Applying PAIS to PDS and NSSDC Data Deliveries

Mike Martin

08-27-2014

DRAFT

Summary

This document summarizes efforts to understand and apply the PAIS standard to PDS and NSSDC data delivery processes. It doesn't appear that PAIS would provide much value-added to the PDS ingestion process. This is because much of the content of the PAIS descriptors and manifests is redundant to information already carried in the PDS4 label architecture. For example PDS labels provide representation information, preservation descriptive information and descriptive information for data collections and objects as well as manifests of package contents. Also, PDS product deliveries are already highly standardized so don't need the structuring mechanisms that PAIS might provide. The transaction controls that PAIS might provide don't seem to be used in practice
for transfers from data providers to PDS. Finally, the only SIP implementation provided in the standard requires the use of the XFDU standard. This standard has not found any support within NASA and adds to the complexity of trying to understand and use PAIS.
Hi Mike,
In reading the above summary, I’m struck that I feel it comes at the “PAIS for PDS” from the wrong perspective. I think it is Archives that are most interested in having something like PAIS to help with the ingest process. If the data producers already has a lot of documentation, and this documentation is acceptable to the Archive, then there is no need to go to a lot of trouble creating extensive Descriptors. I’ve used the old PDS volume example with early PAIS Descriptors and I’ve always done minimal Descriptors because no one is going to describe a full PDS volume in detail – as it is/was already fully described elsewhere. So then it is the Archive that needs to decide how much additional information it needs and this then drives the level of detail in the Descriptors, and also what constitutes a Transfer Object. For PDS Volumes, I took the full volume as a single Transfer Object, typically. This was also because PDS said, to NSSDC, that they didn’t want NSSDC to parse the Volumes, but to simply return them when PDS requested. Again, this goes to the arrangement between the Producer and Archive.
As regards the level of structuring of PDS deliveries, it seems to me that this has been under discussion within PDS for a long time. But again, one needs to involve the Archive (or Archives) because the Archive will have constraints on size and transfer protocol, etc. You mention transaction controls between data providers and PDS. My understanding is that this also has been evolving considerably over the past several years. In the end, it appears that PDS has done what it wants as regards NSSDC, and presumably with data providers. So perhaps the real result is that the timing for PDS to use PAIS has not been convenient (although there is always the issue of NIH (Not Invented Here)). And, there needs to be software available to make it practical, and this has not been available to PDS in a timely manner.
Finally, a point of correction regarding XFDU. A SIP implementation using XFDU can be PAIS conformant. However other packaging and transfer mechanisms can also be used and be PAIS conformant, but not at the same level. (see the levels of conformance in the standard).
Cheers-

Don

Table of Contents

1. Overview

2. PAIS Description

3. PDS4 Description

4. PAIS vs PDS4 Comparison

5. PAIS usage scenarios for PDS4 bundles

6. Conclusions and Recommendations

7. Resources

1. Overview

This is a summary of efforts to apply the Producer-Archive Interface Specification (PAIS) to deliveries of PDS4 archive products from data providers to the PDS or for transfers of products from PDS discipline nodes to the deep archive at NSSDC. PDS is a federated archive and each discipline node negotiates deliveries with its data providers. Currently PDS has no standard procedure for PDS3 deliveries from data providers, but they all involve the delivery via media or electronically of well-specified “volumes”, which represent AIPs covering incremental time periods. The current procedure for PDS3 volume transfers to NSSDC includes making the volume(s) accessible online; notifying NSSDC of the volumes to be transferred by providing the URL to the volume; running the XMAN software on each of the volumes to be transferred to produce a SIP manifest file for each volume; and running the Manifest Builder software to produce an XML formatted SIP delivery manifest which is provided to NSSDC. The actual transfer may accomplished using physical media or electronically. It is presumed that this procedure will be continued for the forseeable future. For the new PDS data standard (PDS4) deliveries will be organized into “bundles”. These bundles are accompanied by two text files, a transfer manifest and a checksum manifest identifying all the components of the bundle. A set of “Information Package” products (e.g. Product_SIP, Product_DIP) has been defined to document these manifests but have not yet been used in actual transfers. NSSDC is in the process of developing a new procedure for receiving PDS4 deliveries that will likely use some form of these information package products and manifests.

