation

Figure 2‑1 : Generic Service Model
All MOIMS application level or mission operations services share a common service structure. This is illustrated in the figure above.

A key concept is the integration, within the service layer, of all aspects of the information that flows across the service interface:

· Configuration data
· Run-time Interaction
· Historical data
The model comprises five main elements:

· The Service Provider is responsible for supporting the service functions.

· The Service Consumer is a user of the service functions, and is typically either a Human-Computer Interface, or another software application.

· The Service Configuration Database specifies the objects and operations that exist for a specific instance of the service interface. This must be available to both Service Provider and Service Consumer if they are to communicate effectively; however for simple services this may be implicit for one component if the configuration is hard-coded into it.

· The Service History Archive maintains persistent storage of service events, such that a Service Consumer can retrieve historical information for the service.

· Finally, a Service Editor enables configuration of the Service Configuration Database for a given instance of the service.

The service specification does not define the actual implementation of any of these five collaborating elements. It confines itself to definition of the high-level service layer that binds them together. This is represented in the diagram by the blue shaded area and the blue arrows within it.

2.2 Service Directory

The service directory is an entity that provides publish and lookup facilities to service providers and consumers. Strictly speaking a directory is not required if a well known service is to be used, however in most circumstances a directory provides required flexibility in the location of services. The service directory component is in itself a service by definition as it implements the service pattern given above.
[image: image4.emf]Service consumer Service provider

Service directory

Publish Lookup

Invoke

Figure 2‑2 : Service Directory Concept
A directory service is required by all service providers and consumers to enable service availability to be published by the provider, and (initial) service discovery by the consumer.

Where services are per domain (and optionally session as well) it is necessary the service directory has the ability to discriminate services by session, domain, zone, version and capability set, discussed later.

2.3 Service Configuration Data Interfaces

The service configuration data itself must conform to a standard schema that reflects the information model for the service.

Service configuration data may also contain references to the configuration data for other related services (e.g. a command definition may reference parameters or alerts). To ensure services remain as generic as possible and therefore the scope for their use in varied contexts remains high, it is desirable that any foreign objects referenced should not be explicitly defined by the schema but rather should be open to the inclusion of any foreign object reference.

The service configuration data interfaces relate to how service configuration data is made available to service providers and consumers. This may include both the release of specific configuration data versions for use in conjunction with active service interfaces, and access to the library of versions for use in conjunction with historical data interfaces.

2.4 Service Information Model

[image: image5.wmf]Operations Execution

Service Status Data

Object Identity

1

1

Object Definition

Concurrent Sessions

(Live + Simulated + Replay)

1

1

Object Status

Update

E

Operation

O

1

n

Object Occurrence

Instantiate

O

Present

Operations Analysis

Service History

Historical Sessions

Object Identity

1

n

1

n

Object Definition

Object Status

Past

Status

Update

Event

Definition

Update

Event

E

E

1

n

Object Occurrence

Instantiation

Event

E

Operations Analysis

Service History

Historical Sessions

Object Identity

1

n

1

n

Object Definition

Object Status

Past

Status

Update

Event

Definition

Update

Event

E

E

1

n

Object Occurrence

Instantiation

Event

E

Replay

E

Replay

E

Replay

E

Replay

E

Replay

E

Replay

E

Operations Preparation

Service Configuration Data

Object Identity

1

n

1

Object Definition

Version

Version Series

Install

Edit

Save

Validate

Future

1

Operations Preparation

Service Configuration Data

Object Identity

1

n

1

Object Definition

Version

Version Series

Install

Edit

Save

Validate

Future

1

Retrieve

E

E

E

Retrieve

E

E

E

Retrieve

E

E

E

Retrieve

E

E

E

Retrieve

E

E

E

Retrieve

E

E

E

Figure 2‑3 : Information Model for a Mission Operations Service Object

The service interface is based on a common information model shared by all collaborating elements in the service layer. This defines:

· the information objects that exist across the service interface

· the operations
[image: image6] that can be performed on those objects

· the events
[image: image7], or messages, that report the current status of those objects. Taking the example of a generic service (illustrated in Figure 2‑3) the service specification defines what objects looks like, and includes:

· the unique identity
· static definition information [or characteristics], such as (for an action) its name, description, pre-transmission check conditions, etc.
· dynamic occurrence information, such as (for an action) argument values, release time, calibrations used at that time, etc.
· dynamic status information, such as (for an action) its current execution status, etc.
For objects such as parameters, which are fully defined in the service configuration data, there is a one to one relationship between its definition and occurrence as it contains no additional information and can be merged into the definition. In other words, there is only one occurrence per definition, and this single occurrence may have many status updates (new parameter values).
Operations Preparation

For a given deployment of the service (e.g. for a specific spacecraft), it is necessary to define the set of objects [parameters, actions, etc.] that exist and their static characteristics: the object identities and definitions. This is the service configuration data for the associated service instance. This service “database” is typically maintained using an editor forming part of the operations preparation function. This is the service editor for the service. Service configuration data is maintained under configuration control, and each version will contain a set of object definitions. For an individual object, however, the same definition may apply in multiple versions.

The service configuration data itself must conform to a standard schema that reflects the information model for the service. Service configuration data may also contain references to the configuration data for other related services (e.g. a procedure definition may reference parameters or actions). However, to ensure the maximum possible encapsulation of services and scope for their application in varied contexts, it is desirable that the foreign object types referenced should not be explicitly defined by the schema: but rather should be open to the inclusion of any foreign object reference.

Operations Execution

To support operations execution, a version of the database is distributed and installed within the MCS.

The service also defines the events that report parameter status to a service consumer, and the operations that can be performed on parameters [set value or other attribute]. Parameter provider and consumer functions will then hold both the current definition and current status of parameters. Note that the effect of an operation is reported as an event, such that it can be observed by all consumers.
Where real and simulated data exist concurrently, these are partitioned into different sessions to avoid confusion between them. Each concurrent session has its own definition and status for each parameter.

Operations History

In addition to being passed across the active service interface, the same events that report object instantiation and status to a service consumer, should be available for subsequent retrieval from history. This allows the same or similar applications to work with both live and historical data.

The most coherent way of ensuring that history is correctly correlated to changes in the installed service configuration data, is also to store object definition change events in history.

History is also partitioned into sessions (of which there may be many more than can be concurrently active). Sessions distinguish between real world domains and simulated domains. They provide a way of distinguishing ‘alternative universes’.

There are two types of interactive session possible; ‘real’ and ‘simulated’. The two session types are very similar except that more than one simulated session may apply to the same domain at any time, and there is a requirement to be able to centrally alter the time for a simulated domain.

This leads to a logical model of history, which is structured as a tree of events:

Session > Object Identity > Object Definition > Object Occurrence > Object Status
History can be accessed in two main ways:

Retrieval
A block of events relating covering a period of time is extracted in a single transaction.

Replay
Discrete events are forwarded dynamically to the consumer in accordance with an evolving timeframe.

This basic approach to the information model for service objects can be applied to the information objects associated with each of the services. These will, however, introduce additional issues:

· Statically instantiated objects, such as Parameters do not require an explicit occurrence as they are fully defined by the object definition. This layer of the model is either null or omitted entirely.
· Complex information, such as operations procedures and schedules may themselves comprise a hierarchy of different types of object. For example, a schedule may contain predicted events, planned contacts and planned operational tasks that are themselves broken down into a set of individually schedulable activities.

Schedule > Event|Contact|Task > Activity

Each of Event, Contact, Task and Activity has the same structure as a dynamically instantiated object – with definition, occureence and status.

If this approach is adopted systematically, although each mission operations service will have its own specific information classes, it can be seen that a common infrastructure can be devised for:

· Managing the Static Definitions of those objects (the service configuration data)

· Storing and Retrieving the Operational History of those objects (the service history)

This data handling infrastructure could be applied to all services that follow the same basic information model. If new services are defined that meet the same information model, then they can use the same infrastructure. Applications can also be developed that use multiple services with ease.

