
1

XML Structure and Construction Rules
 Draft Whitebook

05 May 2004

1 IINTRODUCTION .. 45

1.1 PURPOSE AND SCOPE .. 45
1.2 RATIONALE ... 45
1.3 STRUCTURE OF THIS DOCUMENT.. 56
1.4 TERMS –NEEDS TO BE ENHANCED ... 67
1.5 REFERENCES.. 67

2 OVERVIEW OF PROPOSED PACKAGING STRUCTURE .. 89

2.1 ENVIRONMENT.. 89
2.2 LOGICAL STRUCTURE ... 910

3 PHASED RELEASE DESIGN DECISIONS ... 1011

3.1.1 RelationshiP Description.. 1011
3.1.2 Extensibility mechanisms.. 1112

3.2 STAGED RELEASE FUNCTIONALITY .. 1112
3.2.1 version 1 should include: .. 1112
3.2.2 Version 2 Functionality Enabled.. 1213

4 XFDU COMPLEX TYPE ... 1314

4.1 OVERVIEW .. 1314
4.2 XML SCHEMA .. 1415
4.3 UTILITY TYPES... 1415

4.3.1 XML Schemas.. 1415

5 PACKAGING HEADER TYPE... 1718

5.1 OVERVIEW .. 1718

2

5.2 XML SCHEMA SYNTAX.. 1718
5.3 EXAMPLES... 1920

5.3.1 Header using mustunderstand .. 1920
5.4 SEMANTICS AND ISSUES.. 1920

6 INFORMATION PACKAGE MAP .. 2021

6.1 OVERVIEW .. 2021
6.2 XML SCHEMA .. 2021
6.3 EXAMPLES... 2122

6.3.1 Multiple Content Sections... 2122

7 CONTENT UNITS... 2223

7.1 OVERVIEW .. 2223
7.2 XML SCHEMA .. 2223
7.3 EXAMPLES ... 2425

7.3.1 Specialization of Content unit using Substitution Groups... 2425
7.4 SEMANTICS AND ISSUE ... 2526

7.4.1 Issues.. 2526
7.4.2 Data Unit Types(proposed) .. 2526

8 DATA OBJECT ENTRY SECTION... 2728

8.1 OVERVIEW .. 2728
8.2 XML SCHEMA .. 2728
8.3 EXAMPLES... 3132

8.3.1 Verify the checksum of the file .. 3132
8.3.2 Specification of Mimetype and checksum with transformations ... 3132
8.3.3 Referencing and inclusion of data content... 3132

8.4 SEMANTICS AND ISSUES.. 3233

9 SCHEMA FOR MDSCCTYPE.. 3334

10 METADATA SECTION TYPE AND METADATA OBJECTS.. 3536

10.1 OVERVIEW .. 3536
10.2 XML SCHEMA... 3536

11 BEHAVIOR SECTION.. 3637

11.1 OVERVIEW... 3637
11.2 XML SCHEMA .. 3637
11.3 EXAMPLES... 4041

11.3.1 Web-service-based mechanism.. 4041
11.3.2 .java-based mechanism.. 4042
11.3.3 aNT based mechanism ... 4142

11.4 SEMATICS AND ISSUES.. 4143

12 FULL XML SCHEMA... 4243

ANNEX 1 EXAMPLE XFDU... 5863

ANNEX 2 UML FOR XFDU – NEEDS TO BE UPDATED .. 6166

ANNEX 3 RELATIONSHIP TO OTHER EFFORTS.. 6267

ANNEX 4... 6672

12.1 PHYSICAL PACKAGING TECHNIQUES ... 6672
12.1.1 File/Directory Compression Techniques... 6672

3

12.1.2 Single XML Document ... 6672
12.1.3 web service message techniques.. 6672

12.2 USE OAIS INFORMATION MODEL ... 6673
12.2.1 Mandatory Manifest/Table of Contents... 6773
12.2.2 Flexible linkage of Manifest to Data and Metadata ... 6773
12.2.3 RelationshiP Description... 6774
12.2.4 Extensibility mechanisms... 6874

ANNEX 4 USE CASES.. 7075

ANNEX 5 REQUIREMENTS .. 7378

ANNEX 2 FUNCTIONAL REQUIREMENTS.. 7680

4

1 IIntroduction

This concept paper represents the beginning of a series of CCSDS Recommendations and Reports meant to
augment the current CCSDS packaging recommendation (References [1], [2], [3], [4], [5], [6]),s to
accommodate the current computing environment and meet evolving requirements.

1.1 PURPOSE AND SCOPE

The main purpose of this document is to define a staged set of CCSDS Recommendations for the packaging of
data and metadata, including software, into a single package (e.g.,file or message) to facilitate information
transfer and archiving. Another goal is to provide a detailed specification of core packaging structures and
mechanisms that meets current CCSDS agency requrements and can be implemented to demonstrate practical,
near-term results. This specification needs to be augmented with substantial proof-of-concept and performance
prototyping of some of the basic packaging mechanisms in environments that include interactions with
registries and repositories.

The scope of application of this document is the entire space informatics domain from operational messaging to
interfacing with science archives. In recognition of this varied user community, this document proposes
aggressive use of current and emerging W3C and Web Services standards to provide advanced data access
techniques and adherence to the OAIS Reference Model (reference [7]) information model to provide improve
support for long-term preservation of packaged information.

1.2 RATIONALE

The current CCSDS Standards for Data Packaging have not undergone a major revision in 15 years. The
computing environment and the understanding of metadata have changed radically:

• Physical media ‡Electronic Transfer
o The primary form of access to, and delivery of, both archived and recently produced data

products has shifted from hard media to include substantia network delivery
• No standard language for metadata ‡XML

o After 'bits' and 'ASCII', the language 'XML' can be viewed as the next universal data standard, as
it has grown exponentially

• Homogeneous Remote Procedure Call‡CORBA, SOAP
o Communicating heterogeneous systems are increasingly using standard remote procedure calls or

messaging protocols. The primary RPC and messaging protocol for the WWW is SOAP, an
XML based protocol

• Little understanding of long-term preservation‡OAIS RM
o The The OAIS Reference Model has become a widely adopted starting point for standardization

addressing the preservation of digital information. The OAIS defines and situates within
functional and conceptual frameworks the concepts of Information Packages for
archiving(Archival Information Packages, or AIPs), producer submission to an
archive(Submission Information Packages, or SIPs), and archives dissemination to comsumers
(Dissemination Information Packages, or DIPs).

5

• Record formats‡Self describing data formats
o Commenserate with XML, and rapidly growing computing power and storage capabililties, has

been an increasing tendency to use data formats that are more self-describing.

Further, there are a number of new requirements that are needed in the Space domain to faciliate such functions
as being able to describe multiple encodings of a data object, and to better describe the relationships among a
set of data objects. Therefore it is necessary to define a new set of packaging standards while maintaining the
existing functionality.

1.3 STRUCTURE OF THIS DOCUMENT

This document is divided into informative and normative chapters and annexes

Sections 1- 3 of this document are informative chapters that give a high level view of the rationale, the
conceptual environment, some of the important design issues and an introduction to the terminology and
concept
• Section 1 gives background to this effort, its purpose and scope, and a view of the overall document

structure.
• Section 2 provides a high level view of the anticipated computing environment and the XFDU data model.
• Section 3 discusses some of the high level design decisions made in the specification of this

Recommendation

Sections 4 –13 of this document are the normative portion of the specification
• Section 4, entitled "Packaging Techniques" is transition from informative to normative sections. It provides

a description and an XML schema diagram of the first level elements of the XFDU packaging specification
material that is proposed to be the basis for the White Book. It also discusses the “utility” types that are
reused many times within the XFDU schema.

Sections 5-12 presents a detailed breakdown of the important entities represented in the schema. Each section is
organized in the following manner:

• N.1 –overview
• N.2 – XML schema and XML SPY diagram
• N.3 – XML Examples
• Semantics and Issues

Section 13 is the full XML Schema for the Version 1 XFDU. In the case of differences between the full Schema
in Section and the narratives and partial schemas in prior chapters the full XML Schema is the ruling
specification.

Annexes 1-6
• Annex 1 provides a Unified Modelling Language (UML) view of the overall XFDU.
• Annex 2 provides the full examples that are are the source of the examples in Sections 5-12
• Annex 3 provides a summary of relevant external standards.
• Annex 4 identifies some use cases.

6

• Annex 5 dentifies requirements that have been derived from use cases and actual experience with the current
CCSDS packaging standards.

1.4 TERMS –NEEDS TO BE ENHANCED

The terms used in this document and their meanings are listed below.

Component
Refers to a file that can be grouped together to be part of a Collection, or Package.

Collection
Refers to Components that are gathered together along with a Manifest. This is analogous to files on a
file system.

Association
Refers to a relationship between Components in a Collection, or other metadata related to a Component
or the Collection as a whole.

Manifest
A document containing metadata about Components, and the Associations between them. This
information is stored as a Component, using an XML language designed for just this purpose.

Package
Refers to a Collection that is bundled together, or packaged, into one file using a defined packaging
scheme. All Packages are Collections, but not all Collections have been packaged, so they are not all
Packages.

1.5 REFERENCES

[1]Standard Formatted Data Units-Structure and Construction Rules. Recommendation
for Space Data System Standards, CCSDS 620.0-B-2. Blue Book. Issue 2.
Washington, D.C.: CCSDS, May 1992. (Also as ISO 12175)

[2] ASCII Encoded English (CCSD0002). Recommendation for Space Data System Standards, CCSDS 643.0-
B-1. Blue Book. Issue 1. Washington D.C.: CCSDS, November 1992. (Also ISO 14962)

[3] Standard Formatted Data Units — Control Authority Procedures. Recommendataion for Space Data
Systems Standards, CCSDS 630.0-B-1. Blue Book. Issue 1. Washington, D.C., CCSDS, June 1993. (Also
13764)

 [4] Standard Formatted Data Units — Control Authority Data Structures. Recommendation for Space Data
System Standards, CCSDS 632.0-B-1. Blue Book. Issue 1. Washington D.C.: CCSDS, November 1994. (Also
ISO 15395)

7

[5] Standard Formatted Data Units-Referencing Environment. Recommendation
for Space Data System Standards, CCSDS 622.0-B-1. Blue Book. Issue 1.
Washington, D.C.: CCSDS, May 1997. (Also ISO 15888)

[6] Parameter Value Language Specification (CCSD0006 and CCSD0008). Recommendation for Space Data
System Standards, CCSDS 641.0-B-2. Blue Book. Issue 2. Washington D.C.: CCSDS, June 2000. (Also ISO
14961)

[7] Reference Model for an Open Archival Information System (OAIS). Recommendation for Space Data
System Standards, CCSDS 650.0-B-1. Blue Book. Issue 1. Washington D.C.: CCSDS, January 2002. (Also ISO
14721)

[8] Metadata Encoding and Transmission Standard (METS)

[9] XPACK

[10] Soap with Attachments

[11] Direct Internet Message Encapsulation (DIME)

8

2 Overview of Proposed Packaging Structure

The section provides an overview of some of the key concepts that are incorporated in the design of the XFDU
packaging recommendation.
2.1 ENVIRONMENT

Figure 1 is illustrates an abstract package in a generic computing environment to provide a basis for discussion
of concepts relevant to this document. The focus of this diagram is a collection of physical file that have been
bundled together due to some interrelationship. In this case this collection of files have been bundled together
into a single container called a Package Interchange File and an XML document called a manifest has been
included to document the relations among and index the locations of the various files containing data and
metadata. The figure also shows external resources including other packages, file systems and repositories. In
an environment with sufficient connectivity, reliability, and bandwidth the package could include pointers to
resources outside of the package. The resolution of these pointers would be a software service provided by the
data producer or a software toolkit at the data consumer site.

Package Interchange File

Manifest

Registry

XFDU

URI

URI

URI

URI

File

Environment View of XFDU

File File

Registry

Package
Interchange File

Document

Figure :Environment/Conceptual View of XML Packaging

9

2.2 LOGICAL STRUCTURE

Figure 2 provides an expanded view of the XML manifest file showing the key entities and the possible
references among them. The arrowheads show the direction of the references (e.g., the contentUnit entity
references the dataObject entity). The contentUnit provides the primary view into the package as it
refers to each of the data objects and it associates appropriate metadata with each data object. The
reference to the metadata is via one or more metadata Category pointers. For each such pointer, there
are a set of metadata classes that may be chosen to further classify the metadata object. The actual
metadataObject may be included in the manifest file or referenced by URI They may also contain other
contentUnits in the form of an XFDU package. The figure also introduces the names and XML Labels
for some of the XML entities that are discussed in the next section

metadataObject

metadataSec

metadata objects

dataObjSec

dataObject

ContentUnit

ipMapSec

data objects

structure map

behaviorSec

xfdu

behavior

metadata
Category
Pointers

REP DED,SYNTAX, OTHER

PDI CONTEXT, PROVENANCE
 REFERENCE, FIXITY, OTHER

DMD DESCRIPTION, OTHER

OTHER OTHER

category class

ANY

metadataObject

Figure 1

10

3 Phased Release Design Decisions

The section provides an overview of some of the key concepts that are incorporated in the design of the XFDU
packaging recommendation. The major issues addressed include the extent of reuse of the concepts from
METS[REF1] and XPACK[REF2], the underlying packaging mechanisms, the use of the OAIS information
model and the functionality desired in staged releases. A summary of the decision making process and more
detail on the Related efforts can be found in Annex 3 and 4

Support of Physical Packaging

XFDU version 1 must support the ZIP and single document forms. The SOAP/MIME/DIME forms should be
prototyped but the underlying protocols may not be stable in the version 1 timeframe.

Mandatory Manifest/Table of Contents

Version 1 of the XFDU is to have a mandatory XML encoded map of the information package and metadata to
enable a common schema for all packaging forms.

Flexible linkage of Manifest to Data and Metadata

The XFDU Version 1 Manifest should:
• Data Objects that are contained in the manifest are to be encoded in base64 or XML
• Data Objects that are included by reference from the manifest are to exist as files in the XFDU package

or as files with known URIs either in a repository or in a location accessable via URL
• Metadata objects that are contained in the manifest are to be encoded in base64 or XML
• Metadata objects that are included by reference from the manifest are to exist as files in the XFDU

package or as files with known URIs either in a repository or in a location accessable via URL
• Information Objects can reference applicable Metadata objects by ID where the name of the referencing

attribute is used to catagorize the Metadata
• Metadata objects may be treated as data objects. This enables direct mapping to the OAIS representation

net where each metadata object is an information object containing both data object and representation
information

.

