
DRAFT
Scientific Data Models and Methods

Mike Martin
08-16-2011

Summary

This document describes the data models for several formats for storing scientific data. It is intended to
characterize the structural components of these formats and describe the software methods used to
access the data. The model descriptions reveal two fundamental approaches, "variable" based and
"object" based. For the variable based approaches, the main enhancements have been adding layers to
support grouping of variables in a single file and support for more complex variable linkages (grids,
swaths). Two of the object-based approaches (HDF4 and PDS3) have been simplified in subsequent
versions. The other object-based approach (FITS) began with only three basic objects and has
remained very stable. ... to be continued ...

Basic Architectural Features

The Common Data Format (CDF) started out with multidimensional "variables" and metadata
"attributes" which can be global or associated with specific variables. This format does not allow a
table structure with records. The Network Common Data Format (NetCDF3) added named
"dimensions". These are used to relate variables and a dimension of "unLimited" can be used to create
a table structure for all the variables that use that dimension name. NetCDF3 was extended to add a
"types" class to allow the explicit definition of "compound" structures (tables) , enumerations and
ragged arrays. NetCDF4 or the Common Data Model (CDM) encompasses netCDF and Hierarchical
Data Format (HDF) version 5 and adds hierarchical "groups", eliminates the "types" class, and renames
"compound" to "structure" variables, which can be also be defined as "sequences". HDF4 provides a
variety of object types. It includes several types of two dimensional "images" (8 bit, 24 bit and general
multi-component), a "palette", a "scientific dataset" which is a multidimensional array, a "vdata" which
is a table structure, a "vgroup" for grouping objects and an "annotation" for providing metadata. HDF5
partly eliminated the multitude of objects to focus on "groups", "datasets" (which is a synonym for
variables) and global and variable "attributes". It still provides named classes of datasets for images,
palettes and tables. Unlike the scalar or one dimensional attributes found in the CDF formats, HDF5
attributes can be multidimensional arrays with some limitations on how they are defined and accessed.
HDF-EOS builds on HDF4 or HDF5 with a set of ODL labels which provide additional metadata for
point, swath or grid structures. The OPeNDAP Data Access Protocol adds a "Dataset" as a container
for groups, variables, and attributes, and adds a "grid" composed of a multidimensional array linked to
one-dimensional axis descriptions. FITS includes a multidimensional "image", and both ASCII and
binary "table" extensions with slightly different characteristics. A random groups format is no longer
actively supported. PDS3 provided a language for describing virtually any data format as well as
format specification for a variety of object types. The basic objects included the "file",
multidimensional "image", "table" and multidimensional "qube". Both the image and qube objects
could include tabular data prefixes or suffixes to allow ancillary data to be embedded with the data
array, a common feature of telemetry streams. The table object has several variations called header,
spectrum and series and is composed of "columns". There is also a "spreadsheet" with "fields". PDS4
provides four structures, the "array_base", the "table_base", the stream and the encoded byte stream
(or external format). Each object must have its own contiguous data space. Numerous classes are
built on these bases such as image_2d, table_character, table_binary, etc. All metadata is contained in a
separate XML file and there is an elaborate class structure for organizing metadata.

Table 1. Data Model Comparisons

Format CDF netCDF3 CDM HDF5 HDF4 PDS3 PDS4 FITS

Age 30 24 3 10 24 20 0 30

Data
Objects

1 1 1 4 6 16 Many 3

Data model
components

Variable,
Attribute

Variable,
Dimension,
Attribute

Group,
Variable,
Dimension,
Structure,
Sequence,
Attribute

Group,
Dataset
(variable),
Attribute,
plus image,
palette,
table and
packet table
apis

Scientific
Dataset
(variable),
8, 24, and
General
Raster
Image,
Palette,
Vdata
(table),
Vgroup,
Annotation

File, Image,
Palette,
Histogram,
Items,
Array,
Element,
Qube,
Table,
Column,
Bit_Column
,
Spreadsheet
, Field,
Container,
History,
Attribute

Array, Axis,
Element,
Table,
Stream,
Record,
Field,
Attribute +
~18 derived
classes+
encoded
formats

Image,
ASCII
Table,
Binary
Table,
Field,
Attribute

Subclasses
of
components

NO NO NO YES YES YES YES NO

Metadata Embedded
or Skeleton

Embedded
or CDL

Embedded Embedded Embedded ODL labels XML labels Card
Images

XML
support

CDFML NcML NcML HDFDump
option

HDF
mapping

NO YES NO

Bit Fields NO NO NO YES YES YES YES ?

