
BSSC 2004(3) Issue 10

Design & Style Guide for

XML Data and Schema

Prepared by:

ESA Board for Software

Standardisation and Control

(BSSC)

european space agency / agence spatiale européenne
8-10, rue Mario-Nikis, 75738 PARIS CEDEX, France

BSSC 2004(3) Issue 10 ii
DOCUMENT STATUS SHEET

Document Status Sheet

DOCUMENT STATUS SHEET

1. DOCUMENT TITLE: BSSC 2004(3) Issue 10

2. ISSUE 3. REVISION 4. DATE 5. REASON FOR CHANGE

0 1 23/10/2004 New document

0 2 08/12/2004 Initial formatting.

0 3 04/03/2005 Structure and rule content clean-up.

0 4 11/03/2005 General document clean-up, content
and formatting harmonizing and style
correction.

0 5 31/03/2005 Some inconsistencies fixed. Introducto-
ry chapters restructured into a single
one. Additional restructuring to group
rules that cover the same topic. Stylistic
corrections.

Approved, January 13rd 2005
Board for Software Standardisation and Control
Ms M. Spada, BSSC chairman

Copyright © 2005 by European Space Agency

BSSC 2004(3) Issue 10 iii
TABLE OF CONTENTS

Table of Contents

DOCUMENT STATUS SHEET II

TABLE OF CONTENTS III

LIST OF RULES VI

LIST OF RECOMMENDATIONS VIII

PREFACE X

CHAPTER 1
INTRODUCTION 11

1.1 SCOPE AND APPLICABILITY 11
1.2 POSITION OF THIS DOCUMENT WITH RESPECT TO THE ECSS-E40 11
1.3 DOCUMENT OVERVIEW 12
1.4 GLOSSARY 12
1.5 ACRONYMS 13

CHAPTER 2
GENERAL PROJECT GUIDELINES 15

2.1 INTRODUCTION 15
2.2 PROJECT RULES AND RECOMMENDATIONS 15

CHAPTER 3
INTRODUCTION TO THE XML STANDARDS 17

3.1 BENEFITS OF THE USE OF XML 17
3.2 DRAWBACKS OF THE USE OF XML 18
3.3 USE OF XML WITHIN ESA SPACE PROJECTS 19
3.4 OVERVIEW OF THE XML TECHNOLOGIES 19
3.5 BINARY ENCODING OF XML 21
3.6 XML SYNTAX RULES 21
3.6.1 Well-formed XML 22
3.6.2 Processing Instructions 22
3.6.3 Comments 22

CHAPTER 4
XML TOOLS AND IDES 23

4.1 CREATION AND MODIFICATION: XML EDITORS 23
4.2 SYNTAX CHECKERS: XML PARSERS 23
4.3 SEMANTIC CHECKERS: XML VALIDATORS 23

BSSC 2004(3) Issue 10 iv
TABLE OF CONTENTS

4.4 XML BROWSERS 23
4.5 PUBLISHING SOFTWARE 23
4.6 ARCHIVING, STORAGE AND RETRIEVAL SOFTWARE 23
4.7 SECURITY TOOLS 23
4.8 SEARCHING AND CRAWLING SOFTWARE 24
4.9 DISTRIBUTION SOFTWARE 24
4.10 ROUTING AND AUDITING SOFTWARE 24
4.11 DOCUMENTATION SOFTWARE 24
4.12 GRAPHICAL IDES 24

CHAPTER 5
NAMING 25

5.1 GENERAL NAMING CONVENTIONS 25
5.2 XML DATA 26
5.2.1 Element Names 26
5.2.2 Attribute Names 27
5.3 NAMESPACES 27

CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE 28

6.1 XML TREE DESIGN 28
6.2 ATTRIBUTES AND CHILD ELEMENTS 29
6.3 XML TYPES 30
6.4 NAMESPACE AND NAMESPACE REFERRALS 35
6.5 INTEGRATING XML SCHEMAS 37
6.6 EXTENSIBLE CONTENT MODELS FOR XML SCHEMA'S 37
6.7 EXPRESSING ADDITIONAL CONSTRAINTS 37
6.7.1 Supplement with Another Schema Language 38
6.7.2 Write Code to Express Additional Constraints 38
6.7.3 Express Additional Constraints with an XSLT/XPath Stylesheet 39
6.8 SCHEMA VERSIONING 39
6.8.1 Schema Versioning Techniques 41
6.8.2 Change the (Internal) Schema Version Attribute 42
6.8.3 Create a schemaVersion Attribute on the Root Element 42
6.8.4 Change the schema's targetNamespace. 44
6.8.5 Change the Name/Location of the Schema. 44
6.9 GLOBAL VERSUS LOCAL DEFINITIONS 45

CHAPTER 7
SECURITY-ENCRYPTIONS-KEYS 50

CHAPTER 8
XML AND BINARY DATA 51

8.1 INTRODUCTION 51
8.2 BINARY ATTACHMENTS 52
8.3 XML DATA COMPRESSION 52

BSSC 2004(3) Issue 10 v
TABLE OF CONTENTS

8.4 OTHER BINARY ENCODING APPROACHES 53

BIBLIOGRAPHY..54

BSSC 2004(3) Issue 10 vi
LIST OF RULES

List of Rules

Rule 1: Use meaningful, familiar and consistent names. 25

Rule 2: Avoid making abbreviations for names, removing vowels. 25

Rule 3: In mixed-case names, capitalize the first letter of standard acronyms. 25

Rule 4: Avoid names that differ only in case. 26

Rule 5: Avoid using similar names, which may be easily confused or mistyped. 26

Rule 6: Use lower-case for the first word and capitalize only the first letter of each subse-
quent word that appears in an element name. 26

Rule 7: Use lower-case for the first word and capitalize only the first letter of each subse-
quent word that appears in an attribute name. 27

Rule 8: Make two identical copies of all your schemas, where the copies differ only in the
value of elementFormDefault (in one copy set elementFormDefault="qualified", in the other
copy set elementFormDefault="unqualified"). 28

Rule 9: Uniquely identify all schema components with the id attribute. 29

Rule 10: If the item is not intended to be an element in instance documents, then define it as
a type. 30

Rule 11: If the item´s content is to be reused by other items then define it as a type. 30

Rule 12: If the item is intended to be used as an element in instance documents, and it is re-
quired that sometimes it be nillable and other times not, then it must be defined as a type. ...
31

Rule 13: If the item is intended to be used as an element in instance documents and other
elements are to be allowed to substitute for the element, then it must be declared as an ele-
ment. 31

Rule 14: Do not use notations 34

Rule 15: Do favor key/keyref/unique over ID/IDREF for identity constraints. 34

Rule 16: Do not use default or fixed values especially for types of xs:QName. 35

Rule 17: If you have a targetNamespace, make it the default namespace. 36

Rule 18: Do not hard code the identity of an imported schema. 37

Rule 19: Capture the schema version somewhere in the XML schema. 40

Rule 20: Include information in the instance data files, that makes it possible to determine
which version (or versions) of the schema they are compatible with. 40

Rule 21: Make older versions of your XML schema available. 40

BSSC 2004(3) Issue 10 vii
LIST OF RULES

Rule 22: In situations where a new version of a schema makes backwards incompatible
changes (e.g., a construct that was valid and meaningful for the previous schema does not
validate against the new schema), make sure that older instances will not be accidentally
validated against the new version. 40

Rule 23: Where minimizing size and coupling of components is of utmost concern then use
the so-called Russian Doll design. 45

Rule 24: Where your task requires that you make available to instance document authors
the option to use element substitution, then use the so-called Salami Slice design. 46

Rule 25: The so-called Venetian Blind design is the one to choose when your schemas re-
quire the flexibility to turn namespace exposure on or off with a simple switch, and where
component reuse is important. 47

BSSC 2004(3) Issue 10 viii
LIST OF RECOMMENDATIONS

List of Recommendations

Recommendation 1: Document any deviations. Never break a rule without documenting it. ...
15

Recommendation 2: Use independent tools to provide additional warnings and information
about the code. 15

Recommendation 3: Use appropriate verification tools to ensure that the code conforms to
the rules and to catch potential problems as early as possible. 16

Recommendation 4: Make sure that any code that you use for debugging purposes does not
have side effects. 16

Recommendation 5: Avoid long (e.g. more than 20 characters) names. 25

Recommendation 6: Names containing abbreviations should be considered carefully to
avoid ambiguity. 26

Recommendation 7: Use nouns to name elements. .. . 27

Recommendation 8: When using a standard namespace use the namespace prefix recom-
mended by the corresponding schema author. Conversely, avoid using common prefixes
when you are not referring to the namespace usually associated to them. 27

Recommendation 9: XML trees should have the right level of depth and of width. 28

Recommendation 10: Minimize the use of global elements and attributes. 29

Recommendation 11: Postpone decisions as long as possible: Postpone binding a type ref-
erence to an implementation, i.e., use dangling types. 30

Recommendation 12: When in doubt, make it a type. You can always create an element
from the type, if needed. 30

Recommendation 13: Do use attribute groups and model groups. 32

Recommendation 14: Do use complex types and attribute declarations. 32

Recommendation 15: Use design by composition rather than subclassing. 33

Recommendation 16: If the decision is made to use subclassing, then avoid using derive-by-
restriction. 33

Recommendation 17: If the decision is made to use subclassing, then limit the type hierar-
chy to maximum 3 levels. 34

Recommendation 18: Do carefully use substitution groups. .. . 34

Recommendation 19: Do use elementFormDefault set to qualified and attributeFormDefault
set to unqualified. 35

Recommendation 20: Do use XML namespaces as much as possible. Learn the correct way
to use them. 35

BSSC 2004(3) Issue 10 ix
LIST OF RECOMMENDATIONS

Recommendation 21: If you intend your schema type definitions to be reused in a variety of
contexts, do not give them a targetNamespace. This is the so-called chameleon design pat-
tern. 35

Recommendation 22: Create extensible schemas. Do use wildcards to provide well defined
points of extensibility. Use the <any> element. 37

Recommendation 23: Take into account that XML schemas will not be able to express all of
your business rules. 38

Recommendation 24: When an XML schema is only extended, (e.g., new elements, at-
tributes, extensions to an enumerated list, etc.) one should strive to not invalidate existing
instance documents. 41

Recommendation 25: Adopt a convention for schema version identification to indicate
whether the schema changed significantly (changes were not backwards compatible) or was
only extended (changes were backwards compatible). 41

Recommendation 26: Consider your requirements carefully before deciding to look for a bi-
nary XML solution. In many cases, the standard text based XML encoding is adequate. . . 51

Recommendation 27: For embedding small amounts of binary data in an XML file, consider
using a binary to text encoding land putting it directly in the XML stream. 52

Recommendation 28: For packaging large amounts of binary data together with textual XML
data in an efficient way, consider using the XML-binary Optimized Packaging (XOP). 52

Recommendation 29: Consider using a standard compression algorithm to compress XML
data before storing or transmitting it. 52

BSSC 2004(3) Issue 10 x
PREFACE

Preface

This Coding Standard is based upon the experience of applying XML and relat-
ed technologies to the development of custom space software systems. Published
experience and Industry best practice rules, as well as experience from in-house de-
velopments, were all taken into account to create this document.