A historical data replay session could also apply to multiple services and multiple consumers, allowing integrated and synchronised replay of data (parameter, command and automation history) to provide a complete picture of what was occurring at a point in time.

2.5 Service Layering

[image: image8.emf]Mission Operations Services

Common Services

Consumer Application

Infrastructure/Middleware Services

Communications Services

(CCSDS SLS Packet TM/TC; CCSDS SIS SCPS, CFDP; Internet TCP/IP, FTP)

Provider Application

Message Transfer

Publish/Subscribe; Request/Response

File Transfer Mail

Figure 2‑4 : Service Layering
The concept of a Common Services layer has already been introduced in section 2.1. The figure above elaborates this in the specific context of the Mission Operations Services.

The individual services listed in R[1] are overlaid over a common services layer that provides a common infrastructure supporting all or multiple services.

The common layer will provide support for the following:

· Common Mechanisms such as the Service Directory

· Common Interaction Patterns that isolate underlying Infrastructure/Middleware Services, including those for Message Exchange, File Transfer and Mail

· Common Concepts, such as domain and session
It is also anticipated that the Common Layer will provide explicit support for generic service interfaces identified as part of the generic service structure, and elaborated as common interaction patterns for multiple services (see 2.7 below).

A benefit of implementing multiple services over a smaller set of common services is that it is easier to bind these to different underlying technologies for the implementation of the communications layers of the protocol stack. All that is required is an “adapter” layer between the common service and the underlying protocol to enable all services over that technology. Hence the same service can be implemented over ground-based network technologies and middleware, or it could even be carried across the space link itself.

The services themselves provide the “plug-and-play” interface for applications, allowing them to be integrated and deployed wherever is appropriate for the mission.
2.6 Multiplicity within the Service Interface

It should be noted, that in a real-world deployment of a service there may be many service instances, many service providers and many service consumers.

Typically service instances will be partitioned according to some form of service domain hierarchy, and a separate service configuration database will be maintained and configuration controlled per domain.

A service provider supports one or more service instances, however it is also possible that another service provider supports the same service instances (e.g. for redundancy). A single service instance or provider can have many associated service consumers – for example many operators could wish to display data from the same domain. Conversely, a single service consumer may be associated with multiple service instances, potentially from multiple service providers – for example an overall mission timeline may require data from multiple domains.

The service definition therefore needs to address the multiplicity of service instances within its design to allow such deployments. Each service provider instance will be registered with the service directory with its session, domain and zone.
2.7 Common Patterns of Interaction

A generic structure for all services has been introduced in the previous section. Analysis of these services shows that there are a limited number of common patterns of interaction that can be applied to all currently identified services.

These common patterns of interaction address the active service and historical data interfaces in greater detail, and will allow more service capabilities to be provided within the common layer.

The following patterns are currently identified, and detailed in the following subsections:

· Operations
· Operator Interaction

Note: A further pattern of Product Distribution has been identified but no mission operation service currently defined utilise it so it is not detailed here.
2.7.1 operations Pattern

[image: image9.wmf]Service Layer

Service Provider

Service Consumer

Observe

Control

Manage

Archive

Service

History

Archive

Retrieve

Replay Control

Replay (Observe)

Service

Configuration

Database

M

C

Figure 2‑5 : Operations Pattern
The figure shows the constituent service interfaces: active service interfaces are shown in red; service history interfaces in blue. The diamonds represent service events and the hexagons service directives.

Active Service Interfaces

The active service interface can be divided into three components:

· Observe Interface

· Control Interface

· Manage Interface

An Observe interface supports the provision of status information to any service consumer, but does not impact the basic operation of the service provider. This is achieved through a flow of status update events
[image: image10] relating to the service interface objects.

For example, a consumer of the MC Parameter service will first subscribe to a set of parameters. It will then receive a flow of parameter status update events, relating to the subscribed set of parameters.

It can be regarded as a “read only” interface. Many service consumers can observe the same information at the same time: a common implementation pattern is that of publish-subscribe. Note that the impact of operations performed through Controller and possibly Manager interfaces will be visible through the Observer interface.

A Control interface supports the initiation by a service consumer of directives
[image: image11] that are supported by the service provider.

For example, a consumer of the MC Parameter service may set the value of a parameter. A consumer of the MC Action service can invoke an Action (e.g. send a telecommand).

Controller interfaces are typically one-to-one, and the number of concurrent controller interfaces may be restricted by the service provider: a common implementation pattern is that of request-response. The response may return the result of the operation or, where a new instance of an object (e.g. an Action/Command) has been created, the identity of the object created.

A Manage interface typically concerns run-time configuration of the service provision affecting the on-going behaviour of the service provider, also achieved as directives
[image: image12].

An example for the MC Parameter service would be to disable parameter validity checking for one or all parameters.

These may be regarded as specialist extensions of the Control interface that are either not required or only infrequently required by most service consumers.

Service History Interfaces

The service history interfaces allow access to historical data. In principle, it should be possible to access all events
[image: image13] that could have been observed live, via the Observe interface.

In principle, the service history itself comprises an archive of all the observable events, logged at run-time by the Service Provider. However, alternative implementations that require re-processing of lower level protocol history on demand to regenerate the events are also possible.

Two distinct methods of historical data retrieval are available to the service consumer:

· Active Replay: reconstruction of the Observe interface for a historical time period, with dynamic replay of a sequence of discrete events
[image: image14].

· Bulk Retrieval: retrieval of a range of service history events
[image: image15] [potentially meeting specified filter criteria] as a single retrieval action. A variation on this is to allow data to be retrieved in successive blocks or pages.

Active Replay supports applications, such as status displays (ANDs and Mimics), that have a historical replay view.

Bulk Retrieval supports off-line applications, such as Performance Evaluation and Analysis, and also status displays that show a historical trend or log view (Graphical and Command History displays).

Active replay is supported by a Replay Control interface, coupled with a historical copy of the Observe interface.

Bulk retrieval works in a transactional way, with a request being followed by the transfer of a block of retrieved data in a report.

Within history, it is noted that it may be necessary to partition data according to the historical session within which it was recorded. When the service history relates to real, live data this is not a significant issue, but in a test or simulation context it is possible to have parallel histories relating to the same entity, for the same time period.
This session concept can also be applied to the active service interfaces in situations where live, simulated and historical data can co-exist. A service consumer will be able to replay any provided session. Note that it is the intention that multiple displays can be associated with the same Replay of a session, such that replay can be co-ordinated across multiple data sources (e.g. parameter, command and automation history).
2.7.2 Operator Interaction Pattern

[image: image16.wmf]Service Layer

Service Provider

Service Consumer

Observe

Interact

Manage

M

I

Operator

Login

Figure 2‑6 : Operator Interaction Pattern
Operator Interaction is a specialisation of the Operations pattern. This is illustrated in the figure above, which omits configuration and history interfaces for clarity.

The additional interfaces are the Login mechanism by which the Operator registers him or herself to the Service Provider and is assigned a particular role. This allows the Service Provider to route interactions to the appropriate Operator, on the basis of pre-assigned privileges and operational responsibilities allocated at run-time.

The Service Consumer (typically an automated application that needs to seek a decision or authorisation from a human Operator), raises an Interaction with the Service Provider. This is the equivalent of a Control interface, with the exception that the interaction operation is routed to the appropriate Operator, who subsequently provides a response.

It is anticipated that multiple types of Interaction may be supported, e.g.

· Notification Messages [no response required]

· Acknowledgement Messages/Alarms [acknowledgement required]

· Query [value input required]

· Selection [choice from option list required]

Different categories of notification may also be supported: e.g. alarm, page, etc.

In principle, Interactions and their Responses can be reported as events that can be reported to a passive observer, e.g. for display purposes, and recorded in an Interaction log for subsequent retrieval. This is equivalent to the basic Observe-Control-Manage pattern.