MultiFile OPTIONAL
strictly
defined

NO YES YES YES OPTIONAL REQUIRE
D

NO

Compressio
n

Yes, strictly
defined

YES YES YES YES YES NO YES

Encoding
Type

NO NO NO NO NO YES YES NO

Character
table
subclass

NO NO NO NO NO NO YES YES

Reference
External
Formats

NO NO ? ? NO YES YES NO

Tiling/Chun
king

? YES YES YES YES NO NO YES

Mixed Data
Objects

NO NO NO NO? NO YES NO NO

Datatypes BE and LE
char, uchar,

byte, char,
short, int,

char, byte,
ubyte,

BE and LE
ints and

BE and LE
char1,uchar

BE and LE
ints and

BE and LE
int2, 4, 6, 8,

byte, short,
long, float,

byte, int1,
2, 4, uint1,
2, 4, float,
double

float,
double

short,
ushort, int,
uint, long,
ulong, float,
double,
string,
enumeratio
n, opaque

floats, char,
bitfield,strin
g, opaque,
enumeration
, datetime,
reference,
variableleng
th

1, int1, 2, 4,
uint1, 2, 4,
float4,
float8

floats, char,
bitfield,strin
g, datetime

16, uint1, 2,
4, 8, 16,
float,
double,
complex8,
complex16
+special
types?

double,
[boolean,
bit,
complex for
binary
tables]

Attribute
Types

scalar or 1d
array of
datatype

scalar or 1d
array of
datatype

scalar or 1d
array of
datatype

Same as
variable, but
with some
restrictions

Annotation? Int, float,
string,
boolean or
1d array

30 different
types

Boolean,
int, float,
complex,
string

User
Defined
Data Types

NO NO NO YES NO NO NO NO

Platform
specific
types

YES NO – XDR YES YES YES
NATIVE

YES YES for
INTs

NO
IEEE+MSB

UTF-8
support

NO NC YES YES NO NO YES NO

Schema
Classes

13 5 ? 42 Many N/A 44 basic, 72
object, 53
product

N/A

Recognized
by

ISTP/IACG OGC UNIDATA ESDIS ESDIS PDS PDS IAU

Maintained
by

SPDF UNIDATA UNIDATA HDFGROU
P

HDFGROU
P

PDS PDS HESARC/N
OST

Index Base 0 0 0 0 0 1 0 1

Array axes
limit

10 Nominally
7

Nominally
32

Nominally
32

Nominally
32

6 16 999

Magic
Number

0xCDF2600
2

CDF\001 N/A 894844460
d0a1a0a

0E031301 CCSD,
NJPL,
PDS_

NONE SIMPLE

File
Extensions

CDF, V0,
V1, …

NC N/A H5, HDF5 HDF, H4,
HDF4

LBL, FMT,
IMG, IMQ,
IBG, TAB,
DAT, CUB,
QUB, OBJ

XML+??? FIT

Software
Library

C,Fortran,Ja
va

C,Fortran,Ja
va

C,Fortran,J
ava

C, C++,
Fortran,Java

C,Fortran,Ja
va, Python

C NONE C,Fortran,Ja
va

BUILT-IN
IDL

YES YES YES YES YES NO NO NO

BUILT-IN
MATLAB

YES YES YES YES YES NO NO YES

Utilities Convert,
Compare,
Dir, Edit,
Export,
Inquire,
Merge,
Stats,

Ncbrowse,
Ncview,
Ncgen,
Ncdump,
Nccopy,
Ncgen3

Uses
netCDF and
HDF
formats and
tools

HDFView,h
5dump,
h5diff, h5ls,
h5check,
h5stat,
h5repack,
h5repart,h5i

HDFView,
h4redeploy,
hdfcomp,
hdfed,
hdfls,
hdfimport,
hdfpack,

Nasaview,
label
design,
label
validation,
volume
validation

N/A Fv
(fitsview),
fpack,
funpack,
topcat,
fcopy,
fdump,

Makecdf,
DTWS,
SkeletonTab
le
SkeletonCD
F

mport,
h5jam,
h5unjam,
h5copy,
h5mkgrp,
h4toh5,
h5toh4

hdfunpac,
hdiff,
hrepack,
vmake,
vshow

fplot,
fverify, etc.