3.1.1 RELATIONSHIP DESCRIPTION

A major component of information packaging is the description of the relationships among the various metadata
and data objects in both human readable and machine interpretable forms. The “Semantic Web” efforts have led
to several XML notations for expressing relationships and rules among resources. The two main efforts
reviewed in this area were Resource Description Format (RDF) and Web Ontology Language (OWL). RDF has
been a World Wide Web Consortium (W3C) Recommendation for several years but software support and
automated applications have lagged the recommendation considerably. OWL has recently been promoted to a
W3C Candidate Recommendation. Based on experience with other complex W3C Recommendations, this
means that a final recommendation is expected in 1-2 years. However, OWL is derived from several existing
ontology languages, so there is significant legacy software that can quickly be modified to the OWL syntax.

11

Due to the lack of mature XML software products in this area, the initial version of this recommendation will
not use a formal XML grammer to express the range of potential relationships. Instead, the XFDU schema uses
the OAIS information model to classify information objects and content unit types to define the overall structure
and semantics of contained objects. Alsothe complete Xlink schema is included in the XFDU referencing
mechanisms to allow the use of complex Xlink attribues to model resource relationships.

It is anticipated that Future versions of this recommendation will use an XML based language such as OWL to
improve description and enable software services for generic relationships.

3.1.2 EXTENSIBILITY MECHANISMS

In order to allow an orderly evolution of the XFDU schema and to allow the development of specialized
versions of complex elements to enable additional functionality or alternative implementations during
prototyping
There are a number of XML Schema mechanisms that can be used to achieve the goal:

1. Use of an abstract element and element substitution using substitutionGroup
2. Use of abstract type and type substitution using xsi:type
3. Use of a <choice> element
4. Use of a dangling type

The use of dangling types is theoretically the most flexible solution, but is not supported by most XML parsers.
The use of choice is the least attractive solution because it does not support the use of complex elements and
creates rigid schemas.

Type substitution is slightly superior to element substitution from a schema design viewpoint; however, there
are two factors that inform the decision to use element substitution for this version. The first is the visibility of
xsi:type in every XML instance. This has proven unpopular with users of other standard schemas. The second
factor is that some early experimentation with inputting XML Schema to JAVA tools revealed that element
substitution was partially supported while type substitution was not supported.

Annex D contains a more thorough discussion of this issue and a reference to a complete analysis.

3.2 STAGED RELEASE FUNCTIONALITY

3.2.1 VERSION 1 SHOULD INCLUDE:

12

• The capabilities of current SFDU packaging and CCSDS Control Authority Concepts
• Support for data descriptions, MIME types, self describing formats, and detached data descriptions
• Support for the OAIS RM Information Model Concepts and Types
• Flexible linkage to Metadata
• The ability to encapsulate related files/resources into a single file/container
• The ability to reference both content and metadata resources contained in the same container or at a

known URL
• The ability to allow/reverse multiple transformations on files
• Behaviors

o Web Service Interfaces
o Portable Code

3.2.2 VERSION 2 FUNCTIONALITY ENABLED

• Behavior
o Automatic execution
o Scripting (Output of one behavior as input to another behavior)

• Software Updates
• Process Definition
• Relationship Definition

13

4 XFDU Complex Type

4.1 OVERVIEW

There are seven sections that may appear in an XFDU document (i.e. Manifest). A high level XML
Spy[REF3] diagram of the XFDU is shown as Figure 3:

1. Package Header (packHeader): Administrative metadata for the whole XFDU, such as version,
operating system, hardware, author, etc, and metadata about transformations and behaviours
that must be understood

2. Metadata Section (MetadataSec): This section records all of the metadata for all items in the
XFDU package. Multiple metadata objects are allowed so that the metadata can be recorded for
each separate item within the XFDU object. The metadata schema allows the package designer
to define any metadata model by providing attributes for both metadata categories and a
classification scheme for finer defintion within categories. The model provides predefined
metadata categories and classes via enumerate attributes that follow the OAIS information
model as follows:

• Descriptive information is intended for the use of Finding Aids such as Catalogs or Search Engines.
• The Representation Section and its subsections, syntax information (syntaxMd), static semantics

(dedMd), and unclassified metadata (otherMd)
• The classification of the PDI Section - reference, context, provenance, and fixity

•
3. Information Package Map Section (ipMapSec) outlines a hierarchical structure for the

original object being encoded, by a series of nested contentUnit elements. Content units
contain pointers to the data objects and to the metadata associated with those objects .

4. Data Object Section (dataObjectSec) contains a number of dataObjEntry elements. A Data
Object Entry contains some file content and any data required to allow the information
consumer to reverse any transformations that have been performed on the object and restore it
to the byte stream intended for the original designated community and describedby the
Representation metadata in the Content Unit

5. Behavior Section (behaviorSec) can be used to associate executable behaviors with content in
the XFDU object. A behavior section contains an interface definition element that represents an
abstract definition of the set of behaviors represented by a particular behavior section and a
mechanism section also has a behavior mechanism that is a module of executable code that
implements and runs the behaviors defined abstractly by the interface definition.

14

4.2 XML SCHEMA

Figure 2

4.3 UTILITY TYPES

These classes are reused throughout the XFDU schema to represent some recurring structures:
• ReferenceType - Entity that can reference (have link) to other resource.
• The infoObjEntryPtr is an empty element that refernces dataObjects that represent the containing

 Information Object
• FcontentType - Entity that encapsulates either binary or XML arbitrary content.

• BinData - Entity that encapsulates base64 encoded data(e.g. binary data)
• XmlData - Entity that encapsulates 1 to many pieces of arbitrary XML data

4.3.1 XML SCHEMAS

15

Figure 4

<xsd:complexType name = "referenceType">
<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attributeGroup ref = "LOCATION"/>
<xsd:attributeGroup ref = "xlink:simpleLink"/>

</xsd:complexType>

Figure 5

<xsd:element name = "infoObjEntryPtr">
<xsd:annotation>

<xsd:documentation>The infoObjEntryPtr is an empty element that refernces dataObjects that represent the containing
the dataObjectID: The infoObjEntryPtr has two attributes: 1. ID: an XML ID for this element; and 2.
 dataObjectID: an IDREF to a dataObject element reference contentUnit containing this datatpr.

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "infoObjEntryID" type = "xsd:IDREF"/>

</xsd:complexType>
</xsd:element>

16

Figure 6 fcontentType/binData/xmlData

<xsd:complexType name = "fcontentType">
<xsd:annotation>

<xsd:documentation>
fContentType encapsulates and agregates a type that can have a choice of either
binary or xml data

</xsd:documentation>
</xsd:annotation>
<xsd:choice>

<xsd:element ref = "binData" minOccurs = "0"/>
<xsd:element ref = "xmlData" minOccurs = "0"/>

</xsd:choice>
<xsd:attribute name = "ID" type = "xsd:ID"/>

</xsd:complexType>

<xsd:element name = "binData" type = "xsd:base64Binary">
<xsd:annotation>

<xsd:documentation>A wrapper to contain Base64 encoded metadata.</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element name = "xmlData">
<xsd:annotation>

<xsd:documentation>A wrapper to contain XML-based metadata.</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:any namespace = "##any" processContents = "strict" maxOccurs = "unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

17

5 Packaging Header Type

5.1 OVERVIEW

The Package Header is an XML Complex Type for administrative and technical requirements metadata that
apply to the containing XFDU package. The package header section consists of three optional sections:

• EnvirMD: specification of the hardware and software platform which created this package and other
administrative data such as creator and modification authority which applies to the whole instance of the
XFDU

• behaviorMD: mustunderMD is based on the SOAP mustunderMD element and is a list of namespace
elements that are required to access the Content of this XFDU instance. Used for versioning issues

• transformMD the names, classifications, parameter names/types and any other information needed to
reverse transformations used in the XFDU).

PackHdrType has a single attribute, ID (XML ID).

The Packaging Header should be a self contained entity (containing both its schema and data) so it may be
process independently from the main body of the XFDU.

5.2 XML SCHEMA SYNTAX

<xsd:complexType name = "packHdrType">
<xsd:annotation>

<xsd:documentation>packHdrType: Complex Type for metadata about the
mapping of the logical packages to the physical structures. The
package header section consists of three possible subsidiary
sections: envirMD (specification of the hardware and software
platform which created this package), behaviorMD (behavior mechanism
related metadata), and transformMD (the names, classifications, parameter
names/types and any other information needed to reverse
transformations used in the XFDU). Both transformMD and behaviorMD have an optional
mustUnderstand attribute that declares if the reader of this package must
understand described transformation, behavior mechanisms in order to
process content of the package. packHdrType has a single
attribute, ID: an XML ID.

18

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "envirMD" minOccurs = "0" maxOccurs = "unbounded">
<xsd:annotation>

<xsd:documentation>envirMD: technical metadata. The envirMD element
provides a wrapper around a generic metadata section that
should contain technical metadata regarding a dataObject or dataObjects. It
has a single attribute, ID, which dataObject/dataObjectGrp elements can use
to reference the technical metadata that applies to them.
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base = "xsd:string">

<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name = "behaviorMD" minOccurs = "0" maxOccurs = "unbounded">

<xsd:annotation>
<xsd:documentation>

behaviorMD contains:
mustUnderstand - indicates if this mechanism must be understood by processor
description - general description
mechanismType - type of behavior mechanism (e.g. WS,ANT,JAVA) (should be made into enumeration most

likely)
namespace - namespace of the specified technology if any
behaviorMD has an optional xmlData element to include any additional metadata if needed

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute ref = "mustUnderstand"/>
<xsd:attribute name = "description" type = "xsd:string"/>
<xsd:attribute name = "mechanismType" type = "xsd:string"/>
<xsd:attribute ref = "namespace"/>

</xsd:complexType>
</xsd:element>
<xsd:element name = "transformMD" minOccurs = "0" maxOccurs = "unbounded">

<xsd:annotation>
<xsd:documentation>transformMD (the names, classifications, parameter
names/types and any other information needed to reverse
transformations used in the XFDU)
transformMD contains:
mustUnderstand - indicates if this transformation technology must be understood by processor
description - gneral description
algorithmName -name of transformation algorithm
namespace - namespace of the specified technology if any
transformMD has optional xmlData element to include any additional metadata if needed
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

19

<xsd:sequence>
<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "description" type = "xsd:string"/>
<xsd:attribute name = "algorithmName" type = "xsd:string"/>
<xsd:attribute ref = "mustUnderstand"/>
<xsd:attribute ref = "namespace"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name = "ID" type = "xsd:ID"/>

</xsd:complexType>

5.3 EXAMPLES

5.3.1 HEADER USING MUSTUNDERSTAND

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<XFDU>
 <packHdr>
 <envirMD ID="envirMD1">All platforms</envirMD>
 <transformMD algorithmName="blowfish" mustUnderstand="true"

description="encryption"/>
 </packHdr>

5.4 SEMANTICS AND ISSUES

1. Do we want to define vocabularies for use in the environment section

20

6 Information Package Map

6.1 OVERVIEW

The Information Package Map Section (ipMapSec) outlines a hierarchical structure for the original object being
encoded, bya series of nested contentUnit elements. The ipMapSec element has the following attributes: ID: an
XML ID for the element; TYPE: the type of Information Product provided. Typical values will be"AIP" for a
map which describes a complete AIP obeying all constrainsts and cardinalitiies in the OAIS reference model
"SIP" for a map which describes a Submission Information Package TEXTINFO: a string to describe the
ipMapSec to users

6.2 XML SCHEMA

Figure 8

<xsd:complexType name = "ipMapSecType">
<xsd:annotation>

<xsd:documentation>ipMapSecType Complex Type The Information Package Map
Section (ipMapSec) outlines a hierarchical structure for the
original object being encoded, using a series of nested
contentUnit elements. An element of ipMapSecType has the following
attributes: ID: an XML ID for the element; TYPE: the type of
Information Product provided. Typical values will be"AIP" for a
map which describes a complete AIP obeying all constrainsts and
cardinalitiies in the OAIS reference model "SIP" for a map which
describes a Submission Information Package textInfo: a string to
describe the ipMapSec to users. packageType: a type for the object, e.g., book, journal, stereograph, etc.;
Concrete implementation of contentUnit (defaultContentUnit, behavioralContentUnit, etc)

21

 have to be used in the instance document.
</xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<xsd:element ref = "abstractContentUnit" maxOccurs = "unbounded"/>
</xsd:sequence>
<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "packageType" type = "xsd:string"/>
<xsd:attribute name = "textInfo" type = "xsd:string"/>

</xsd:complexType>

6.3 EXAMPLES

6.3.1 MULTIPLE CONTENT SECTIONS

<IpMapSec>
<contentUnit repID = "atdMD" pdiID = "provenance" dmdID = "ECSDMD">

<dataObjectPtr dataObjectID = "mpeg21"/>
<contentUnit order = "1" textInfo = "Root content unit for HDF data">

<contentUnit order = "1.1" pdiID = "provenance" textInfo = "content unit for hdfFile0" dmdID = "ECSDMD">
<dataObjectPtr dataObjectID = "hdfFile0"/>

</contentUnit>
<contentUnit order = "1.2" pdiID = "provenance" textInfo = "content unit for hdfFile1" dmdID = "ECSDMD">

<dataObjectPtr dataObjectID = "hdfFile1"/>
</contentUnit>
<contentUnit order = "1.3" pdiID = "provenance" textInfo = "content unit for hdfFile2" dmdID = "ECSDMD">

<dataObjectPtr dataObjectID = "hdfFile2"/>
</contentUnit>

</contentUnit>
<contentUnit textInfo = "content unit for orbit data">

<dataObjectPtr dataObjectID = "orbitalData"/>
</contentUnit>

</contentUnit>
<contentUnit textInfo = "content unit ATD metadata">

<dataObjectPtr dataObjectID = "ATDMD"/>
</contentUnit>

</IpMapSec>

22

7 Content Units

7.1 OVERVIEW

AbstractContentUnit Complex Type The XFDU standard represents a data package structurally as a series of
nested content units, that is, as a hierarchy (e.g., a data product, which is composed of datasets, which are
composed of time series, which are composed of records). Every content node in the structural map hierarchy
may be connected (via subsidiary xfduptr or infoptr elements) to information objects which represent that
unit‚ A portion of the whole package. The content units element has the following attributes:

• ID (an XML ID);
• ORDER: an numeric string (e.g., 1.1, 1.2.1, 3,) representation of this Units order among its siblings

(e.g., its sequence);
• TEXTINFO: a string label to describe this contentUnit to an end user viewing the document, as per

a table of contents entry
• REPID: a set of IDREFs to representation information sections within this XFDU document

applicable to this contentUnit
• DMDID: a set of IDREFS to descriptive information sections within this XFDU document

applicable to this contentUnit.
• PDIID: a set of IDREFS to preservation description information sections within this XFDU

document applicable to this contentUnit
• TYPE: a type of content unit (e.g., Application Data Unit, Data Description Unit, Software

