[image: image1.emf]
Report Concerning Space Data System Standards

	Cross Support Terrestrial File Transfer - Concept

Draft Informational Report
CCSDS NNN.N-G-0.02
Draft Green Book

March 2014
AUTHORITY

	

	
	Issue:
	Draft Green Book, Issue 0.02
	

	
	Date:
	March 2014
	

	
	Location:
	Not Applicable
	

	

(WHEN THIS INFORMATIONAL REPORT IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF AUTHORITY:)

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of technical experts from CCSDS Member Agencies. The procedure for review and authorization of CCSDS documents is detailed in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-3).

This document is published and maintained by:

CCSDS Secretariat

Space Communications and Navigation Office, 7L70

Space Operations Mission Directorate

NASA Headquarters

Washington, DC 20546-0001, USA

FOREWORD

[Foreword text specific to this document goes here. The text below is boilerplate.]

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This document is therefore subject to CCSDS document management and change control procedures which are defined in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-3). Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.
At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· China National Space Administration (CNSA)/People’s Republic of China.

· Deutsches Zentrum für Luft- und Raumfahrt (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Federal Space Agency (FSA)/Russian Federation.
· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency (JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

· UK Space Agency/United Kingdom.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Belgian Federal Science Policy Office (BFSPO)/Belgium.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· China Satellite Launch and Tracking Control General, Beijing Institute of Tracking and Telecommunications Technology (CLTC/BITTT)/China.

· Chinese Academy of Sciences (CAS)/China.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· Danish National Space Center (DNSC)/Denmark.
· Departamento de Ciência e Tecnologia Aeroespacial (DCTA)/Brazil.

· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Geo-Informatics and Space Technology Development Agency (GISTDA)/Thailand.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· Korea Aerospace Research Institute (KARI)/Korea.

· Ministry of Communications (MOC)/Israel.

· National Institute of Information and Communications Technology (NICT)/Japan.
· National Oceanic and Atmospheric Administration (NOAA)/USA.

· National Space Agency of the Republic of Kazakhstan (NSARK)/Kazakhstan.

· National Space Organization (NSPO)/Chinese Taipei.

· Naval Center for Space Technology (NCST)/USA.

· Scientific and Technological Research Council of Turkey (TUBITAK)/Turkey.

· South African National Space Agency (SANSA)/Republic of South Africa.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· Swiss Space Office (SSO)/Switzerland.
· United States Geological Survey (USGS)/USA.
DOCUMENT CONTROL

	Document
	Title and Issue
	Date
	Status

	CCSDS NNN.N-G-0.01
	Terrestrial File Transfer - Concept, Draft Informational Report, Draft 0.01
	Feb 2014
	Initial draft

	CCSDS NNN.N-G-0.02
	Terrestrial File Transfer - Concept, Draft Informational Report, Draft 0.01
	March 2014
	Expansion of initial draft

	
	
	
	

	
	
	
	

CONTENTS

Section
Page

vDOCUMENT CONTROL

viCONTENTS

1-11
Introduction

1-11.1
Overview

1-11.2
Purpose and Scope

1-11.2.1
Purpose

1-21.2.2
Scope

1-21.3
Document Structure

1-21.4
References

2-12
Concept OVERVIEW

2-12.1
Concept

2-12.2
Model

2-22.3
Design Goals

2-22.4
ProtocolS

2-22.4.1
Transport Protocols

2-32.4.2
Transfer Protocols

2-32.5
File Types

2-42.6
File Packaging AND METADATA

2-42.6.1
Technology

2-62.6.2
File and Directory Naming

2-82.6.3
Processing

2-82.6.4
Ensuring ALL Files have Been Received

2-82.6.5
Further Transfers

2-92.7
BASIC Service Definition

2-92.7.1
Required Operations

2-102.7.2
Hosts

2-102.7.3
Accounts

2-102.7.4
Transfer of files

2-112.7.5
Directory Structure

2-112.8
Security

2-112.9
Service Agreement

2-112.9.1
Points of Contact

2-122.9.2
HOSTS

2-122.9.3
Login Credentials

2-122.9.4
Notification Mechanism

2-122.9.5
Data Volume

2-122.9.6
Retention Time

2-122.9.7
Availability

2-122.9.8
Transfer rate

2-132.9.9
Miscellaneous

3-13
Manifest File Structure

3-13.1
GENERAL

3-13.2
Manifest File CONTENT/STRUCTURE

3-13.2.1
Class ManifestData

3-23.2.2
Class FileData

3-23.2.3
Class FileProcessing

3-23.2.4
Class CFDPInjection

3-23.2.5
Class FileSecurity

3-23.2.6
Class Parameters

A-1ANNEX A [ANNEX TITLE]

Figure
Page

2-1Figure 2‑1: Terrestrial File Transfer Conceptual Model

Figure 2‑2: Directory Structure after “Unwrapping”
2-7
Figure 3‑1: Manifest File Class Diagram
3-1

Table
Page
No table of contents entries found.
1 Introduction

1.1 Overview

This information report on Terrestrial File Transfer outlines a concept for transferring files and associated metadata between space agencies. It is intended that this provides a very simple and straightforward mechanism to meet a perceived immediate need to standardize the currently ad-hoc manner in which file transfers are carried out between various agencies.

It is intended that the concept outlined in this book leads to the production of a Magenta book, i.e. a recommended practice on how to use existing standards and technologies to achieve the needs of inter-agency terrestrial file transfer.