The BSSC wishes to thank the European Space Research and Technology
Centre (ESTEC), Noordwijk, The Netherlands, and in particular Peter Claes, for
preparing the standard. The BSSC also thanks all those who contributed ideas for
this standard. The BSSC members that have reviewed the standard: Mariella Spada,
Michael Jones, Jean-Loup Terraillon, Jean Pierre Guignard, Jerome Dumas, Daniel
Ponz, Daniel de Pablo and Lothar Winzer. The BSSC also wishes to thank the fol-
lowing ESA reviewers of this standard: <reviewer names go here> and the expert re-
viewer, editor, Martín Soto, from Fraunhofer Institute for Experimental Software En-
gineering (IESE).

Requests for clarifications, change proposals or any other comments concern-
ing this standard should be addressed to:

BSSC/ESOC Secretariat BSSC/ESTEC Secretariat

Attention of Ms M. Spada Attention of Mr J.-L. Terraillon

ESOC ESTEC

Robert Bosch Strasse 5 Postbus 299

D-64293 Darmstadt NL-2200 AG Noordwijk

Germany The Netherlands

BSSC 2004(3) Issue 10 11
CHAPTER 1
INTRODUCTION

Chapter 1
Introduction

1.1 Scope and applicability

This standard presents rules and recommendations about the usage of XML
and related technologies. Although many books and a variety of other documents
describe the usage of such technologies in detail, they often concentrate on what is
possible and not necessarily on what is desirable or acceptable. Particularly, appro-
priate guidelines that apply to large software engineering projects intended for mis-
sion- or safety-critical systems, can be hard to find.

This document provides a set of guidelines for the design and implementation
of XML data models, which are intended to improve the overall quality and maintain-
ability of software systems developed by, or under contract to, the European Space
Agency. The use of this standard should improve consistency across different soft-
ware systems, potentially developed by different programming teams in different
companies.

The guidelines in this standard should be met for XML related code and specifi-
cations to fully comply with this standard. The standard has no contractual implica-
tion. Contractual obligations are given in individual project documents.

1.2 Position of this document with respect to the ECSS-E40

The ECSS family of standards is organized around families. In particular, the
Engineering family has a dedicated number for software (40). The ECSS-E40 docu-
ment (Space Engineering - Software) recalls the various software engineering pro-
cesses and list requirements for these processes in terms of activities that have to
be performed and pieces of information that have to be produced. ECSS-E40 does
not address directly the coding standards, but requires that the coding standards are
defined and agreed, at various levels of the development, between the customer and
the supplier.

In particular, the selection of this XML standard could be the answer to the fol-
lowing requirements of the standard ECSS-E-40A (Space Engineering – Software,
13 April 1999):

5.2.2.1 System Requirements, Expected Output e): Identification of lower level
software engineering standards that will be applied [RB;SRR]

5.3.2.11 Each supplier shall define the Software Engineering standards that he
intends to follow for his application area (Expected Output b) [RB, SRR]

5.4.2.1 Software requirements, Expected Output i): identification of lower level
software engineering standards that will be used [TS;PDR].

BSSC 2004(3) Issue 10 12
CHAPTER 1
INTRODUCTION

1.3 Document Overview

This document is intended to build on the output of the Software Top-Level Ar-
chitectural Design, Design of Software Items and Coding and Testing phases
(ECSS-E-40 terminology) and follows a "top-down" approach so that guidelines can
begin to be applied as soon as detailed design of software items starts. Chapter 4
provides a summary of the general guidelines.

Subsequent chapters describe the specific guidelines to be applied to the pro-
duction of XML and XML Schema code.

All rules (mandatory) and recommendations (optional) are numbered for refer-
ence purposes.

All rules and recommendations have a short title and an explanation. Many
rules and recommendations are also followed by a rationale section justifying the ap-
plication of the rule. Rules and recommendations may also contain examples show-
ing how to apply them, or illustrating the consequences of not applying them.

All rules and recommendations are enclosed in boxes. Recommendations are
printed in italic type. Throughout the document, source code examples and refer-
ences in text are printed in fixed width font.

1.4 Glossary

Attribute – A name-value pair attached to the element's start tag.

Binding – Binding APIs ensure the integration of the data model of XML Schema with
the data model associated with the code implemented in a certain programming lan-
guage.

Child – Each XML element that hierarchically has (one) parent element.

Element – The building block of XML data (its name is enclosed between markup
tags), naming an entity of the represented data model.

Namespace – A means of distinguishing between elements and attributes from dif-
ferent XML-vocabularies that have the same name; for instance, the title of a book
and the title of a web page in a a web page about books.

Parent – An element hierarchically higher in rank than its child element.

Parser – A tool that checks XML data for its well-formedness. (syntactic checker).

Root – Every XML document has one element without a parent. This is the first ele-
ment in the document that contains all other elements.

Russian doll design – A design pattern for XML schemas that corresponds to having
a single box (type or element), with other boxes nested within, as deep as necessary
to cover the whole design (boxes within boxes, like a Russian doll)

Salami slice design – A design pattern for XML schemas that disassembles the XML
data file into its individual components. In the schema, each component is defined
separately (as an element declaration) and then assembled together to build up the
whole definition.

Schema – An "implementation of a model" that can describe the allowed contents of
XML data/documents conforming to a particular vocabulary.

Stylesheet – An implementation allowing to give XML data a particular screen- or
print layout.

BSSC 2004(3) Issue 10 13
CHAPTER 1
INTRODUCTION

Tag – Delimiter for element name using markup syntax ("<></>").

Validator – A tool that validates XML data according to its defining/constraining
Schema (semantic checker).

Venetian blind design – A design pattern for XML schemas that decomposes the
schema into a number of type definitions, that are integrated later on.

1.5 Acronyms

API Application Programming Interface

ASN.1 Abstract Syntax Notation

CASE Computer Aided Software Engineering

DBMS Data Base Management System

DHTML Dynamic HyperText Markup Language

DOM Document Object Model

DP Design Pattern

DTD Document Type Definition

ECSS European Cooperation for Space Standardisation

HTML Hypertext Mark-up Language

HTTP HyperText Transfer Protocol

ISO International Standards Organisation

JAR Java Archive

JAXB Java API for XML Binding

JAXP Java API for XML Processing

JDOM Java Document Object Model

OO Object-oriented

OSS Open Source Software

RDF Resource Description Framework

SAX Simple API for XML

SGML Standard Generalized Mark up Language

SQL Structured Query Language

SW Software

WSDL Web Service Description Language

XDBMS XML Data Base Management System

XHTML eXtensible HyperText Markup Language

XKMS XML Key Management Specification

XMI XML Metadata Interchange

XML eXtensible Mark-up Language

XSL eXtensible Stylesheet Language

BSSC 2004(3) Issue 10 14
CHAPTER 1
INTRODUCTION

XSLT eXtensible Stylesheet Language Transformation

BSSC 2004(3) Issue 10 15
CHAPTER 2
GENERAL PROJECT GUIDELINES

Chapter 2
General project Guidelines

2.1 Introduction

The objective of this chapter is to define good coding rules and recommenda-
tions applicable to software projects in general, independent of the data and coding
standards. These common sense rules and recommendations help to make projects
successful, within time and budget, and contribute to the maintainability and quality
of the code.

2.2 Project Rules and Recommendations

Recommendation 1: Document any deviations. Never break a rule without docu-
menting it.

Rationale

The complete set of rules is intended to provide consistency across all XML and
XML schema files but this assumes that there are no constraints upon the program-
ming environment. This is obviously not always the case and compromises may be
necessary in order to handle specific requirements or restrictions of the operating
system, the tool environment, of third party code and libraries, etc.

It is important to make sure first that you understand why the rule exists and
what the consequences are if it it is not applied.

If a rule is broken on a project-wide basis, the reason for breaking it should be
clearly laid out in the project documentation. On the other hand, if the rule is only vio-
lated in a few specific places, this should be clearly documented at those places.
Anyone who examines the code at a later point will then be able to see why the rule
was broken. It is to be hoped that there will also be some review process in which
deviations from the guidelines will be examined.

Recommendation 2: Use independent tools to provide additional warnings and in-
formation about the code.

Rationale

Programmers are strongly advised to make use of other tools, which provide
additional heuristic checks for problem and non-portable areas of the code. Other
tools such as those used to extract documentation and cross-reference listings from
the code are also useful because they exercise the code in a different way and
therefore provide a additional point of view when looking for potential problems.

BSSC 2004(3) Issue 10 16
CHAPTER 2
GENERAL PROJECT GUIDELINES

Recommendation 3: Use appropriate verification tools to ensure that the code con-
forms to the rules and to catch potential problems as early as possible.

Rationale

The use of software tools, if available, for the automatic analysis of code to
check for conformance to the rules may aid the programmer to find problems. For
the particular case of XSD, testing widely deployed schemas with more than one val-
idator could help to ensure the portability and standards compliance of said
schemas.

Recommendation 4: Make sure that any code that you use for debugging purposes
does not have side effects.

Rationale

Any debugging code must not affect the overall state of the rest of the system.
It may only modify parts of the system which relate to the debugging code itself, but
not the rest of the code. The state of the system immediately before the section of
debugging code must remain unchanged after it has been executed. This ensures
that the behavior of the system does not change when debugging code is added or
removed.

BSSC 2004(3) Issue 10 17
CHAPTER 3
INTRODUCTION TO THE XML STANDARDS

Chapter 3
Introduction to the XML Standards

Since the inception of the XML specification, a wide variety of technologies
have been introduced, that support, among others, the creation, generation, pro-
cessing, and validation of XML data. This chapter provides not only an overview of
many of such technologies, but discusses the main motivations, advantages, and
disadvantages of using XML for data modeling and communication.