Installation Unit,etc.).. The Type attribute indicates the semantics of the Content and implies many
of the relationships among the contained Content Objects

7.2 XML SCHEMA

<xsd:complexType name = "contentUnitType">
<xsd:annotation>

<xsd:documentation>ContentUnit Complex Type The XFDU standard
represents a data package structurally as a series of nested

23

content units, that is, as a hierarchy (e.g., a data product,
which is composed of datasets, which are composed of time
series, which are composed of records). Every content node in
the structural map hierarchy may be connected (via subsidiary
XFDUptr or dataObjectPtr elements) to information objects which
represent that unit as a portion of the whole package. The content
units element has the following attributes:
1.ID (an XML ID);
2.order: an numeric string (e.g., 1.1, 1.2.1, 3,) representation
of this unit's order among its siblings (e.g., its sequence);
3.textInfo: a string label to describe this contentUnit to an end
user viewing the document, as per a table of contents entry
4.repID: a set of IDREFs to representation information sections
within this XFDU document applicable to this contentUnit.
5.dmdID: a set of IDREFS to descriptive information sections
within this XFDU document applicable to this contentUnit.
6.pdiID: a set of IDREFS to preservation description information
sections within this XFDU document applicable to this
contentUnit
7.anyMdID: a set of IDREFS to any other metadata sections that do not fit
rep,dmd or pdi metdata related to this contentUnit
8.unitType: a type of content unit (e.g., Application
Data Unit, Data Description Unit, Software Installation Unit, etc.).
contentUnitType is declared as a base type for concrete implementations of contentUnit.
</xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<xsd:element name = "XFDUptr" type = "referenceType" minOccurs = "0" maxOccurs = "unbounded">
<xsd:annotation>

<xsd:documentation>XFDUptr:XFDU Pointer. The XFDUptr element allows a
content unit to be associated with a separate XFDU containing
the content corresponding with that contentUnit, rather than
pointing to one or more internal dataObjects. A typical instance of
this would be the case of a thematic data product that collects
data products from several instruments observe an event of
interest. The content units for each instrument datasets might
point to separate XFDUs, rather than having dataObjects and dataObject
groups for every dataset encoded in one package. The XFDUptr
element may have the following attributes: ID: an XML ID for
this element locType: the type of locator contained in the
xlink:href attribute; otherLocType: a string to indicate an
alternative locType if the locType attribute itself has a value
of "OTHER." xlink:href: see XLink standard
(http://www.w3.org/TR/xlink) xlink:role: "" xlink:arcrole: ""
xlink:title: "" xlink:show: "" xlink:actuate: "" NOTE: XFDUptr
is an empty element. The location of the resource pointed to
MUST be stored in the xlink:href element.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name = "dataObjectPtr" type = "dataObjectPtrType" minOccurs = "0" maxOccurs = "unbounded"/>
<xsd:element ref = "abstractContentUnit" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "order" type = "xsd:string"/>

24

<xsd:attribute name = "unitType" type = "xsd:string"/>
<xsd:attribute name = "textInfo" type = "xsd:string"/>
<xsd:attribute name = "repID" type = "xsd:IDREFS"/>
<xsd:attribute name = "dmdID" type = "xsd:IDREFS"/>
<xsd:attribute name = "pdiID" type = "xsd:IDREFS"/>
<xsd:attribute name = "anyMdID" type = "xsd:IDREFS"/>

</xsd:complexType>
<xsd:element name = "abstractContentUnit" type = "contentUnitType" abstract = "true">

<xsd:annotation>
<xsd:documentation>abstractContentUnit is abstract implementation of
contentUnitType. It cannot be instantiated in the instance
document. Instead, concrete implementations would have to be
used which are declared part ofcontentUnit substitutionGroup
</xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<xsd:element ref = "abstractContentUnit" maxOccurs = "unbounded"/>
</xsd:sequence>
<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "packageType" type = "xsd:string"/>
<xsd:attribute name = "textInfo" type = "xsd:string"/>

</xsd:complexType>

Figure 9

7.3 EXAMPLES

7.3.1 SPECIALIZATION OF CONTENT UNIT USING SUBSTITUTION GROUPS

7.3.1.1 Example of schema extension via substitution group

<xsd:element name = "contentUnit" type = "contentUnitType" substitutionGroup = "abstractContentUnit">
<xsd:annotation>

<xsd:documentation>contentUnit is basic concrete
implementation of abstract conentUnit. Its instace can be used
in the instance document in the place where contentUnit declared
to be present.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name = "behavioralContentUnit" substitutionGroup = "contentUnit">

<xsd:annotation>
<xsd:documentation>befaultcontentUnit is concrete implementation of

abstract conentUnit that also allows attachment of process
specification to it. Its instace can be used in the instance
document in the place where contentUnit declared to be present.

</xsd:documentation>
</xsd:annotation>

25

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base = "contentUnitType">
<xsd:sequence>

<xsd:element name = "process">
<xsd:complexType>

<xsd:sequence>
<xsd:element name = "parameter" minOccurs = "0" maxOccurs = "unbounded">

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base = "xsd:string">
<xsd:attribute name = "name" use = "required" type = "xsd:string"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name = "textInfo" type = "xsd:string"/>
<xsd:attribute name = "behaviorID" type = "xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>

7.3.1.2 Sample instance of behavior content unit

<ipMapSec>
< behavioralContentUnit id="productFile">

<textinfo>This file contains the result of the YYY experience relative to the Earth Exploration Mission of May 1912...</textinfo>
<dataptr>ExperienceFile</dataptr>
<process textinfo="Process EAST CHECK" behaviorID="EAST">

<!-- call the corresponding behavior -->
<param name="EASTFile">eastDDR</param>
<!-- no value for param means local contentunit -->
<param name="DATAFIle"/>

</process>
</ContentUnit>

</ipMapSec>

7.4 SEMANTICS AND ISSUE

7.4.1 ISSUES

1. Content unit as the result of a product
2. Attributes vs elements in content unit

7.4.2 DATA UNIT TYPES(PROPOSED)

26

7.4.2.1 Exchange Data Unit (EDU)

The Exchange Data Unit is a set of objects that has been packaged for a reason. It is
assumed that all the objects are related though the exact relationship is not one of the
predefined types defined by the units below

7.4.2.2 Application Data Unit (ADU)

An Application Data Unit is a package type where all the objects are related to one or
more primary content objects of interest

7.4.2.3 Description Data Unit (DDU)

A Description Data Unit is a package type where all the content object are metadata
objects intended to update the metadata repository of the consume

7.4.2.4 Process Description Unit (PDU)

A Process Description Unit can range from an automated scripting language to an
English language description of the steps a person /intelligent agent. The formal
languages/schema used to define the PDU will be part of a future version

7.4.2.5 Software Intallation Unit

Based on Grid P an SIU holds all of the information that the XFDU processor need in
order to create a software instance on a particular system

27

8 Data Object Entry Section

8.1 OVERVIEW

An Data Object Entry Section contains Data Object Entries that contain current data object content and any
required data to restore them to the form intended for the original designated community. It has two possible
subsidiary elements, The dataObject element provides access to the current content files for a XFDU
document. The infoObjEntry must contain exactly 1 data object element that may contain 0 or more FLocat
elements, which provides pointer(s) to content file(s), and/or an FContent element, which wraps an encoded
version of the file. The infoObjEntry may contain one or more transformation elements that contain all of the

information required to reverse each transformation applied to the data object and return the original binary
data object.

8.2 XML SCHEMA

Figure 11

<xsd:complexType name = "keyderivationType">
<xsd:annotation>

<xsd:documentation>key derivation type contains the information
that was used to derive the encryption key for this dataObject.
Key derivation type contains:
 name - name of algorithm used
salt - 16-byte random seed used for that algorithm initialization

28

iterationCount - number of iterations used by the algorithm to derive the key
</xsd:documentation>

</xsd:annotation>
<xsd:attribute name = "name" use = "required" type = "xsd:string"/>
<xsd:attribute name = "salt" use = "required">

<xsd:simpleType>
<xsd:restriction base = "xsd:string">

<xsd:length value = "16"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name = "iterationCount" use = "required" type = "xsd:long"/>

</xsd:complexType>

<xsd:element name = "abstractKeyderivation" type = "keyderivationType" abstract = "true">
<xsd:annotation>

<xsd:documentation>
abstractKeyderivation is declared abstract
so that it can be used for element substitution in cases when default key derivation is not
sufficient. In order for creating more specific key derivation constructs, one would have to
extend from keyderivationType to a concrete type, and then create an element of that new type. Finally,
in an instance of XML governed by this schema, the reference to key derivation in an instance of
transformSec element would point not to instance of keyderivation element, but rather instance of the
custom element. In other words, keyderivation would be SUBSTITUTED with a concrete key derivation element.
In cases where default functionality is sufficient, the provided defaultKeyderivation element can be used for the
substitution.
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name = "keyderivation" type = "keyderivationType" substitutionGroup = "abstractKeyderivation">

<xsd:annotation>
<xsd:documentation>

Default implementation of key derivation type.
</xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:complexType name = "transformSecType">

<xsd:annotation>
<xsd:documentation>transformSecType: transformation information An element
of transformsecType contains all of the information required to reverse the
transformations applied to the original contents of the dataObject. It
has two possible subsidiary elements: The algorithm element
contains information about the algorithm used to encrypt the
data. The key-derivation element contains the information that
was used to derive the encryption key for this dataObject It has three
attributes: 1. ID: an XML ID 2. transoformType: one of n predefined
transformations types. Current valid types are compression,
encryption, authentication. 3. order: If there are more than one
transformation elements in an infoObjEntry this integer indicates
the order in which the reversal transformations should be applied.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "algorithm" type = "xsd:string">

29

<xsd:annotation>
<xsd:documentation>algorithm element contains information

about the algorithm used to encrypt the data.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element ref = "abstractKeyderivation" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "order" type = "xsd:string"/>
<xsd:attribute name = "transformType" use = "required">

<xsd:simpleType>
<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "COMPRESSION"/>
<xsd:enumeration value = "AUTHENTICATION"/>
<xsd:enumeration value = "ENCRYPTION"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>>
</xsd:element>
<xsd:element name = "FContent">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base = "fcontentType"/>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name = "byteStreamType">

<xsd:annotation>
<xsd:documentation>byteStreamType: An element of byteStreamType
provides access to the current content of dataObjects for a XFDU
document. The byteStreamType: has the following four attributes: ID (an XML ID);
mimeType: the MIME type for the dataObject; size: the size of the dataObject
in bytes; checksum: a checksum for dataObject; checksumType: type of checksum
algorithms used to compute checksum. The data contained in these attributes is relevant to
final state of data object after all possible transformations of the original data.
</xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<xsd:element name = "FLocat" type = "referenceType" minOccurs = "0" maxOccurs = "unbounded"/>
<xsd:element name = "FContent" type = "fcontentType" minOccurs = "0"/>

</xsd:sequence>
<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>
<xsd:attribute name = "mimeType" type = "mimeType"/>
<xsd:attribute name = "size" type = "xsd:long"/>
<xsd:attribute name = "checksum" type = "xsd:string"/>
<xsd:attribute name = "checksumType">

<xsd:simpleType>
<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "HAVAL"/>
<xsd:enumeration value = "MD5"/>
<xsd:enumeration value = "SHA-1"/>
<xsd:enumeration value = "SHA-256"/>
<xsd:enumeration value = "SHA-384"/>

30

<xsd:enumeration value = "SHA-512"/>
<xsd:enumeration value = "TIGER"/>
<xsd:enumeration value = "WHIRLPOOL"/>
<xsd:enumeration value = "CRC32"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>
<xsd:complexType name = "dataObjectType">

<xsd:annotation>
<xsd:documentation>dataObjectType : An element of dataObjectType
contains current byteStream content and any required data to restore
them to the form intended for the original designated community.
It has two possible subsidiary elements: The byteStream element
provides access to the current content dataObjects for an XFDU
document. An element of dataObjectType must contain exactly 1 byteStream element
that may contain an FLocat element, which provides a pointer to
a content byteStream, and/or an FContent element, which wraps an
encoded version of the dataObject. An element of dataObjectType may contain one or
more transformation elements that contain all of the
information required to reverse each transformation applied to
the dataObject and return the original binary data object.
The infoObjEntry has the following five attributes: 1. ID: an XML ID
2, mimeType: the MIME type for the dataObject 3. size: the size of the dataObject
in bytes 4. checksum: a checksum for dataObject 5. checksumType: type of checksum algorithms used to
compute checksum 6 repID list of representation metadata IDREFs. The size, checksum, checksumtype and
mime type are related to the original data before any transformations occured.
</xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<xsd:element name = "byteStream" type = "byteStreamType"/>
<xsd:sequence>

<xsd:element name = "transformSec" type = "transformSecType" minOccurs = "0" maxOccurs = "unbounded"/>
</xsd:sequence>

</xsd:sequence>
<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "repID" type = "xsd:IDREFS"/>
<xsd:attribute name = "mimeType" type = "mimeType"/>
<xsd:attribute name = "size" type = "xsd:long"/>
<xsd:attribute name = "checksum" type = "xsd:string"/>
<xsd:attribute name = "checksumType">

<xsd:simpleType>
<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "HAVAL"/>
<xsd:enumeration value = "MD5"/>
<xsd:enumeration value = "SHA-1"/>
<xsd:enumeration value = "SHA-256"/>
<xsd:enumeration value = "SHA-384"/>
<xsd:enumeration value = "SHA-512"/>
<xsd:enumeration value = "TIGER"/>
<xsd:enumeration value = "WHIRLPOOL"/>
<xsd:enumeration value = "CRC32"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

31

<xsd:complexType name = "dataObjectSecType">
<xsd:annotation>

<xsd:documentation>dataObjectSecType : a container for one or more elements of dataObjectType
</xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<xsd:element name = "dataObject" type = "dataObjectType" maxOccurs = "unbounded"/>
</xsd:sequence>

</xsd:complexType>

8.3 EXAMPLES

8.3.1 VERIFY THE CHECKSUM OF THE FILE

Reader of the document can verify checksum of animation file by comparing its checksum with checksum value
specified in checksum attribute of dataObject element.

<dataObjectSec>
<dataObject repID = "mathMLAlgRepMD" ID = "mpeg21">

<byteStream mimeType = "video/mpeg" checksum = "b3eb4b34" ID = "mpeg21AnimData" checksumType =
"CRC32" size = "414131">

<FLocat locType = "URL" ns2:href = "file:packagesamples/scenario1/mpeg21.mpg" xmlns:ns2 =
"http://www.w3.org/TR/xlink"/>

</byteStream>
</dataObject>

8.3.2 SPECIFICATION OF MIMETYPE AND CHECKSUM WITH TRANSFORMATIONS

Mimetype and checksum are specified at two levels. infoObjEntry’s values of mimeType and checksum
attributes specified mime type and checksum of the original data object, that is before any transformations
happened. dataObject’s mimeType and checksum attributes specifies mimeType and checksum of the
dataObject after all transformations happened on it (e.g. encryption).

