Data Processing Procedure Prototype

Interoperability Test Plan
30 September 2014
Results of Testing Conducted at CCSDS Conference

26 March 2015
Table of Contents

31
GENERAL COMMENTS

31.1
PRELIMINARY Testing COMMENTS

42
DEFAULT INTERFACE PARAMETERS FOR DATA PROCESSING PROCEDURE PROTOTYPE TESTS

63
BUFFERED DATA PROCESSING PROCEDURE PROTOTYPE TESTS

63.1
COMPLETE MODE –PROCESS-DATA INVOCATIONS

83.2
COMPLETE MODE – FORWARD-BUFFERS

103.3
COMPLETE MODE –FORWARD-BUFFER TOO LARGE

113.4
COMPLETE MODE – INPUT QUEUE FILLS UP TEMPORARILY

133.5
COMPLETE MODE – INPUT QUEUE FILLS UP AND FORCES ABORT

153.6
COMPLETE MODE – COMPLETION REPORT

173.7
COMPLETE MODE - USER PEER ABORT WHILE READING STOPPED

193.8
COMPLETE MODE - SERVICE INTERRUPTION NOTIFICATION

213.9
COMPLETE MODE - STOP INVOCATION

233.10
TIMELY MODE –PROCESS-DATA INVOCATIONS

253.11
TIMELY MODE – FORWARD-BUFFERS

273.12
TIMELY MODE –FORWARD-BUFFER TOO LARGE

283.13
TIMELY MODE – INPUT QUEUE FILLS UP

303.14
TIMELY MODE – LATENCY TIMER EXPIRATION

324
SEQUENCE-CONTROLLED DATA PROCESSING PROCEDURE PROTOTYPE TESTS

324.1
PROCESS-DATA INVOCATIONS WITH NULL START TIMES

344.2
INPUT QUEUE FILLS UP – ‘unable to store’

364.3
PRODUCTION HALTED – ‘unable to process’

384.4
INVALID PRODUCTION TIMES

404.5
PROCESS-DATA INVOCATION WITH FUTURE EARLIEST START TIME

424.6
PROCESS-DATA INVOCATION RECEIVED WITHIN TIME RANGE

444.7
PROCESS-DATA INVOCATION RECEIVED WITH EXPIRED TIME RANGE

464.8
PROCESS-DATA START INVOCATION RECEIVED WHILE INTERRUPTED

494.9
PRODUCTION INTERRUPTED WHILE PROCESSING – Locked state

514.10
CLEAR LOCKED STATE WITH STOP INVOCATION

534.11
CLEAR LOCKED STATE WITH RESET EXECUTE-DIRECTIVE

554.12
PROCESS-DATA INVOCATION EXPIRES

574.13
PRODUCTION INTERRUPTED WHILE NOT PROCESSING

594.14
PROCESS-DATA INVOCATION RECEIVED WHILE SERVICE LOCKED

614.15
DATA UNIT ID WRAP AROUND

634.16
DATA-CHECK FAILURE

654.17
DATA-CHECK PASS

1 GENERAL COMMENTS
For all Data Processing Procedure prototype tests, NASA-MSFC will serve as the Provider and ESA as the User. The Framework specification version 921x1r2[Draft_20140408] shall apply, including ASN.1 definitions.
The ‘Result’ column in the table associated with each test should be marked as follows, with an explanation attached for any unsuccessful test performed:

· SUCCESS for a successful test.

· FAIL for a failed test

· - for a test that has not been performed.

· UNDETERMINED for a test whose results are undetermined.

· INCOMPLETE for partial success or incomplete test.

1.1 PRELIMINARY Testing COMMENTS

Preliminary testing by ESA discovered that incorrect ProcedureType OIDs were used in the Provider Prototype:

· procBufferDataProcessing was used instead of bufferedDataProcessing

· procSeqControlledDataProcess was used instead of sequenceControlledDataProcessing

Further inspection by NASA found that the Provider Prototype also used an incorrect ProcedureType OID for AssociationControl in the BIND and UNBIND Invocations:

· procAssociationControl was used instead of associationControl

ESA then discovered that the User Prototype also used an incorrect (but different) ProcedureType OID for AssociationControl and deduced that the AssociationControl OIDs were not being enforced by the Provider Prototype because the BIND/UNBIND Invocations were successful.
NASA confirmed that the AssociationControl OIDs were not being enforced by the Provider Prototype. Initial development was lenient on those OIDs to test with an eFCLTU User implementation since the CSTS ASN.1 was not yet available and changing that was overlooked once the correct ASN.1 was available.
2 DEFAULT INTERFACE PARAMETERS FOR DATA PROCESSING PROCEDURE PROTOTYPE TESTS
Unless otherwise specified, the interface settings for each test shall be those specified in this section. For example, if a test requires the User to ‘send a valid Bind-Invocation’, then the settings of the initiator-identifier, responder-port-identifier, service-type, etc … shall be as specified in this section.