3.1 Benefits of the Use of XML

XML is generally aimed at improving commonality, interoperability, interfacing
and information retrieval for a wide variety of applications. In this regard, some of the
valuable characteristics of XML are:

• It is coupled with simple programming interfaces, leading to easy interoper-
ability with a variety of software systems.

• It is flexibility and adaptable (simplified change management.)

• It offers a variety of customization possibilities.

• It is extensible (eases change management and further development)

• Allows for unambiguously specifying data structure, relations, and interde-
pendence, which can be properly connected to data semantics.

• Facilitates uncoupling any presentation aspects from the underlying data
model and representation.

• Allows powerful and easy searching, is manageable.

• Most XML-based technology is modular.

• It is excellent for data sharing (good interoperability).

• Enjoys widespread acceptance as standard, is widely endorsed by the
software industry (supported in terms of tools, staff and training) and
open (no vendor lock-in, license-free),

• Has very little optional features in the core specification available, a
fact that reduces ambiguities and eases implementation.

• Is portable (independent from hardware, operating system, language,
object model, etc.)

Another benefits of XML can be summarized as follows:

• Reduction of Commercial Of-The-Shelf (COTS) SW interface and purchas-
ing costs.

BSSC 2004(3) Issue 10 18
CHAPTER 3
INTRODUCTION TO THE XML STANDARDS

• Decoupling of the producers of the data from the users: streamlining the
development process and containing its costs.

• Decoupling of the design constraints of two intercommunicating applica-
tions: this would favor separate procurement, testing and qualification of
applications using, for example, different programming languages.

• XML is independent from the programs that use or generate it.

• XML provides additional meaning and context to applications using data.

• Several space projects in ESA (Herschel, Planck, Cryosat, etc.) have cho-
sen or are considering XML as a standard for their data and data inter-
faces.

• XML is safe and secure: XML helps to solve the problems caused by ambi-
guities. XML technology has maximum error checking and malicious code
and characters will be detected as well. Encryption tools are readily avail-
able.

• Is compatible with the networked world (WAN, LAN, GAN, the Internet, the
Grid, the Semantic Web.)

• XML is the basis of the 2nd Generation Internet (Semantic Web)

• Intelligent searching.

• Ubiquitous.

• Better software architecture: higher performance.

• Applications associated with URL-links, bi-directional links, intelligent
software agents.

3.2 Drawbacks of the Use of XML

As well as benefits, XML has some drawbacks that also have to be considered
before choosing it as a solution:

• Unfamiliar structuring of data. people tend to think of information in terms
of what they can see (tables, paragraphs, fonts, forms, and so on). Most of
them (except maybe for computer specialists and other related profession-
als) have a hard time thinking in terms of abstract, structured information.
Users may require, for example, extensive training to use specialized XML
editing tools.

• Verbosity. XML documents are verbose but, although often their size is
smaller than that of equivalent word processor or spreadsheet files. XML
documents compress very well. Moreover, storage space and bandwidth
on modern computers and networks make tiny size optimizations a waste
of time. Nonetheless, in some specialized areas XML extra size might mat-
ter. for example:

• Real-time data sampling.

• Extremely high-speed network applications.

• Embedded devices with limited storage.

BSSC 2004(3) Issue 10 19
CHAPTER 3
INTRODUCTION TO THE XML STANDARDS

• Excessive abstraction. XML information is very abstract compared to a file
for a desktop-publishing program or a database. It is always necessary to
add something else to do anything useful with the information such as a
stylesheet. When information has only a single, non-XML destination and it
does not need to be searched or indexed, XML's extra abstraction brings
no particular benefit.

• Bottlenecks. Libraries implementing some popular XML processing inter-
faces, such as DOM and XSLT, can consume significant amounts of mem-
ory and processing time, a situation that could seriously affect the perfor-
mance of a busy server dealing with many simultaneous sessions. Validat-
ing XML data against an XML schema may depend critically on the avail-
ability of a network connection and the performance of the network deter-
mines the performance of the process to a great extend. To avoid these
problems, many XML specialists recommend using schemas only for au-
thoring and testing, and avoiding them in production-grade XML systems.

• Limited vendor and tool support. There are many small and medium size
vendors in the XML market but a lack of standardization makes vendors
sell proprietary solutions or individual components only. Big vendors bring
to the market rather add-ons to their existing products, instead of produc-
ing generally useful XML applications.

• Specification glut. The core XML specification is compact, but related core
technology specifications, or specifications related to a specialized domain
(such as the medical or the space domain) tend to be very numerous. All
of these cause software designers trouble in order to decide which stan-
dards to follow. New standards are also often made in advance of any
proven need or real implementations. Competition among standard groups
has also led to much duplication.

3.3 Use of XML within ESA space projects

The following are some of the main applications of XML in the context of ESA
space projects:

• Archiving.

• Reports.

• Logging.

• Storage of configuration data.

• Static data description (data dictionary).

• Implementation of file interfaces between systems.

• External interfaces and products.

• Internal interfaces (caution is recommended when using XML for internal
interfaces in a project.)

3.4 Overview of the XML Technologies

The following figure provides an overview of the different XML technologies
used at ESA:

BSSC 2004(3) Issue 10 20
CHAPTER 3
INTRODUCTION TO THE XML STANDARDS

FIGURE 1: XML STANDARDS AND TECHNOLOGIES USEFUL IN ESA.

XML ESA Data

These are the actual data (e.g. sensor data, configuration data, telemetry data,
logging information) that could be represented in XML format in the ESA context.

XML Schema

XML Schemas are written in XML and constrain the structure and format of XML
data.

XSLT

XSLT makes it possible for data in a particular form of XML to be transformed to
other forms of XML.

Namespaces

Namespaces have five purposes:

1. To distinguish between elements and attributes from different XML appli-
cations that share the same name (importing and including other schema
documents).

2. To determine what elements and attributes schema declarations can vali-
date.

3. To group all related elements and attributes from a single XML application
together, so that software can recognize them easily.

4. In XPath expressions, used for identity constraints.

BSSC 2004(3) Issue 10 21
CHAPTER 3
INTRODUCTION TO THE XML STANDARDS

5. To reference global elements, attributes or types.

XPath, XLink and XPointer

XPath is a non-XML language used to identify particular parts of XML docu-
ments.

XPointer is a non-XML syntax used for locating points in, or ranges across XML
documents.

XLink is an attribute-based syntax for attaching links to XML documents.

SAX

SAX, Simple API for XML, is a simple event-based API for parsing XML docu-
ments.

DOM

The Document Object Model is a W3C recommendation that describes a pro-
gramming language neutral object model used to store hierarchical documents in
memory.

JDOM

The Java Document Object Model is a recommendation that describes an ob-
ject model used to store hierarchical documents in memory, optimized for the Java
programming language.

JAXP

JAXP is the JAVA standard API for XML parsing and processing (applying
XSLT to) XML

JAXB

JAXB is the Java standard API that binds/converts XML Schemas to Java
classes and vice versa.

XML Databases

XML based DBMSs (XDBMS) are based on the hierarchical data model. The
data themselves are stored as XML files on disk. The DBMS-functions (concurrency
management, recovery, backup, restore, transaction management, data definition,
data manipulation) are handled by tools and DBMS applications developed/provided
by a commercial vendor, based on and developed with APIs that can process XML
data and XML schemas.

3.5 Binary Encoding of XML

Several mechanisms (standards, protocols) and tools exist to ensure secure bi-
nary encoding of XML. This is, for instance, needed for high performance real-time
transfers of data. Chapter 8 discusses this point in more detail.

3.6 XML Syntax Rules

This section contains a brief summary of the XML syntax rules.

BSSC 2004(3) Issue 10 22
CHAPTER 3
INTRODUCTION TO THE XML STANDARDS

3.6.1 Well-formed XML

As a minimum, all XML documents must be well formed (schemas can specify
additional constraints). The rules for a well-formed document are as follows:

• Every start tag must have a matching end tag.

• Elements may not overlap.

• There must be exactly one root element.

• Attribute values must be quoted.

• An element may not have two attributes with the same name.

• Comments and processing instructions may not appear inside tags.

• No unescaped < or & signs may occur in the element's or attribute's char-
acter data.

3.6.2 Processing Instructions

Processing instructions are intended to pass information to XML processing
tools. They are always enclosed in <? ?> symbols, for example:

<?xml version="1.0" encoding "ISO-8859_1" standalone="yes"?>

3.6.3 Comments

Comments are enclosed in <!-- --> tags. For example:

<!--This is the child element -->

BSSC 2004(3) Issue 10 23
CHAPTER 4
XML TOOLS AND IDES

Chapter 4
XML Tools and IDEs

Depending on its requirements, a project might require software tools to per-
form a number of possible XML related tasks. This chapter briefly discusses the
main possible such tasks together with their corresponding tools.

4.1 Creation and Modification: XML Editors

XML editors allow to edit the element names, attribute names and comment
fields of XML files.

4.2 Syntax Checkers: XML Parsers

XML parsers allow to verify XML files for syntax errors.

4.3 Semantic Checkers: XML Validators

XML validators allow to validate (for violation of definitions and constraints) XML
data files (semantic validation) against schema files.

4.4 XML Browsers

XML browsers allow to navigate quickly through large XML files.

4.5 Publishing Software

Very often, it is necessary to convert raw XML to a format that is more comfort-
able for human readers to peruse. XML information intended entirely for machine to
machine communication is, of course, excepted.

4.6 Archiving, Storage and Retrieval Software

Repositories, archives and shared directories are ways to store XML data for fu-
ture use. Storage, location and retrieval software/tools handle the traffic of XML data
to/from storage entities.

4.7 Security Tools

When XML documents contain secure or critical information, a project may
need a system in place for signing, verifying, encrypting, and decrypting XML data.

BSSC 2004(3) Issue 10 24
CHAPTER 4
XML TOOLS AND IDES

4.8 Searching and Crawling Software

A search engine or a crawler, goes through shared directories and Web sites
automatically, indexing any XML documents it may find. It enables the discoverability
characteristics of the XML markup.

4.9 Distribution Software

If a project wants to deliver XML to many recipients, it may require some sort of
syndication (publish/subscribe) system.

4.10 Routing and Auditing Software

If XML information goes through any kind of formal process where various peo-
ple modify and approve it, a project may need some kind of workflow system to han-
dle routing and maintain an audit trail.