<dataObject size = "0" checksumType = "CRC32" checksum = "6d0e30ea" mimeType = "application/pdf" ID =
"ATDMD">

<byteStream mimeType = "application/octetstream" checksum = "ad78ad5d" ID = "atdMDbs" checksumType =
"CRC32" size = "110874">

<FLocat locType = "URL" ns3:href = "file:packagesamples/scenario1/atd.pdf" xmlns:ns3 =
"http://www.w3.org/TR/xlink"/>

</byteStream>
<transformSec transformType = "ENCRYPTION">

<algorithm>blowfish</algorithm>
</transformSec>

</dataObject>

8.3.3 REFERENCING AND INCLUSION OF DATA CONTENT

32

The data that existed at the moment of packaging base64 encoded within binData. Also, FLocat element points
to HTTP GET URL where the latest version of data can be obtained.

<dataObject mimeType = "application/octetstream" ID = "orbitalData">
<byteStream checksum = "b3eb4b34" ID = "orbitData" checksumType = "CRC32">

<FLocat locType = "URL" ns7:href = "http://coin.gsfc.nasa.gov:8080/ims-bin/3.0.1/nph-
ims.cgi?msubmit=yes&lastmode=SRCHFORM" xmlns:ns7 = "http://www.w3.org/TR/xlink"/>

<FContent>

<binData>UEsDBBQACAAIAKqMBC8AAAAAAAAAAAAAAAAPAAAAeGZkdS8uY2xhc3NwYXRotZXfS8MwEMff/StK35
OugqCwH4hO0I...</binData>

</FContent>
</byteStream>

</dataObject>

8.4 SEMANTICS AND ISSUES

These are proposed sematics for the existence of most than one Flocat or FContent element in a dataObject
1. One fContent and 1 fLocat means the fContent should serve as backup if the fLocat is not accessable
2. One Fllocat referencing a object in the XFDU and One fLocat accessing an Object outside the XFDU

means the object located within the package should serve as backup if the remote fLocat is not available
3. Multiple fLocats indicate the referenced objects must be concatenated be the content unit metadata is

correct

33

9 Schema for MdScctype

Figure 3

<xsd:complexType name = "mdSecType">
<xsd:annotation>

<xsd:documentation>mdSecType (metadata section) Complex Type A generic
framework for pointing to/including metadata within a XFDU
document, a la Warwick Framework. An mdSec element may have the
following attributes:
1. ID: an XML ID for this element.
2. class - concrete type of metadata represented by this element of mdSecType
3. category - type of metadata class to which this metadata belongs (e.g. DMD.REP, etc.)

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "mdRef" type = "mdRefType" minOccurs = "0"/>
<xsd:element name = "mdWrap" type = "mdWrapType" minOccurs = "0"/>
<xsd:element name = "dataObjectPtr" type = "dataObjectPtrType" minOccurs = "0"/>

</xsd:sequence>
<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>

34

<xsd:attribute name = "class">
<xsd:simpleType>

<xsd:restriction base = "xsd:string">
<xsd:enumeration value = "DED"/>
<xsd:enumeration value = "SYNTAX"/>
<xsd:enumeration value = "FIXITY"/>
<xsd:enumeration value = "PROVENANCE"/>
<xsd:enumeration value = "CONTEXT"/>
<xsd:enumeration value = "REFERENCE"/>
<xsd:enumeration value = "DESCRIPTION"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name = "category">

<xsd:simpleType>
<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "REP"/>
<xsd:enumeration value = "PDI"/>
<xsd:enumeration value = "DMD"/>
<xsd:enumeration value = "OTHER"/>
<xsd:enumeration value = "ANY"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name = "otherClass" type = "xsd:string"/>
<xsd:attribute name = "otherCategory" type = "xsd:string"/>

</xsd:complexType>

35

10 Metadata Section Type and Metadata Objects

10.1 OVERVIEW

This section illustrated the instantiation of mdSec into meta data objects and the metadataSec type as a
container object for the

10.2 XML SCHEMA

Figure 4

xsd:complexType name = "metadataSecType">
<xsd:sequence>

<xsd:element name = "metadataObject" type = "mdSecType" minOccurs = "0" maxOccurs = "unbounded"/>
</xsd:sequence>

36

11 Behavior Section

11.1 OVERVIEW

A behavior section can be used to associate executable behaviors with content in the XFDU object. A behavior
section has an interface definition element that represents an abstract definition of the set of behaviors
represented by a particular behavior section. A behavior section also has an behavior mechanism which is a
module of executable code that implements and runs the behaviors defined abstractly by the interface definition.
An behavior section may contain the following elements:
Interface Definition Element

The interface definition element contains a pointer an abstract definition of a set of related behaviors. These
abstract behaviors can be associated with the content of a XFDU object. The interface definition element will
be a pointer to another object (an interface definition object). An interface definitio object could be another
XFDU object, or some other entity (e.g. a WSDL file). Ideally, an interface definition object should contain
metadata that describes a set of behaviors or methods, may also contain files that describe the intended usage
of the behaviors, and possibly files that represent differentexpressions of the interface definition. The
interfaceDef element is optional to allow for cases where an interface definition can be obtained from a
behavior mechanism object (see the mechanism element of the behaviorSec). InterfaceDef extends from
objectType and adds ability of specifying inputParameter that can be either just a string value or pointer to the
content in this package

Mechanism:
A mechanism element contains a pointer to an executable code module that implements a set of behaviors
defined by an interface definition. The mechanism element will be a pointer to another object (a mechanism
object). A mechanism object could be anotherXFDU object, or some other entity (e.g., a WSDL file). A
mechanism object should contain executable code, pointers to executable code, or specifications for binding
to network services (e.g., web services).

11.2 XML SCHEMA

37

Figure 5

<xsd:complexType name = "interfaceDefType">
<xsd:annotation>

<xsd:documentation>interfaceDefType: interface definition object. The
interface definition type contains a pointer an abstract
definition of a set of related behaviors. These abstract
behaviors can be associated with the content of a XFDU object.
The interface definition element will be a pointer to another
object (an interface definition object). An interface definition
object could be another XFDU object, or some other entity (e.g.,
a WSDL source). Ideally, an interface definition object should
contain metadata that describes a set of behaviors or methods.
It may also contain files that describe the intended usage of
the behaviors, and possibly files that represent different
expressions of the interface definition. An element of interfaceDefType
is optional to allow for cases where an interface
definition can be obtained from a behavior mechanism object (see
the mechanism element of the behaviorSec).
interfaceDef extends from referenceType and adds ability of specifying inputParameter
that can be either just a string value or pointer to the content in this package

</xsd:documentation>
</xsd:annotation>
<xsd:complexContent>

<xsd:extension base = "referenceType">
<xsd:sequence>

<xsd:element name = "inputParameter" minOccurs = "0" maxOccurs = "unbounded">
<xsd:complexType mixed = "true">

<xsd:sequence>
<xsd:element name = "dataObjectPtr" type = "dataObjectPtrType" minOccurs = "0"/>

</xsd:sequence>
<xsd:attribute name = "name" use = "required" type = "xsd:string"/>
<xsd:attribute name = "value" type = "xsd:string"/>

</xsd:complexType>

38

</xsd:element>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name = "behaviorSecType">

<xsd:annotation>
<xsd:documentation>behaviorSecType: Complex Type for Behaviors. A

behavior section can be used to associate executable behaviors
with content in the XFDU object. A behavior section has an
interface definition element that represents an abstract
definition of the set of behaviors represented by a particular
behavior section. A behavior section also has an behavior
mechanism which is a module of executable code that implements
and runs the behaviors defined abstractly by the interface
definition. An behavior section may have the following
attributes: 1. ID: an XML ID for the element 2. structID: IDREFS
to structMap sections or divs within a structMap in the XFDU
document. The content that the structID attribute points to is
considered "input" to the behavior mechanism (executable)
defined for the behaviorSec. 3. behaviorType: a behavior type
identifier for a given set of related behaviors. 4. created:
date this behavior section of the XFDU object was created. 5.
textInfo: a description of the type of behaviors this section
represents. 6. groupID: an identifier that establishes a
correspondence between this behavior section and behavior
sections. Typically, this will be used to facilitate versioning
of behavior sections. behavior section may also include another behavior section for chaining of behaviors
Concrete implementation of mechanism (wsdlMechanism,antMechanism,javaMechanism, etc) have to be used in

the instance document.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "interfaceDef" type = "interfaceDefType" minOccurs = "0"/>
<xsd:element ref = "abstractMechanism"/>
<xsd:element name = "behaviorSec" type = "behaviorSecType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>
<xsd:attribute name = "structID" use = "required" type = "xsd:IDREFS"/>
<xsd:attribute name = "behaviorType" type = "xsd:string"/>
<xsd:attribute name = "created" type = "xsd:dateTime"/>
<xsd:attribute name = "textInfo" type = "xsd:string"/>
<xsd:attribute name = "groupID" type = "xsd:string"/>

</xsd:complexType>
<xsd:element name = "abstractMechanism" type = "mechanismType" abstract = "true">

<xsd:annotation>
<xsd:documentation>abstractMechanism is abstract implementation of

mechanismType. It cannot be instanciated in the instance
document. Instead, concrete implementations would have to be
used which are declared part of mechanism substitutionGroup

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:complexType name = "mechanismType">

39

<xsd:annotation>
<xsd:documentation>mechanismType: executable mechanism. An element of mechanismType

contains a pointer to an executable code module that
implements a set of behaviors defined by an interface
definition. The mechanism element will be a pointer to another
object (a mechanism object). A mechanism object could be another
XFDU object, or some other entity (e.g., a WSDL source). A
mechanism object should contain executable code, pointers to
executable code, or specifications for binding to network
services (e.g., web services).
mechanismType is declared as base type for concrete implementations of mechanism

</xsd:documentation>
</xsd:annotation>
<xsd:complexContent>

<xsd:extension base = "referenceType"/>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name = "behaviorSecType">
<xsd:annotation>

<xsd:documentation>behaviorSecType: Complex Type for Behaviors. A
behavior section can be used to associate executable behaviors
with content in the XFDU object. A behavior section has an
interface definition element that represents an abstract
definition of the set of behaviors represented by a particular
behavior section. A behavior section also has an behavior
mechanism which is a module of executable code that implements
and runs the behaviors defined abstractly by the interface
definition. An behavior section may have the following
attributes: 1. ID: an XML ID for the element 2. structID: IDREFS
to structMap sections or divs within a structMap in the XFDU
document. The content that the structID attribute points to is
considered "input" to the behavior mechanism (executable)
defined for the behaviorSec. 3. behaviorType: a behavior type
identifier for a given set of related behaviors. 4. created:
date this behavior section of the XFDU object was created. 5.
textInfo: a description of the type of behaviors this section
represents. 6. groupID: an identifier that establishes a
correspondence between this behavior section and behavior
sections. Typically, this will be used to facilitate versioning
of behavior sections. behavior section may also include another behavior section for chaining of behaviors
Concrete implementation of mechanism (wsdlMechanism,antMechanism,javaMechanism, etc) have to be used in

the instance document.
</xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<xsd:element name = "interfaceDef" type = "interfaceDefType" minOccurs = "0"/>
<xsd:element ref = "abstractMechanism"/>
<xsd:element name = "behaviorSec" type = "behaviorSecType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>
<xsd:attribute name = "structID" use = "required" type = "xsd:IDREFS"/>
<xsd:attribute name = "behaviorType" type = "xsd:string"/>
<xsd:attribute name = "created" type = "xsd:dateTime"/>
<xsd:attribute name = "textInfo" type = "xsd:string"/>
<xsd:attribute name = "groupID" type = "xsd:string"/>

40

</xsd:complexType>
11.3 EXAMPLES

Abstract element mechanism cannot be instantiated in XFDU XML document. The following examples show how
abstract mechanism specified in the schema can be extended with concrete mechanism definitions via
substitutionGroup technique. The concrete mechanisms can be then used in XFDU XML documents.

11.3.1 WEB-SERVICE-BASED MECHANISM

wsMechanism element is of type mechanismType and is part of mechanism substitution group. wsMechanism
defines web-service-based mechanism. This means that access point or WSDL document of the web service that
implements this mechanims should be specified via linking. This mechanism can used as a concrete mechanism
inside of the behaviorSec.

<xsd:element name = "wsMechanism" type = "mechanismType" substitutionGroup = "abstractMechanism">
<xsd:annotation>

<xsd:documentation>wsMechanism is concrete implementation of
abstract mechanism which implements mechanism based on Web
service. Its instace can be used in the instance document in the
place where mechanism declared to be present.

</xsd:documentation>
</xsd:annotation>

</xsd:element>

11.3.2 .JAVA-BASED MECHANISM

javaMechanism element is of type mechanismType and is part of mechanism substitution group.
javaMechanism defines java-based mechanism. This meachanism would specify location of JAR file where
executable JAVA code resided and fully qualified name of the main class. This mechanism can used as a
concrete mechanism inside of the behaviorSec.

<xsd:element name = "javaMechanism" substitutionGroup = "abstractMechanism">
<xsd:annotation>

<xsd:documentation>javaMechanism is concrete implementation of
abstract mechanism which implements Java-based mechanism.
xlink:href element points to fully qualified name of the Java
class that implements the mechanism. FLocate element specifies
location of the jar file where that class is packaged. File can
be local to this XFDU package, or located on the remote server,
or somewhere on the local file system.An instace of
javaMechanism can be used in the instance document in the place
where mechanism declared to be present.

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:complexContent>
<xsd:extension base = "mechanismType">

<xsd:sequence>
<xsd:element name = "FLocat" type = "referenceType"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>

41

</xsd:complexType>
</xsd:element>

11.3.3 ANT BASED MECHANISM

antMechanism element is of type mechanismType and is part of mechanism substitution group. antMechanism
defines mechanism that is based on Apache Foundation’s ANT tool. One or several ANT-specific XML scripts can
be included via xmlData element. At runtime this scripts would have to be interpreted by ANT to execute
appropriate software. Software can be included either in the package or reside on the file system. It can be
portable, like JAVA code, or operating system specific. This mechanism can used as a concrete mechanism inside
of the behaviorSec.