The concept presented is not intended to cover file management activities
, work is already being carried out by the Spacecraft Monitoring and Control Working Group with respect to MO File Operations Services with the intention of defining a File Management service that is concerned with the management and transfer of sizeable binary data products. This is typically observation or payload data gathered on-board the spacecraft, but it could also be used to manage the output of analysis and reporting functions.

1.2 Purpose and Scope
1.2.1 Purpose

File exchanged between agencies may be used in, but are not limited to;

a) Mission design, i.e. in investigating the feasibility of a mission with respect to the support available from another agency.
b) Mission operations, i.e. to transfer files required for the successful operation of a mission
between two or more agencies
 or ground system elements.
The contents of such files may include, but are not limited to;

a. Trajectory data.

b. Radiometric data.

c. Event data.

d. Telemetry data.

e. Commanding files

f. On-board software

g. Delta DOR (RDEF)
h. Planning information

i. Accounting data (or at least statistics relating to groundstation pass activities)

j. Meteorological data.

k. Science data
l. “last hop” & “first hop” files
m. And no doubt many others…

c) Post Mission activities such as archiving data related to the mission.

1.2.2 Scope

The scope of the concept presented here is limited to terrestrial file transfer (TFT) and in particular deals with the point to point delivery of files in the terrestrial context. It should be noted that whilst the scope of the document is limited to the terrestrial case it is envisaged that mechanisms be supported whereby a file may be delivered by the TFT along with metadata that enables the files to be injected into a CCSDS File Transfer Protocol (CFDP, see Refs. [1]and [2]) entity for forwarding to a spacecraft via the spacelink, or similarly files received by a CFDP entity could be injected into the TFT for delivery to another agency. It should be noted that the mechanism by which the injection to/from a CFDP entity is managed is outside the scope of this document.

1.3 Document Structure

TBW
1.4 References
The following documents are referenced in this Report. At the time of publication, the editions indicated were valid. All documents are subject to revision, and users of this Report are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS documents.
 [1]
CCSDS File Delivery Protocol (CFDP) — Part 1: Introduction and Overview. Report Concerning Space Data System Standards, CCSDS 720.2-G-3. Green Book. Issue 3. Washington, D.C.: CCSDS, January 2007.

[2]
CCSDS File Delivery Protocol (CFDP). Recommended Standard for Space Data Systems, CCSDS 727.0-B-4. Blue Book Issue 4 Washington, D.C.: CCSDS, January 2007
 [3]
SSH – Secure Shell – The following RFC publications by the IETF document SSH-2 as a proposed Internet Standard:
· RFC 4250, The Secure Shell (SSH) Protocol Assigned Numbers

· RFC 4251, The Secure Shell (SSH) Protocol Architecture

· RFC 4252, The Secure Shell (SSH) Authentication Protocol

· RFC 4253, The Secure Shell (SSH) Transport Layer Protocol

· RFC 4254, The Secure Shell (SSH) Connection Protocol

· RFC 4255, Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints

· RFC 4256, Generic Message Exchange Authentication for the Secure Shell Protocol (SSH)

· RFC 4335, The Secure Shell (SSH) Session Channel Break Extension

· RFC 4344, The Secure Shell (SSH) Transport Layer Encryption Modes

· RFC 4345, Improved Arcfour Modes for the Secure Shell (SSH) Transport Layer Protocol

· RFC 4419, Diffie-Hellman Group Exchange for the Secure Shell (SSH) Transport Layer Protocol (March 2006)

· RFC 4432, RSA Key Exchange for the Secure Shell (SSH) Transport Layer Protocol (March 2006)

· RFC 4462, Generic Security Service Application Program Interface (GSS-API) Authentication and Key Exchange for the Secure Shell (SSH) Protocol (May 2006)

· RFC 4716, The Secure Shell (SSH) Public Key File Format (November 2006)

· RFC 4819: Secure Shell Public Key Subsystem (March 2007)

· RFC 5647: AES Galois Counter Mode for the Secure Shell Transport Layer Protocol (August 2009)

· RFC 5656, Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer (December 2009)

· RFC 6187: X.509v3 Certificates for Secure Shell Authentication (March 2011)

· RFC 6239: Suite B Cryptographic Suites for Secure Shell (SSH) (May 2011)

· RFC 6594: Use of the SHA-256 Algorithm with RSA, Digital Signature Algorithm (DSA), and Elliptic Curve DSA (ECDSA) in SSHFP Resource Records

· RFC 6668, SHA-2 Data Integrity Verification for the Secure Shell (SSH) Transport Layer Protocol (July 2012)

 [4]
SCP – Secure Copy - TBD
 [5]
SSH File Transfer Protocol
Version 3 - Drafts 00 - 02 of the IETF Internet Draft define successive revisions of version 3 of the SFTP protocol.

· SSH File Transfer Protocol, Draft 00, January 2001
· SSH File Transfer Protocol, Draft 01, March 2001
· SSH File Transfer Protocol, Draft 02, October 2001
Version 4 - Drafts 03 - 04 of the IETF Internet Draft define version 4 of the protocol.

· SSH File Transfer Protocol, Draft 03, October 2002
· SSH File Transfer Protocol, Draft 04, December 2002
Version 5 - Draft 05 of the IETF Internet Draft defines version 5 of the protocol.

· SSH File Transfer Protocol, Draft 05, January 2004
Version 6 - Drafts 06 - 13 of the IETF Internet Draft define successive revisions of version 6 of the protocol.