4.11 Documentation Software

Humans working with XML need a way to discover the meaning of the markup,
usually through technical documentation (Web-site, on-line help, etc).

4.12 Graphical IDEs

The ideal graphical IDE combines the capabilities of all types of XML tools and
lets the user interact with the XML information by means of a friendly user interface.
Many commercial tools exist, but their evaluation is outside the scope of this docu-
ment.

BSSC 2004(3) Issue 10 25
CHAPTER 5
NAMING

Chapter 5
Naming

Using descriptive names for XML elements and attributes is as important as
choosing proper identifiers in program code. An adequate name selection makes for
data files that are easier to read, and for XML schemas that are easier to maintain.

This chapter is concerned with naming in XML files. The naming of XML files
and directories (project-wide naming issues) are, however, outside of its scope.

5.1 General Naming Conventions

Rule 1: Use meaningful, familiar and consistent names.

Rationale

Descriptive names are preferable to random, arbitrary names. However, a de-
scriptive name must reflect the actual use of the named entity over its lifetime. For
example count is better than xyz for the name of an element which contains the to-
tal number of something, but not to name an element that holds an error code.

Recommendation 5: Avoid long (e.g. more than 20 characters) names.

While trying to keep them descriptive, avoid using very long names.

Rationale

Extremely long names may be hard to remember, are difficult to type, and may
make XML code harder to format properly (not an issue in some circumstances).

Rule 2: Avoid making abbreviations for names, removing vowels.

Rationale

Abbreviations based on removing only bowels can be very hard to read.

Rule 3: In mixed-case names, capitalize the first letter of standard acronyms.

When using standard acronyms in identifiers, capitalize only the first letter, not
the whole acronym, even if such acronym is usually written in full upper-case.

Example

Use XmlFile, auxiliaryRmiServer and mainOdbcConnection instead of
XMLFile, auxiliaryRMIServer or mainODBCConnection.

BSSC 2004(3) Issue 10 26
CHAPTER 5
NAMING

Rationale

Doing this allows for clearer separation of words within the name, making identi-
fiers easier to read. When only the first letter is capitalized, words are more easily
distinguished without any one word being dominant.

Rule 4: Avoid names that differ only in case.

Never use identifiers in the same namespace that have the same letters, but
that are capitalized in different ways.

Rationale

Similar names in a namespace are a source of potential confusion, that may
lead to hard to detect errors.

Rule 5: Avoid using similar names, which may be easily confused or mistyped.

Avoid using names in the same namespace that differ by only in one character,
especially if the difference is between 1 (the digit) and l (the letter) or 0 (the digit)
and O (the letter). Avoid names that consist of similar meaning words because it is
easy to confuse them. Consider, for example, the differences between x1 and xl
and between countX and numberX.

Rationale

Similar names in a namespace are a source of potential confusion, that may
lead to hard to detect errors.

Recommendation 6: Names containing abbreviations should be considered careful-
ly to avoid ambiguity.

Rationale

In the absence of a list of standard abbreviations, different programmers are
likely to choose different abbreviations to represent a particular word or concept.
This is especially true in the multi-lingual environment found in many ESA projects.
Abbreviations should be used with care. For example, does opts refer to "options"
or the "old points" or something else?

5.2 XML Data

5.2.1 Element Names

Rule 6: Use lower-case for the first word and capitalize only the first letter of each
subsequent word that appears in an element name.

Rationale

The capitalization provides a visual cue for separating the individual words with-
in each name.

BSSC 2004(3) Issue 10 27
CHAPTER 5
NAMING

Example

bookPart
computerTime
value

Recommendation 7: Use nouns to name elements.

Rationale

Elements in data files usually represent parts of the structure of the correspond-
ing data. As in a natural language it is adequate to name this parts using nouns.

5.2.2 Attribute Names

Rule 7: Use lower-case for the first word and capitalize only the first letter of each
subsequent word that appears in an attribute name.

Rationale

The capitalization provides a visual cue for separating the individual words with-
in each name.

5.3 Namespaces

Recommendation 8: When using a standard namespace use the namespace prefix
recommended by the corresponding schema author. Conversely, avoid using com-
mon prefixes when you are not referring to the namespace usually associated to
them.

For common used namespaces, like those defined by W3C specifications, a
namespace prefix is usually recommended, that should be used in conjunction with
the namespace in question. Whenever possible, use such prefixes as recommend-
ed.

Rationale

Although an XSD schema could connect any prefix to a particular namespace,
using the recommended prefix makes data files and schemas easier to read.

BSSC 2004(3) Issue 10 28
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

Chapter 6
XML and XML Schema Design and Style

6.1 XML Tree Design

Recommendation 9: XML trees should have the right level of depth and of width.

Rationale

Trees (hierarchies) that are too deep will make the data structure difficult to
maintain but offer the advantage of good reuse. Trees that are too wide are more dif-
ficult to understand and modify but offer a better abstraction of the data.

Rule 8: Make two identical copies of all your schemas, where the copies differ only
in the value of elementFormDefault (in one copy set
elementFormDefault="qualified", in the other copy set
elementFormDefault="unqualified").

Rationale

If you make two versions of all your schemas then people who use your
schemas will be able to implement two design approaches: hide (localize) names-
paces, or expose namespaces.

Hide the namespaces of the elements and attributes within the schema:

• When simplicity, readability, and understandability of instance documents
is of utmost importance or when namespaces in the instance document
provide no necessary additional information. In many scenarios the users
of the instance documents are not XML experts.

Namespaces would distract and confuse such users, where they are just
concerned about structure and content.

• When you need the flexibility of being able to change the schema without
impact to instance documents. To see this, imagine that when a schema is
originally designed it imports elements/types from another namespace.
Since the schema has been designed to hide (localize) the namespaces,
instance documents do not see the namespaces of the imported elements.
Then, imagine that, at a later date, the schema is changed such that in-
stead of importing the elements/types, those elements and types are de-
clared/defined right within the schema (inline).

This change from using elements/types from another namespace to using
elements/types in the local namespace has no impact to instance docu-
ments because the schema has been designed to shield instance docu-
ments from where the components come from.

BSSC 2004(3) Issue 10 29
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

Design the schema to expose namespaces in instance documents:

• When the lineage or ownership of the elements are important to the in-
stance document users (such as for copyright purposes).

• If there are multiple elements with the same name but different semantics,
then you may want to qualify them with namespaces so that they can be
differentiated (e.g, publisher:body versus human:body). In some cas-
es, there are multiple elements with the same name and different seman-
tics, but the context of the element is sufficient to determine its semantics.

For example, the title element in <person><title> is easily distin-
guished from the title element in <chapter><title>. In such a case
there is less justification for designing your schema to expose the names-
paces.

• When processing (by an application) of the instance document elements is
dependent upon knowledge of the namespaces of the elements.

Recommendation 10: Minimize the use of global elements and attributes.

Rationale

This way elementFormDefault can behave as an exposure switch. There
are two requirements on an element for its namespace to be hidden from instance
documents:

1. The value of elementFormDefault must be unqualified.

2. The element must not be globally declared. For example:

<?xml version="1.0"?>

<xsd:schema ...>
 <xsd:element name="spacecraft">
 ...
</xsd:schema>

The element spacecraft can never have its namespace hidden from instance
documents, regardless of the value of elementFormDefault. Spacecraft is a glob-
al element (i.e., an immediate child of <schema>) and therefore must always be
qualified. To enable namespace hiding the element must be a local element.

6.2 Attributes and Child Elements

Rule 9: Uniquely identify all schema components with the id attribute.

This is not the same thing as creating an element with an attribute that has an
ID data type. Rather, what is being referred to here is the capability to associate an
id attribute with every schema component (types, elements, attributes, etc).

Rationale

 This provides a finer level of granularity for identifying components than
namespaces do, which only provide a coarse level of granularity.

BSSC 2004(3) Issue 10 30
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

Example

<xsd:element name="elevation" type="xsd:integer"
 id="flight:aircraft:elevation"/>

<xsd:complexType name="company" id="wrox:spacecraft:company"/>

Recommendation 11: Postpone decisions as long as possible: Postpone binding a
type reference to an implementation, i.e., use dangling types.

Rationale

This helps to make schemas more reusable.

Example

In an <import> element the schemaLocation attribute is optional. Don't use
it.

6.3 XML Types

Recommendation 12: When in doubt, make it a type. You can always create an el-
ement from the type, if needed.

Rationale

With a type, other elements can reuse that type.

Rule 10: If the item is not intended to be an element in instance documents, then
define it as a type.

Rationale

Types are more general and thus, more reusable.

Example

If you will never see this in an instance document:

<instrument>
 ...
</instrument>

then define instrument as a complexType.

Rule 11: If the item´s content is to be reused by other items then define it as a type.

Rationale

Types can be reused as content, whereas elements cannot.

Example

If other items need to use instrument´s content, then define instrument as
a type:

<xsd:complexType name="instrument">
 ...

BSSC 2004(3) Issue 10 31
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

</xsd:complexType>
...
<xsd:element name="radar" type="instrument"/>
<xsd:element name="gyro" type="instrument"/>

The example shows two elements, radar and gyro, reusing the instrument
type.

Rule 12: If the item is intended to be used as an element in instance documents,
and it is required that sometimes it be nillable and other times not, then it must be
defined as a type.

Rationale

Let us first see how not to do it. Suppose that we create an instrument element:

<xsd:element name="instrument">
 ...
</xsd:element>

The instrument element can be reused elsewhere by referencing it:

<xsd:element ref="instrument"/>

Suppose that we also need a version of instrument that supports a nil value.
You might be tempted to do this:

<xsd:element ref="instrument" nillable="true"/>

This is not legal. This dynamic morphing capability (i.e., reusing a instrument
element declaration while simultaneously adding nillability) cannot be achieved using
elements. The reason for this is that the ref and nillable attributes are mutually
exclusive: you can use ref, or you can use nillable, but not both.

The only way to accomplish the dynamic morphing capability is by defining
instrument as a type:

<xsd:complexType name="instrument">
 ...
</xsd:complexType>

and then reusing the type:

<xsd:element name="instrument" nillable="true"
 type="instrument"/>
 ...
<xsd:element name="instrument" type="instrument"/>

In the first case instrument is nillable. In the second case it is not nillable.

Rule 13: If the item is intended to be used as an element in instance documents
and other elements are to be allowed to substitute for the element, then it must be
declared as an element.