<xsd:element name = "antMechanism" substitutionGroup = "abstractMechanism">
<xsd:annotation>

<xsd:documentation>antMechanism is concrete implementation of
abstract mechanism which implements ANT-based mechanism.
xlink:href element points to a location of ANT script to be
executed. Also, xmlData element can contain ANT specific XML. An
instace of antMechanism can be used in the instance document in
the place where mechanism declared to be present

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:complexContent>
<xsd:extension base = "mechanismType">

<xsd:sequence>
<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>

11.4 SEMATICS AND ISSUES

42

12 Full XML Schema

<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by Turbo XML 2.3.1.100. Conforms to w3c http://www.w3.org/2001/XMLSchema-->
<xsd:schema xmlns:xlink = "http://www.w3.org/TR/xlink" xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

 elementFormDefault = "qualified">
<xsd:import namespace = "http://www.w3.org/TR/xlink" schemaLocation =

"http://www.loc.gov/standards/mets/xlink.xsd"/>
<xsd:attributeGroup name = "LOCATION">

<xsd:annotation>
<xsd:documentation>

This attribute group aggregates attributes that can be used for specifiying type of location
This group includes following attributes:
locType specifies location type (e.g. URN,URL)
otherLocType specifies location type in case locType has value of OTHER

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name = "locType" use = "required">

<xsd:simpleType>
<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "URN"/>
<xsd:enumeration value = "URL"/>
<xsd:enumeration value = "PURL"/>
<xsd:enumeration value = "HANDLE"/>
<xsd:enumeration value = "DOI"/>
<xsd:enumeration value = "OTHER"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name = "otherLocType" type = "xsd:string"/>

</xsd:attributeGroup>
<xsd:attributeGroup name = "METADATA">

<xsd:annotation>
<xsd:documentation>

This attribute group aggregates attributes that can be used for specifying metadata type
This group includes following attributes:
vocabluaryMdType specifies location type (e.g. MARC.DDI)
otherMdType specifies location type in case mdType has value of OTHER

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name = "vocabluaryMdType" use = "required">

<xsd:simpleType>
<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "MARC"/>
<xsd:enumeration value = "EAD"/>
<xsd:enumeration value = "DC"/>
<xsd:enumeration value = "NISOIMG"/>
<xsd:enumeration value = "LC-AV"/>
<xsd:enumeration value = "VRA"/>
<xsd:enumeration value = "TEIHDR"/>
<xsd:enumeration value = "DDI"/>

43

<xsd:enumeration value = "FGDC"/>
<xsd:enumeration value = "EAST"/>
<xsd:enumeration value = "OTHER"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name = "otherMdType" type = "xsd:string"/>

</xsd:attributeGroup>
<xsd:simpleType name = "mimeType">

<xsd:restriction base = "xsd:string">
<xsd:enumeration value = "image/gif"/>
<xsd:enumeration value = "image/jpeg"/>
<xsd:enumeration value = "image/jpeg2000"/>
<xsd:enumeration value = "image/png"/>
<xsd:enumeration value = "image/tiff"/>
<xsd:enumeration value = "image/geo-tiff"/>
<xsd:enumeration value = "application/octetstream"/>
<xsd:enumeration value = "application/pdf"/>
<xsd:enumeration value = "application/x-hdf"/>
<xsd:enumeration value = "application/hdf-eos"/>
<xsd:enumeration value = "application/fits"/>
<xsd:enumeration value = "application/eas"/>
<xsd:enumeration value = "application/pds"/>
<xsd:enumeration value = "application/xfdu"/>
<xsd:enumeration value = "application/cdf"/>
<xsd:enumeration value = "application/net-cdf"/>
<xsd:enumeration value = "text/xml"/>
<xsd:enumeration value = "text/html"/>
<xsd:enumeration value = "text/plain"/>
<xsd:enumeration value = "application/doc"/>
<xsd:enumeration value = "application/rtf"/>
<xsd:enumeration value = "xml/ded"/>
<xsd:enumeration value = "xml/votable"/>
<xsd:enumeration value = "video/mpeg"/>
<xsd:enumeration value = "video/mpeg-7"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:attribute name = "mustUnderstand" type = "xsd:boolean"/>
<xsd:attribute name = "namespace" type = "xsd:string"/>
<xsd:complexType name = "referenceType">

<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "textInfo" type = "xsd:string"/>
<xsd:attributeGroup ref = "LOCATION"/>
<xsd:attributeGroup ref = "xlink:simpleLink"/>

</xsd:complexType>
<xsd:complexType name = "mdSecType">

<xsd:annotation>
<xsd:documentation>mdSecType (metadata section) Complex Type A generic
framework for pointing to/including metadata within a XFDU
document, a la Warwick Framework. An mdSec element may have the
following attributes:
1. ID: an XML ID for this element.
2. class - concrete type of metadata represented by this element of mdSecType
3. category - type of metadata class to which this metadata belongs (e.g. DMD.REP, etc.)

44

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "mdRef" type = "mdRefType" minOccurs = "0"/>
<xsd:element name = "mdWrap" type = "mdWrapType" minOccurs = "0"/>
<xsd:element name = "dataObjectPtr" type = "dataObjectPtrType" minOccurs = "0"/>

</xsd:sequence>
<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>
<xsd:attribute name = "class">

<xsd:simpleType>
<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "DED"/>
<xsd:enumeration value = "SYNTAX"/>
<xsd:enumeration value = "FIXITY"/>
<xsd:enumeration value = "PROVENANCE"/>
<xsd:enumeration value = "CONTEXT"/>
<xsd:enumeration value = "REFERENCE"/>
<xsd:enumeration value = "DESCRIPTION"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name = "category">

<xsd:simpleType>
<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "REP"/>
<xsd:enumeration value = "PDI"/>
<xsd:enumeration value = "DMD"/>
<xsd:enumeration value = "OTHER"/>
<xsd:enumeration value = "ANY"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name = "otherClass" type = "xsd:string"/>
<xsd:attribute name = "otherCategory" type = "xsd:string"/>

</xsd:complexType>
<xsd:complexType name = "packHdrType">

<xsd:annotation>
<xsd:documentation>packHdrType: Complex Type for metadata about the
mapping of the logical packages to the physical structures. The
package header section consists of three possible subsidiary
sections: envirMD (specification of the hardware and software
platform which created this package), behaviorMD (behavior mechanism
related metadata), and transformMD (the names, classifications, parameter
names/types and any other information needed to reverse
transformations used in the XFDU). Both transformMD and behaviorMD have an optional
mustUnderstand attribute that declares if the reader of this package must
understand described transformation, behavior mechanisms in order to
process content of the package. packHdrType has a single
attribute, ID: an XML ID.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "envirMD" minOccurs = "0" maxOccurs = "unbounded">
<xsd:annotation>

45

<xsd:documentation>envirMD: technical metadata. The envirMD element
provides a wrapper around a generic metadata section that
should contain technical metadata regarding a dataObject or dataObjects. It
has a single attribute, ID, which dataObject/dataObjectGrp elements can use
to reference the technical metadata that applies to them.

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base = "xsd:string">

<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsd:element name = "behaviorMD" minOccurs = "0" maxOccurs = "unbounded">

<xsd:annotation>
<xsd:documentation>

behaviorMD contains:
mustUnderstand - indicates if this mechanism must be understood by processor
description - general description
mechanismType - type of behavior mechanism (e.g. WS,ANT,JAVA) (should be made into enumeration most

likely)
namespace - namespace of the specified technology if any
behaviorMD has an optional xmlData element to include any additional metadata if needed

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute ref = "mustUnderstand"/>
<xsd:attribute name = "description" type = "xsd:string"/>
<xsd:attribute name = "mechanismType" type = "xsd:string"/>
<xsd:attribute ref = "namespace"/>

</xsd:complexType>
</xsd:element>
<xsd:element name = "transformMD" minOccurs = "0" maxOccurs = "unbounded">

<xsd:annotation>
<xsd:documentation>transformMD (the names, classifications, parameter
names/types and any other information needed to reverse
transformations used in the XFDU)
transformMD contains:
mustUnderstand - indicates if this transformation technology must be understood by processor
description - gneral description
algorithmName -name of transformation algorithm
namespace - namespace of the specified technology if any
transformMD has optional xmlData element to include any additional metadata if needed

</xsd:documentation>
</xsd:annotation>

46

<xsd:complexType>
<xsd:sequence>

<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0" maxOccurs = "unbounded"/>
</xsd:sequence>
<xsd:attribute name = "description" type = "xsd:string"/>
<xsd:attribute name = "algorithmName" type = "xsd:string"/>
<xsd:attribute ref = "mustUnderstand"/>
<xsd:attribute ref = "namespace"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name = "ID" type = "xsd:ID"/>

</xsd:complexType>
<xsd:complexType name = "mdRefType">

<xsd:annotation>
<xsd:documentation>mdRefType: metadata reference. An element of mdRefType is a
generic element used throughout the XFDU schema to provide a
pointer to metadata which resides outside the XFDU document. mdRefType
has the following attributes: 1. ID: an XML ID; 2. locType: the
type of locator contained in the body of the element; 3.
otherLocType: a string indicating an alternative locType when
the locType attribute value is set to "OTHER."; 4. xlink:href:
see XLink standard (http://www.w3.org/TR/xlink) 5. xlink:role:
"" 6. xlink:arcrole: "" 7. xlink:title: "" 8. xlink:show: "" 9.
xlink:actuate: "" 10. mimeType: the MIME type for the metadata
being pointed at; 11. MDType: the type of metadata being pointed
at (e.g., MARC, EAD, etc.); 12. behMdType: a string indicating
an alternative mdType when the mdType attribute value is set to
"OTHER."; 13. textInfo: a label to display to the viewer of the
XFDU document identifying the metadata; and NB: mdRef is an empty element. The location of the
metadata must be recorded in the xlink:href attribute,
supplemented by the XPTR attribute as needed.

</xsd:documentation>
</xsd:annotation>
<xsd:complexContent>

<xsd:extension base = "referenceType">
<xsd:attributeGroup ref = "METADATA"/>
<xsd:attribute name = "mimeType" type = "mimeType"/>
<xsd:attribute name = "behMdType" type = "xsd:string"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name = "xmlDataType">

<xsd:annotation>
<xsd:documentation>A wrapper to contain arbitrary XML content.</xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<xsd:any namespace = "##any" processContents = "strict" maxOccurs = "unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name = "fcontentType">

<xsd:annotation>
<xsd:documentation>

fContentType encapsulates and agregates a type that can have a choice of either

47

binary or xml data

</xsd:documentation>
</xsd:annotation>
<xsd:choice>

<xsd:element name = "binData" type = "xsd:base64Binary" minOccurs = "0">
<xsd:annotation>

<xsd:documentation>A wrapper to contain Base64 encoded metadata.</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0"/>

</xsd:choice>
<xsd:attribute name = "ID" type = "xsd:ID"/>

</xsd:complexType>
<xsd:complexType name = "mdWrapType">

<xsd:annotation>
<xsd:documentation>mdWrapType: metadata wrapper. An element of mdWrapType is a
generic element used throughout the XFDU schema to allow the
encoder to place arbitrary metadata conforming to other
standards/schema within a XFDU document. The mdWrapType
can have the following attributes: 1. ID: an XML ID for
this element; 2. mimeType: the MIME type for the metadata
contained in the element; 3. MDType: the type of metadata
contained (e.g., MARC, EAD, etc.); 4. behMdType: a string
indicating an alternative mdType when the mdType attribute value
is set to "OTHER."; 5. textInfo: a label to display to the viewer
of the XFDU document identifying the metadata.

</xsd:documentation>
</xsd:annotation>
<xsd:complexContent>

<xsd:extension base = "fcontentType">
<xsd:attribute name = "mimeType" type = "mimeType"/>
<xsd:attribute name = "textInfo" type = "xsd:string"/>
<xsd:attributeGroup ref = "METADATA"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name = "dataObjectPtrType">

<xsd:annotation>
<xsd:documentation>

The dataObjectPtrType is a type that can be used to refernce dataObjects by dataObjectID.
The dataObjectPtrType has two attributes:
1. ID: an XML ID for this element; and
2. dataObjectID: an IDREF to a dataObject element referenced by contentUnit containing this datatpr.

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "dataObjectID" use = "required" type = "xsd:IDREF"/>

</xsd:complexType>
<xsd:complexType name = "keyderivationType">

<xsd:annotation>

48

<xsd:documentation>key derivation type contains the information
that was used to derive the encryption key for this dataObject.
Key derivation type contains:
 name - name of algorithm used
salt - 16-byte random seed used for that algorithm initialization
iterationCount - number of iterations used by the algorithm to derive the key

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name = "name" use = "required" type = "xsd:string"/>
<xsd:attribute name = "salt" use = "required">

<xsd:simpleType>
<xsd:restriction base = "xsd:string">

<xsd:length value = "16"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name = "iterationCount" use = "required" type = "xsd:long"/>

</xsd:complexType>
<xsd:element name = "abstractKeyderivation" type = "keyderivationType" abstract = "true">

<xsd:annotation>
<xsd:documentation>
abstractKeyderivation is declared abstract
so that it can be used for element substitution in cases when default key derivation is not
sufficient. In order for creating more specific key derivation constructs, one would have to
extend from keyderivationType to a concrete type, and then create an element of that new type. Finally,
in an instance of XML governed by this schema, the reference to key derivation in an instance of
transformSec element would point not to instance of keyderivation element, but rather instance of the
custom element. In other words, keyderivation would be SUBSTITUTED with a concrete key derivation element.
In cases where default functionality is sufficient, the provided defaultKeyderivation element can be used for the
substitution.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name = "keyderivation" type = "keyderivationType" substitutionGroup = "abstractKeyderivation">

<xsd:annotation>
<xsd:documentation>

Default implementation of key derivation type.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:complexType name = "transformSecType">

<xsd:annotation>
<xsd:documentation>transformSecType: transformation information An element
of transformsecType contains all of the information required to reverse the
transformations applied to the original contents of the dataObject. It
has two possible subsidiary elements: The algorithm element
contains information about the algorithm used to encrypt the
data. The key-derivation element contains the information that
was used to derive the encryption key for this dataObject It has three
attributes: 1. ID: an XML ID 2. transoformType: one of n predefined

49

transformations types. Current valid types are compression,
encryption, authentication. 3. order: If there are more than one
transformation elements in an infoObjEntry this integer indicates
the order in which the reversal transformations should be applied.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "algorithm" type = "xsd:string">
<xsd:annotation>

<xsd:documentation>algorithm element contains information
about the algorithm used to encrypt the data.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element ref = "abstractKeyderivation" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "order" type = "xsd:string"/>
<xsd:attribute name = "transformType" use = "required">

<xsd:simpleType>
<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "COMPRESSION"/>
<xsd:enumeration value = "AUTHENTICATION"/>
<xsd:enumeration value = "ENCRYPTION"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>
<xsd:complexType name = "byteStreamType">