The PAIS architecture is very similar to a version of the XMAN
manifest format that was used in the 2008 time frame. That model included a SIP_global area; transfer objects with a type (e.g. pds-volume), id and file count; a hierarchy of groups representing directories and files with data object type, name, format designation, size and checksum. At some point after that the XMAN terminology changed groups to directories and eliminated the reference to data objects in favor of the term file. PAIS continued with group and data object terminology and added sets of constraints to control transfers as well as other transaction controls like delete, replace or mark the last transfer object. The current models (XMAN and PAIS) use sipGlobal vs sipGlobalInformation with producer source archive id and sip id as the two common elements. There is a good deal of divergence in the other elements. XMAN includes the unique elements producer site id, manifest type, producer comment, creation date time and originating data directory. PAIS includes the unique elements producer source id, SIP content type id and sip sequence number.

2. PAIS description

PAIS has four main components which are all XML documents. Collection descriptors identify and describe the logical organization of a collection. Transfer object descriptors identify and describe the physical components of the collection. Submission information package (SIP) constraints identify the transfer objects contained in SIPs and the sequencing of SIPs. The SIP manifest identifies every data object in the SIP and provides validation

The collection descriptor consists of three sections, identification, description and relation. The identification section includes the model id (CCSD0015 for standard collections), version and descriptor id. The description section includes title, description and min and max size with units. The relation section includes a pointer to the parent collection and a set of associations. Associations include the target id and relation description. Relation descriptions include the relation type and description. The target id normally points to transfer object descriptors included in the collection and the relation_type is usually "contains".

The transfer object descriptor includes the same identification, description and relation information as the collection descriptor with a few additions. The identification section has a different model id (CCSD0014 for standard transfer objects) and also includes a producer source id. The description section includes min and max occurrence and name preservation rule (e.g. "Use the source names"). The transfer object descriptor includes two additional subtypes of descriptors, group descriptors and dataObject descriptors. Group type descriptors include descriptor id, description, structure name (directory, set, sequence or undescribed) and occurrence. DataObject type descriptors include descriptor id, description, data object occurrence, file occurrence (files per object), format (mime type and registration information which includes registration authority and registered id), encoding (name and description) and association. The group type and object type descriptors don't actually identify individual directories or files.

The SIP constraints includes producer archive project id (which corresponds to the root collection descriptor id), SIP content type and SIP sequencing constraints group. SIP content type links SIP ids to transfer object descriptor ids. It includes SIP content type id (SIP id) and authorized descriptor. Authorized descriptor includes descriptor id and occurrence for every transfer object type that is allowed in the SIP. SIP sequencing constraints are used to specify the order in which SIPs must be submitted to the archive. The SIP sequencing constraints group includes group name, and constraint item. Constraint item includes SIP content type id (SIP id) and constraint serial number.

The SIP manifest identifies all the components of a SIP. The PAIS standard relies another CCSDS standard called XML Formatted Data Unit (XFDU) to produce the SIP manifest. The manifest includes three sections, a packageHeader with SIP identification parameters, an informationPackageMap which associates a data object id with a data object pointer, and a data object section which provides the data object id, file name, size and MD5 checksum for each data object. It might also be possible to produce a more limited manifest, without using XFDU's but there is no software support for this format.

Given a set of transfer object descriptors and a SIP constraints file there is a program called SIP Builder that will automatically scan through the target directory and produce one or more zipped SIP packages with a SIP manifest identifying all files in each package with file sizes and checksums. SIP Builder operation is directed by a project file which specifies the transfer object descriptors to be used and “collectors” that identify a base directory, a specific group or data object descriptors by descriptor id, and explicit “include” instructions for selecting sub-directories or files using wild cards.

There is another software package from CNES called the PAIS Prototype which allows the creation, display, editing of projects, descriptors and SIP constraints as well as validation of XFDU SIPs. The program uses a Postgres database to store information about projects. I was unable to get the program to work properly on either the PC or Mac platform.

3. PDS4 description

All PDS4 products are described by XML labels. PDS4 is composed of bundles, collections and products. The organization of these components is illustrated in Figure 1. A bundle is contained in a folder which starts with the word "bundle". The bundle folder contains a bundle label file and an optional readme.txt file. The bundle label (product_bundle) includes a unique logical identifier (which is formatted as a uniform resource name, "urn:..."), a title and list of collections contained in the bundle, represented as bundle member entries. Bundle member entries include logical identifier (urn), member status (primary or secondary) and reference type, which indicates the type of each collection. The urn needs to be resolved by accessing the PDS4 registry to identify the actual file name of the collection label file. The member status indicates whether the collection is physically included in this bundle (primary) or just a reference to an existing collection (secondary).