Rationale

Suppose that we would like to enable instance document authors to use inter-
changeably the vocabulary (i.e., tag name) instrument, subSystem, or
component, i.e.,

BSSC 2004(3) Issue 10 32
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

<xsd:instrument>
 ...
</xsd:instrument>
...
<xsd:subSystem>
 ...
</xsd:subSystem>
...
<xsd:component>
 ...
</xsd:component>

To enable this substitutable tag name capability, instrument, subSystem,
and component must be declared as elements, and made members of a
substitutionGroup:

<xsd:element name="instrument">
 ...
</xsd:element>
<xsd:element name="subSystem" substitutionGroup="instrument"/>
<xsd:element name="component" substitutionGroup="instrument"/>

Recommendation 13: Do use attribute groups and model groups.

Rationale

Attribute groups, that is, a way to create a named collection of attribute declara-
tions and attribute wildcards, increase the modularity of schemas. A commonly used
set of attributes can be declared in a single location and then be referenced for other
schemas.

A model group definition is a mechanism for creating named group of elements
using the all, choice or sequence compositors. Model groups are useful for reusing
groups of elements by avoiding type derivation.

Recommendation 14: Do use complex types and attribute declarations.

Rationale

A complex type definition is used to specify a content model consisting of ele-
ments and attributes. An element declaration can specify its content model by refer-
ring to a named or anonymous complex type. Named complex types can be refer-
enced by name from the schema they are defined in or by external schema docu-
ments; anonymous complex types must be defined within the declaration for the ele-
ment which uses the type. Anonymous complex types should only be used if there is
no need for type derivation and if references to the type will not be needed outside
the element declaration. Complex types are similar to model groups definitions with
two differences. Firstly, complex types can include attributes in the content models
they define. Secondly, it is possible to use type derivation with complex types.

Named complex types should be used rather than a combination of anonymous
complex types, model group definitions and attribute groups for having the same ca-
pabilities. Using three mechanisms instead of one for specifying element content is
more prone to confusion.

BSSC 2004(3) Issue 10 33
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

Recommendation 15: Use design by composition rather than subclassing.

Rationale

The advantages of the design by composition approach are:

• Simplicity: all of the components are stand-alone. They can be understood
and developed independently, in isolation (separation of concerns, black
box reuse).

• Decoupled, changeable parts: this approach focuses on creating a collec-
tion of independent, loosely coupled components. This enables robust,
modifiable, plug-and-play designs.

Approaches to implement design-by-composition:

• Direct containment: the simplest form of design-by-composition is to simply
embed an element declaration.

• Containment by reference: in this approach we embed an empty element
with an IDREF attribute. The attribute references an element containing an
ID attribute. This approach yields a very loosely coupled design.

Long, extended type hierarchies lead to brittle, non-modifiable designs that are
virtually impossible to understand. Design by composition is the preferred approach.
It yields simpler, robust, modifiable, plug-and-play designs.

Recommendation 16: If the decision is made to use subclassing, then avoid using
derive-by-restriction.

Rationale

Using derive by restriction make the derived type must repeat the declarations
in the parent type.

Example

<xsd:complexType name="t1">
 <xsd:sequence>
 <xsd:element name="e1" type="e1_type"/>
 <xsd:element name="e2" type="e2_type"
 maxOccurs="unbounded"/>
 <xsd:element name="e3" type="e3_type"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="t2">
 <xsd:complexContent>
 <xsd:restriction base="t1">
 <xsd:sequence>
 <xsd:element name="e1" type="e1_type"/>
 <xsd:element name="e2" type="e2_type"/>
 <xsd:element name="e3" type="e3_type"/>
 </xsd:sequence>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

BSSC 2004(3) Issue 10 34
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

Recommendation 17: If the decision is made to use subclassing, then limit the type
hierarchy to maximum 3 levels.

Rationale

Understanding the type at the bottom requires understanding everything above
it. Anything beyond 3 levels become unintelligible.

Rule 14: Do not use notations

Rationale

They exist only to provide backward compatibility with DTDs, except they are
not backward compatible with DTD notations.

Recommendation 18: Do carefully use substitution groups.

Rationale

Substitution groups provide a mechanism similar to polymorphism in program-
ming languages. One or more elements can be marked as being substitutable for a
global element (also called the head element), which means that members of the
substitution group are interchangeable with the head element in a content model.

The only requirement is that the members of the substitution group must be of
the same type or be in the same type hierarchy as the head element.

Substitution makes content models more flexible but also processing of docu-
ments based on such schemas more complex. Members of a substitution group can
be of a type derived from the substitution's group head. This is an extra complication
since derived types can be of the restrictive type or of the extension type.

Rule 15: Do favor key/keyref/unique over ID/IDREF for identity constraints.

Rationale

Identity constraints are used for specifying unique values, keys, references to
keys using XPath expressions defined within the scope of an element declaration
and should have the preference over the use of the attribute's type ID, IDREF.

ID/IDREF have several limitations that identity constraints have not:

1. IDs can only have a specific range of values.

2. The XML Schema family of ID types are not entirely compatible with the
the DTD family of ID types

3. An ID or IDREF has to be unique within the document. The symbol space
for unique IDs is the entire XML document, but for unique keys is the tar-
get scope of the XPath. This is important if uniqueness is needed in two
overlapping value spaces with different scopes in the same XML docu-
ment.

BSSC 2004(3) Issue 10 35
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

Rule 16: Do not use default or fixed values especially for types of xs:QName.

Rationale

The primary complaint against default and fixed values is that they cause new
data to be inserted in the XML document after validation, thus changing the data.

The use of xs:Qname may lead to incorrect behavior as it has no canonical
form.

Recommendation 19: Do use elementFormDefault set to qualified and
attributeFormDefault set to unqualified.

Rationale

Elements or attributes with a namespace name are said to be namespace qual-
ified. The default value of both attributes of the xs:schema element:
elementFormDefault and attributeFormDefault is unqualified.

It is possible to override whether local declarations validate namespace quali-
fied elements and attributes or not.

Leaving the value of attributeFormDefault as unqualified makes
sense because most schema authors do not want to have to namespace qualify all
attributes by explicitly prefixing them.

6.4 Namespace and Namespace Referrals

Recommendation 20: Do use XML namespaces as much as possible. Learn the
correct way to use them.

Rationale

An appropriate use of XML namespaces makes it much easier to reuse existing
schemas by combining and/or extending them.

Recommendation 21: If you intend your schema type definitions to be reused in a
variety of contexts, do not give them a targetNamespace. This is the so-called
chameleon design pattern.

Rationale

A schema without a target namespace can typically only validate elements and
attributes without a namespace name. However, if such a schema is included in a
schema with a target namespace, the included schema assumes the target names-
pace of the including schema.

This feature is typically called the chameleon schema design pattern, and it is
useful for creating a reusable module of type definitions and declarations.

There is a problem with combining chameleon schemas with identity con-
straints. Although QName references to types, definitions, and declarations in the
chameleon schema are coerced into the namespace of the including schema, the
same is not done for XPath expressions used by xs:key, xs:keyref, and
xs:unique identity constraints.

BSSC 2004(3) Issue 10 36
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

Consider the following schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xs:element name="Root">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="person" type="PersonType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:key name="PersonKey">
 <xs:selector xpath="person"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:keyref name="BestFriendKey" refer="PersonKey">
 <xs:selector xpath="person"/>
 <xs:field xpath="@best-friend"/>
 </xs:keyref>
 </xs:element>
 <xs:complexType name="PersonType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="best-friend" type="xs:string" />
 <xs:attribute name="name" type="xs:string" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

If this schema is included in another schema with a target namespace, the
XPath expressions in both the key and keyref will fail. In this specific example, the
person element is in no namespace in the chameleon schema, but once included in
another schema it picks up that target namespace.

The XPath expressions which match on a person without a target namespace
will not work without signifying that they no longer work since processors are not
obliged to ensure that path expressions in identity constraint actually return results.

The point is that it is not advisable to use identity constraints in chameleon
schemas.

Rule 17: If you have a targetNamespace, make it the default namespace.

Rationale

Advantages of applying the combination of the recommendation and rule above:

Schemas which have no targetNamespace must be designed so that the
XMLSchema components (element, complexType, sequence, etc) are qualified.
This approach will work whether your schema has a targetNamespace or not.
Thus, with this approach you have a consistent approach to designing your
schemas: always qualify the XMLSchema components with a namespace.

Disadvantages of applying the combination of the recommendation and rule
above:

If your schema is referencing components from multiple namespaces then for
some references you will have to qualify the reference, whereas other times you will

BSSC 2004(3) Issue 10 37
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

not (namely, when you are referencing components in the targetNamespace). This
variable use of namespace qualifiers in referencing components can be confusing.

6.5 Integrating XML Schemas

Sometimes XML Schemas have to be integrated that come from different com-
panies or from different project or development teams. The following issues have to
be addressed when such an integration is needed:

• Elements and attributes that carry the same content should have the same
name in the merged data structures and namespaces, or links should be
used to make the connection.

• Versioning issues and configuration control issues.

Rule 18: Do not hard code the identity of an imported schema.

Rationale

Suppose that you declare an element to have a type from another namespace,
e.g.,

<xsd:element name="sensor" type="s:sensor_type"/>

Observe that sensor_type is from another namespace. Thus, this schema will
need to do an <import>. Normally we see <import> elements with two attributes:
namespace and schemaLocation. However, schemaLocation is actually option-
al. When you do specify schemaLocation then you are rigidly fixing the identity of
a schema which is to provide an implementation for sensor_type. We can make
things a lot more dynamic by not specifying schemaLocation. Instead, let the in-
stance document author identify a schema that implements sensor_type. This cre-
ates a very dynamic schema. The type of the sensor element is not fixed, static.
Thus we postpone binding the type reference (type="s:sensor_type") to an im-
plementation of the type as long as possible, i.e., until schema validation time.

6.6 Extensible Content Models for XML Schema's

Recommendation 22: Create extensible schemas. Do use wildcards to provide well
defined points of extensibility. Use the <any> element.

We can put the <any> element specifically in those locations where extensibility
is desired. Of course, multiple <any> elements can be used if many points of exten-
sibility are necessary. With maxOccurs, it is possible to specify how much extensi-
bility will be allowed.