<xsd:annotation>
<xsd:documentation>byteStreamType: An element of byteStreamType
provides access to the current content of dataObjects for a XFDU
document. The byteStreamType: has the following four attributes: ID (an XML ID);
mimeType: the MIME type for the dataObject; size: the size of the dataObject
in bytes; checksum: a checksum for dataObject; checksumType: type of checksum algorithms used to compute

checksum
The data contained in these attributes is relevant to final state of data object after all possible transformations of the

original data.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "FLocat" type = "referenceType" minOccurs = "0" maxOccurs = "unbounded"/>
<xsd:element name = "FContent" type = "fcontentType" minOccurs = "0"/>

</xsd:sequence>
<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>
<xsd:attribute name = "mimeType" type = "mimeType"/>
<xsd:attribute name = "size" type = "xsd:long"/>
<xsd:attribute name = "checksum" type = "xsd:string"/>
<xsd:attribute name = "checksumType">

<xsd:simpleType>

50

<xsd:restriction base = "xsd:string">
<xsd:enumeration value = "HAVAL"/>
<xsd:enumeration value = "MD5"/>
<xsd:enumeration value = "SHA-1"/>
<xsd:enumeration value = "SHA-256"/>
<xsd:enumeration value = "SHA-384"/>
<xsd:enumeration value = "SHA-512"/>
<xsd:enumeration value = "TIGER"/>
<xsd:enumeration value = "WHIRLPOOL"/>
<xsd:enumeration value = "CRC32"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>
<xsd:complexType name = "dataObjectType">

<xsd:annotation>
<xsd:documentation>dataObjectType : An element of dataObjectType
contains current byteStream content and any required data to restore
them to the form intended for the original designated community.
It has two possible subsidiary elements: The byteStream element
provides access to the current content dataObjects for an XFDU
document. An element of dataObjectType must contain exactly 1 byteStream element
that may contain an FLocat element, which provides a pointer to
a content byteStream, and/or an FContent element, which wraps an
encoded version of the dataObject. An element of dataObjectType may contain one or
more transformation elements that contain all of the
information required to reverse each transformation applied to
the dataObject and return the original binary data object.
The infoObjEntry has the following five attributes: 1. ID: an XML ID
2, mimeType: the MIME type for the dataObject 3. size: the size of the dataObject
in bytes 4. checksum: a checksum for dataObject 5. checksumType: type of checksum algorithms used to
compute checksum 6. repID list of representation metadata IDREFs. The size, checksum, checksumtype and
mime type are related to the original data before any transformations occured.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "byteStream" type = "byteStreamType"/>
<xsd:sequence>

<xsd:element name = "transformSec" type = "transformSecType" minOccurs = "0" maxOccurs = "unbounded"/>
</xsd:sequence>

</xsd:sequence>
<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "repID" type = "xsd:IDREFS"/>
<xsd:attribute name = "mimeType" type = "mimeType"/>
<xsd:attribute name = "size" type = "xsd:long"/>
<xsd:attribute name = "checksum" type = "xsd:string"/>
<xsd:attribute name = "checksumType">

<xsd:simpleType>
<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "HAVAL"/>
<xsd:enumeration value = "MD5"/>
<xsd:enumeration value = "SHA-1"/>
<xsd:enumeration value = "SHA-256"/>
<xsd:enumeration value = "SHA-384"/>

51

<xsd:enumeration value = "SHA-512"/>
<xsd:enumeration value = "TIGER"/>
<xsd:enumeration value = "WHIRLPOOL"/>
<xsd:enumeration value = "CRC32"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>
<xsd:complexType name = "dataObjectSecType">

<xsd:annotation>
<xsd:documentation>dataObjectSecType : a container for one or more elements of dataObjectType

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "dataObject" type = "dataObjectType" maxOccurs = "unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name = "contentUnitType">

<xsd:annotation>
<xsd:documentation>ContentUnit Complex Type The XFDU standard
represents a data package structurally as a series of nested
content units, that is, as a hierarchy (e.g., a data product,
which is composed of datasets, which are composed of time
series, which are composed of records). Every content node in
the structural map hierarchy may be connected (via subsidiary
XFDUptr or dataObjectPtr elements) to information objects which
represent that unit as a portion of the whole package. The content
units element has the following attributes:
1.ID (an XML ID);
2.order: an numeric string (e.g., 1.1, 1.2.1, 3,) representation
of this unit's order among its siblings (e.g., its sequence);
3.textInfo: a string label to describe this contentUnit to an end
user viewing the document, as per a table of contents entry
4.repID: a set of IDREFs to representation information sections
within this XFDU document applicable to this contentUnit.
5.dmdID: a set of IDREFS to descriptive information sections
within this XFDU document applicable to this contentUnit.
6.pdiID: a set of IDREFS to preservation description information
sections within this XFDU document applicable to this
contentUnit
7.anyMdID: a set of IDREFS to any other metadata sections that do not fit
rep,dmd or pdi metdata related to this contentUnit
88.unitType: a type of content unit (e.g., Application
Data Unit, Data Description Unit, Software Installation Unit, etc.).
contentUnitType is declared as a base type for concrete implementations of contentUnit.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "XFDUptr" type = "referenceType" minOccurs = "0" maxOccurs = "unbounded">
<xsd:annotation>

<xsd:documentation>XFDUptr:XFDU Pointer. The XFDUptr element allows a
content unit to be associated with a separate XFDU containing

52

the content corresponding with that contentUnit, rather than
pointing to one or more internal dataObjects. A typical instance of
this would be the case of a thematic data product that collects
data products from several instruments observe an event of
interest. The content units for each instrument datasets might
point to separate XFDUs, rather than having dataObjects and dataObject
groups for every dataset encoded in one package. The XFDUptr
element may have the following attributes: ID: an XML ID for
this element locType: the type of locator contained in the
xlink:href attribute; otherLocType: a string to indicate an
alternative locType if the locType attribute itself has a value
of "OTHER." xlink:href: see XLink standard
(http://www.w3.org/TR/xlink) xlink:role: "" xlink:arcrole: ""
xlink:title: "" xlink:show: "" xlink:actuate: "" NOTE: XFDUptr
is an empty element. The location of the resource pointed to
MUST be stored in the xlink:href element.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name = "dataObjectPtr" type = "dataObjectPtrType" minOccurs = "0" maxOccurs = "unbounded"/>
<xsd:element ref = "abstractContentUnit" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "order" type = "xsd:string"/>
<xsd:attribute name = "unitType" type = "xsd:string"/>
<xsd:attribute name = "textInfo" type = "xsd:string"/>
<xsd:attribute name = "repID" type = "xsd:IDREFS"/>
<xsd:attribute name = "dmdID" type = "xsd:IDREFS"/>
<xsd:attribute name = "pdiID" type = "xsd:IDREFS"/>
<xsd:attribute name = "anyMdID" type = "xsd:IDREFS"/>

</xsd:complexType>
<xsd:element name = "abstractContentUnit" type = "contentUnitType" abstract = "true">

<xsd:annotation>
<xsd:documentation>abstractContentUnit is abstract implementation of
contentUnitType. It cannot be instantiated in the instance
document. Instead, concrete implementations would have to be
used which are declared part of the contentUnit substitutionGroup

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name = "contentUnit" type = "contentUnitType" substitutionGroup = "abstractContentUnit">

<xsd:annotation>
<xsd:documentation>contentUnit is basic concrete

implementation of abstract conentUnit. Its instace can be used
in the instance document in the place where contentUnit declared
to be present.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:complexType name = "ipMapSecType">

53

<xsd:annotation>
<xsd:documentation>ipMapSecType Complex Type The Information Package Map

Section (ipMapSec) outlines a hierarchical structure for the
original object being encoded, using a series of nested
contentUnit elements. An element of ipMapSecType has the following
attributes: ID: an XML ID for the element; TYPE: the type of
Information Product provided. Typical values will be"AIP" for a
map which describes a complete AIP obeying all constrainsts and
cardinalitiies in the OAIS reference model "SIP" for a map which
describes a Submission Information Package textInfo: a string to
describe the ipMapSec to users. packageType: a type for the object, e.g., book, journal, stereograph, etc.;
Concrete implementation of contentUnit (defaultContentUnit, behavioralContentUnit, etc) have to be used in the

instance document.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element ref = "abstractContentUnit" maxOccurs = "unbounded"/>
</xsd:sequence>
<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "packageType" type = "xsd:string"/>
<xsd:attribute name = "textInfo" type = "xsd:string"/>

</xsd:complexType>
<xsd:complexType name = "interfaceDefType">

<xsd:annotation>
<xsd:documentation>interfaceDefType: interface definition object. The

interface definition type contains a pointer an abstract
definition of a set of related behaviors. These abstract
behaviors can be associated with the content of a XFDU object.
The interface definition element will be a pointer to another
object (an interface definition object). An interface definition
object could be another XFDU object, or some other entity (e.g.,
a WSDL source). Ideally, an interface definition object should
contain metadata that describes a set of behaviors or methods.
It may also contain files that describe the intended usage of
the behaviors, and possibly files that represent different
expressions of the interface definition. An element of interfaceDefType
is optional to allow for cases where an interface
definition can be obtained from a behavior mechanism object (see
the mechanism element of the behaviorSec).
interfaceDef extends from referenceType and adds ability of specifying inputParameter
that can be either just a string value or pointer to the content in this package

</xsd:documentation>
</xsd:annotation>
<xsd:complexContent>

<xsd:extension base = "referenceType">
<xsd:sequence>

<xsd:element name = "inputParameter" minOccurs = "0" maxOccurs = "unbounded">
<xsd:complexType mixed = "true">

<xsd:sequence>
<xsd:element name = "dataObjectPtr" type = "dataObjectPtrType" minOccurs = "0"/>

</xsd:sequence>
<xsd:attribute name = "name" use = "required" type = "xsd:string"/>

54

<xsd:attribute name = "value" type = "xsd:string"/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name = "behaviorSecType">

<xsd:annotation>
<xsd:documentation>behaviorSecType: Complex Type for Behaviors. A

behavior section can be used to associate executable behaviors
with content in the XFDU object. A behavior section has an
interface definition element that represents an abstract
definition of the set of behaviors represented by a particular
behavior section. A behavior section also has an behavior
mechanism which is a module of executable code that implements
and runs the behaviors defined abstractly by the interface
definition. An behavior section may have the following
attributes: 1. ID: an XML ID for the element 2. structID: IDREFS
to structMap sections or divs within a structMap in the XFDU
document. The content that the structID attribute points to is
considered "input" to the behavior mechanism (executable)
defined for the behaviorSec. 3. behaviorType: a behavior type
identifier for a given set of related behaviors. 4. created:
date this behavior section of the XFDU object was created. 5.
textInfo: a description of the type of behaviors this section
represents. 6. groupID: an identifier that establishes a
correspondence between this behavior section and behavior
sections. Typically, this will be used to facilitate versioning
of behavior sections. behavior section may also include another behavior section for chaining of behaviors
Concrete implementation of mechanism (wsdlMechanism,antMechanism,javaMechanism, etc) have to be used in

the instance document.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "interfaceDef" type = "interfaceDefType" minOccurs = "0"/>
<xsd:element ref = "abstractMechanism"/>
<xsd:element name = "behaviorSec" type = "behaviorSecType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>
<xsd:attribute name = "structID" use = "required" type = "xsd:IDREFS"/>
<xsd:attribute name = "behaviorType" type = "xsd:string"/>
<xsd:attribute name = "created" type = "xsd:dateTime"/>
<xsd:attribute name = "textInfo" type = "xsd:string"/>
<xsd:attribute name = "groupID" type = "xsd:string"/>

</xsd:complexType>
<xsd:element name = "abstractMechanism" type = "mechanismType" abstract = "true">

<xsd:annotation>
<xsd:documentation>abstractMechanism is abstract implementation of

mechanismType. It cannot be instanciated in the instance
document. Instead, concrete implementations would have to be
used which are declared part of mechanism substitutionGroup

55

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:complexType name = "mechanismType">

<xsd:annotation>
<xsd:documentation>mechanismType: executable mechanism. An element of mechanismType

contains a pointer to an executable code module that
implements a set of behaviors defined by an interface
definition. The mechanism element will be a pointer to another
object (a mechanism object). A mechanism object could be another
XFDU object, or some other entity (e.g., a WSDL source). A
mechanism object should contain executable code, pointers to
executable code, or specifications for binding to network
services (e.g., web services).
mechanismType is declared as base type for concrete implementations of mechanism

</xsd:documentation>
</xsd:annotation>
<xsd:complexContent>

<xsd:extension base = "referenceType"/>
</xsd:complexContent>

</xsd:complexType>
<xsd:element name = "wsMechanism" type = "mechanismType" substitutionGroup = "abstractMechanism">

<xsd:annotation>
<xsd:documentation>wsMechanism is concrete implementation of

abstract mechanism which implements mechanism based on Web
service. Its instace can be used in the instance document in the
place where mechanism declared to be present.

</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name = "javaMechanism" substitutionGroup = "abstractMechanism">

<xsd:annotation>
<xsd:documentation>javaMechanism is concrete implementation of

abstract mechanism which implements Java-based mechanism.
xlink:href element points to fully qualified name of the Java
class that implements the mechanism. FLocate element specifies
location of the jar file where that class is packaged. File can
be local to this XFDU package, or located on the remote server,
or somewhere on the local file system.An instace of
javaMechanism can be used in the instance document in the place
where mechanism declared to be present.

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:complexContent>
<xsd:extension base = "mechanismType">

<xsd:sequence>
<xsd:element name = "FLocat" type = "referenceType"/>

</xsd:sequence>
</xsd:extension>

56

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
<xsd:element name = "antMechanism" substitutionGroup = "abstractMechanism">

<xsd:annotation>
<xsd:documentation>antMechanism is concrete implementation of

abstract mechanism which implements ANT-based mechanism.
xlink:href element points to a location of ANT script to be
executed. Also, xmlData element can contain ANT specific XML. An
instace of antMechanism can be used in the instance document in
the place where mechanism declared to be present.