2.8 Concepts Definition

2.8.1 Session and Replay
For a given service function it may be possible to observe both current [live] data and also [initiated via a historical data replay service] data replayed from stored history. In a given system it may be possible to observe both live and historical data in parallel. It may also be possible to observe data originating from a simulator or test configuration in parallel to that originating from the live operational system.

The entities being controlled in the real, simulated or test cases (and monitored in both these and historical replay cases) are the same. In order to distinguish these parallel operational scenarios, it is necessary to partition data by operational session. While partitioning can be achieved physically, in a distributed network environment it is preferable that operational services are defined in such a way that session is explicit to avoid any possibility of confusion, and to enable data to be combined in a single system.
The data delivery of a session has two aspects, the epoch and the rate. Services are expected to operate at the correct rate for real operations using the current epoch, however a simulation might be able to use a different epoch. Replay of a session may be run at a faster or slower rate than real-time. For example, a replay of the real-session’s history at a slower speeds than originally received. In the context of this document, the term session is used to refer to a coherent data source, relating to:

1) The Operational System subject to monitor and control
2) The Operational System in Test Configuration

3) A Simulation of the Operational System

It is noted that multiple sessions may exist in parallel (particularly for cases 3 with 1).
2.8.2 Domain

A service does not always simply relate to the control of a single spacecraft. Many existing space agencies and missions require the control of multiple remote assets [spacecraft fleets and constellations, ground stations, etc.].

In order to ensure that unique referencing of operational entities and data items is possible, the concept of a hierarchy of system components or operational domains is required. This is used to scope the frame of reference of monitoring and control [e.g. agency>mission>satellite>subsystem]. It provides a framework for the control of namespaces for operational data, such as telemetry monitoring parameters (Status information) and actions.

Hence actions are represented with a full referential context. Action C1234 “Heater C On” becomes:

AgencyY.MissionA.SatB.C1234 or even AgencyY.MissionA.SatB.HeaterC.ON

which cannot inadvertently be sent to AgencyY.MissionX.SatY and executed.

Within a specific detailed operation, the domain may be contextually implicit to allow generic [multi-domain] operations to be defined and to ensure that the specification of operations is not unduly verbose.
The support for multi-domain facilities is not a mandatory aspect of the service specification. It should be noted that the services are designed to cover single domain infrastructures as well as multi-domain.
2.8.3 Security and Access Control

To ensure that only authorised operational clients have access to service functions, it is critical that some form of client authentication is an integral part of the service definition. To avoid the need for a client to support multiple authentication methods, it is highly desirable that all service capabilities use the same mechanism and that client authentication is only required once per client “login” even if multiple services are used.

It is expected that the concept of roles and associated privileges would also be required where the operations of the services would require a certain privilege or role to be held by the operator. In multi-user environments there is often the support for privilege transfer and this should also be taken into consideration. The roles and privileges would be associated with a domain/session/service such that it would be possible to allocate different privileges for a user per domain/session/service. For example, an operator may have privileges for full access on simulated sessions but limited access for real sessions and for only specific domains and only specific services in those domains. This information would be a configuration controlled aspect of the system.

Where services are supported over open or public communications paths, then a level of security is required to avoid unauthorised access or intrusion. Services must be defined in such a way as to allow them to make use of secure communications channels. These security services are expected to adhere to the recommendations made by the SEA Security Working Group.

It is not part of this specification to detail any applicable security methods or standards, however it is expected that the common service shall support a generic security and authorisation concept that allows the appropriate mechanism to be used. This concept is similar to the common layer hiding the transport protocol used.
2.8.4 Operational Responsibility

The concept of operational responsibility supports the notion of nominated user [or operator] roles with responsibility to deal with asynchronous decision points, alarms or failure conditions. An asynchronous decision point is when a component of the system requires some input from a user/operator that is not as a result of an action of the user/operator; for example confirmation of a critical automated action. This is the interaction service pattern.
Where an automated system function must asynchronously alert the responsible “user” to an issue that requires resolution, there is a need for a responsibility model that allows these interactions to be directed to the appropriate user. The mechanism would not define the set of responsibilities associated with user roles [that is a mission specific configuration issue], but provide a mechanism whereby it is possible to assign a responsibility to an asynchronous service message and have it routed appropriately.

It is also a need for the routing of these messages to have an appropriate fallback mechanism where an alternative route, operator, or action is taken if the required “user” is not present or subscribing to the messages in the system at that time.
2.8.5 Network Zone
Network Zone indicates to a consumer how ‘local’ a service provider is, and is distinct from domain. Domain does not specify physical location or network connectivity. There may sometimes be a coincidental mapping through practicality, but it is not universal.

All network traffic in a distributed system can be affected by a pipe-line delay and data link capacity. In the case of offline services service providers may be restricted by firewall access, link capacity and link latency. An everyday example is email collection over a dial-up modem to a remote and protected email server. The mail protocol will try to deliver mail regardless of the ability of the link to support the delivery.

In the case of a deep space mission the first line operations service providers (those in direct communication with the service target) are currently expected to be ground based. There is a variable and significant propagation delay and information capacity affecting the link between service provider and service target. Communication with the provider itself is unaffected, but may be in future as service providers migrate from ground to spacecraft.

For the purposes of service provision, a systems architecture can be physically modelled in terms of network zones. A service provider specifies which network zone it resides in. When looking up a service in the service directory, a service consumer can specify which zone is preferred. Typically, a service consumer might prefer or be configured to use a local provider i.e. one that resides in the same network zone as itself.

2.8.6 Quality of Service

Quality of Service relates to the provision of different levels of service or performance guarantee that an operational function or service may offer – issues that fall within this include:

· Prioritisation – methods by which support for service clients can be prioritised in order to guarantee control actions [e.g. commanding] for critical applications, or a minimum delay for monitoring data provision.

· Bandwidth Management

· Delivery Guarantee (time from generation to delivery for example)
· Error Management – retransmission etc.

A given service provider need not offer all QoS levels, or may provide a restricted set over restricted bandwidth communications paths. Means must be provided to determine available QoS levels and to negotiate for required levels of service during connection establishment it is expected that this QoS information will be presented via the Service Directory.
QoS properties are specific to the type of mission operations service provided. The common service provides a framework to allow mission operation service providers to inform their consumers about their QoS properties. The specific list of named properties to be communicated are to be defined by the mission operation service specifications. The values of these named properties for a service instance are to be provided by mission operation service providers at run-time.
2.8.7 Service Version
To enable the incremental improvement of services definitions and retain backward compatibility, any number of service versions may be available according to application.

Additionally, the provided implementation version, test and proving status is as important as the service definition version a service orientated architecture. Two different implementations by alternative software providers may have differing performance, and one may be preferred over the other.

Established systems require full knowledge of the expected behaviour when a service request is made, and this includes being able to identify what service is provided and by whom. This leads to a requirement for the following service attributes:

· Service Version (having a service definition)

· Service Provider Implementation Identity (per service instance)

Together the two items allow a service consumer to know what scope and exact behaviour of the service will be.
2.8.8 Capability Sets

The service specification supports the concept of capability sets. These sets group related levels of possibly optional functionality together under a service.

A service implementation might only support the basic capability set or also some of the higher sets, if there is a dependence of one set on another then this will be given in the set prerequisites. However, it is expected that the capability set are usually independent of each other, only relying on the basic capability set.