[image: image1.jpg][colectionDescriptor

TgemTeaton
GescrptotiossiD CCSh0E
‘escrptorttodslverson 1o~
‘GescrptorD ~C07%P rodue_Bundie geniicaion Aea b eniter T
Product_Bunde Identicaron_Area verson_id
Gescrpton
“ColectonTiie Produc_Bunde TGenicaion ARaTE
“colectonDearpion Produc,_Bunde Bunde Gesorglon
“colectonsze:
minSze T
masE T
nisType REW
Teaion
parenColecion TONE™
‘ssoaton
argeiD TD-vProglE_ Bunde Genifiaton Arealogcd GentierT T
Product_Bunde Identicaton_Aea verson_1d
EETEDEsCTRTon
TeRToType ~CONTANS
ToalonTeUADESTTon “This collcton confains a Sngl tanser ohect

he folder containing the PDS4 bundie.

Figure 1 PDS4 Bundle Organizations and Links

Collections are contained in folders within the bundle folder that start with the word"collection". There are a number of recognized collection types including data, document, context and others. There is a collection label in the collection directory which provides the logical identifier (urn) and title of the collection and a pointer to a delimited table which contains a manifest of all the product labels which make up the collection. The manifest contains the urns of the label files, so again the PDS4 registry must be accessed to find the file specification of the product labels. The actual products consist of a combination of a label file and one or more product files. The label file includes the relative file specification for the product files and detailed data format specifications.

There is not currently any established procedure for PDS4 deliveries from data providers to PDS. Some preliminary planning has been done on PDS4 transfers to NSSDC. There are in several “Information Package” products, Product_AIP, Product_DIP, Product_DIP_Deep_Archive and Product_SIP. As an example, the Product_SIP includes a label and two manifests formatted as delimited tables, a checksum manifest (file references and checksums) and a transfer manifest (logical_identifiers and file references). The expectation might be that the bundle along with a Product_SIP label and the two manifest tables might be zipped up and then transferred to PDS along with a Product_ZIP label as illustrated in Figure 2.

[image: image2.jpg][iransierObEaT ypeDesciptor

TGeniTeaton
‘GescriptonioasD. TS0
‘escrptortlodalversion 1o
‘GescrptorD. ~TD-"Proouc_Bunde GenTcaon Area oged TGentierTTT

Produc,_Bunde Identfcaton Aea verson 10

DodEeRoueD

escrpton
TransferObEaTyEETEE Produc_Bunde Toenthcaton /st
TransferObedT peDescrpton “This = e PDS 4 bundle trars ferObecl Gesorpior™
TransferObeaT peOccurence
minOccurence T
marOccurence T
TansferObeaT peSEe
minSze T
masE T
wnisTipe 5
et eseraonUE Uss the Source names’
Teton
parenColedion <P roaue_Bunde Jgeniica on Arsa bgica BenifeT T
Produc,_Bunde Identfcaron Area verson 10
GoEType
‘roupTypeD D Proder BundleGnicaton Arealogcal [GenTer =T
Producs_Bunde Identfcaton_ Area vorson 0
‘ousTypeDesaipion “This s e PDSbundle group descrptor.”
ousTpeStciueliare UNDESCRIEED"
‘JoupTypeOcaunence
minOccumerce T
maOccurence T
‘GraObjeaType
‘iaObjeaypal D= roaud_Bunde Igenifcalon Area lbgcal Genife= s
Product_Bunde Identfcaton Aea wrson 10
‘GE0b EaTypeDesCon “This s e PDSA bundle GataObjed] doscrpior™
‘20t Ty peDcaurrence
mnOcoumence ¥
maOccurEnce o000
200 eclypeF ot
mimeType Sppicaonzp”
‘200 e ypeE reo0es
“encodngilame 7P

“encodngDescrpion’ “appicatonZp”

Figure 2 Possible PDS4 Sip Organization

4. PAIS vs PDS4 comparison

The PAIS and PDS4 architectures provide a considerable duplication of function. Much of the metadata that is required for PAIS descriptors is included in PDS4 labels.
The root collection descriptor in PAIS is comparable to the bundle label in PDS4. The root collection can contain associations to member collections or transfer objects. The PDS4 bundle has Bundle_Member_Entry instances for each collection that it contains. The PAIS references identify the descriptor id of the associated member. So any program linking the two entities must have access to all the potential sources of that descriptor id or it won't be able to find it. The PDS4 references provide the URNs for the collections, which need to be resolved to a file name via the PDS4 Registry.