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:complexContent>
<xsd:extension base = "mechanismType">

<xsd:sequence>
<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
<xsd:complexType name = "metadataSecType">

<xsd:sequence>
<xsd:element name = "metadataObject" type = "mdSecType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name = "XFDUType">

<xsd:annotation>
<xsd:documentation>
XFDUType Complex Type.
A XFDU document consists of five possible subsidiary sections:
packHdr (XFDU document header), dmdMD (descriptive metadata
section), repMD (representation metadata section), pdiMD (preservation information section),
infoObjEntrSec (data object section),ipMapSec (content unit section), behaviorSec (behavior section).
It also has possible attributes:
1. ID (an XML ID);
2. objID: a primary identifier assigned to the original source document;
3. textInfo: a title/text string identifying the document for users;
5. version: version to which this XFDU document conforms

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name = "packHdr" type = "packHdrType" minOccurs = "0"/>
<xsd:element name = "metadataSec" type = "metadataSecType" minOccurs = "0"/>
<xsd:element name = "dataObjectSec" type = "dataObjectSecType" minOccurs = "0"/>
<xsd:element name = "IpMapSec" type = "ipMapSecType"/>
<xsd:element name = "behaviorSec" type = "behaviorSecType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "ID" type = "xsd:ID"/>
<xsd:attribute name = "objID" type = "xsd:string"/>

57

<xsd:attribute name = "textInfo" type = "xsd:string"/>
<xsd:attribute name = "version" type = "xsd:string"/>

</xsd:complexType>
<xsd:element name = "XFDU" type = "XFDUType"/>

</xsd:schema>

58

Annex 1 Example XFDU

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<XFDU>
 <packHdr>
 <envirMD ID="envirMD1">All platforms</envirMD>
 <transformMD algorithmName="blowfish" mustUnderstand="true"
description="encryption"/>
 </packHdr>
 <dmdSec ID="ECSDMD">
 <mdWrap mdType="OTHER">
 <xmlData>
 <dmdMD>some ECS defined XML</dmdMD>
 </xmlData>
 </mdWrap>
 </dmdSec>
 <repSec ID="mathMLAlgRepSec">
 <otherMD ID="mathMLMD">
 <mdWrap mdType="OTHER" textInfo="mathML encoding of the algorithm">
 <xmlData>
 <math>
 <mrow>
 <mo>det</mo>
 <mo symmetric="false" rspace="0" lspace="0">|</mo>
 <mfrac linethickness="0">
 <mi>a</mi>
 <mi>c</mi> </mfrac>
 <mfrac linethickness="0">
 <mi>b</mi>
 <mi>d</mi> </mfrac>
 <mo symmetric="false" rspace="0" lspace="0">|</mo>
 <mo>=</mo>
 <mi>a</mi>
 <mi>d</mi>
 <mo>-</mo>
 <mi>b</mi>
 <mi>c</mi>
 <mo>,</mo> </mrow>
 </math>
 </xmlData>
 </mdWrap>
 </otherMD>
 </repSec>
 <repSec ID="ATD">
 <otherMD ID="atdMD">
 <infoObjEntryPtr infoObjEntryID="ATD MD"/>
 </otherMD>
 </repSec>
 <pdiSec ID="pdiSec">
 <provenanceSec ID="provenance">
 <mdRef mdType="OTHER" mimeType="text/xml" textInfo="processing history XML file" locType="URL"
ns1:href="file:packagesamples/scenario1/pdi.xml"
xmlns:ns1="http://www.w3.org/TR/xlink"/>
 </provenanceSec>
 </pdiSec>
 <infoObjEntrSec>
 <infoObjEntry repID="mathMLMD" ID="mpeg21">
 <dataObject mimeType="video/mpeg" checksum="b3eb4b34" ID="mpeg21AnimData" checksumType="CRC32" size="414131">
 <FLocat locType="URL"
ns2:href="file:packagesamples/scenario1/mpeg21.mpg" xmlns:ns2="http://www.w3.org/TR/xlink"/>
 </dataObject>
 </infoObjEntry>
 <infoObjEntry size="0" checksumType="CRC32" checksum="6d0e30ea"
mimeType="application/pdf" ID="ATD MD">
 <dataObject mimeType="application/octetstream" checksum="ad78ad5d"
ID="atdMD" checksumType="CRC32" size="110874">
 <FLocat locType="URL" ns3:href="file:packagesamples/scenario1/atd.pdf"

59

xmlns:ns3="http://www.w3.org/TR/xlink"/>
 </dataObject>
 <transformsec type="ENCRYPTION">
 <algorithm>blowfish</algorithm>
 </transformsec>
 </infoObjEntry>
 <infoObjEntry repID="atdMD" ID="hdfFile0">
 <dataObject mimeType="application/x-hdf" checksum="acab6535"
ID="hdfFile0" checksumType="CRC32" size="10455471">
 <FLocat locType="URL"
ns4:href="file:packagesamples/scenario1/mod1.hdf"
xmlns:ns4="http://www.w3.org/TR/xlink"/>
 </dataObject>
 </infoObjEntry>
 <infoObjEntry repID="atdMD" ID="hdfFile1">
 <dataObject mimeType="application/x-hdf" checksum="acab6535"
ID="hdfFile1" checksumType="CRC32" size="10455471">
 <FLocat locType="URL"
ns5:href="file:packagesamples/scenario1/mod2.hdf"
xmlns:ns5="http://www.w3.org/TR/xlink"/>
 </dataObject>
 </infoObjEntry>
 <infoObjEntry repID="atdMD" ID="hdfFile2">
 <dataObject mimeType="application/x-hdf" checksum="acab6535"
ID="hdfFile2" checksumType="CRC32" size="10455471">
 <FLocat locType="URL"
ns6:href="file:packagesamples/scenario1/mod3.hdf"
xmlns:ns6="http://www.w3.org/TR/xlink"/>
 </dataObject>
 </infoObjEntry>
 <infoObjEntry mimeType="application/octetstream" ID="orbitalData">
 <dataObject checksum="b3eb4b34" ID="orbitData" checksumType="CRC32">
 <FLocat locType="URL"
ns7:href="http://coin.gsfc.nasa.gov:8080/ims-bin/3.0.1/nph-ims.cgi?msubmit=yes&a
mp;lastmode=SRCHFORM" xmlns:ns7="http://www.w3.org/TR/xlink"/>
 <FContent>
 <binData>UEsDBBQACAAIAKqMBC8AAAAAAAAAAAAAAAAPAAAAeGZkdS8uY2xhc3NwYXRotZXfS8MwEMff/StK35OugqCwH4hO0I...

</binData>
 </FContent>
 </dataObject>
 </infoObjEntry>
 </infoObjEntrSec>
 <ipMapSec>
 <defaultContentUnit repID="atdMD" pdiID="provenance" dmdID="ECSDMD">
 <infoObjEntryPtr infoObjEntryID="mpeg21"/>
 <defaultContentUnit order="1" textInfo="Root content unit for HDF data">
 <defaultContentUnit order="1.1" pdiID="provenance" textInfo="content unit for hdfFile0" dmdID="ECSDMD">
 <infoObjEntryPtr infoObjEntryID="hdfFile0"/>
 </defaultContentUnit>
 <defaultContentUnit order="1.2" pdiID="provenance" textInfo="content unit for hdfFile1" dmdID="ECSDMD">
 <infoObjEntryPtr infoObjEntryID="hdfFile1"/>
 </defaultContentUnit>
 <defaultContentUnit order="1.3" pdiID="provenance" textInfo="content unit for hdfFile2" dmdID="ECSDMD">
 <infoObjEntryPtr infoObjEntryID="hdfFile2"/>
 </defaultContentUnit>
 </defaultContentUnit>
 <defaultContentUnit textInfo="content unit for orbit data">
 <infoObjEntryPtr infoObjEntryID="orbitalData"/>
 </defaultContentUnit>
 </defaultContentUnit>
 <defaultContentUnit textInfo="content unit ATD metadata">
 <infoObjEntryPtr infoObjEntryID="ATD MD"/>
 </defaultContentUnit>
 </ipMapSec>
</XFDU>

60

61

 Annex 2 UML for XFDU – Needs to be updated

62

Annex 3 Relationship to Other Efforts

A primary goal of this effort was to reuse concepts and constructs from other efforts (commercial, academic,
and standards) to define methods to package multiple types (e.g., binary, text, audio, video, etc) of data and
metadata for both archival and transmission. There were several efforts identified. These efforts varied
significantly in many aspects including maturity, existing implementations and intended scope of designated
community. None of the products adequately met the requirements defined in the Annex 2 to allow adoption of
the existing specifications. The following is a brief summary of the efforts that had a major influence on this
recommendation and an overview of the areas of this recommendation that were adapted from each effort. More
detailed discussions of design tradeoffs may be found or referred to in the appropriate section of this
recommendation.

XML PACKAGING TF –W3C
In August 1999 W3C released a report from a task force on XML packaging that had been commissioned but
discontinued due to member priorities. This report provides an excellent overview of the area and divides the
problem into two basic efforts:

1. the design of a manifest, an XML structure to describe the associations among resources and
metadata and the locations of those resources and

2. the underlying packaging mechanism that groups the various resources and metadata into a
single unit

The W3C Packaging Committee makes these comments on use of XML as the packaging technique:
XML is an obvious mechanism to consider when considering a packaging mechanism. XML is simple. It
should not take to long to design a mechanism that uses XML. It allows us to use a standard tool to do
much of the work. Many have suggested XML as a packaging mechanism. Problems with XML:

• Would have to extend XML to allow true binary data.
• XML has far less field experience than either MIME or ZIP, especially in the area of embedding

binary data.
• XML is ill-suited for random access. White space handling, entity expansion, and the intrinsic

expectation that XML is serially scanned from beginning to end work against random access.
Canonicalization can help some of these problems, but this may be too great a burden for
implementors.

• XML is not the most concise representation.

The W3C Packaging Committee makes these comments on use of File/Directory Compression
Techniques:
ZIP is a highly used format for packaging information for transmission on the web. Other packaging
formats are based on ZIP, such as JAR, Java Archive, and CAB, Cabinet files. The following paragraphs
contains information on ZIP, some of which is the ZIP file format specification, and another part being the
source code for zip and unzip:
ftp://ftp.uu.net/pub/archiving/zip

63

It is understood that as long as InfoZIP's copyright is left in place, the working group can do more or less
as it pleases. It is also believed that nobody else has credible intellectual property claims to either the code
or the algorithms that are used by ZIP. A quote from ftp://ftp.uu.net/pub/archiving/zip/doc/COPYING
says: "In other words, use it with our blessings, but it's still our [InfoZIP's] code. Thank you!"

At least one publisher has implemented the Zip packaging technology for electronic distribution of book
files. They have used a proprietary encryption scheme for component files, while leaving the Zip structure
in the clear to get around the direct access to component files problem. Problems with ZIP:

• File name character encoding limitations (not Unicode)
• Not a true hierarchy, faked with slashes in file names.
• Mandatory index (comes last, though).
• Inefficient for on-disk editing.

METS --DLF

METS is the result of a Digital Library Federation initiative, and attempts to provide an XML document format
for encoding metadata necessary for both management of digital library objects within a repository and
exchange of such objects between repositories (or between repositories and their users). Depending on its use, a
METS document could be used in the role of a Submission Information Package (SIP), Archival Information
Package (AIP), or Dissemination Information Package (DIP) within the Open Archival Information System
(OAIS) Reference Model. The METS schema provides a flexible mechanism for encoding descriptive,
administrative, and structural metadata for a digital library object, and for expressing the complex links between
these various forms of metadata.

Given the close working relationship between the digital library community and CCSDS Panel 2 on the OAIS
RM and the fact that the METS Information model was based on OAIS concepts it was suggested that the
METS schema be inherited as the basis for this effort.

METS is a very flexible structure that has been developed by the Digital Library with some attention to the
OAIS RM. The metadata and file association methods are very flexible and allow nearly direct translation of
SFDU labels and ADIDs .for identifying, locating and making a Repository Service Request for a detached data
description in EAST or XDF. However, METS is more of a conceptual model and the Representation Data
mapping is questionable. The proposed XFDU Data Model should maps directly to the OAIS Information
Model Classes.
.

XPACK – ESA/ANITE
The XPack XML Schema was developed by Anite for ESA as a portion of a study on the use of XML as a
packaging technology in the ESA Data Distribution System. This prototype included the design of an XML
Schema describing a vocabulary that can be used to package arbitrary data (plain text, XML, binary, etc.) and
metadata and establish relationships between the data and the metadata through the use of SFDU classes. This
schema focused on using a single XML document as the package but did allow in line content to be replaced by
Xlink hrefs. The vocabulary also supports services that are commonly required in association to data packaging,
including compression, encryption, authentication, fragmentation, and validation.

64

OPEN OFFICE XML FILE FORMAT– SUN
The newest major release of OpenOffice/StarOffice from SUN et al uses XML as its native format and a
packaging technique based on ZIP with a well-documented manifest file. This packaging methodology is based
on very well proven XML standards but includes support of a complex encryption technique. Though this
application does not require the complex metadata linkage required by space related data or long-term
preservation, it is significant in that they are a large commercial project using an XML/ZIP packaging
techniques with encryption and binary files on many platforms

XPACKAGE -OPEN EBOOK
The OeBF Publication Structure Working Group is defining an XML Package format (XPackage) to be the
basis in part of the OeB Publication Structure 2.0. for defining packages, or collections of resources and their
associations. It specifies a framework for describing the resources which are included in such packages, the
properties of those resources, their method of inclusion, and their relationships between each another. XPackage
use cases include specifying the stylesheets used by an HTML document, declaring the images shared by
multiple documents, indicating the author and other metadata of a document, describing how namespaces are
used by XML resources, illustrating fallback sequences for varying levels of multimedia support, and providing
a manifest for bundling resources into a single archive file. The XPackage framework is based upon XML,
RDF, and XLink, and provides two RDF ontologies: one for general packaging descriptions and another for
describing XML-based resources.

XPackage represents a leading edge use of W3C standards to find a conceptual solution to the description of the
relationships among element of a package.

GLOBUS PACKAGING TOOLKIT
The Grid Packaging Tool (GPT) uses XML to describe all the information that is needed for an installation.
These XML files hold all of the information that the GPT will need in order to create a Grid instance on a
particular system. The intent of this XML is to construct a framework and a set of Grid packages that can be
used to create tailored Grid to meet individual needs. This will allow for the distribution and release of
individual Grid components, rather then a single monolithic release. This concept will allow organizations to
construct both source and binary distributions of packages they are interested in rather then being forced to
build and configure components that are of no interest.

Given the importance of software as representation data , the cooperation or the GRID , the Space Science
community, the XML based approach used by the GPT and the experience being gained in the releases of the
Globus Service Toolkit, any software distribution unit in the XFDU should be exactly GPT if possible. The
GPT DTD and element descriptions appear as chapter 15.

65

66

Annex 4

12.1 PHYSICAL PACKAGING TECHNIQUES

The XFDU package is a container that contains an XFDU document and a set of data objects. There
are three common types of container object that could be supported:

• Archive formats (such as zip, jar or tar), which are already widely deployed, may be used as
container.

• Message formats (such as Soap with Attachments[REF3] and Direct Internet Message
Encapsulation (DIME)[REF4]) which are a major focus of XML protocol and eBusiness
efforts.