· SSH File Transfer Protocol, Draft 06, October 2004
· SSH File Transfer Protocol, Draft 07, March 2005
· SSH File Transfer Protocol, Draft 08, April 2005
· SSH File Transfer Protocol, Draft 09, June 2005
· SSH File Transfer Protocol, Draft 10, June 2005
· SSH File Transfer Protocol, Draft 11, January 2006
· SSH File Transfer Protocol, Draft 12, January 2006
· SSH File Transfer Protocol, Draft 13, July 2006
[6]
ZIP File Specification

· http://www.pkware.com/documents/APPNOTE/APPNOTE-6.3.3.TXT
 [7]
TAR File Specification – is defined in
· POSIX.1-1988

· POSIX.1-2001
[8]
PAX File Specification
· http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html

 [9]
JAR File Specification
· http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html

[10]
TLS – Transport Layer Security Specification
TLS 1.0

· RFC 2246, January 1999

TLS 1.1 is an update from TLS version 1.0.
· RFC 4346, April 2006
TLS 1.2 is based on the earlier TLS 1.1 specification.
· RFC 5246, August 2008.
All TLS versions were further refined in RFC 6176 in March 2011 removing their backward compatibility with SSL such that TLS sessions will never negotiate the use of Secure Sockets Layer (SSL) version 2.0.

[11]
WebDAV Specification
· RFC 2291: "Requirements for a Distributed Authoring and Versioning Protocol for the World Wide Web", issued February 1998

· RFC 4918: "HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV)", issued June 2007 (which updates and supersedes "HTTP Extensions for Distributed Authoring — WebDAV" RFC 2518, issued February 1999)

· RFC 3648: "Web Distributed Authoring and Versioning (WebDAV) Ordered Collections Protocol", issued December 2003

· RFC 3744: "Web Distributed Authoring and Versioning (WebDAV) Access Control Protocol", issued May 2004

· RFC 4331: "Quota and Size Properties for Distributed Authoring and Versioning (DAV) Collections", issued February 2006

· RFC 4437: "Web Distributed Authoring and Versioning (WebDAV) Redirect Reference Resources", issued March 2006

2 Concept OVERVIEW
2.1 Concept

The file transfer concept outlined in this document is intended to facilitate the file transfer and hence improve interoperability between Space Agencies. What is described is a straightforward approach based on existing protocols and technologies and is solely intended to provide point-to-point terrestrial file transfer between 2 agencies

.

It is assumed that, due to security considerations, the end points (i.e. originating and destination nodes) of the file transfer will be positioned on some sort of firewall demilitarized zone
.
2.2 Model

The following figure shows the model lying behind the proposed file transfer concept. This is a conceptual diagram only and is not intended to reflect the real-world configurations of any agencies network setup. It is assumed that, due to security considerations, the end points (i.e. originating and destination nodes) of the file transfer will be positioned on some sort of firewall demilitarized zone.
[image: image2.emf]Internet

Agency A

Firewall

File

Transfer

Host

DMZ

Internal

Network

Agency B

Firewall

File

Transfer

Host

DMZ

Internal

Network

File Transfer

Figure 2‑13 TC \f G "-1
Class Diagram Example"
: Terrestrial File Transfer Conceptual Model

The file transfer hosts
, although only one is illustrated at each agency, may be redundant.
2.3 Design Goals

The design goals behind this service concept are;
1. Provide a secure, extensible, point to point file transfer service to support operational exchanges between terrestrial elements
2. Keep the design as simple as possible whilst meeting the perceived needs

3. Use “off the shelf” technologies
NOTE - This service concept is dealing with point-to-point terrestrial file transfer, something that occurs an enormous number of times per day over the internet – it’s not rocket science.
There are four major parts of the service: the file transfer and file management protocol(s), the file types to be transferred, the means for associating metadata with the files, and the means for connecting the transferred files with any service provision entities that process them.
2.4 ProtocolS
The protocol to be used needs to be able to provide security for the file transfer, e.g. it should not send user ID and/or passwords in plain text (thus ruling out standard FTP). In addition the protocol should conform to a recognized standard and be readily available on a wide range of operating systems and be capable of supporting both IPv4 and IPv6 network addresses. In terms of providing security it is desirable to utilize a network protocol that is designed for secure data communications over an insecure network.
2.4.1 Transport Protocols

Two widely adopted transport protocols are potential candidates:

2.4.1.1 Secure Shell (SSH)

SSH is a cryptographic network protocol providing remote command-line login, remote command execution and other secure network services between two networked computers.

By using public-private key pairs for authentication it is possible to allow users or programs to log in without having to specify a password, this is obviously advantageous if it is desired to automate the delivery of files.

There are 2 major versions of the SSH standard SSH-1 and SSH-2, as SSH-1 is known to have some security vulnerabilities it would be desirable to use SSH-2.

Versions of SSH are available for Windows and Linux and many other operating systems.
2.4.1.2 Transport Layer Security (TLS)

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are cryptographic protocols which are designed to provide communication security over the Internet. They use X.509 certificates and hence asymmetric cryptography to assure the counterparty with whom they are communicating, and to exchange a symmetric key. This session key is then used to encrypt data flowing between the parties. This allows for data/message confidentiality, and message authentication codes for message integrity and as a by-product, message authentication.
As with SSH TLS implementations are available for a wide range of operating systems
2.4.2 FILE Transfer Protocols
The selection of file transfer protocols will largely be determined by the approach adopted for the transport protocol. Some possibilities are outlined below.

2.4.2.1 SCP and SFTP
SSH in effect established a secure communications channel between 2 computers, however there still remains the question of how to transfer files over this channel. The 2 most obvious candidates are:

· SCP – Secure Copy, copies files between hosts on a network and uses the same authentication and provides the same security as SSH.