API Classes CDF (file),
Attribute,
Entry,
Variable

File,
Attribute,
Dimension,
Variable

File, Group,
Attribute,
Dimension,
Sequence,
Structure,
Variable

File, Group,
DataType,
DataSpace,
Dataset,
Property,
Attribute

File, Group,
Datatype,
GRImage,
SDS, Vdata

Label,
Object,
Image,
Table,
Column,
Qube,
Spectrum

N/A Header,
ASCII
Table,
BinaryTable
, Column,
Image,
Undefined

Appendix A. Common Data Format (CDF)

CDF is a data format supported by the Space Physics Data Center at GSFC. It consists of 12 main
classes and 8 special attributes. The CDF model consists of variables which are made up of records
which contain multidimensional elements. Metadata is provided in global or variable attributes which
contain one or more metadata entry's. CDF provides a wide range of signed and unsigned data types in
a variety of machine-dependent formats. Data can be stored across multiple files, can be organized in
row or column major format. Storage can be optimized with record and dimension variances which
allow non-varying values to be eliminated. Several types of compression are supported, including Run-
Length Encoding, Huffman, Adaptive Huffman and GZIP. Software API's are available in C, Java,
Fortran and Perl. About 10 utilities are provided as well as the Data Translation Web Service to
comvert to and from CDF format. Routines to access CDF files are provided in IDL and Matlab. The
Common Data Format Markup Language (CDFML) provides a mechanism for creating a CDF file
from an XML document or for creating an XML document from a CDF file. The following paragraph
describes the CDFML architecture.

A CDFML file has an attribute "name" which contains the cdf file name. It has subclasses cdfFileInfo,
cdfGAttributes, cdfVariables. FileInfo has attributes "fileformat" (SINGLE or MULTI), "majority"
(ROW or COLUMN) , "encoding" (IBMPC, MAC, etc.), "compression" (RLE, HUFFMAN, etc.) and
"negToPosFp0" (ENABLE, DISABLE). The cdfGAttributes (global attributes) subclass has attribute
"name" and a subclass entry. Entry has attributes "entryNum", "cdfDatatype" and a value. The
subclass cdfVariables has a subclass variable. The subclass variable has an attribute "name", and has
subclasses cdfVarinfo, cdfVAttributes and cdfVarData. The subclass cdfVarinfo has attributes
"cdfDatatype", "numElements" (for strings), "dim"(dimensions), "dimSizes", "recVariance" (values
change from record to record), "dimVariences" (values change within dimension) and
"numRecordsAllocate". The subclass cdfVAttribute (variable attributes) contains attributes and entrys,
like the cdfGAttribute. The subclass cdfVarData contains as many subclass record entries as were
identified in the "numRecordsAllocate" attribute. Each record has attribute "recNum" and contains a
list of data values. There is also an orphanAttributes subclass.

Appendix B. Network Common Data Formant (NetCDF).

NetCDF is supported by UNIDATA. There are two forms of netCDF, classic (netCDF-3) and enhanced
(netCDF-4). Enhanced is downwardly compatible with classic and also supports access to HDF5,
GRIB files or OPeNDAP datasets. Software libraries are available in C, C++, Fortran and Java.

NetCDF is very similar to CDF with the main differences being support for named dimension's, all data
must be in a single file and only big-endian XDR format datatypes are supported.

A netCDF classic file has attributes "id" and "uri". It has subclasses dimension, variable and global
attribute. A dimension has attributes "name", "length", and "isUnlimited". Only one dimension can
be unlimited. A variable has attributes "name", "shape" and "type" and subclasses attribute and value.
An attribute has attributes "name", "type", "separator" and "value" which is a scalar or one dimensional
array of strings or numeric values . The type is implied from the value that is supplied when the
attribute is defined. The "isUnlimited" attribute allows the construction of records where all variables
that use the isUnlimited dimension are stored contiguously on a per record basis, thus creating a table
or database record structure. The netCDF classic format has a 64-bit variant that allows large variables
and files.