• XML document format The XFDU document can be considered as both the manifest and a
container for ASCII/XML files or binary data encoded using XML Schema approved
techniques.

This section briefly discusses these alternatives and makes recommendations for this effort

12.1.1 FILE/DIRECTORY COMPRESSION TECHNIQUES

A packaging technique that has been successfully used by commercial efforts is the consolidation of the entire
directory structure, including all files, into a single file. The current implementations use ZIP, but others such as
CAB, JAR, and TAR can also be used. A well-known “manifest”file with a specific name in a specific
directory provides the locations and associations of the package resources.
12.1.2 SINGLE XML DOCUMENT

This technique is the simplest of the techniques. It simply uses an encoding scheme to encode any binary data
into valid XML characters and store all content inline. This solution does not seem to be optimal for
applications or domains with large binary content but does enable the use of standard XML tools.

12.1.3 WEB SERVICE MESSAGE TECHNIQUES

The emergence of XML Web Services and eBusiness has created a requirement for a single XML message to
encapsulate multiple business object types including binary objects such as spreadsheets and documents created
on word processors.In the HTML and email domains this problem is solved using Multipurpose Internet Mail
Extensions (MIME) One of the primary uses of MIME types is to determine the “helper application” should
process the contents of the files.There are MIME types for most major formats, formats, both binary and
textuall There are also MIME types to define the format of the messages that encapsulate the attachments.For
example modern email software use standard MIME types to Attach multiple files to a single email.The Soap
with Attachments efforts are based on adapting the MIME types to the SOAP XML envirnment. Specifically, he
specification combines specific usage of the Multipart/Related MIME media type RFC 2387 and the URI

schemes discussed in RFC 2111 and RFC2557 for referencing MIME parts.

12.2 USE OAIS INFORMATION MODEL

67

METS (Metadata Encoding and Transmission Standard) is a very flexible structure that has been developed by
the Digital Library Foundation with some attention to the OAIS RM. METS incorporates many useful
mechanisms that have served as starting points in the development of this schema; however, METS is more of a
conceptual model I don’t know what you mean by ‘conceptual model’ here. I don’t usually think of METS as a
conceptual model – only as a schema, which is an implementation of sorts, and I’m used to opposing
‘implementation’ to ‘conceptual model’ – so I assume you mean it in some other way, but I don’t know what
that way is. and the metadata classification especially Representation Data mapping is questionable. The
proposed XFDU Data Model should map directly to the OAIS Information Model Classes.

12.2.1 MANDATORY MANIFEST/TABLE OF CONTENTS

XPACK emphasized the single document, pure XML approach, with binary data encoded as base 64 within the
document. Using this approach, a table of contents was optional. However, W3C Packaging Task Force
Recommendation, the OpenOffice implementation, and the METS schema all separate the manifest from the
data objects. The decision for Release 1 of the XFDU is to have a mandatory XML encoded map of the
information package and metadata to enable a common schema for all packaging forms.

12.2.2 FLEXIBLE LINKAGE OF MANIFEST TO DATA AND METADATA

The XFDU Manifest must contain flexible methods to reference/include the data objects and metadata about
those objects. The METS standard offers very flexible metadata/data linkage and referencing methods. We
have adopted the METS mechanisms that enable:

• Data Objects that are contained in the manifest are to be encoded in base64 or XML
• Data Objects that are included by reference from the manifest are to exist as files in the XFDU package

or as files with known URIs either in a repository or in a location accessable via URL
• Metadata objects that are contained in the manifest are to be encoded in base64 or XML
• Metadata objects that are included by reference from the manifest are to exist as files in the XFDU

package or as files with known URIs either in a repository or in a location accessable via URL
• Information Objects can reference applicable Metadata objects by ID where the name of the referencing

attribute is used to classify the Metadata and the schema enables identification of the source of the metadata

In addition to the METS capabilities detailed above ,the XFDU structure allows metadata objects to be treated
as data objects. This enables direct mapping to the OAIS representation net where each metadata object is an
information object containing both data object and representation information.

12.2.3 RELATIONSHIP DESCRIPTION

A major component of information packaging is the description of the relationships among the various metadata
and data objects in both human readable and machine interpretable forms. The “Semantic Web” efforts have led
to several XML notations for expressing relationships and rules among resources. The two main efforts
reviewed in this area were Resource Description Format (RDF) and Web Ontology Language (OWL). RDF has
been a World Wide Web Consortium (W3C) Recommendation for several years but software support and
automated applications have lagged the recommendation considerably. OWL has recently been promoted to a
W3C Candidate Recommendation. Based on experience with other complex W3C Recommendations, this

68

means that a final recommendation is expected in 1-2 years. However, OWL is derived from several existing
ontology languages, so there is significant legacy software that can quickly be modified to the OWL syntax.

Due to the lack of mature XML software products in this area, the initial version of this recommendation will
not use a formal XML grammer to express the range of potential relationships. Instead, the XFDU schema uses
the OAIS information model to classify information objects and content unit types to define the overall structure
and semantics of contained objects. Alsothe complete Xlink schema is included in the XFDU referencing
mechanisms to allow the use of complex Xlink attribues to model resource relationships.

It is anticipated that Future versions of this recommendation will use an XML based language such as OWL to
improve description and enable software services for generic relationships.

12.2.4 EXTENSIBILITY MECHANISMS

In order to allow an orderly evolution of the XFDU schema and to allow the development of specialized
versions of complex elements to enable additional functionality or alternative implementations during
prototyping
There are a number of XML Schema mechanisms that can be used to achieve the goal:

5. Use of an abstract element and element substitution using substitutionGroup
6. Use of abstract type and type substitution using xsi:type
7. Use of a <choice> element
8. Use of a dangling type

The use of dangling types is theoretically the most flexible solution, but is not supported by most XML parsers.
The use of choice is the least attractive solution because it does not support the use of complex elements and
creates rigid schemas.

Type substitution is slightly superior to element substitution from a schema design viewpoint; however, there
are two factors that inform the decision to use element substitution for this version. The first is the visibility of
xsi:type in every XML instance. This has proven unpopular with users of other standard schemas. The second
factor is that some early experimentation with inputting XML Schema to JAVA tools revealed that element
substitution was partially supported while type substitution was not supported.

69

70

Annex 4 Use Cases

The XML workshop held at GSFC in the summer of 2001 defined two use cases to illustrate the anticipated
usage and functionality of the next generation of CCSDS Packaging mechanisms.

Use Cases Defined At CCSDS XML 2000 Workshop

Simple ASCII DATA Transfer
- has simple ASCII product (XML file) – orbit file for 1 month
- data description is available as XML schema
- Data Dictionary available
- Wants to ship to archive (negotiations completed)
- Uses CCSDS XML Package
- Send single document

Data Provider

1. Gets CCSDS Package schema in order to make instance
2. Uses some XML editor to fill out required fields in XML file including
- Copies in Data Dictionary into XML document
- [Could point to external dictionary using XPOINTER]
- Copies Orbit file data (already XML) into XML document
- Copies data description schema into XML document
- [Could just point to it if held somewhere external]
- Creates metadata based on metadata schema agreed with archive
- Schema is registered and held somewhere
- E.g. Satellite name in some standard/agreed way
- Start and Stop times
- Orbit number(s)
- Etc etc
3. Send as single XML file

Archive:
- receives XML file from producer
- verifies safe receipt e.g. checksum, signing (??)
- may also authenticate the source of the data if needed
- Parse and Validate XML against schema.
- checks whether or not the file is self-contained or refers to external files
- gather any external files needed
- Repackages all the information together ready to archive
- Could use XSLT to repackage and also to separate descriptive information to go into catalogues etc

SENDING LARGE BINARY FILES (e.g. telemetry)

71

- large binary file (200MB)
- data description is available as EAST description
- Data Dictionary available
- Wants to ship to archive (negotiations completed)
- Uses CCSDS XML Package
PRODUCER:
1 Gets CCSDS Package schema in order to make instance
2 Uses some XML editor to fill out required fields in XML file including
- Copies in Data Dictionary into XML document
- [Could point to external dictionary using XPOINTER
- Add pointer (relative URI - local file name) for data into XML document
- Add pointer to EAST description which is held in Metadata registry
- Creates metadata based on metadata schema agreed with archive
- Schema is registered and held somewhere
- E.g. Satellite name in some standard/agreed way
- Start and Stop times
- Orbit number(s)
- Unique ID
- List of files (Manifest?)
- Etc etc
3 Zips up all the files (XML and Binary files)
4 Sends to archive

ARCHIVE:
1. receives (ZIP) file from producer
2. Recognise that it is a ZIP file
3. verifies safe receipt e.g checksum, signing (??)
4. may also authenticate the source of the data if needed
5. UNZIP
6. Find STANDARD NAMED file as root e.g “QWERTY.XML”
7. Parse the QWERTY.XML
- Parse and Validate XML against schema.
- checks whether or not the file is self-contained or refers to external files
- gather any external files/packages needed (e.g. EAST description)
- Repackages all the information together ready to archive
- Could use XSLT to repackage and also to separate descriptive information to go into catalogues etc
8. Archive wants to extract number from binary file
- Needs to recognise that EAST interpreter is needed
- Starts EAST interpreter
- Gives data file
- Gives EAST description
- Matches name of item wanted to Data Dictionary e.g. ALIAS
- Matches Data Dictionary name to EAST description
- Use EAST interpreter to extract number
- DONE
8. DONE

72

73

Annex 5 Requirements

User Requirements

Major capabilities
1. The Package is a container which can contain a single object or a collection of objects which may be

organised as a Hierarchical structure of objects (HSO)
2. A package may contain other packages

a) outer package (the file interchanged) is identified as a package by external means
b) may be problem with uniqueness of outer “manifest”
c) The outer package MAY be e.g. ZIP or pure XML or encrypted etc

3. Each object and grouping of objects should be accompanied by appropriate metadata including:
a) EITHER the description (Representation Information) OR an identification of the description of

the object
b) Identification of the type of the objects

4. Objects may be character or binary or both
5. An object is ……..(a document - NO)
6. An object or package may be contained in a single file or multiple files

a) Need to distinguish between packages which are logically self-contained and those which are
physically self-contained i.e. single files

b) Allow some of the objects to be separate files on the same medium (e.g. spans files) or may be
distributed at different sites on a network

7. Each object may be assigned an identifier which is unique within the package
8. Need the ability to have universally (within some explicitly agreed domain??) unique identifier

a) Version of the Identifier (TBC)

Additional capabilities
9. A mechanism to contain relationship information and identify the objects involved

a) these relationships may be among objects within the same package, and between/among those
outside and inside of a package.

b) also a 'table of contents' of the package, which requires the ability to point to individual objects
at various levels of nesting within containers - MANIFEST mechanism

c) allow lists and alternate views
10. A mechanism to identify that, in addition to the description of the object or package, there may a number

of uniquely identified decodings that should be applied in a particular sequence to reverse the encodings
that have been applied. Example: a object has been encoded and then compressed, or that a set of
objects has been tarred and then compressed.

a) Allow encodings to be combined without having to register each combination. This will allow
encodings to be readily changed during processing of the package, without having to re-do
registrations of descriptions.

b) Some mechanism needed to specify process/application to process the description/encoding
information

c) Provide a mechanism to hold a description of the encodings
d) Some mechanism needed to be able to specify encoding of the package as a whole

ß There must be the ability to identify the start of the package or object

74

11. The package should be easily usable within applications – i.e. at least one well-defined API/Interface
should be defined.

12. Need mechanism(s) to allow one to verify integrity & authenticity of the whole or parts of the package
where required

13. Need to be able to do “lite” packaging i.e. not too many mandatory items.
14. Be able to support use of multiple (i.e. some) registries
15. May wish to have the ability to begin processing a single package BEFORE it is all received.

Further Issues

o Relationships
o What types of pre-defined relationships should we support?

o High level packaging
o Encoding information
o Pointer mechanisms

o implied
o Explicit identification of pointer mechanisms

o OASIS protocol interface – implications on packaging
o Packaging of binary objects

o Internal
o External
o Performance
o Mixing binary with text in same object

o Description “technology” specification

75

76

Annex 2 Functional Requirements

SR1 Description: The XPack document type will support the packaging of files.
Source: UR1
Importance: High

SR2 Description: The XPack document type will provide a mechanism for embedding
files directly into an XPack document.
Source: UR1
Importance: High

SR3 Description: The XPack document type will provide a mechanism for referring to
external files which make up part of a package.
Source: UR1
Importance: High

SR4 Description: The XPack document type will support the packaging of raw data.
Source: UR1
Importance: High

SR5 Description: The XPack document type will directly support or allow external
document model extensions which support the notion of content
datatype specification.
Source: UR1
Importance: High

SR6 Description: The XPack document type will provide elements which can be
repeated to allow multiple objects to be contained within the
document.
Source: UR4
Importance: High

SR7 Description: The XPack document type will provide elements or attributes which
indicate that the package represented by the document is distributed
across one or more files.
Source: UR5
Importance: High

SR8 Description: The XPack document type will allow its root element to be nested.
Source: UR6
Importance: High

SR9 Description: The XPack document type will provide elements or attributes which
allow metadata about the package to be defined.
Source: UR7
Importance: High

77

SR10 Description: The XPack document type will provide elements or attributes which
will allow the definition of references to metadata registries which
contain metadata describing the objects stored in a package.
Source: UR8
Importance: High

SR11 Description: The XPack document type will provide elements or attributes which
enable lists of files to be defined and referenced.
Source: UR9
Importance: High

SR12 Description: The XPack document type will provide elements which can be
nested to define a hierarchical structure of packaged objects.
Source: UR10
Importance: High

SR13 Description: It will be possible to associate the XPack elements and attributes
which support metadata definition and referencing to each packaged
object in an XPack document.
Source: UR11
Importance: High

SR14 Description: The XPack document type will provide elements or attributes which
enable the definition of object labels describing the class, type, and
version of an object.
Source: UR12
Importance: Medium

SR15 Description: The XPack document type will provide elements or attributes which
allow an object label to be associated with an object in an XPack
document.
Source: UR12
Importance: Medium

SR16 Description: The XPack document type will provide an element for packaging
character data.
Source: UR13
Importance: High

SR17 Description: The XPack document type will provide an element for packaging
binary data in a character encoded format.
Source: UR13
Importance: High

SR18 Description: The XPack document type will provide an attribute which allows

78

each object contained in a package to have a globally unique
identifier assigned to it.
Source: UR14
Importance: Medium

SR19 Description: The XPack document type will recommend an algorithm that should
be used for generating globally unique identifiers.
Source: UR14
Importance: Medium

SR20 Description: The XPack document type will provide elements or attributes which
may be used to specify relationship information about the relationships between objects contained in a package.
Source: UR20
Importance: High