· SFTP – Secure File Transfer Program, is an interactive file transfer program, similar to FTP, which performs all operations over an encrypted SSH transport. It may also use many features of SSH, such as public key authentication and compression.
SCP provide a limited set of functionality (including compression if desired) essentially limited to the copying of files (and directories).

In comparison SFTP allows a much richer set of operations on remote files – it is more like a remote file system protocol. An SFTP
client's extra capabilities compared to an SCP client include resuming interrupted transfers, directory listings, and remote file removal.
In view of security considerations it may be desirable to use the protocol with the least functionality (i.e. SCP), however SFTP has some features, notably the resumption of interrupted transfers, that may make this more attractive in some cases.

2.4.2.2 WebDAV

Web Distributed Authoring and Versioning (WebDAV) is an extension of the Hypertext Transfer Protocol (HTTP) that facilitates collaboration between users in editing and managing documents and files stored on World Wide Web servers. The WebDAV protocol makes the Web a readable and writable medium. It provides a framework for users to create, change and move documents on a server; typically a web server or web share.

WebDAV is available on a number of platforms (e.g. the server side can be provided by the cross platform Apache HTTP server). A number of clients are also available. On various Linux systems a WebDAV command line interpreter is available that provides a command set similar to FTP (Is this, or similar, available on Windows
etc. ?)
2.5 File Types

A considerable number of the files that are likely candidates to be transferred via the TFT are likely to conform to CCSDS standards. With this in mind it is feasible that an extensible SANA repository could be set up which would contain details of what a particular file type was, including the definition of the appropriate metadata for that file type.

It should however be recognized that it is also likely that a number of the files to be transferred may not conform to a CCSDS (or other recognized international standard). The transfer of these files by means of the TFT must therefore not be precluded and it is therefore essential that the method of associating metadata with files, and the specification of the metadata, is such that this is readily expandable such that it can readily be used to transfer files that are not defined in the SANA registry. The SANA registry may be extended to add new file types and their metadata, as needed.
2.6 File Packaging AND METADATA
Once a method of transferring a file or files between two points has been selected considerations needs to be given to how metadata relevant to the file or files can be delivered and associated with the appropriate file(s). In the past some file transfer systems have utilized naming conventions to specify file metadata. This has obvious limitations, viz. only a limited amount of metadata can be specified, it is very inflexible and there can be problems when interchanging files between different operating systems due to differences in permitted file names.
In view of this it is suggested that each delivery of a file or files is accompanied by a manifest
file that contains the metadata relevant to the file or files being delivered and that this manifest file
 and the data file(s) are “wrapped” into one file
.
2.6.1 Technology

There are a number of different technologies readily available on a variety of platforms that could be used for wrapping the files, the most common ones are discussed below. Is should be noted that only ZIP directly supports the encryption of the contents of the wrapper file, although in this case there may be some patent considerations involved.
Is this a consideration ?, i.e. how paranoid are we supposed to be. My view is that encrypting the wrapper file
 is probably over the top bearing in mind that that it will be possible to encrypt the contained files individually (see later) and we’re transferring the data over a secure link. To be discussed

2.6.1.1 ZIP

The ZIP file format (see Ref. [6]) has been released into the public domain, however some features are covered by patents or pending patents. The patented feature seem to deal mainly with Patch Support and Strong Encryption (again see Ref. [6]).

ZIP provide a mechanism for compressing, losslessly, one or more files into a single file. The degree of compression achieved very much depends on the data contained in the input files. In some cases very substantial reductions in data volume are achieved, in other cases no benefit is obtained. Depending on the size of the files considerable amounts of CPU may be utilized in carrying out the compression and decompression

Standard ZIP supports a maximum file size of 232-1 bytes (4GBytes -1) for both the size of the archive file and the individual files inside the archive. ZIP64 increases this to 264-1 bytes.
ZIP does not directly provide a mechanism for associating metadata with the encapsulated files, however this can be readily overcome by providing a manifest file that contains the required metadata
. See Section 3 for a description of a possible format for the metadata file.

2.6.1.2 TAR/PAX
TAR (see Ref. [7]) was initially developed to write data to sequential I/O devices for tape backup purposes, tar is now commonly used to collect many files into one larger file for distribution or archiving, while preserving file system information such as user and group permissions, dates, and directory structures. Despite being seem as somewhat outdated it is still in widespread use. Compression is not directly supported by TAR.

Depending on the version of specification that an implementation of TAR conforms to (i.e. versions previous to POSIX 1-2001) it may be limited to 8 GByte for files contained in the archive. Versions of TAR conforming to later versions of the POSIX standard should not have this limitation.

PAX (Portable Archive eXchange) (see Ref. [8]) is another archiving utility defined by POSIX intended as a replacement for both TAR and CPIO. It has however not yet acquired anything like the penetration of TAR although versions are available for most Linux distributions (although usually not installed by default) and Windows. Native compression for PAX is not defined in the POSIX standard, however various implementations of PAX provide provides switches enabling the use of gzip or bzip2 compression

As with ZIP TAR or PAX do not provide a mechanism for associating arbitrary metdata with the encapsulated files. The solution to this is the same as noted above for ZIP, viz. a manifest file.
2.6.1.3 JAR

JAR (Java Archive) (see Ref. [9]) are archive files, built on the ZIP file format. It is possible to create or extract JAR files using the jar command that comes with a JDK. This can also be achieved by the use of zip tools; however, the order of entries in the zip file headers is important when compressing, as the manifest often needs to be first. Inside a JAR, file names are unicode text.