It is also possible that a particular implementation only supports parts of a capability set, where certain aspects of that set are considered optional or it specifies several alternatives. In this case an implementation would have to provide a compliance profile.
3 Service CONTEXT
3.1 Overview
The Common Service is a generic service that provides a common interaction pattern and data model to be used by the Mission Operations Services. It is split into functional areas to provide a clear separate of purpose.
Table 3‑1 : Common Service functional areas
	Common area
	Functional Area

	Active
	Observe

	
	Manage

	
	Control

	
	Interact

	
	Login

	History
	History Management

	
	Replay Control

	
	Retrieve

	Configuration
	Configure

	
	Define

	Directory
	Directory

3.2 Active

Active data relates to the routine exchange of data across the service interface in near-real-time. The service provider is responsible for updating the service objects for which it is responsible as soon as possible. It is responsible for issuing events in real-time, as close to the time of the event as possible. The inevitable interval between the timestamp and the real time of issue will vary according to the efficiency of the event data processing. Where a ‘local’ service provider proxies a remote service provider, perhaps an onboard service, the interval will be affected by time-to-propagate property of the proxy’s link. In the case of controlling remote service target, the service consumer is expected to pre-empt the effects of the time-to-propagate between the local service provider and the service target.
Active is subdivided into five functional areas, each requiring a specific privilege to use. They are summarised as follows:

Observe provides the means for the service consumer to receive events as they are produced by the service provider by a process of registering interest in service objects managed by that provider. In addition to being able to receive active events, it can also receive replayed events – see Replay.

Manage provides the means for the service consumer to modify the active behaviour of the service instance such that it differs from its configured behaviour.
Control allows the service consumer to send directives to the service objects, thus affecting the behaviour of the service targets they represent.

Interact allows a service provider to prompt a logged-in operator of the space system for a response. It also allows the operator to provide a response.

Login allows a human user to become and certified operator of the space system with further usage privileges associated with their logged in role. Service consumer applications invoked by a logged-in operator adopt the privileges of that operator.
3.3 HistorY
Historical data principally relates to the persistence of M&C routine operations data, and applies equally to status monitoring, action invocation/verification and alert notifications. However, it is noted that historical data operations may also apply to observable data relating to other operational topics.
There are a number of different data retrieval scenarios that an M&C client function may use for history access, some are outlined below and their retrieval method is also given:

· Static Snapshot – in which the status at a given point in time is extracted from history. This is an example of bulk retrieval.
· Static Trend – in which all events (monitoring parameter, action or alert) relating to a time period are extracted from history and delivered to the client as a single archive product or block of data. This is an example of bulk retrieval.
· Historic Replay – in which historical events are retrieved and played back sequentially to the client. This is an example of active replay retrieval.
The delivery mechanism for replay is assumed to be common with “live” status delivery, but additional mechanisms are required for bulk delivery.

There are also a common set of representations for the data history. For the SM&C Common service one has been identified that covers all current Mission Operation Services:

· Tree format – Where a set of objects are associated with a set of time stamped occurrence that are associated with a set of time based status objects. This covers parameters, actions and alerts.

For example, the object is a specific action and the occurrences are the action instances with a creation time. The associated status events are the verification stage results with an associated timestamp.

3.3.1 Retrieval

This aspect of the history of the common service allows the requesting of bulk (or block) data retrieval of historical events using a selection criteria which includes a time range. The event data are prepared as a report. The format and packaging of the report is not specified by this recommendation but is specific to service implementation. The returned report is accompanied by the selection criteria used to extract it. The report may additionally include meta-information about events in the report.
Blocks of event data, delivered and packaged in this way are primarily intended to support offline analysis tools. Additionally, it is also intended that they may be used to subsequently re-store the events to a history archive that is missing them.

3.3.2 Replay Control
A retrieval request mechanism is required to initiate bulk retrievals, which essentially constitute a request-response transaction.

A more complex interaction is required to support replay control. As well as specifying the initial retrieval condition, the replay can be controlled in a similar way to a video player (play, pause, fast forward, rewind, single step, etc.).

Both bulk and replay retrievals may also be subject to the same selection or filtering methods as for live data delivery.

3.3.3 History Management

Archive management operations include:

· Configure the sub-set of observable data to be stored (e.g. enable/disable the storage of individual monitoring parameters or monitoring parameter groups)

· Report the content or catalogue of stored data

· Delete data from the historical store or configure its automatic deletion based on pre-defined retention times or sizes.

3.4 Configuration

This capability allows the common service consumers to reconfigure the behaviour of the service such than new service instances take new behaviour. Defining the configuration does not affect the behaviour of running service instances; that requires the active manage capability. A configuration always has a key attribute to identify it, and a container of one, or more associated attributes.
3.5 Service DIRECTORY
A service directory is required by mission operation services. In a layered architecture with mission operation services being underpinned by common services the following sequence of directory use may be seen:
1. Mission operation service provider publishes it’s service of a domain and session.

2. Mission operation service consumer “looks up” a service.

3. Mission operation service consumer interacts with service provider directly.

4. Mission operation service provider can reject interactions it cannot satisfy.

5. Mission operation service provider may withdraw any services it cannot satisfy.

4 Service Use Cases
The following section provides the use cases of the service specification. It should be noted that use case diagrams show the system being represented as a bounded box and external actors interacting with them. It is not a data flow diagram and as such request/response pairs would not be shown.

The first use case diagram shows the three basic messaging use cases, send Directive, Event and Report. The “actor” representing the common consumer is expected to be mission operations software, in either the mission operation service consumer or provider role. The actor representing the common system is the supporting implementation of the abstract common service, expected to be a combination of existing data processing and communication “middleware” such as CORBA, SOAP, FTP etc. The diagram shows packages for the capability sets, and their dependence upon the basic messaging use cases.

[image: image17.wmf]Common Control

Send Directive

Send Event

Send Report

Common Consumer

Common System

History

+ Control

+ Manage

Directory

+ Lookup Service

+ Publish Service

+ Withdraw Service

Active

+ Control

+ Interact

+ Login

+ Manage

+ Observe

Configuration

+ Define

+ Report Configuration

History requires Login

and Observe from

Active

Figure 4‑1 : Basic Use Cases
4.1 Active
As previously described, the Active capability set describes the near-real-time aspect of the common service. It is decomposed into the sub-aspects aligned with the normal service pattern: Observe, Control, Manage, Login and Interact.

[image: image18.wmf]Login

Interact

Control

Manage

Observe

Register Interest

Deregister Interest

Login

Manage

Logout

Raise

Update

Control

Common Consumer

Common System

Respond

Figure 4‑2 : Active Use Cases
	Name
	Observe::RegisterInterest

	Description
	Allows an unregistered observer to register or re-register themselves for SDUs from a service provider.

The interest name may be a specific session, domain, service instance or service object. As a service and service data have already an associated session and domain, there is not any need to supply session and domain if registering interest in an existing object.

Registration in session, domain or service implies registration in all service objects within the domain and session. .

This causes the interest to be added to an existing or new ObserverRegister.

	Pre conditions
	Not already registered with any if these interests

	Post conditions
	Registered with these interests

	Access restrictions
	None

	Message structures
	SelectionCriteria

	Name
	Observe::DeregisterInterest

	Description
	Allows a registered observer to remove interests from and ObserverRegister held by an Observe provider.

Deregistration in session, domain or service implies deregistration in all service objects within the domain and session.

This causes the interest to be removed from an existing ObserverRegister.
After deregistration, the service consumer will not receive any further SDUs from the provider.

	Pre conditions
	Already registered with any if these interests

	Post conditions
	Not registered with these interests

	Access restrictions
	None

	Message structures
	SelectionCriteria

	Name
	Observe::Update

	Description
	Causes a service provider to publish SDUs to Observe consumers with an ObserverRegister entry matching the SDU’s type and attributes.

	Pre conditions
	Interest is registered by at least one service consumer in the ObserverRegister

	Post conditions
	Interest is registered by at least one service consumer in the ObserverRegister

	Access restrictions
	None

	Message structures
	Event

	Name
	Control::Control

	Description
	Allows a consumer to effect a service control operation.

Control operations allow service use, and will (typically) involve manipulation of service objects.

	Pre conditions
	None

	Post conditions
	None

	Access restrictions
	None. The common service does not know the nature of the control. It is expected that the mission operations service will check that the logged in user has the privilege for the control.

	Message structures
	Directive

	Name
	Manage::Manage

	Description
	Allows a service consumer to change details of the service provider instance offering the manage service.

This is local, dynamic service instance configuration and does not effect a change of the static service configuration. The changes persist only as long as the service instance persists.

	Pre conditions
	The service instance property being modified exists.