The PDS4 collections can be modeled as PAIS sub-collections or as transfer objects. The explicit collection associations in PAIS are implied in the names of PDS4 collections (data, context, document). The PAIS transfer object identifies the categories of groups and data objects that it can contain. The PDS4 collection provides a table that identifies each product label that it contains. PAIS provides a group feature for defining directories or other types of organizations (sets, sequences, undescribed). PDS4 does not specifically address directory hierarchies below the collection level so would probably equate to an undescribed PAIS group type. If sub-directories exist they are referenced in the file specification that is stored in the PDS4 registry for the product label. PAIS provides data object descriptions, mime types, encoding information and general associations. PDS4 product labels contain object descriptions, detailed format descriptions and assocations to metadata resources via the PDS4 registry as well as the implicit association between a PDS4 label and its data object.

PAIS provides transaction controls on transfer objects including size, quantity and sequencing constraints, replacement and last transfer object flag. PDS4 has no transaction controls.

5. PAIS usage scenarios for PDS4 bundles

Several scenarios are considered, an entire PDS4 bundle as a transfer object, PDS4 collections as transfer objects and every single file in a bundle as a transfer object. All these options would result in essentially the same SIP manifest, they would just differ in the amount of information in the transfer object descriptors. It is unlikely that any procedure that requires the data provider to make an investment in learning the details of the PAIS standard, preparing labels by hand or having to learn a complicated procedure for producing PAIS descriptors will be successful.

The simplest method would be to treat the bundle folder as the transfer object. This would provide no visibility into the contents of the bundle in the PAIS collection descriptors or transfer object descriptors. The SIP constraints would define one SIP for the single transfer object. The contents of the bundle label could be extracted to automatically build the PAIS collection descriptor (Figure 3).

[image: image3.jpg]

Figure 3 Simple Collection Descriptor

In the text, quoted fields are literals that would go into the specified element and the other text is the PDS4 class and attribute name that would be used to fill in the element. Figure 4 shows the the fields that would be used for the transfer object descriptor.

[image: image4.jpg]Eunde
Labe
with

Colecton
pointers
Colecton URN 1
Colecton URN 2
Colecton URN 3

PDS4 Regstry

Bunde URN 1

] Colecton URN 1, Colecton Label 1

Colecton RN 2, Colecton Label 2
Colecton R 3, Colecton Label 3
Product URN 1, Product Label 1
Product URN 2, Product Label 2
Product URN 3, Product Label 3

4Product URN 2! Product Label 2

J{Prod URN 5. produa Label 5
- y
e I/
Cotecton otz Cotecion /
Caoel? Cabel2 Labels R
Lnks
*The bundis abel provies s
Inventory Inventory Inventory URN for the collection label(s)
Table Table Table 'ahich must be resoved by the
product U 1 | | [ProcwetURw 3| | | foroauer i 4 PDSA Regsry
roduct URI 2 product URI 5 £ T corecton abe inks o
he mventoryiabe
T imeniory table povdesa
VR o me Progucs el
et Lave 1] | | rosuct aver] | | prosues avei 4 Ut e s el
PDS3 Regry
< The produc latel inks o the
rowirie || | [Proscirie | || [Froctre et i)
S——r rocuet Latel 5 > i gy
e — oyt regsry
> miofe
Product Fie Product Fie
Cotecton Cotecton Cotecton
Foder Foder Foder

Bunde Folder

Figure 4 Simple Transfer Object Descriptor

These components could be run through the SIP Builder program to produce a manifest that itemizes every directory and file in the bundle. It would seem to be fairly easy to incorporate this procedure into a simple batch program that could be run by the data provider.

A second option would be to treat the bundle label and readme file as well as all the PDS4 collections as transfer objects. A more sophisticated tool would be needed to cycle through the various labels and produce descriptors for each collection folder. Associations between collections could be implied from the names of the collections found in the bundle. This approach would allow replacement of individual collections rather than having to resubmit an entire bundle.