JAR files are typically used to distribute application software or libraries on the Java platform, so why include it as a possible format for file wrapping ?

The answer is that it provides a number of the features required, i.e.

· File metadata (as name - value pairs)

· File signing

· Optional compression

2.6.2 File and Directory Naming

With respect to file naming it is proposed that this is largely left to the discretion of the users with the exception that the names of the files, both those in the wrapper file and the wrapper file itself be limited to the following characters

· [a-z], lower case alphabetic characters

· [0-9], numeric characters

· -, the “dash”(or minus) character

· _, the underscore character

· ., the dot character. Use of this shall be limited to being the separator between the file name and the file type, i.e. (see section 2.5.2.1 below for a possible exception to this)
· file_name.file_type

The above restriction is intended to reduce the scope of problems when files are transferred between different operating systems. In particular the restriction to lower case alphabetic characters is intended to remove any ambiguity between Windows and Unix, e.g. on Windows the file names file_name.file_type is equivalent to FILE_NAME.FILE_TYPE where on Unix these are treated as distinct files.

2.6.2.1 File Types

With respect to file types no restrictions (except that above) are foreseen for the encapsulated files, with the exception of the manifest file (see below), i.e. they can have whatever file type is appropriate.

For the wrapper file the file extension would depend on the technology(ies) chosen, i.e.:

· .zip for zip format

· .tar for tar format

· .pax for pax format

· .jar for jar format

For the manifest file, if the approach proposed later is adopted and this is an xml file then the file type for this should be

· .xml

NOTE 1: To avoid problems with the wrapper file being renamed at any point the original name of the wrapper file shall be included in the meta data included in the enclosed manifest file.

NOTE 2: If it is desired to sign either the wrapper or manifest files one straightforward approach to doing so would be to append the SHA2 hash value to the full file name e.g.

· wrapper_file_name.xxx.sha2_hash_value
where xxx is zip or tar etc.

2.6.2.2 Manifest File Name

It is proposed that the name of the manifest file (assuming that the JAR format is not adopted as this has its own convention) be the same as the wrapper file, e.g. is the wrapper file name is

· wrapper_file_name.xxx (where xxx is one of zip, tar or pax)

then the manifest file name would be

· wrapper_file_name.xml
2.6.2.3 Directory Names

In order to avoid (or at least minimize) issues of possible duplicate file names etc. when “unwrapping” a delivered file it is proposed that the wrapper file be created in such a way that all the enclosed files (including the manifest file) are located in a sub-directory that has the same name as the wrapper file. This if the unwrapping of the file occurs in a directory called working_directory the resulting directory structure after the unwrapping will be
[image: image3.emf]working_directory

wrapper_file

enclosed_file_1.type

enclosed_file_2.type

enclosed_file_3.type

wrapper_file.xml

wrapper_file.xxx

Figure 2‑23 TC \f G "-1
Class Diagram Example"
: Directory Structure after “Unwrapping”

2.6.3 Processing

When a file is delivered to an agency it is possible that further information needs to be supplied to enable the file to be completely processed. The metadata associated with any particular file should be such that it enables that file to be fully processed.

Whilst it is unlikely that it will be possible to define the relevant information needed for the correct processing of all types of files it is conceivable that this can be done for a subset of standard file types.

In any event an extensible mechanism for specifying parameters in the manifest file required for file processing needs to be available. An initial approach to this is presented in Section 3.
2.6.4 Ensuring ALL Files have Been Received

In certain circumstances in my be necessary to check that all files have been received. It is proposed that this can be achieved by adding a file sequence count to the meta data associated with a file. This would be incremented by 1 for every file of the same type which has been sent. This would be optional as it probably not necessary for most purposes.

Similarly if was desired to ensure that all wrapper files have been received a file sequence counter could be part of the meta data associated with the wrapper file (see section 3 for further discussion about the required meta data).
2.6.5 Further Transfers

When a file is delivered to an agency it is likely that it will need to be transferred from its delivered location to a another position. The manifest file should permit the specification of sufficient metadata to allow the file to be delivered to its final destination, irrespective of whether the forwarding process is manual, i.e. the transfer is manually instigated by a human operator reading the information from the manifest file, or automatically by a program or script processing the data contained in the manifest file.
2.6.5.1 CFDP

As noted previously this concept is limited to terrestrial point-to-point file transfer. It is however possible that one of the offered services is to process the files delivered for uplink to a spacecraft via CFDP. In view of this it should be foreseen that the manifest file enables the specification of sufficient metadata to allow a file to be injected into a CFDP entity for routing to a spacecraft.

Similarly it may well be that a file downlinked via CFDP is required to be delivered to the end user via the terrestrial file transfer.
2.6.5.2 Miscellaneous

Some agencies use file transfers systems internally that are used to deliver files to one or more internal system. It may well be desirable that the manifest file is capable of specifying the required metadata to let the delivered file(s) be injected into the internal file transfer system.

Similarly it may be desired that the internal file transfer system can deliver a file to the end user by injecting this into the terrestrial file transfer.

2.7 BASIC Service Definition

The following sections outline some of the considerations that need to be taken into account into creating the basic service definition, for instance the set of operations that would need to be available etc. Also in order to simplify setting up file transfers to it desirable to have a standard approach to items such as accounts and directories, the sections below outline possible approaches to these items.