6.7 Expressing Additional Constraints

Although the XML Schema Definition language is quite powerful, certain con-
strains on the syntax of XML document cannot be expressed using it alone. A num-
ber of existing approaches make it possible to express such additional constraints in
a way that allows for validating them automatically:

1. Supplement with another schema language.

2. Write code to express additional constraints.

BSSC 2004(3) Issue 10 38
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

3. Express additional constraints with an XSLT/XPath stylesheet.

The following subsections discuss these approaches in more detail.

Recommendation 23: Take into account that XML schemas will not be able to ex-
press all of your business rules.

Rationale

The expressive power of the XML schema language is limited, and generally re-
stricted to syntax. Express any additional business rules that cannot be expressed
directly in a schema by using an additional suitable constrain language.

6.7.1 Supplement with Another Schema Language

During the last years, a number of special schema languages have been pro-
posed, that are intended to allow for expressing constrains on documents in a more
general and convenient way. A good example of such a language is Schematron
[SCH].

Advantages:

• Collocated constraints. There is something very appealing about having all
the constraints expressed within one document rather than being dis-
persed over multiple documents. This is a common property of specialized
constrain languages.

• Simplicity. Many of the schema languages were created in reaction to the
complexity and limitations of XML Schemas. Consequently, most of them
are relatively simple to learn and use.

Disadvantages:

• Multiple schema languages may be required. Each schema language has
its own capabilities and limitations. Multiple schema languages may be re-
quired to express all the additional constraints. For example, while
Schematron is very powerful, it is not able to express all constraints. Also,
since it does not have loops and variables, Schematron may force the de-
veloper to go through many contortions to express some assertions.

• Yet another vocabulary. There are many schema languages, each with its
own vocabulary and semantics. How do you find a schema language with
the capability to express your problem 's additional constraints? You have
to take the time to learn each of the schema languages. Hopefully, you will
find one that supports expression of your constraints. Even if relatively
easy to learn and use, it always takes time to learn a new vocabulary with
is own particular semantics.

• Questionable long term support. In most cases, special schema languages
are created by a single author. These authors are often busy, very bright
people, whose interests may move to something else. If that happens you
may be left with a product which is no longer supported.

6.7.2 Write Code to Express Additional Constraints

It is always possible to use a standard programming language to write code that
parses an XML file and check constrains on it.

BSSC 2004(3) Issue 10 39
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

Advantages:

• Full power of a programming language. The advantage of this option is
that with a single programming language you can express all the additional
constraints.

Disadvantages:

• Not leveraging other XML technologies. There are other XML technologies
that could be used to express the additional constraints in a declarative
manner, without going through the compiling, linking, executing effort.

6.7.3 Express Additional Constraints with an XSLT/XPath Stylesheet

An XSLT/XPATH stylesheet can be used effectively to check constraints. The
general approach is to use the XSLT language to identify patterns that are nor al-
lowed and report them.

Advantages:

• Application specific constraint checking. Each application can create its
own stylesheet to check constraints that are unique to the application. It is
possible to enhance the schema without touching it.

• Core technology. XSLT/XPath is a core technology which is well support-
ed, well understood, and has lots of material written on it.

• Expressive power. XSLT/XPath is a very powerful language. Most, if not
every, constraint that you might ever need to express can be expressed
using XSLT/ XPath. Thus you do not have to learn multiple schema lan-
guages to express your additional constraints.

• Long term support. XSLT/XPath is well supported, and will be around for a
long time.

Disadvantages:

• Separate documents. With this approach you will write your XML Schema
document, then you will write a separate XSLT/XPath document to express
additional constraints. Keeping the two documents synchronized often
needs careful management.

6.8 Schema Versioning

Similar to many other types of software artifacts, XML schemas need to evolve
over time. Sometimes, a new version of a schema can be kept backwards compati-
ble, that is, instances of older versions are still valid instances of the new version. It
is often the case, however, that keeping a schema backwards compatible may be
too complex or expensive, and that, for this reason, new incompatible versions have
to be created.

Properly identifying the schema versions in both the schemas themselves and
their instances, can thus be very helpful to adequately manage schema evolution.
The following rules and recommendations, as well as the additional material in this
chapter, are concerned with schema version identification and how to do it effective-
ly.

BSSC 2004(3) Issue 10 40
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

Rule 19: Capture the schema version somewhere in the XML schema.

Always make sure that proper version information is included in your schema.

Rationale

Capturing the schema version inside the schema provides an easy way to
check for a schema version. Certain approaches to registering the schema version in
the schema itself (see the subsections in this chapter for a detailed discussion) may
also allow for automatic matching of the version identifiers in schemas and in-
stances.

Rule 20: Include information in the instance data files, that makes it possible to de-
termine which version (or versions) of the schema they are compatible with.

Always make sure that any instance data files contain information identifying the
schema version (or versions) the data is meant to be compatible with.

Rationale

Capturing the schema version inside the data file provides an easy way to iden-
tify matching schemas. Certain approaches to registering the schema version in the
schema itself (see the subsections in this chapter for a detailed discussion) may also
allow for automatic matching of the version identifiers in schemas and instances.

Rule 21: Make older versions of your XML schema available.

Rationale

This makes it possible for the users of the schema to keep relying in previous
versions before they are able to migrate to the newer, potentially incompatible ones.

Rule 22: In situations where a new version of a schema makes backwards incom-
patible changes (e.g., a construct that was valid and meaningful for the previous
schema does not validate against the new schema), make sure that older instances
will not be accidentally validated against the new version.

Rationale

By properly identifying the schema version in the schema, it is possible to pre-
vent older instances from being validated against a new version without noticing that
the new version is backwards incompatible. If versions are properly identified, valida-
tion tools will immediately notice the incompatibility an report it, instead of producing
potentially confusing error messages about some structures not being valid.

Example

The following steps (that correspond to the approach presented in Sec-
tion 6.8.4) are a possible way to achieve the effect discussed above:

1. Change the target namespace. This will prevent older instances from vali-
dating at all.

2. Update the instances to reflect the new target namespace.

3. Confirm that there are no compatibility problems with the new schema.

BSSC 2004(3) Issue 10 41
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

4. Change the attribute that identifies the version/versions of the schema with
which the instance is valid.

5. Update the schema file name/location if appropriate.

Recommendation 24: When an XML schema is only extended, (e.g., new ele-
ments, attributes, extensions to an enumerated list, etc.) one should strive to not in-
validate existing instance documents.

For example, new elements or attributes could be made optional if this makes
sense at all, since optional, additional elements or attributes will not break existing
instances.

Rationale

Backwards compatible schemas reduce costs by avoiding unnecessary modifi-
cation of instances.

Recommendation 25: Adopt a convention for schema version identification to indi-
cate whether the schema changed significantly (changes were not backwards com-
patible) or was only extended (changes were backwards compatible).

 One common schema is to use version identifiers consisting of a major and a
minor version number, i.e., 1.0 or 2.3. The minor version number will be updated
when changes to the schema are backwards compatible (i.e., version identifier goes
from 1.0 to 1.1). The major version number, on the other hand, will be updated only
after backwards incompatible changes (i.e., after backwards incompatible changes,
version goes from 2.7 to 3.0).

Rationale

Having a convention that clearly distinguishes between backward compatible
and incompatible changes, makes it easier to determine with which versions of a
schema a given instance might be compatible.

6.8.1 Schema Versioning Techniques

As mentioned above, changes to a schema can be classified in two large
groups:

1. Backwards incompatible changes. The new schema changes the interpre-
tation of some element. For example, a construct that was valid and mean-
ingful for the previous schema does not validate against the new schema.

2. Backwards compatible changes. The new schema extends the namespace
(e.g., by adding new elements), but does not invalidate previously valid
documents.

A number of options exist, that make it possible to identify the schema version
in both schemas and their instances:

1. Change the (internal) schema version attribute.

2. Create a schemaVersion attribute on the root element.

3. Change the schema's targetNamespace.

4. Change the name/location of the schema.

BSSC 2004(3) Issue 10 42
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

The following subsections describe these alternatives in more detail, and com-
pare their relative advantages and disadvantages.

6.8.2 Change the (Internal) Schema Version Attribute

In the first approach, one would simply change the number in the optional
version attribute at the start of the XML schema. For example, in the code below
one could change version="1.0" to version="1.1"

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="1.0">

Advantages:

• Easy. Part of the schema specification.

• Instance documents would not have to change if they remain valid with the
new version of the schema (case 2 above).

• The schema contains information that informs applications that it has
changed. An application could interrogate the version attribute, recognize
that this is a new version of the schema, and take appropriate action.

6.8.3 Create a schemaVersion Attribute on the Root Element

With this approach, an attribute is included on the element that introduces the
namespace. In the examples below, this attribute is named schemaVersion. This
option could be used in two ways.

Usage A

First, this attribute could be used to capture the schema version. In this case,
one could make the attribute required and the value fixed. Then each instance that
used this schema would have to set the value of the attribute to the value used in the
schema. This makes schemaVersion a constraint that is enforceable by the valida-
tor. With the example schema below, the instance would have to include a
schemaVersion attribute with a value of 1.0 for the instance to validate.

<xs:schema xmlns="http://www.exampleSchema"
 targetNamespace="http://www.exampleSchema"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
<xs:element name="Example">
<xs:complexType>
 ...
 <xs:attribute name="schemaVersion" type="xs:decimal"
 use="required" fixed="1.0"/>
 </xs:complexType>

 ...
</xs:element>

Advantages:

• The schemaVersion attribute is an enforceable constraint. Instances
would not validate without the same version number.

BSSC 2004(3) Issue 10 43
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

Disadvantages:

• The schemaVersion number in the instance must match exactly. This
does not allow an instance to indicate that it is valid using multiple versions
of a schema.

Usage B

The second approach uses the schemaVersion attribute in an entirely differ-
ent way. It no longer captures the version of the schema within the schema (i.e., it is
not a fixed value). Rather, it is used in the instance to declare the version (or ver-
sions) of the schema with which the instance is compatible. This approach would
have to be done in conjunction with option 1 (or an alternative indicator in the
schema file to identify its version).

The schemaVersion attribute's value could be a list, or a convention could be
used to define how this attribute is used. For example, if the convention was that the
schemaVersion attribute declares the latest schema version with which the in-
stance is compatible, then the example instance below states that the instance
should be valid with schema version 1.2 or earlier.

With this approach, an application could compare the schema version (captured
in the schema file) with the version to which the instance reports that it is compatible.