The netCDF4 or Common Data Model format uses a constrained HDF5 for data storage. The
netCDF4 software can access files or datasets stored in HDF5, netCDF3, OPeNDAP or several other
formats. The file or dataset contains one or more hierarchical groups. A group has attribute "name",
which is "/" for the default root group and may contain attributes, dimensions and variables as well as
enumtypedefs and nested groups. The dimension defines the shape of the variable and may be shared
between variables to associate them. A dimension has attributes "name", "length", "orgName",
"isUnlimited", "isShared" and "isVarableLength". A variable has attributes "name", "shape" and "type"
and subclasses attribute, values, variable. An attribute has attributes "name", "type", "separator" and
"value" which is a scalar or one dimensional array of strings or numeric values. Variables can be
grouped into a structure with "members" which can be organized as a sequence. The netCDF 4 model
is different than the enhanced model by using the types subclass to allow the definition of enums,
variable length arrays or vlens, and compound structures.

Appendix C. Hierarchical Data Format (HDF) and related formats.

HDF was developed at NCSA at UIUC. It is now maintained by the HDFGroup. The original HDF4
data model consists of a directory and a collection of data objects. Eight basic classes are supported,
the Scientific Dataset (SDS) multidimensional array, several two dimensional raster image types,
including an 8-bit raster image, a 24-bit raster image, and a general raster image with multi-component
pixels, an 8-bit color palette, a table (Vdata) or sequence of records, an annotation stream of text that
can be associated with any object and a group (Vgroup) structure for grouping objects. Each class has
a multitude of attributes. A raster image has attributes image "name", "index", "number of
components", "number type", "interlace mode", "dimensions" and "number of attributes". An SDS has
"name", "rank", "dimensions", "data type" and "number of attributes". A vdata has a "name", "record
count", "interlace mode" (FULL or NONE), and a list of "fields" and a "record size". A vgroup has
"name" and "class".

HDF5 was designed to address inadequacies of HDF4 with respect to performance, scale and
flexibility. It a uses the term dataset to represent a data object or what is called a variable in CDF or
netCDF. The HD5 data model includes a file with a "location" pointing to a url. Every HDF5 file has a
root group named "/" which contains groups, attributes or datasets (variables). A group has the
attribute "name" and is a hierarchical container which acts like folders in a file system. A dataset
(variable) has a "name", "shape" and "type" and has subclass attributes. Datatypes in HDF5 include
byte, short, int, long, float, double, String, BitField, Enumeration, Date/Time, Opaque, Reference and
VariableLength. A dataspace (dimension) defines the shape of a variable. An attribute is associated
with an object and is similar to a dataset but can only be accessed via an object, can only be accessed in

a single I/O operation, should be small and cannot contain sub-attributes. An HDF5 dataset (variable)
can have up to 32 dimensions.

Two other formats, HDF-EOS and OPeNDAP use HDF4 or HDF5 for data storage.

HDF-EOS defines a geo-located point, swath (time-ordered scanlines) or grid (rectilinear array). It
uses text files in Object Description Language (ODL) to describe these objects. The point is a series of
data fields taken at irregular times at scattered locations (e.g.lat, lon, time, temp). The swath consists of
data fields, geo-location fields (time or lat/lon), named dimensions, dimension maps (offset and
increment relating a data field and a geo-location field) and an optional index (for irregular dimension
maps). The grid is similar to a swath, but the geo-location fields are computed from a set of projection
equations.

OPeNDAP is a server model that provides access to data in HDF4 and HDF5, netCDF and other
formats. It also provides its own data model which is similar to the Common Data Model. A text file
called the Dataset Descriptor Structure (DSS) describes the data format and another text file called the
Dataset Attribute Structure (DAS) provides metadata. There is also an XML version of the descriptive
information called the DDX. The data can also be included in the XML document to produce a
DDXData file. OPeNDAP defines a dataset as a container for variables and attributes. OPeNDAP
defines four constructor types. The structure is a container for either variables or attributes (the
dataset is a structure). The array defines a one-dimensional array (multidimensional arrays are defined
as arrays of arrays). The sequence is an ordered collection of structures. The grid is an association
between a data array and a collection of map arrays (lat, lon, time). The OPeNDAP server provides
access to the ddx, dds, das as well as info, html and rdf versions of descriptive information. OPeNDAP
only supports XDR numeric data types.