2.7.1 Required Operations

It is envisaged that only a small set of operations will be required. As an initial scoping it is suggested that the required operations could be limited to;

· list
– obtains information about a file or directory
· get
– retrieve a copy of the file (probably want to support wildcards, i.e. mget)
· reget
– reget acts like get, except that it can be used to continue a failed file transfer from the apparent point of failure.
· put
 – store a local file on the remote machine (probably want to support wildcards, i.e. mput)
· delete
 – delete a file on the remote machine
· cd
 – change directory on the remote machine
· mkdir
 – make a directory on the remote machine (Is this really needed if we define a directory structure ?)
· Replace – replace a file previously transferred (or do we want to just specify some sort of versioning / use the latest?)
NOTE: the names of the various operations above are taken from ftp. It should however be clearly understood that (unsecured) ftp is not being proposed as a candidate for TFT and this terminology is used because most people will be reasonably familiar with it. This actual names of the operations will be determined by the protocol adopted.
2.7.2 Hosts

Ideally the hosts for both the sender and receiver of the files would be transparently redundant, i.e. if the prime machine fails the backup machine should transparently replace it. This could be achieved by the use of dynamic DNS. It is however accepted that this may not be possible in all cases and thus it may be desirable to describe the appropriate failover behavior in the service agreement, e.g. always transfer files to the prime host unless it is unavailable in which case the transfer should be to the backup, always transfer files to both prime and redundant hosts or (less desirable) no backup is available.
 Host names could be stored in a SANA registry.
If an approach based on TLS/WebdAV were to be adopted then, as this is an extension of http it would be possible to store the appropriate end points in a SANA registry.
2.7.3 Accounts

To keep things simple it is suggested that one user account per mission
be foreseen. Login to this account could be by conventional user account/password. It would be however be preferable (and would certainly make automation easier) if login authentication was carried out by means of public-private key pairs.

Distribution of the required keys is however outwith the scope of this concept document.

2.7.4 Transfer of files

There are a number of possibilities with respect to where the transfer of files is instigated, particularly if it is assumed that the transfer of files is bi-directional, i.e. files go from one agency to a second, but files are also returned from the second agency to the first.

In this case the simplest approach is to assume that whichever agency produces a file “pushes” it to the other agency. For this symmetric case both agencies would require appropriate login credentials on the other agency’s file transfer host.

It also needs to be considered how an agency is notified that a file has been delivered to it. The simplest approach would be that the receiving agency periodically polls the directory where it is expected that files are delivered. This could be done either manually, i.e. someone checking if a new file exists in the directory, or automatically by a program or script which can then instigate any required processing (or indeed simply inform an operator that a new file has been received).

An alternative approach would be to use e-mail to send a message from the sending agency to the receiving agency informing them that a file has been delivered.

This however is not an ideal solution and it is recommended that this should not be adopted if at all possible.

If for some reason (e.g. security) it is not possible to set up the symmetric case outlined above it is possible to devise various push/pull
scenarios depending on exactly what access conditions are possible.
2.7.5 Directory Structure

As noted previously it is proposed that there is one account per mission. This being the case it is proposed that there are, within this account, only 2 directories
;

· in-tray – This directory would be used as the target directory for files pushed to the node. It is assumed that once a file has been found in the in-tray it will be moved to another location for further processing.

· out-tray – This directory would be used either as a staging area for files that are to be pushed to the other agency or , if it is not permitted to push the files, would be where the files would be pulled from by the receiving agency. It is assumed that once a file has successfully been transferred from the out-tray it will be deleted from the out-tray or alternatively moved to an archive, in any event it will not remain in the out-tray directory.
2.8 Security

Not completely clear what is required but I would assume that at least the ability to optionally provide a hash value for each of the encapsulated files is required and this is addressed in the outline manifest in section 3.

The mechanism for permitting a SHA-2 hash value for all “wrapped” files is to enclose the hash value in the meta data in the manifest file. With respect to providing the hash value for the manifest and wrapper files this can be done by appending the appropriate hash value to the full filename as described in section 2.6.2.1.

· Is signing enclosed files needed ?

· Is encrypting enclosed files needed ?

· Is signing manifest file needed ?

· Is encrypting manifest file needed ?

· Is signing wrapper file needed ?

· Is encrypting wrapper filesneeded ?
2.9 Service Agreement

For the terrestrial file transfer between agencies it should be foreseen that some form of service agreement will be required. This would need to address the following points.

2.9.1 Points of Contact

Points of contact would be needed potentially at 2 levels;

1. To identify the personnel at both sides how are responsible for establishing the service agreement

2. To identify the personnel who should be notified in the event of problems arising.
2.9.2 HOSTS

This should identify the machine that will host the file transfers either by name
or IP address and describe the failover options available, i.e. dynamic DNS, Prime and Backup (in this case stating whether files should always be copied to the backup as well as the prime or only copied to the backup when the prime as failed, no backup etc..

2.9.3 Login Credentials

This should be used to specify the user accounts to be used and specify the mechanism by which the required authentication details (i.e. password or keys) should be distributed.
2.9.4 Notification Mechanism

In the event that automatic detection of delivered files (or files to be pulled) is not supported the details of the notification mechanism to be used when new files are available should be outlined here. If the notification mechanism is e-mail then the appropriate personnel should be identified here.