Sample schema, that declares its version as 1.3:

<xs:schema xmlns="http://www.exampleSchema"
 targetNamespace="http://www.exampleSchema"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="1.3">

 ...
 <xs:element name="example">
 <xs:complexType>
 <xs:attribute name="schemaVersion" type="xs:decimal"
 use="required"/>
 </xs:complexType>
 </xs:element>
 ...

Sample Instance, declaring it is compatible with version 1.2 (or 1.2 and possibly
other versions depending upon the convention used):

<example schemaVersion="1.2"
 xmlns="http://www.example"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/example.xsd">
 ...
</example>

Advantages:

• Instance documents may not have to change if they remain valid with the
new schema version (case 2).

• Like option 1, an application would receive an indication that the schema
has changed.

BSSC 2004(3) Issue 10 44
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

• Could provide an alternative to schemaLocation as a means to point to
the correct schema version. This could be desirable where the business
practice requires the use of a schema in a controlled repository, rather
than an arbitrary location.

Disadvantages:

• Requires extra processing by an application. For example, an application
would have to pre-parse the instance to determine what schema version it
should be compatible with, and compare this value to the version number
stored in the schema file.

6.8.4 Change the schema's targetNamespace.

In this approach, the schema's targetNamespace could be changed to desig-
nate that a new version of the schema exists. One way to do this is to include a
schema version number in the designation of the target namespace as shown in the
example below:

<xs:schema xmlns="http://www.exampleSchemaV1.0"
 targetNamespace="http://www.exampleSchemaV1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

Advantages:

• Applications are notified of a change to the schema (i.e., an application
would not recognize the new namespace).

• Requires action to assure that there are no compatibility problems with the
new schema. At a minimum, the instance documents that use the schema,
and schemas that include the relevant schema, must change to reference
the new targetNamespace. This is both an advantage and a disadvan-
tage.

6.8.5 Change the Name/Location of the Schema.

This approach changes the file name or location of the schema. This mimics the
convention that many people use for naming their files so that they know which ver-
sion is the most current (e.g., append version number or date to end of file name).

Disadvantages:

• As with option 3, this approach forces all instance documents to change,
even if the change to the schema would not impact that instance.

• Any schemas that import the modified schema would have to change since
the import statement provides the name and location of the imported
schema.

• Unlike the previous options, with this approach an application receives no
hint that the meaning of various element/attribute names has changed.

• The schemaLocation attribute in the instance document is optional and
is not authoritative even if it is present. It is a hint to help the processor to
locate the schema. Therefore, relying on this attribute is not a good prac-
tice.

BSSC 2004(3) Issue 10 45
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

6.9 Global Versus Local Definitions

A component (element, complexType, or simpleType) is global if it is an
immediate child of <schema>, whereas it is local if it is not an immediate child of
<schema>, i.e., it is nested within another component. The main issue is, when
should an element or type be declared global and when should it be declared local?

Below is a snippet of an XML instance document. We will explore the different
design strategies using this example.

<spacecraft>
 <name>Huygens</name>
 <company>EADS</company>
</spacecraft>

Rule 23: Where minimizing size and coupling of components is of utmost concern
then use the so-called Russian Doll design.

Rationale

The Russian Doll design corresponds to having a single box (element or
type), having other boxes nested within, which in turn have boxes nested within
them, and so on. (boxes within boxes, like a Russian doll)

This design approach has the schema structure mirror the instance document
structure, e.g., declare a spacecraft element and within it declare a name element
followed by a company element:

<xsd:element name="spacecraft">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="company" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
</element>

Russian Doll Design Characteristics

1. Opaque content. The content of spacecraft is opaque to other schemas,
and to other parts of the same schema. The impact of this is that none of
the types or elements within spacecraft are reusable.

2. Localized scope. The region of the schema where the name and company
element declarations are applicable is localized to within the spacecraft el-
ement. The impact of this is that if the schema has set
elementFormDefault="unqualified" then the namespaces of name
and company are hidden (localized) within the schema.

3. Compact. Everything is bundled together into a tidy, single unit.

4. Decoupled. With this design approach each component is self-contained
(i.e., they don't interact with other components). Consequently, changes to
the components will have limited impact. For example, if the components
within spacecraft change the impact will be limited since they are not
coupled to components outside of spacecraft.

5. Cohesive. With this design approach all the related data is grouped togeth-
er into self-contained components, i.e., the components are cohesive.

BSSC 2004(3) Issue 10 46
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

Rule 24: Where your task requires that you make available to instance document
authors the option to use element substitution, then use the so-called Salami Slice
design.

Rationale

With this design we disassemble the instance document into its individual com-
ponents. In the schema we define each component (as an element declaration), and
then assemble them together:

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="company" type="xsd:string"/>

<xsd:element name="spacecraft">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="name"/>
 <xsd:element ref="company"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Note how the schema declared each component individually (name, and
company) and then assembled them together (by referencing them) in the creation
of the spacecraft component.

The Salami Slice design corresponds to having many separate boxes
(element or type) which are assembled together (separate boxes combined to-
gether, just like salami slices brought together in a sandwich).

The Salami Slice design also results in creating reusable (element) compo-
nents, but it has absolutely no potential for namespace hiding.

Salami Slice Design Characteristics

1. Transparent content. The components which make up spacecraft are
visible to other schemas, and to other parts of the same schema. The im-
pact of this is that the types and elements within spacecraft are
reusable.

2. Global scope. All components have global scope. The impact of this is
that, irrespective of the value of elementFormDefault, the namespaces
of name and company will be exposed in instance documents.

3. Verbose. Everything is laid out and clearly visible.

4. Coupled. In our example we saw that the spacecraft element depends on
the name and company elements. If those elements were to change it
would impact the spacecraft element. Thus, this design produces a set
of interconnected (coupled) components.

5. Cohesive. With this design approach all the related data is also grouped
together into self-contained components. Thus, the components are cohe-
sive.

The two design approaches differ in a couple of important ways:

• The Russian Doll design facilitates hiding (localizing) namespace complex-
ities. The Salami Slice design does not.

BSSC 2004(3) Issue 10 47
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

• The Salami Slice design facilitates component reuse. The Russian Doll de-
sign does not.

Rule 25: The so-called Venetian Blind design is the one to choose when your
schemas require the flexibility to turn namespace exposure on or off with a simple
switch, and where component reuse is important.

Rationale

This design facilitates hiding (localizing) namespace complexities, and facili-
tates component reuse. Consider the spacecraft example again. An alternative de-
sign is to create a global type definition that nests the name and company element
declarations within it:

<xsd:complexType name="mission">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="company" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="spacecraft" type="mission"/>

This design has both benefits:

• It is capable of hiding (localizing) the namespace complexity of name and
company, and

• It has a reusable mission type component.

The instance document has all its components bundled together. Likewise, the
schema is designed to bundle together all its element declarations.

With the Venetian Blind design we disassemble the problem into individual com-
ponents, as the Salami Slice design does, but instead of creating element declara-
tions, type definitions are created.

Here's what our example looks like with this design approach:

<xsd:simpleType name="name">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="integral"/>
 <xsd:enumeration value="cluster"/>
 <xsd:enumeration value="galileo"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="mission">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="company">
 <xsd:sequence>
 <xsd:element name="name" type="title"/>
 <xsd:element name="acronym" type="name"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:element name="spacecraft" type="name"/>

BSSC 2004(3) Issue 10 48
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

This design has:

• Maximized reuse. There are four reusable components: the name type, the
mass type, the company type, and the spacecraft element.

• Maximized the potential to hide (localize) namespaces. Note how this has
been phrased: "maximized the potential ...". Whether, in fact, the names-
paces of title and author are hidden or exposed, is determined by the
elementFormDefault switch.

The Venetian Blind design exposes these guidelines:

• Design your schema to maximize the potential for hiding (localizing)
namespace complexities.

• Use elementFormDefault to act as a switch for controlling namespace
exposure. If you want element namespaces exposed in instance docu-
ments, simply turn the elementFormDefault switch to "on" (i.e, set
elementFormDefault="qualified"). If you don't want element
namespaces exposed in instance documents, simply turn the
elementFormDefault switch to "off" (i.e., set
elementFormDefault="unqualified").

• Design your schema to maximize reuse.

• Use type definitions as the main form of component reuse.

• Nest element declarations within type definitions.

Here are the characteristics of the Venetian Blind Design.

Venetian Blind Design Characteristics

1. Maximum reuse. The primary component of reuse are type definitions.

2. Maximum namespace hiding. Element declarations are nested within
types, thus maximizing the potential for namespace hiding.

3. Easy exposure switching. Whether namespaces are hidden (localized) in
the schema or exposed in instance documents is controlled by the
elementFormDefault switch.

4. Coupled. This design generates a set of components which are intercon-
nected (i.e., dependent).

5. Cohesive. As with the other designs, the components group together relat-
ed data. Thus, the components are cohesive.

If the developer wants namespaces exposed in instance documents:

• What if at a later date you change your mind and wish to hide names-
paces?

• You will need to redesign your schema (possibly scraping it and starting
over).

The solution is to adopt the Venetian Blind Design, which allows you to control
whether namespaces are hidden or exposed by simply setting the value of
elementFormDefault. No redesign of your schema is needed as you switch from
exposing to hiding, or vice versa.

BSSC 2004(3) Issue 10 49
CHAPTER 6
XML AND XML SCHEMA DESIGN AND STYLE

The particular project the reader is in may need to sacrifice the ability to turn
on/off namespace exposure because you require instance documents to be able to
use element substitution. In such circumstances the Salami Slice design approach is
the only viable alternative.

BSSC 2004(3) Issue 10 50
CHAPTER 7
SECURITY-ENCRYPTIONS-KEYS

Chapter 7
Security-Encryptions-Keys

Security APIs for Java, C and C++ are available in order to provide XML signa-
ture syntax and processing, XML encryption syntax and processing, and XML key
management. Both commercial and open source, open standard implementations
exist [XMLKEY].

Going into the details of the products is outside of the scope of this document
as the product offer is currently quite volatile.

It is important to consider the W3C XML specifications on security see [XM-
LENC], [XMLSEC] and [XMLSIG].

BSSC 2004(3) Issue 10 51
CHAPTER 8
XML AND BINARY DATA

Chapter 8
XML and Binary Data

8.1 Introduction

In its standard form, XML data will always be encoded as text. The application
of XML to an always growing variety of purposes, has revealed a number of advan-
tages, but also certain disadvantages, of XML's textual nature.

