2

Question 1 .

In fact you seem to be proposing generic structures that could be completed to become instantiated ones. Nothing is explicitly foreseen for that purpose but nothing prevents doing it. A simple convention as a type named TO_BE_REFINED used for all the provisional fields of the structure could be replaced afterwards by the adequate type. Why do you need a “to_be_refined” type. Isn’t the statement below sufficient to answer the question?

4.6.2.3 When a data entity is considered as being composite, it is not obligatory to mention all its component data entities if these are not known yet (in particular, when the dictionary is undergoing a definition process). However, when the data entity dictionary corresponds to a physical data product, the components have to be defined.
Question 2 .

The only tool dedicated to DEDSL definition that we have holds the data structure described as a tree. So each node or leaf has its proper name as defined by the DEDSL but it can also be designated by its path from the root of the tree. That’s what we do in our dictionaries using another attribute (a user defined one whose name (PATHNAME in our case) is always the same thanks to the tool). So, you can have 2 fields named DAY in your description and make the difference using the path name.
MY_EXPRIMENT.HEADER.START_DATE.DAY and MY_EXPRIMENT.HEADER.END_DATE.DAY
But this approach at the moment is forbidden by the standard, which says “The name shall be unique within a DED”. We intend to propose a change in the standard to allow a pathname as a valid name.

Concerning the preferences of a particular community for the naming convention, your can use another CCSDS standard attribute named ALIAS that allows you to precise the name to be used for the concerned data item in a particular context.

<ALIAS> JOUR, "Name for DAY in French" </ALIAS>

<ALIAS2> DIA, "Name for DAY in Spanish" </ALIAS2>

It appears we didn’t think about composites of composites, so didn’t address this. We need to look at this more carefully as it brings up complex issues. Think it is important in single level composites that we not encourage ‘this syntactic view’. For example, start_date.day and end_date.day may both inherit from date.day, but have different semantics. It may be dangerous to make the high level naming convention visible.

Question 3 .

When using DEDSL at CNES, we define strict attributes (close to the syntax of data on a medium) like NAME, LENGTH, TYPE (INTEGER, FLOAT, ENUMERATED....), CODING (BINARY, ASCII, XML...) but we also use attributes that allow a more semantic description as DEFINITION (free text to describe the item) ILLUSTRATION (a user defined attribute we use for instance to designate an image by its URL). All these attributes are in a standard format and can be processed (filtered, sorted, highlighted, linked...) by a tool we have to produce a user friendly document (word or html) from the formal DEDSL dictionary.

We think the existing ‘value_example’, which provides 8000 characters to describe the element, should answer most needs. Also can use ‘comment’.

Question 4 .

The RELATION attribute has been proposed to cover a wide range of “relations” directed by the text which is the first argument of the RELATION attribute. So, this allows expressing in the same or separate dictionaries the following relations which:
At the level of B entity definition:

B is a child of A

At the level of C entity definition:

C is a child of A

At the level of A entity definition:

A has a child B

A has a child C

It is the interpretation of the text “is a child” and “has a child” which governs the relationship.

Does that answer your question ?

This seems fine. You can also define your own attribute- see section 4.6.4.

Question 5 .

When you define a composite structure, you name the components of the structure as a particular hierarchical relation, but once named, these components can be defined as any other entities, with their own attributes.

The composite structure is specified by a list of ‘component’ attributes, each of which specifies an entity of the structure by its ‘name’. The PVL implementation of the DEDSL specifies the order of the components. Each of these components may itself be a component Entity. The characteristics of these components will, of course, be defined by the appropriate Entity specification. We wish to discourage putting any type of relationship information, including identifiers, into the Comment attribute. Are we missing your real question? Are you asking, is there a way to make lower level component information available at the top level Entity? We’ve not defined a way to do this, and comments could be used for this, but this is still just a comment.
Question 6

First of all, you should not consider the syntax used through the document “Abstract syntax” as the “implementation syntax”. We have proposed only two implementations at the moment, one in PVL (document 647.2) and one in XML DTD (document 647.3). These two are the ruling syntaxes for every attribute and descriptor definition.

The following gives an example in XML

Let's suppose that we got several locations from 2 instruments that do not refer to the same longitude system.

We can build 2 LONGITUDE types

<DATA_ENTITY>

 <NAME> LONGITUDE_INSTRUMENT_1 </NAME>

 <CLASS> MODEL </CLASS>

 etc...

 <SPECIFIC_INSTANCE> 0, "Greenwich meridian" </SPECIFIC_INSTANCE> </DATA_ENTITY>

<DATA_ENTITY>

 <NAME> LONGITUDE_INSTRUMENT_2 </NAME>

 <CLASS> MODEL </CLASS>

 etc...

 <SPECIFIC_INSTANCE> 0, "Greenwich meridian" </SPECIFIC_INSTANCE> </DATA_ENTITY>

You can then use these two types to differentiate the two kinds of locations.

SPECIFIC_INSTANCE is a multiple attributes (as ALIAS seen above)

So it can be used several times in the description of the same item

<DATA_ENTITY>

 <NAME> TEMPERATURE </NAME>

 <CLASS> MODEL </CLASS>

 <UNIT> CELSIUS DEGREE </UNIT>

 etc...

 <SPECIFIC_INSTANCE> 0, "Water icing" </SPECIFIC_INSTANCE>

 <SPECIFIC_INSTANCE2> 100, "Water boiling" </SPECIFIC_INSTANCE>

 <SPECIFIC_INSTANCE3> -17.77777, "Zero Fahrenheit" </SPECIFIC_INSTANCE> </DATA_ENTITY>

I don't know if these simple examples help in answering the question.

Question 7

 I would like a concrete example of relationships to be described in order to try to see if DEDSL is suitable to make such a description.

Clearly, there is no way of expressing simply relations between multiple pairs of data entities, as the RELATION attribute is always the attribute of a particular entity, even, if this relation can be repeated for other entities.

We didn’t define a view of relationships outside of a given Entity.

Modéle de document par défaut CNES version 1.5 mars 1999 Normal.dot
Modéle de document par défaut CNES version 1.5 mars 1999 Normal.dot