2.9.5 Data Volume
This should specify the total data volume that is available to the remote agency, i.e. the total storage space available in the in-tray and out-tray combined.
2.9.6 Retention Time

This should specify how long files will be retained before being deleted, i.e. how long a file will be retained in the out-tray before being deleted
.
2.9.7 Availability

This should specify the availability of the hosts to be used for the file transfers and indicate times during which support for troubleshooting will be available.
2.9.8 Transfer rate

This should specify the transfer rates that can be supported between the 2 parties involved. May not be applicable in all cases, e.g. where the transfer takes place over the internet.
2.9.9 Miscellaneous

For example if it is decided that both SCP and SFTP are suitable for use in the terrestrial file transfer then it should be specified in the service agreement what is supported by both agencies, i.e. SCP, SFTP or both.

Similarly depending on whether multiple wrapping technologies are selected the service agreement should identify those technologies that are supported by both agencies.

Anything else ?
Supported file types / services

Delivery latency

Push / Pull options
And

Required SANA registries
3 Manifest File Structure

3.1 GENERAL

The Manifest File shall consist of digital data formatted as XML.
3.2 Manifest File CONTENT/STRUCTURE

Figure 3-1 shows the UML Class diagram for the Manifest file.
[image: image4.emf]
Figure 3‑13 TC \f G "-1
Class Diagram Example"
: Manifest File Class Diagram

The attributes of each class are described further in the following subsections and tables.
3.2.1 Class ManifestData

3.2.2 Class FileData

3.2.3 Class FileProcessing

3.2.4 Class CFDPInjection

3.2.5 Class FileSecurity

3.2.6 Class Parameters

ANNEX A

[ANNEX TITLE]

[Annexes contain ancillary information. See CCSDS A20.0-Y-3, CCSDS Publications Manual (Yellow Book, Issue 3, December 2011) for discussion of the kinds of material contained in annexes.]

�There must be some simple means for managing files. The users should be able to transfer, replace, and remove files. And they may need to move among different directories. All of this is possible with simple existing file transfer standards such as secure FTP or WebDAV.

�MARGHERITA: Question: do we want to address, generically, the file transfer between 2 ground entities, or only the file transfer between different Agencies? In the latter case, I agree that there will be only mission-related files.

Instead, for file transfer between two elements of the ground segment (within one Agency) there may be also other kind of files, not linked to any mission (i.e. files linked to the ground segment infrastructure).

The CSTS WG identified, for instance:

SICF

Configuration Files

Schedules

Radiometric data

Operation Reports

�ERIK: with regard to Margherita’s question, we may wish to consider the scope to be between mission operations and TTC network or between TTC networks. Something wider than that i.e. mission to mission or something like that I think starts to look like spacecraft hundred control and is not really what the cross support services area addresses. Nonetheless, I believe were defining this generically it really doesn't matter and can be used in any context as appropriate. I will also note that I think radiometric and tracking data are essentially equivalent for the list of file types. Also, we may wish to note that VLBI is probably an application of the cross support file transfer as it is essentially generalization of DDOR -- for example, to the best of my knowledge, ESA investigators use the DSN for VLBI measurements and part of that involves supplying a file of RA/DEC pointing information.

�COLIN: My view on this is that the design scope should be Inter-Agency, i.e. effectively cross support. If we start defining something intended to be used Intra-Agency then the complexity is an order of magnitude higher as things like firewalls, routing (and routing redundancy) and bandwidth would need to be taken into account. It’s difficult enough getting this sort of thing agreed within an agency (cf ESAs GFTS and the FIDES story…) without trying to agree it across agencies.

NOTE: that’s not to say that what is defined couldn’t be used within an agency, just that I don’t believe that’s a sensible design case.

�ERIK: as an example of the events we are talking about here?

�This may stray too far into SM&C territory. Give it to them.

�ERIK: �File types I’ve been able to dig up for the DSN include:

Antenna locations

Antenna mechanical constraints

horizon and transmitter masks

SAFs (station allocation files – schedule derived)

KeysFiles (a type of event sequencing done just for ESA missions to shield them from DSN “native” vent sequencing)

DKFs (The DSN “native” sequence of events)

Ground station detailed performance characteristics

spacecraft telecom info (frequencies, performance, loop bandwidths ...)

ESA Schedules / DSN Schedules

Uplink ramps (ie doppler compensation)

Uplink Tunes (sweep rates, dwells, etc)

�MARGHERITA: See my previous comment about file transfer between 2 ground entities vs file transfer between different Agencies.

�Interoperability is between any two entities regardless of who owns them. Cross support is nominally between agencies. CCSDS is all about both of these.

�ERIK: Technically, if it is internal to the agency, we, CCSDS really have nothing to say about it. So I think it's okay to keep this as cross support/inter-agency. Now, if the particular agency wants to use this internally that should also be okay and should be allowed for.

�I think this is likely to be true, but I think we might just want to make the point that the service nodes have to be both secured and accessible.

�Wouldn’t we normally show this as a file transfer service provider and a file transfer service user? It is not necessary to model it as host to nor nor for both sides to use a firewall / DMZ.

�This seems rather secondary to the File Transfer protocol, I’d move it down in this section.

�SSH is not a file transfer protocol and it seems like a rather large and awkward hammer to use to drive this particular nail.

�If you use a role based approach, and only allow certain commands for the run of the mill user, this seems like a nice choice.

�Yes. Google for “windows webdav client”, there’s lots of them.

�So you are proposing to call this metadata file a “manifest file” because it can describe required operations on more than one file in the “package”? I think we need to constrain the contained files to all be of the same type and to use different transfer directories for different file types. That will make managing the interface(s) easier.

�I think all we really need to constrain are the file types for the manifest, metadata, and transferred files. Those file types, given a SANA registry, provides all the links for decoding. People can add file name conventions if they want to, but the file type and associated metadata ought to specify everything.