	Post conditions
	The service instance property has adopted the new value.

	Access restrictions
	None. The common service does not know the nature of the managed change. It is expected that the mission operations service will check that the logged in user has the privilege for the managed change.

	Message structures
	Configuration

	Name
	Login::Login

	Description
	Allows an operator to login to a service provider. The information provided in this method should correspond to a ‘OperatorProfile’ object used by an Interaction service provider.

This operation is only applicable to those service providers requiring use by or interaction with a human operator and those requiring the user to have correct privileges to perform MO service specific control, manage and define usage.

	Pre conditions
	Not logged in, operator is known to the provider, operator is verified by their credentials.

	Post conditions
	Logged in

	Access restrictions
	Access is denied after a number of login failures. Reset is managed use by a privileged operator.

	Message structures
	Profile, Role

	Name
	Login::Logout

	Description
	Allows an operator to logout from a service provider. The information provided in this method should correspond to a ‘OperatorProfile’ object used by an Interaction service provider.

	Pre conditions
	Logged in

	Post conditions
	Not logged in

	Access restrictions
	None

	Message structures
	Profile, Role

	Name
	Interact::Raise

	Description
	Allows a service provider to raise an interaction for the attention or action of an (optional) specific group/operator/role.

If no operator or role is specified, then the raised interaction is for any operator, group or role.

	Pre conditions
	Logged in operator with the appropriate role

	Post conditions
	Logged in operator with the appropriate role

	Access restrictions
	None

	Message structures
	None.

	Name
	Interact::Respond

	Description
	Allows an operator to respond to a raised interaction.

Parameters are not specified, and if required are dependent on specific interaction type.

	Pre conditions
	Logged in operator, corresponds to an existing “raise”.

	Post conditions
	Logged in operator

	Access restrictions
	None

	Message structures
	None.

4.2 History
Historical Data is decomposed into the following aspects: Retrieval, Replay Control and History Management. It describes the service consumers interactions with previously recorded service data units: events, directives and reports.
4.2.1 Retrieval

[image: image19.wmf]Retrieval

Retrieve

Common Consumer

Common System

Figure 4‑3 : Retrieval

	Name
	Retrieval::Retrieve

	Description
	Retrieve requests the reporting of a packaged “block” of SDUs for the history that match a specific set of criteria for session, domain, service object instance and time range.
Retrieval is used by the service provider for the reporting of a packaged “block” of SDUs for the history corresponding to a Retrieval use.

	Pre conditions
	The history store is configured to store events matching the criteria

	Post conditions
	None

	Access restrictions
	None

	Message structures
	SelectionCriteria

4.2.2 Replay Control

[image: image20.wmf]Replay Control

Create Replay Of

Historical Data

Kill Replay Of

Historical Data

Forward Replay Of

Historical Data

Backward Replay

Of Historical Data

Set Rate

Stop Replay Of

Historical Data

Set Time

The registration and

delivery mechanism

for history data is

common with 'live'

status delivery i.e.

the Observe

interface.

Common Consumer

Forward Step Of

Historical Data

Backward Step Of

Historical Data

Join Replay

Report Replays

Common System

Figure 4‑4 : Replay Control

	Name
	Replay::Create Replay Of Historical Data

	Description
	The service consumer uses this start a new replay which can be observed by one or more service consumers.

	Pre conditions
	The replay does not already exist. The service provider has sufficient resources for supporting an additional replay.

	Post conditions
	The replay has been created

	Access restrictions
	None.

	Message structures
	None.

	Name
	Replay::Kill Replay Of Historical Data

	Description
	The service consumer uses this kill an existing replay. Once killed, any registered service consumers will cease to receive replayed events.

	Pre conditions
	The replay already exists.

	Post conditions
	The replay does not exist

	Access restrictions
	None.

	Message structures
	None.

	Name
	Replay::Forward Replay Of Historical Data

	Description
	The service consumer instructs the replay to advance historical time from its current position at the managed rate. The provider re-publishes the stored events to observing service consumers in accordance with their registered interests.

	Pre conditions
	The replay must exist. The replay must be stopped.

	Post conditions
	The replay must exist. The replay must be playing forward.

	Access restrictions
	None.

	Message structures
	None.

	Name
	Replay::Forward Step Of Historical Data

	Description
	The service consumer instructs the replay to advance historical time from its current position to the time of the next event. The provider re-publishes the stored event to observing service consumers in accordance with their registered interests.

	Pre conditions
	The replay must exist. The replay must be stopped.

	Post conditions
	The replay must exist. The replay must be stopped.

	Access restrictions
	None.

	Message structures
	None.

	Name
	Replay::Backward Replay Of Historical Data

	Description
	The service consumer instructs the replay to advance historical time backwards from its current position at the managed rate. The provider re-publishes the stored event to observing service consumers in accordance with their registered interests.

	Pre conditions
	The replay must exist. The replay must be stopped.

	Post conditions
	The replay must exist. The replay must be playing backward.

	Access restrictions
	None

	Message structures
	None

	Name
	Replay::Backward Step Of Historical Data

	Description
	The service consumer instructs the replay to advance historical time backwards from its current position to the time of the previous event. The provider re-publishes the stored event to observing service consumers in accordance with their registered interests.

	Pre conditions
	The replay must exist. The replay must be stopped.

	Post conditions
	The replay must exist. The replay must be stopped.

	Access restrictions
	None

	Message structures
	None

	Name
	Replay::Stop Replay Of Historical Data

	Description
	The service consumer instructs the replay to stop advance historical time (in either direction), leaving it at its current position. The provider stop re-publishes stored event to observing service consumers.

	Pre conditions
	The replay must exist. The replay is not stopped.

	Post conditions
	The replay must exist. The replay is stopped.

	Access restrictions
	None

	Message structures
	None

	Name
	Replay::Set Rate

	Description
	The service consumer instructs the rate, with respect to real-time, that the replay should advance historical time when instructed to play forwards and backwards.

	Pre conditions
	The replay must exist.

	Post conditions
	The replay must exist.

	Access restrictions
	None

	Message structures
	None

	Name
	Replay::Set Time

	Description
	The service consumer instructs the replay to change the current position of its historical time to a specific position.
If the specific position is earlier that the earliest event, the current position of its historical time is set just prior to the time of the earliest event.

If the specific position is later that the latest event, the current position of its historical time is set just after the time of the latest event.

	Pre conditions
	The replay must exist. The replay must be stopped.

	Post conditions
	The replay must exist. The replay must be stopped.

	Access restrictions
	None

	Message structures
	None

	Name
	Replay::Report Replays

	Description
	To join an existing replay, the service consumer needs to be able to obtain a report that detail of the existing replays.

The common service provider generates a report detailing the existing replays that it is providing to allow a service consumer to join one of them.

	Pre conditions
	None.

	Post conditions
	None.

	Access restrictions
	None.

	Message structures
	None.

	Name
	Replay::Join Replay

	Description
	A service consumer can join a existing replay to allow it to receive its replayed events.

	Pre conditions
	The replay must exist.

	Post conditions
	The replay must exist.

	Access restrictions
	None

	Message structures
	None.

4.2.3 History Management

[image: image21.wmf]Historical Data Management

Enable Store

Disable Store

Add Selection

Criteria to Data

Store

Remove

Selection

Criteria from

Data Store

Delete

According to

Criteria

Store

Common Consumer

Report Store

Selection

Criteria

Report Store

Catalogue

Report Store

State

Common System

Figure 4‑5 : History Management

	Name
	HistoryManagement::Enable Store

	Description
	The service consumer can manage enabling or disabling of the history data store. When enabling a data store, the service provider will subscribe using the active Observe use case to register with Service Objects in accordance with its criteria. It will then receive the events.

	Pre conditions
	The store exists. The store is disabled.

	Post conditions
	The store exists. The store is enabled.

	Access restrictions
	An operator with the required privilege must be logged in.

	Message structures
	None.