A third option would treat every file in a bundle as a transfer object. A tool would need to cycle through the collection inventory tables, access the PDS4 registry to locate the labels, and build transfer objects for each label. It would also need to open the labels and find pointers to the referenced data files and build transfer object descriptors for them. It would be conceivable to extract associations between labels and data files and use them to create transfer object associations. This would generate potentially millions of transfer objects, each with dozens of lines of label information. This does not really seem practical, though it would be necessary to allow individual files to be deleted or replaced by a SIP transaction, instead of entire collections or bundles.

6. Conclusions and Recommendations

It would seem advantageous for both PDS and NSSDC, and for all NASA archives to have standard delivery procedures between data providers and archives. This capability could range in scope from simply providing a directory listing of a file structure that is to be transferred to providing all the information and resources necessary to completely recreate the working enviornment in the data providers facility (databases, software applications, documentation and data). XMAN essentially provides the former capability. PAIS attempts to provide more value added, though not to the level of transferring entire working environments. It provides transaction support for higher levels of coordination that might support workflows for ingestion validation. For example one might use SIP sequencing to assure that validation prerequisetes, like schema files, are provided first. However these capabilities come at the cost of added complexity of the model which may in fact reduce its potential use. It is also not clear how often the transaction controls are actually useful. Most of the controls in the PAIS test cases are made-up cases and not practical examples
. PDS and NSSDC have been using “PDS volumes” as a unit of transfer for decades without seeming to need more granularity.

In an environment where transfers consist of highly standardized, self-documenting data structures (like PDS4) it is hard to justify the effort to support an extra layer of standards just for transfers. The learning curve for PAIS is extremely high. After ten months of working with PAIS and various related tools I still do not have a good understanding of how collections and transfer objects interact or how groups work. While I understand the rationale for it, the inclusion of the XFDU as a PAIS implementation component also makes adoption more problematical. Also, there seem to be many subjective ways to implement the standard, which doesn't bode well for uniform use across different organizations. It is not clear whether PAIS is being used anywhere in a production mode yet so it is possible that there are issues with the design that haven't been discovered yet.

The SIP Builder software makes it very easy to produce SIPs once descriptors and constraints are prepared. It would be helpful if SIP Builder also provided a SIP validation capability. The CNES Prototype software provides the capability to easily build and edit descriptors as well as a SIP validation capability. Unfortunately I haven't been able to successfully run the software on either the PC or Mac platform.

At this point there is no interest within PDS or NSSDC in adopting PAIS for transfers.

7. Resources

1. Producer-Archive Interface Specification (PAIS) Standard. http://public.ccsds.org/publications/archive/651x1b1.pdf
2. PAIS Descriptive Paper. Starting at Page 57 in http://www.congrexprojects.com/docs/default-source/13c17_docs/pv2013-paperbook.pdf?sfvrsn=2

3. PAIS Presentation. http://www.congrexprojects.com/docs/default-source/13c17_docs/11-05_11-50_pais-standard_dboucon.pdf?sfvrsn=2
4. PAIS Schemas are located at http://beta.sanaregistry.org/r/daiXML/daiXML.html
5. SIP Builder 1.0.13. Various packages are available for download at http://www.gael.fr/maven-mirror/fr/gael/ccsds/sip-builder/.

6. XML Formatted Data Unit (XFDU) Standard. http://public.ccsds.org/publications/archive/661x0b1.pdf
7. Access to PDS3 NSSDC delivery tools (NSSDC PDS submission interface PSI, XMAN software, Manifest Builder). https://oodt.jpl.nasa.gov/wiki/display/NDWG/Home
8. PDS4 documentation. http://pds.jpl.nasa.gov/pds4/doc/index.shtml
9. Sample files to accompany this document. TBD. These files include collection, transfer object, constraints and sip builder project for the simple PDS4 bundle scenario. They also include the resulting SIP XFDU manifest and an XMAN manifest for the same bundle for comparison.

�This could be an interesting improvment

�I’m aware that many there has been many exchanges on the XMAN manifest and comparison with SIP manifest. How far is the PDS from the PAIS? What could be improved on PDS side to better conform, keeping the most as possible the current tools and procedures?

�Which other elements should be added?

�good

�this is not the case for Corot: we use the image of the complete set of data given by the Producer to the Archive, even if this has not been implemented in all data.