�ERIK: Okay, this seems reasonable but then begs the question as to whether or not the manifest file that have a naming convention. It seems that this would not be terribly constraining…

�I agree. I do not see a need for encrypting the wrapper, but we should support transfer of encrypted files and also of just authenticated files.

�HOLGER: I would not encrypt the wrapper file – one still encrypt files contained in the wrapper file.

�The CCSDS XFDU standard, CCSDS 661.0-B-1, includes the concept of a manifest, metadata, and packaged files that might be ZIP or TAR. I wonder if we should just be tailoring that instead of inventing something new. It is worth looking at.

�MARGHERITA: Does this mean that, in this case the Manifest file, i.e. the Metadata, would be zipped together with the rest of the encapsulated files?

�ERIK: This is all very well and good, but I'm not sure we need to get to this kind of analysis for this concept. Same comment for other archive formats identified. I think for the concept for a working group the idea would be that the working group should present some sort of trade of these kind of aspects rather than trying to deal with them at this stage of the BOF.

�JAR is broadly supported on different platforms, but is bound to Java, is it not? I think we want to be language agnostic.

�I agree with Wolfgang that we may want to define an extensible set of directory names that are associated with the different file types. This should simplify the user interface and also the association of the service provision applications with the defined directories, I would, or course, want to make it extensible via a SANA registry. I do not think we need to create file naming standard except for file types.

�HOLGER: I recall that Wolfgang was very much in favor of standardizing directories for certain known file types (ranging files?), because according to his experience those directories (and filenames?) have to be agreed for many cross supports individually.

�ERIK: Directories may not be such an issue with WebDav – here we are trading for http endpoints which could be registered in SANA for this various agencies.

�I believe that the data files in the packages should all have defined, and extensible, set of file types. Just as with .pdf, .doc, .vcf the type of the file immediately tells you what it’s format is and give you a handle that you may use to associate it with one or more apps that know how to process them. As I said before, I would register these in SANA and make it an easily extensible list.

�HOLGER: If jar is adopted I would think of a different file extension to distinguish it from the ‘usual purpose’ of a jar, which is much more targeted towards a specific use than e.g. tar.

�HOLGER: actually jar uses a text file with META-INF/MANIFEST.MF extension, not XML.

�See previous note about a standard set of directory names. I would think that we would want to aim for an approach where each mission would have its own directory tree and where the sub-trees appended to that base node had a consistent set of names associated with the file types (and associated services).

�I think this is crucial.

�Please take a look at what XFDU has defined for this feature.

�HOLGER: As you point out before, some of these systems require that the file name follows a certain convention. To support these systems it would be beneficial if the file could be renamed w/o becoming inconsistent. See prev. comments about the use of the wrapper file name for the manifest file and internal directories.

�MARGHERITA: So, in principle the Manifest should contain also another metadata class, to tell about injection aspects (or routing aspects) specific to purely terrestrial transfers (i.e. other than CFDP).

�ERIK: WebDav might useful here in that load-balance/redundancy technology for always-on portals/.webservers is essentially available off the shelf…so if you are using http-based protocols it might come for “free”.

�I would recommend against this. It might be better to specify one master account per mission with admin privs over that part of the directory tree and one or more individual user accounts. From a security point of view it is always good to know who is monkeying with your files, and with all these different file types there may be a number of different ops team members using this interface.

�ERIK: This could get interesting. Presumably these files are being transferred between the mission operations center and a running TTC network. May have to consider this in conjunction with the service management work. Then again, it may be quite all right to indicate that the practice defined by the security working group is followed rather than try to tackle this have on for this potential working group.

�HOLGER: Do we really want to embark on notifications?

�MARGHERITA: I would say that the notification mechanism shall be configurable, as it may be useful in some cases, but also depends on the volume of files to be transferred. I think this information shall also be part of the SLA.

�I like the “push” idea and it has the benefit of simplicity. But I also think that users may prefer to “pull” there results files. That simple email notify may be useful.

�HOLGER: Again the remark from Wolfgang: For certain file types there should be predefined directories (and names?).

�I am suggesting that we define a et of directories for different service providing entities. Each service provider then needs to only monitor it’s directory and only needs to look at the file type to determine if the file is one it can handle or not.

�ERIK: We may need to consider/allow different practices based on file type –note that tune-in files (as noted above) are already exchanged between ESA and DSN – I think this would be very sensitive and therefore really need to be secured.

�As we move toward more secure systems I think we should indeed include the means at least to digitally sign the package, and maybe, separately the file to be processed.

�MARGHERITA: Also the information analyzed in the previous chapter shall be part of the SLA. For example:

Notification mechanism Y/N

Push/pull model

Directory structure

Option for failover behavior

�HOLGER: In order to simplify the IPv6 transition, I would suggest to use names only.

�HOLGER: Global or per file type?

�MARGHERITA: There could be also other mechanisms, which shall be mission-specific, e.g:

By date (files older than …)

Cyclic deletion

No automatic deletion (that is, only on operator command)

Warning mechanism

�Really must take a look at XFDU. We might be able to just adopt / adapt what they have.

�HOLGER: The attribute types are not shown but most of them are clear. For the fileType, shall there be an enumeration of foreseen file types? And an extension mechanism?

�MARGHERITA: In case we want to address also file transfer of “infrastructure” type, there shall also be attributes like:

ID of ground entity

 Element of the ground entity originating the file.

file modification time

etc.