	Name
	HistoryManagement::Disable Store

	Description
	The service consumer can manage enabling or disabling of the history data store. When disabling a data store, the service provider will subscribe using the active Observe use case to deregister with Service Objects in accordance with its criteria. It will then cease to receive the events.

	Pre conditions
	The store exists. The store is enabled.

	Post conditions
	The store exists. The store is disabled.

	Access restrictions
	An operator with the required privilege must be logged in.

	Message structures
	None.

	Name
	HistoryManagement::Add Selection Criteria to Data Store

	Description
	The service consumer can modify the criteria used to determine which events are stored. Added criteria and logically added with existing criteria.

	Pre conditions
	The store exists. The store is disabled.

	Post conditions
	The store exists. The store is disabled.

	Access restrictions
	An operator with the required privilege must be logged in.

	Message structures
	SelectionCriteria

	Name
	HistoryManagement::Remove Selection Criteria from Data Store

	Description
	The service consumer can modify the criteria used to determine which events are stored.

	Pre conditions
	The store exists. The store is disabled. The criteria exists.

	Post conditions
	The store exists. The store is disabled. The criteria exists.

	Access restrictions
	An operator with the required privilege must be logged in.

	Message structures
	SelectionCriteria

	 Name
	HistoryManagement::Delete According To Criteria

	Description
	The service consumer can modify the content of a history store. events that match the criteria are deleted. The criteria includes the time range.

	Pre conditions
	The store exists.

	Post conditions
	The store exists.

	Access restrictions
	An operator with the required privilege must be logged in.

	Message structures
	SelectionCriteria

	Name
	HistoryManagement::Report Store State

	Description
	The service consumer can manage enabling or disabling of the history data store. When requesting the store status, it can expect a report to be produced that indicates the enabled/disabled state of the store.

The service provider reports the enabled or disabled state of data stores.

	Pre conditions
	The store exists.

	Post conditions
	The store exists.

	Access restrictions
	None.

	Message structures
	None.

	Name
	HistoryManagement::Report Catalogue

	Description
	The service consumer can request a catalogue of event content of the history stores being provided which can be used for store management or for retrievals.

The service provider reports a synopsis of the event content of data stores.

The synopsis includes the number and type of events for each service object, their time range and reference count ranges. It can be used by service consumers to prepare Retrieval or to manage the content of the stores.

	Pre conditions
	None.

	Post conditions
	None.

	Access restrictions
	None.

	Message structures
	None.

	Name
	HistoryManagement::Report Select Criteria

	Description
	The service consumer can modify the criteria used to determine which events are stored.

The service provider reports the criteria associated with the data stores.

	Pre conditions
	None.

	Post conditions
	None.

	Access restrictions
	None.

	Message structures
	SelectionCriteria

	Name
	HistoryManagement::Store

	Description
	The service provider can restore a previously retrieved package of events to the history. Successful storage of the events will depend on appropriate configuration and management of the history stores.

	Pre conditions
	Stores exist with criteria to accept storage of the events.

	Post conditions
	The store contents have grown to include all restored events.

	Access restrictions
	An operator with the required privilege must be logged in.

	Message structures
	None.

4.3 Configuration

[image: image22.wmf]Common Consumer

Configure

Report

Configuration

Define

Common System

Figure 4‑6 : Configuration
	Name
	Configuration::Report Configuration

	Description
	The service consumer can ask for a report of the configuration of a service object whose status is being provided, being its static definition.

The service provider reports the configuration of a service object whose status it is providing.

	Pre conditions
	The provider is configured to provide that service object.

	Post conditions
	None.

	Access restrictions
	None.

	Message structures
	Configuration

	Name
	Configuration::Define

	Description
	The service consumer can indicate the re-configuration or deletion of a service object whose status is being provided, being its static definition. It can also add the static definition of a new service object whose status is to be provided.

	Pre conditions
	None.

	Post conditions
	None.

	Access restrictions
	An operator with the required privilege must be logged in.

	Message structures
	Configuration

4.4 Directory

[image: image23.wmf]Directory Services

Common Consumer

Publish Service

Withdraw Service

Lookup Service

A consumer of the

Common services will

be a mission

operations software

component, in the role

of either an MO service

consumer or provider.

Figure 4‑7 : Directory

	Name
	Directory::Publish Service

	Description
	A common service consumer that is a mission operations service provider, or an agent acting on its behalf, can publish the availability of a service instance in the service directory.

	Pre conditions
	The service instance is not already published in the directory.

	Post conditions
	The service instance is published in the directory.

	Access restrictions
	None.

	Message structures
	None.

	Name
	Directory::Withdraw Service

	Description
	A common service consumer that is a mission operations service provider, or an agent acting on its behalf, can withdraw a previously published service instance from the service directory.

	Pre conditions
	The service instance is published in the directory.

	Post conditions
	The service instance is not published in the directory.

	Access restrictions
	None.

	Message structures
	TBD

	Name
	Directory::Lookup Service

	Description
	A common service consumer that is a mission operations service consumer, can obtain details of a service instance of its type, domain and network zone.
A common service provider reports details of a service instance.

	Pre conditions
	None.

	Post conditions
	None.

	Access restrictions
	None.

	Message structures
	TBD

5 Service Specification

This section details the data model, service interface and the SDUs used to interact with the model.

The Generic Service is split into two components, a base data model and a generic service specification. The base data model provides basic components that the other data models and services are defined using. The generic service specification defines the basic interaction patters and interfaces used by the other services.
[image: image24.emf]Generic Model

+ Element

+ Attribute

Generic Service

+ Service

+ Event

+ Subscription

Active

+ Observe

+ Control

+ Manage

+ Interact

+ Login

History

+ Control

+ Manage

Configuration

+ Configuration

+ Configure

Directory

+ Directory

Figure 5‑1 : Common Model
5.1 Generic Model

The base model contains all generic data constructs that are service independent.

The use of the basic components by the other services allows a simple interaction pattern and service specification to be defined that can be used to interact with all services.

5.1.1 Element

Most composite structures in the data models will be derived from either Object or Instance:

 - Object is used to represent an item throughout history.

 - Instance is used to define time stamped versions of the previously defined Object.

For example, a parameter would be represented by a Parameter Object. This Object would then have associated with it a set of time stamped Instances that contain the parameter definition as it changed in the history. Each of these would then have a set of time stamped Instances for the parameter values. This allows the correct parameter definition to be located for a specific parameter value.

[image: image25.emf]Attribute Container

Element

Pair

+ First: Attribute

+ Second: Attribute

0..*

Figure 5‑2 : Element
Element
Abstract ClassMERGEFIELD Element.BaseClasses
The element class is the base of all data constructs. All classes that make up the data model are derived from it.
Container
Abstract Class Extends: Element
Composite structure class that contains a set of elements.
Attribute
Abstract Class Extends: Element
Base class for all attributes of the model. Attributes are contained within Containers and are used to build the complex objects that make the data models.
Pair
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Container
Simple composite class for holding pairs.
Attributes
	Attribute
	Type
	Notes

	First
	Attribute
	MERGEFIELD Att.Notes

	Second
	Attribute
	MERGEFIELD Att.Notes

5.1.2 Attribute

All basic components of the structures are eventually broken down into attributes. The basic possible attributes are defined here.
[image: image26.emf]Element

Element::Attribute

String Integer Float Time Duration Blob Boolean

Identifier Enumeration EnumerationDefinition

Figure 5‑3 : Attributes
Blob
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Attribute
Class for binary object attributes.
Boolean
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Attribute
Class for Boolean attributes.
Duration
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Attribute
Class for duration attributes.
Enumeration
Abstract Class Extends: String
Abstract class for enumeration attributes. It is not used directly by other models but is derived from to identify specific enumeration value attributes.

It is associated to a specific EnumerationDefinition to which it represents a value of.

EnumerationDefinition
Abstract Class Extends: MERGEFIELD Element.BaseClasses
Base class for enumeration definitions. This differs from the Enumeration attribute class in so much that it defines the list of possible values an Enumeration attribute can contain.