Appendix D. Flexible Image Transport System (FITS).

The FITS format began as a transport format for ground-based astronomy images, but has grown into a
universal format for astrophysics data files. It is primarily supported by NASA GSFC organizations
(HESARC and NOST). A FITS file contains "header units" and "data units". The header unit contains
80 byte ASCII card images of "attributes" that describe the contents of the data unit. A standard FITS
file contains a "primary" multidimensional data array with up to 999 axes. The file can also contain
"extensions" which include an "image", "table" or "bintable". The image extension is a
multidimensional array of pixels like the primary array. The table extension is used for ASCII text
tables such as astronomical catalogs. The bintable extension provides a binary table composed of
columns that can be uniform or ragged arrays and multidimensional arrays are supported by some
software. Each header or data unit is a multiple of 2880 bytes. FITS datatypes include 8 bit char or
unsigned integer, 16 and 32 bit signed integers, IEEE 32 and 64 bit floating point.

Appendix E. Planetary Data System PDS3 and PDS4

The PDS3 data descriptive language was developed and is maintained by the Planetary Data System
(PDS). PDS3 uses the keyword = value Object Description Language (ODL) to describe data objects
and groups and to provide metadata attributes. These labels can be included at the front of a data file
or in a detached ".lbl" file with a pointer and offset to the data file. An implicit or explicit file object
contains primary data objects which include a multidimensional image, a multidimensional cube, a
table and a spreadsheet. The image has lines, samples and bands and can have a tabular prefix or
suffix. The cube has axes and can have backplanes. The table has rows and columns. A column can

have "items" making it an array or can hold "bit_columns". A table can have a container which holds
"repetitions" of columns. There are several subclasses of the table object, the spectrum, series, palette,
gazetteer_table. These subclasses might include special attributes such as sampling_parameters for the
series subclass. A spreadsheet is a delimited text file with fields. There is also a set of minimally
defined ancillary objects including the document, header, histogram, history, spice_kernel and palette
and a set of primitive objects, the array, collection and element. PDS3 is capable of describing
practically any data format including complex telemetry streams. It allows several data compression
schemes, however these are not well supported by software. The C language label utilities and object
access library allow operations on some data objects and a Java library allows operations on labels but
not data objects. The NASAVIEW utility allows display and inspection of most but not all PDS3 data
objects.

The PDS4 data format is being developed and maintained by the Planetary Data System (PDS). PDS4
uses XML to describe data objects and provide metadata attributes. The file_area contains a pointer
and offset to the actual data file as well as a description of the objects contained in that file. Four
object classes are defined, array_base, table_base, stream_delimited and encoded_byte_stream. The
array_base is composed of array_axis and array_element entries. The array_base is further qualified
into array_2d or array_3d sub-classes. The array_2d sub-class is further qualified into
array_2d_image, array_2d_spectrum, and array_2d_map. The array_3d subclass is further qualified
into array_3d_image, array_3d_spectrum and array_3d_movie. All the sub-classes with the same
dimensions are structurally identical. The table_base is a fixed length structure composed of fields.
The table_base is further qualified into a table_character, table_character_grouped, table_binary and
table_binary_grouped. Binary tables may contain character fields. The "grouped" sub_class allows
the definition of a sequence of "repetitions" of fields. The stream_delimited class contains records and
fields. The encoded_byte_stream is used to describe external data formats such as a file_pdf or
encoded_image. Several other ancillary classes are defined including XML_schema, header,
spice_kernel_text, and spice_kernel_binary. A wide range of BE and LE data types as well as bit fields
are supported. Data objects are not allowed to be interleaved. Compression is not allowed on data
objects unless it is a feature of an accepted encoded_byte_stream format (e.g. jpeg). Files can be
compressed using the zip utility.