On the one hand, a text representation can be handled with relatively simple al-
gorithms in a widely portable machine and architecture independent fashion. Addi-
tionally, XML text is also easily readable, thus making debugging and auditing appli-
cations much easier. On the other hand, the space overhead posed by the text rep-
resentation could be pretty high for certain applications. It could even negatively af-
fect the efficiency of processing algorithms due to the increased data throughput.

The idea of introducing and alternative binary encoding for XML that could over-
come such limitations has been extensively, and quite often very fiercely discussed
by the XML development community. Unfortunately, however, to the time of this writ-
ing no final solution has been found that could properly meet the complex and varied
needs presented by various members of the community. Although many proposals
have been discussed, none of them seems to really offer benefits that could com-
pensate for the reduced simplicity and flexibility caused by the introduction of a bina-
ry representation.

The XML Binary Characterization Use Cases [XMLBINCASES] document, sum-
marizes and effort by the World Wide Web Consortium (W3C) to collect a represen-
tative number of XML use cases, that could at some point lead to a better binary en-
coding for XML. This ongoing effort could eventually lead to one or more standard-
ized solutions to the binary XML problem. In the mean time, practitioners must con-
sider the advantages and disadvantages of the existing solutions and pick one based
on their particular needs. This chapter presents a brief overview of the main existing
options.

Recommendation 26: Consider your requirements carefully before deciding to look
for a binary XML solution. In many cases, the standard text based XML encoding is
adequate.

Rationale

A variety of trials an experiments performed by XML researchers and practition-
ers around the world [BOXPRJ, GIR, XMILL, XMLZIP] have failed to show actual
benefits for a number of proposed binary encodings. The apparent inefficiency of
XML's text encoding can be misleading, and an alternative binary encoding, that may
result appealing in theory, could turn out to be equally or less efficient when tested in
practice. If you still consider that a binary encoding may benefit your application,

BSSC 2004(3) Issue 10 52
CHAPTER 8
XML AND BINARY DATA

conduct some performance tests to corroborate this fact before going on with the ac-
tual implementation.

8.2 Binary Attachments

Frequently, all what is needed is to introduce sets of binary data encoded in a
well known binary format into regular XML files. An example of such a file could be a
document containing bitmap pictures: The contents of the document could be repre-
sented as text, whereas the pictures would have to be encoded in a standard graph-
ics format (JPEG, GIF, PNG) before embedding them in the document as binary da-
ta.

Depending on the size of the binary packages, different solutions are possible.

Recommendation 27: For embedding small amounts of binary data in an XML file,
consider using a binary to text encoding land putting it directly in the XML stream.

Rationale

Small blocks of binary data can be easily converted to text and included in a
regular XML file. A standard encoding like Base64 [RFC3584], which is supported by
a variety of development environments, can be readily used for this purpose.
[RFC2557] discusses this approach more in detail.

A disadvantage of Base64 and similar text encodings is that they increase the
effective size of the data. An additional problem as that not all applications will auto-
matically interpret the data as binary. For this reasons, refrain from encoding large
amounts of data using this approach.

Recommendation 28: For packaging large amounts of binary data together with
textual XML data in an efficient way, consider using the XML-binary Optimized
Packaging (XOP).

Rationale

The XML-binary Optimized Packaging [XOP] combines the well known MIME
standard for multi-part documents [RFC2557] with XML to allow for efficiently encod-
ing large data sets containing a mixture of binary and text XML encoded data. Relay-
ing on this standard may be the best way to guarantee interoperability with present
and future applications.

8.3 XML Data Compression

In some cases, a more efficient encoding of data may be necessary, either to
reduce space overhead (constrained storage media, slow communication links) or to
increase data throughput. Data compression is a common approach to handle the
space overhead.

Recommendation 29: Consider using a standard compression algorithm to com-
press XML data before storing or transmitting it.

Rationale

Modern compression algorithms are able to achieve very high compression ra-
tios with a wide variety of XML data types. Additionally, most current development

BSSC 2004(3) Issue 10 53
CHAPTER 8
XML AND BINARY DATA

platforms readily provide efficient, reliable, and standardized implementations of
such algorithms. For these reasons, compressing XML data is often an efficient,
practical and relatively well proven solution for most of the main drawbacks of the
XML text encoding.

8.4 Other Binary Encoding Approaches

As mentioned, a number of binary encodings claiming better space usage or a
higher data access efficiency have been developed during the last years. The effec-
tiveness and maturity of such approaches is hard to assess in general, and, for this
reason, the suitability for a particular project should be evaluated in the specific con-
text of the project. A non-exhaustive list of binary XML approaches includes the BOX
Project [BOXPRJ], the WAP binary encoding [WAP], the Millau encoding [GIR], and
the XMill [XMILL] and XMLZip [XMLZIP] XML compressors.

BSSC 2004(1) Issue 10 d5 54
BIBLIOGRAPHY

Bibliography

ANS France Telecom. ASN.1 Standard.
http://asn1.elibel.tm.fr/en/standards/index.htm

ANSAPP
Application fields of ASN.1, web site, France Telecom,
http://asn1.elibel.tm.fr/en/uses/index.htm

ANSITU
International Telecommunications Union. ASN.1 Project Web Site.
http://www.itu.int/ITU-T/asn1/

ANSNOT
International Telecommunications Union. Information Technology – Abstract
Syntax Notation One (ASN.1): Specification of Basic Notation. December
1997. http://www.itu.int/ITU-T/studygroups/com17/
languages/X.680_1297.pdf

ANSSITE
France Telecom. ANS.1 Information Site. http://asn1.elibel.tm.fr/

ANSXML
France Telecom. What ASN.1 can offer to XML.
http://asn1.elibel.tm.fr/xml

ARM Armstrong, E. Understanding XML..
http://java.sun.com/webservices/docs/1.0/tutorial/
doc/IntroXML.html

BOX Box, D. Essential XML: Beyond Markup. Addison-Wesley, 2000.

BOXPRJ
Binary Optimized XML (BOX) Project Web Site.
http://box.sourceforge.net

DODDIC
Dodds, L. Dictionaries and Datagrams. Published on XML.com, O'Reilly &
Associates, January 2001.
http://www.xml.com/pub/a/2001/01/24/deviant.html

DODINT
Dodds, L. Intuition and Binary XML. Published on XML.com, O'Reilly & Asso-
ciates, April 2001,
http://www.xml.com/pub/a/2001/04/18/binaryXML.html

DUB Dubuisson, O. ASN.1 – Communication between Heterogeneous Systems.
June 2000. http://asn1.elibel.tm.fr/en/book and
http://www.oss.com/asn1/dubuisson.html.

BSSC 2004(3) Issue 10 55
BIBLIOGRAPHY

ECSS-E40-1B
European Space Agency (ESA). Space engineering - Software (ECSS-E-40).
November 2003.

GIR Girardot, M., Sundaresan, N. Millau: An Encoding Format for Efficient Repre-
sentation and Exchange of XML over the Web. In, Proceedings of the 9th In-
ternational World Wide Web Conference, 2000
http://www9.org/w9cdrom/154/154.html

HAR Harold, E. R. XML Bible Second Edition. Hungry Minds, Inc. 2001.

JAVA
SUN Java Home Page. http://java.sun.com/

JAVAXML
Sun Microsystems' Java and XML Page. http://java.sun.com/xml/

LEV Levinson, E., Ed. RFC 2387 The MIME Multipart/Related Content-type. Inter-
net Engineering Task Force (IETF), August 1998.
http://www.ietf.org/rfc/rfc2387.txt

MCLAU
McLaughlin B., Java & XML, O’Reilly & Associates.

NOK OSS Nokalva, Inc. XML Support in OSS ASN.1 Tools, web site.
http://www.oss.com/products/xml.html

OASIS
The Oasis Consortium Home Page.
http://www.oasis-open.org/home/index.php

OASISXML
OASIS XML Web Page. http://www.xml.org/

REIN Rein, L. Handling Binary Data in XML Documents. Published on XML.com,
O'Reilly & Associates, July 1998.
http://www.xml.com/pub/a/98/07/binary/binary.html

RFC2557
Palme, J., Hopmann, A., Shelness, N. Eds. RFC 2557 MIME Encapsulation
of Aggregate Documents, such as HTML (MHTML). Internet Engineering
Task Force (IETF), March 1999.
http://www.ietf.org/rfc/rfc2557.txt

RFC3584
Josefsson, S., Ed. RFC 3548 - The Base16, Base32, and Base64 Data En-
codings. The Internet Society, 2003.

ROS Rosen, D. An Extensible Model for Real-Time XML Processing. Presented at
XML Europe 2000, June 2000.
http://www.gca.org/papers/xmleurope2000/pdf/s12-01.pdf

RUS Rusty H. et al. XML in a Nutshell, O’Reilly & Associates.

SCH Jelliffe, R. The Schematron: An XML Structure Validation Language using
Patterns in Trees.
http://xml.ascc.net/resource/schematron/schematron.html

WAP Open Mobile Alliance (OMA). WAP Forum Specifications.
http://www.wapforum.org/what/technical.htm

XMILL XMill: The XML Compressor.
http://www.cs.washington.edu/homes/suciu/XMILL/

BSSC 2004(3) Issue 10 56
BIBLIOGRAPHY

XMLBIN
World Wide Web Consortium (W3C). Report From the W3C Workshop on
Binary Interchange of XML Information Item Sets.
http://www.w3.org/2003/08/binary-interchange-
workshop/Report.html

XMLBINCASES
Cokus, M. Pericas-Geertsen, S. XML Binary Characterization Use Cases.
http://www.w3.org/TR/xbc-use-cases/

XMLBINGRP
XML Binary Characterization Working Group Public Page:
http://www.w3.org/XML/Binary/

XMLENC
XML Encryption WG. http://www.w3.org/Encryption/2001/

XMLKEY
XML Key Management Specification. http://www.w3.org/TR/xkms/

XMLSEC
XML Security Apache Web Page. http://xml.apache.org/security/

XMLSIG
XML Signature WG. http://www.w3.org/Signature/

XMLSPEC
W3C XML specification Home Page. http://www.w3.org/XML/

XMLZIP
The XMLZip XML Compressor. http://www.sswug.org/see/XMLZip-
9956

XOP Gudgin, M., Mendelsohn, N., Nottingham M., Ruellan, H. XML-binary Opti-
mized Packaging. W3C Recommendation 25 January 2005.
http://www.w3.org/TR/2005/REC-xop10-20050125/