The EnumerationDefinition class is not derived from Element because it would not be a component of another structure; it defines a restriction on another attribute.

Float
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Attribute
Class for floating point attributes.
Identifier
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: String
Class for Identifier attributes. An extension of the String attribute that can be used for indexing.
Integer
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Attribute
Class for integer attributes.
String
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Attribute
Class for string attributes.
Time
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Attribute
Class for absolute time attributes.
5.2 Generic Service

The base services package defines some generic interfaces and structures that are used by the actual services.
5.2.1 Service

[image: image27.emf]Container

Object

+ Identity: Identifier

Service

- Implementation: Version

Definition

+ Identity: Identifier

+ Description: String

+ Timestamp: Time

Occurrence

+ Identity: Identifier

+ Timestamp: Time

Status

+ Identity: Identifier

+ Timestamp: Time

Container

Instance

+ Identity: Identifier

+ Timestamp: Time

ServiceDefinition ServiceOccurrence ServiceStatus

1..* 1 0..* 1 0..* 1

Figure 5‑4 : Generic Services
Object
Abstract Class Extends: Container
Composite structure that contains a name identifier. This class is used to represent 'objects' of the data model that exist for the entire history such as individual Parameters.

Objects are constructed from their static definitions and modelled within the service providers. The sub-types of Object depend on the type of service. For example, the Core service extends Object for Command, Parameter and Alert.

Attributes
	Attribute
	Type
	Notes

	Identity
	Identifier
	MERGEFIELD Att.Notes

Definition
Abstract Class Extends: Instance
Abstract base class for all components of a service model that provide a definition in the generic service pattern.

It is derived from Instance as many instances of a definition can exist in history; a new instance is created for each new definition.

Attributes
	Attribute
	Type
	Notes

	Identity
	Identifier
	MERGEFIELD Att.Notes

	Description
	String
	MERGEFIELD Att.Notes

	Timestamp
	Time
	MERGEFIELD Att.Notes

Occurrence
Abstract Class Extends: Instance
Abstract base class for all components of a service model that have an occurrence in the generic service pattern.

It is derived from Instance as many instances of an occurrence can exist in history; a new instance is created for each new occurrence that is required.

Attributes
	Attribute
	Type
	Notes

	Identity
	Identifier
	MERGEFIELD Att.Notes

	Timestamp
	Time
	MERGEFIELD Att.Notes

Status
Abstract Class Extends: Instance
Abstract base class for all components of a service model that provide a status in the generic service pattern.

It is derived from Instance as many instances of a status can exist in history; a new instance is created for each new state change.

Attributes
	Attribute
	Type
	Notes

	Identity
	Identifier
	MERGEFIELD Att.Notes

	Timestamp
	Time
	MERGEFIELD Att.Notes

Instance
Abstract Class Extends: Container
Extension of the Container class that contains a timestamp. The timestamp is used to record the creation time of the instance.
Attributes
	Attribute
	Type
	Notes

	Identity
	Identifier
	MERGEFIELD Att.Notes

	Timestamp
	Time
	MERGEFIELD Att.Notes

Service
Abstract Class Extends: Object
The service object holds the static details of the mission services. An instance of this class is a Service Instance, provided by a Service Provider. The concrete sub-types of Service depend on the type of service being provided. For example, the Core service.
Attributes
	Attribute
	Type
	Notes

	Implementation
	Version
	MERGEFIELD Att.Notes

ServiceDefinition
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Definition
Holds the definition details of a service, a new instance of this is created when the definition of a service is changed.
ServiceOccurrence
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Occurrence
Holds details of a particular occurrence of a service; more than one occurrence of a service can exist at once i.e. several service providers implementing the same service for redundancy purposes.
ServiceStatus
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Status
Holds the status of a particular occurrence of a service.
5.2.2 Service Data Units

[image: image28.emf]Container

ServiceDataUnit

+ InstanceId: Identifier

Event

+ Time: Time

Report

Directive

Figure 5‑5 : Service Data Units

ServiceDataUnit
Abstract Class Extends: Container
SDUs are the message objects that pass across the service interface. They are always associated with an instance of an Object.
Attributes
	Attribute
	Type
	Notes

	InstanceId
	Identifier
	MERGEFIELD Att.Notes

Event
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: ServiceDataUnit
Events are asynchronous messages produced by the service provider and sent to service consumers who have registered interest in their associated service objects.
Attributes
	Attribute
	Type
	Notes

	Time
	Time
	MERGEFIELD Att.Notes

Report
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: ServiceDataUnit
Reports are messages send by the service provider to a service consumer in response to a directive.
Directive
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: ServiceDataUnit
Directives are messages sent by a service consumer to direct a response from a service provider.
5.2.3 Event

[image: image29.emf]ServiceDataUnit

Service::Event

+ Time: Time

UpdateEvent InvocationEvent

ConfigurationEvent

Figure 5‑6 : Events
ConfigurationEvent
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Event
A configuration event is created to report the configuration of the service or the management of the service instance.
InvocationEvent
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Event
An invocation event is created when to report when a new service object instance is created.
UpdateEvent
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Event
An update event is created when the state of an existing service object instance is reported.
5.2.4 Subscription

[image: image30.emf]«interface»

Subscribe

+ subscribe(SubscriptionSet) : void

Container

SubscriptionSet

Subscription

+ Identifier: Identifier

+ OnChange: Boolean

+ OnPeriodicUpdate: Boolean

* 1

Figure 5‑7 : Subscriptions
SubscriptionSet
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class Extends: Container
Structure that contains a set of Subscription structures.
Subscription
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class MERGEFIELD Element.BaseClasses
Simple structure that is used when subscribing for updates to a named object.
Attributes
	Attribute
	Type
	Notes

	Identifier
	Identifier
	MERGEFIELD Att.Notes

	OnChange
	Boolean
	MERGEFIELD Att.Notes

	OnPeriodicUpdate
	Boolean
	MERGEFIELD Att.Notes

Subscribe
Abstract Interface MERGEFIELD Element.BaseClasses
Base class that provides a generic subscription interface.
Operations
	Method
	Parameters
	Notes

	subscribe()
	request [SubscriptionSet in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

5.3 Active

Observe
Abstract Interface MERGEFIELD Element.BaseClasses
The Observe interface allows the common service consumer to obtain events for Service Objects that it is interested in. This interface is used for both Active (near real-time) event reception and for History, (replayed) event reception.
Operations
	Method
	Parameters
	Notes

	RegisterInterest()
	Interests [SubscriptionSet in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	DeregisterInterest()
	Interests [SubscriptionSet in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	Update()
	Status [Status in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

Control
Abstract Interface MERGEFIELD Element.BaseClasses
Allows a common service consumer to effect a control operation on a service object. For example, in the MC service, setting a Parameter or invoking a Command or Alert.

Operations
	Method
	Parameters
	Notes

	Control()
	ControlDetails [Container in] MERGEFIELD MethParameter.Notes
ControlName [Identifier in] MERGEFIELD MethParameter.Notes
ServiceObjectId [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

Manage
Abstract Interface MERGEFIELD Element.BaseClasses
The manage Interface allows the common service consumer to manage the behaviour of the service instance by re-configuring it online. The changes persist only for the life of the service instance. New service instances do not remember these changes.
Operations
	Method
	Parameters
	Notes

	Manage()
	Value [Configuration in] MERGEFIELD MethParameter.Notes
Key [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

Interact
Abstract Interface MERGEFIELD Element.BaseClasses
This interface allows the service producer to raise interactions with an operator when it requires operator acknowledgement or an operator decision. Interactions are directed to the operator whose role includes responsibility for providing the acknowledgement or decision. The mapping of responsibilities to roles is part of the configuration of this capability set. It is expected that a default/automatic operator is always logged-in with whom a "raise" can be directed in the event that no human operators are available. The default operator can be used to support an automatic control function or automatic alarm system.
Operations
	Method
	Parameters
	Notes

	Raise()
	Responses [Container in] MERGEFIELD MethParameter.Notes
Message [String in] MERGEFIELD MethParameter.Notes
UserName [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	Respond()
	Response [Attribute in] MERGEFIELD MethParameter.Notes
UserName [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

5.4 Login

Profile
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class MERGEFIELD Element.BaseClasses
This contains details of the User who is logging to take on the role of an operator. The password will be used to verify the identity of the User. Password encryption is not part of this recommendation.
Attributes
	Attribute
	Type
	Notes

	Name
	String
	MERGEFIELD Att.Notes

	Password
	String
	MERGEFIELD Att.Notes

	Role
	Role
	MERGEFIELD Att.Notes

Role
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class MERGEFIELD Element.BaseClasses
The Role of operator of the space system identifies privileges and responsibilities of that Role. Privileges are intended to be the names of the mission operation services and their capability sets. Applications running under the control of operators may send directives to these services.
Attributes
	Attribute
	Type
	Notes

	Name
	String
	MERGEFIELD Att.Notes

	Responsibilities
	Container
	MERGEFIELD Att.Notes

	Privileges
	Container
	MERGEFIELD Att.Notes

Login
Abstract Interface MERGEFIELD Element.BaseClasses
The Login Interface allows users to login as operators of the space system. Operators login with a configured role that allocates them privileges to invoke directives on mission operation service and responsibilities for providing responses to interactions raised by the service provisions.
Operations
	Method
	Parameters
	Notes

	Login()
	User [UserProfile in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	Logout()
	User [UserProfile in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

5.5 History

Replay
Abstract Interface MERGEFIELD Element.BaseClasses
The replay interface allows the service consumer to create, join and control replays of events from the history.
Operations
	Method
	Parameters
	Notes

	Create()
	InitialReplayTime [Time in] MERGEFIELD MethParameter.Notes
SessionName [String in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	Kill()
	Replay [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	ForwardReplay()
	Replay [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	ForwardStep()
	Replay [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	BackwardReplay()
	Replay [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	BackwardStep()
	Replay [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	StopReplay()
	Replay [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	SetRate()
	Rate [double in] MERGEFIELD MethParameter.Notes
Replay [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	SetTime()
	Time [Time in] MERGEFIELD MethParameter.Notes
Replay [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	GetReplays()
	
	MERGEFIELD Meth.Notes

	JoinReplay()
	Replay [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	ReportReplays()
	ReplayReport [Report in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

[image: image31.emf]SelectionCriteria

+ Format: String

+ Criteria: String

«interface»

Retrieval

+ «Directive» Retrieve(SelectionCriteria) : void

+ «Report» Retrieval(SelectionCriteria, Report) : void

Figure 5‑8 : Selection Criteria
Retrieval
Abstract Interface MERGEFIELD Element.BaseClasses
This interface supports the extraction of packaged blocks of events from the history archive by common service consumers. The consumer has to provide a time range and selection criteria for the service objects. The service provider must then obtain the vents from the stores and package them and produce the retrieval report.
Operations
	Method
	Parameters
	Notes

	Retrieve()
	Selection [SelectionCriteria in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	Retrieval()
	Events [Report in] MERGEFIELD MethParameter.Notes
Selection [SelectionCriteria in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

SelectionCriteria
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class MERGEFIELD Element.BaseClasses
Selection criteria specify a filter that can be built-up. They are used by the common service consumer to select data for retrieval and also for the management of the service history.
Attributes
	Attribute
	Type
	Notes

	Format
	String
	String holding the format of the selection criteria string.

	Criteria
	String
	String holding the selection criteria. The format is unspecified to allow mission specific referencing schemes to be utilised.

Manage
Abstract Interface MERGEFIELD Element.BaseClasses
The history management interface allows a common service consumer to manage the function of the history archive, including enabling and disabling stores and configuring them for storing events.
Operations
	Method
	Parameters
	Notes

	EnableStore()
	Store [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	DisableStore()
	Store [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	RequestStoreState()
	Store [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	AddSelectCriteriaToStore()
	SelectionCriteria [SelectionCriteria in] MERGEFIELD MethParameter.Notes
Store [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	RemoveSelectionCriteriaFromStore()
	SelectionCriteria [SelectionCriteria in] MERGEFIELD MethParameter.Notes
Store [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	RequestStoreSelectionCriteria()
	Store [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	DeleteAccordingToCriteria()
	SelectionCriteria [SelectionCriteria in] MERGEFIELD MethParameter.Notes
Store [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	RequestStoreCatalogue()
	
	MERGEFIELD Meth.Notes

	ReportStoreCatalogue()
	Catalogue [Catalogue in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	ReportStoreSelectionCriteria()
	SelectionCriteria [SelectionCriteria in] MERGEFIELD MethParameter.Notes
Store [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

	ReportStoreState()
	Enabled [Boolean in] MERGEFIELD MethParameter.Notes
Store [Identifier in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

5.6 Configuration

Configuration
MERGEFIELD Element.Classifier

MERGEFIELD Element.Abstract Class MERGEFIELD Element.BaseClasses
A Configuration is a set of one or more values associated with a key. It governs an aspect of behaviour of a service. By default, all service instances adopt this behaviour when they start-up. Changes to a Configuration are atomic and transactional in behaviour. This allows the configuration of a service to be modified online with no noticeable ill-effects on the performance of the service instances. The new behaviour is then implemented by new service instances when they start up. Note: existing service instances may be modified using the Manage interface.
Attributes
	Attribute
	Type
	Notes

	ServiceName
	String
	MERGEFIELD Att.Notes

	TableName
	String
	MERGEFIELD Att.Notes

	KeyName
	Attribute
	MERGEFIELD Att.Notes

	Values
	Container
	MERGEFIELD Att.Notes

Configure
Abstract Interface MERGEFIELD Element.BaseClasses
The configuration interface allows a common service consumer to obtain and configure the static properties of service instances. New service instances always use the configured properties. Existing service instances can subsequently be managed by the manage interface.
Operations
	Method
	Parameters
	Notes

	Request Configuration()
	Key [String in] MERGEFIELD MethParameter.Notes
	MERGEFIELD Meth.Notes

	Report Configuration()
	Configuration [Configuration in] MERGEFIELD MethParameter.Notes
Key [String in] MERGEFIELD MethParameter.Notes
	MERGEFIELD Meth.Notes

	Define()
	Configuration [Configuration in] MERGEFIELD MethParameter.Notes
Key [String in] MERGEFIELD MethParameter.Notes
	MERGEFIELD Meth.Notes

5.7 Directory

Directory
Abstract Interface MERGEFIELD Element.BaseClasses
The Directory interface allows common service consumers that are mission operation providers, to publish information about their services. Common service consumers that are mission operations consumers can discover services to connect to.
Operations
	Method
	Parameters
	Notes

	PublishService()
	service [ServiceOccurrence in] MERGEFIELD MethParameter.Notes
	MERGEFIELD Meth.Notes

	WithdrawService()
	service [ServiceOccurrence in] MERGEFIELD MethParameter.Notes
	MERGEFIELD Meth.Notes

	LookupService()
	service [Service in] MERGEFIELD MethParameter.Notes
	MERGEFIELD Meth.Notes

	ReportService()
	details [ServiceOccurrence in] MERGEFIELD MethParameter.Notes
service [Service in] MERGEFIELD MethParameter.Notes

	MERGEFIELD Meth.Notes

� In some cases, it is appropriate to have multiple version series. This allows evolving databases used for different purposes (e.g. operations, system test and training) to be kept separate, and avoids the case of dissimilar databases having apparently sequential version numbers. Object identity is also unique only within the context of a version series.

_1169872274.ppt
	 Service Layer

Service Provider

Service Consumer

Observe

Control

Manage

Archive

Service

History

Archive

Retrieve

Replay Control

Replay (Observe)

Service

Configuration

Database

M

C

_1169877247.ppt
Service Layer

Service Provider

Service Consumer

Observe

Interact

Manage

M

I

Operator

Login