TCP:
The TCP-level configuration will be agreed upon privately, and for security reasons will not be published.
ISP1:

· Heartbeat Interval = 30 seconds

· Dead Factor = 4

Credentials:

Credentials will be set to notUsed.
Bind-Invocation:

· Procedure-Type = procAssociationControl

· Procedure-Role = associationControl

· Initiator-Identifier = CSTS-USER

· Responder-Port-Identifier = CSTS_PT2
· Service-Type = protoBdpPrototypeServiceId

· Service-Instance-Identifier = NULL (or any value as it is not processed)
Start-Invocation for the Buffered Data Processing Procedure:

Note that the mode (complete or timely) is determined by the provider management via the configuration file.

· Invoker-Credentials = unused

· Procedure-Type = procBufferDataProcessing

· Procedure-Role = primeProcedure

Process-Data Invocation:

Note that multiple Process-Data invocations may be transmitted in a Forward-Buffer construct.

· Procedure-Type = procBufferDataProcessing
· Procedure-Role = primeProcedure

· Data = opaqueString or extendedData

· Extension-Parameter Syntax = dpProcDataInvocExt

· Extension-Parameter Data-Value = ASN.1 encoding of a DataProcProcDataInvocExt structure

3 BUFFERED DATA PROCESSING PROCEDURE PROTOTYPE TESTS
3.1 COMPLETE MODE –PROCESS-DATA INVOCATIONS
This test starts a buffered data processing procedure prototype service in complete mode and the user transfers 100 Process-Data invocations. The procedure writes the data from the P-D invocations to its production file for verification. It includes a ‘bind’ and ‘unbind’ so that an entire session is tested.

Provider Configuration:

	Provider Type
	buffered-complete

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	Production Rate
	2 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send 100 Process-Data Invocations containing user defined data. Verify that the Provider received all 100 P-D invocations and the recorded data is correct.

	SUCCESS
	i) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	j) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	k) Verify that the TCP socket connection goes away.

3.2 COMPLETE MODE – FORWARD-BUFFERS

This test starts a buffered data processing procedure prototype service in complete mode and the user transfers 100 Process-Data invocations using Forward-Buffers containers. The procedure writes the data from the P-D invocations to its production file for verification. It includes a ‘bind’ and ‘unbind’ so that an entire session is tested.

Provider Configuration:

	Provider Type
	buffered-complete

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	Production Rate
	2 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	d) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	e) Have the User send 10 Forward-Buffer Invocations each containing 6 Process-Data Invocations containing user defined data. Verify that the Provider received all 10 Forward-Buffer Invocations and processed each of the 60 P-D invocations and the recorded data is correct.

	SUCCESS
	f) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	g) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	h) Verify that the TCP socket connection goes away.

3.3 COMPLETE MODE –FORWARD-BUFFER TOO LARGE

This test starts a buffered data processing procedure prototype service in complete mode and the user attempts to transfer a Forward-Buffer containing too many Process-Data invocations. The provider aborts the session with diagnostic ‘forward buffer too large’.
Provider Configuration:

	Provider Type
	buffered-complete

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	Production Rate
	2 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	d) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	e) Have the User send a Forward-Buffer Invocation containing more than 6 Process-Data Invocations containing user defined data. Verify that the Provider aborts the session with diagnostic ‘forward buffer too large’ (value 70) and transitions to the Unbound state.

	SUCCESS
	f) Verify that the TCP socket connection goes away.

3.4 COMPLETE MODE – INPUT QUEUE FILLS UP TEMPORARILY
This test starts a buffered data processing procedure prototype service in complete mode and the user transfers 100 Process-Data invocations while the Provider is in the Interrupted state. The provider stops reading the TCP socket when there is not sufficient room in the Input Queue to hold the maximum number of P-D invocations allowed in a Forward-Buffer. When the provider starts production, all of the queued P-D invocations are processed and their data written to the production file for verification. It includes a ‘bind’ and ‘unbind’ so that an entire session is tested.

Provider Configuration:

	Provider Type
	buffered-complete

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	Production Rate
	2 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	d) Interrupt production and verify the Provider transitions to the Interrupted state.

	SUCCESS
	e) Have the User send 100 Process-Data Invocations containing user defined data. Verify that the Provider stops reading the socket and adding P-D invocations to the Input Queue when it reaches a level or 20.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state and that reading of the socket resumes. Verify that the Provider received all 100 P-D invocations and the recorded data is correct.

	SUCCESS
	g) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	h) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	i) Verify that the TCP socket connection goes away.

3.5 COMPLETE MODE – INPUT QUEUE FILLS UP AND FORCES ABORT
This test starts a buffered data processing procedure prototype service in complete mode and the user transfers 100 Process-Data invocations while the Provider is in the Interrupted state. The provider stops reading the TCP socket when there is not sufficient room in the Input Queue to hold the maximum number of P-D invocations allowed in a Forward-Buffer. When the provider starts production, all of the queued P-D invocations are processed and their data written to the production file for verification. It includes a ‘bind’ and ‘unbind’ so that an entire session is tested.

Provider Configuration:

	Provider Type
	buffered-complete

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	Production Rate
	2 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	d) Interrupt production and verify the Provider transitions to the Interrupted state.

	SUCCESS
	e) Have the User send 100 Process-Data Invocations containing user defined data. Verify that the Provider stops reading the socket and adding P-D invocations to the Input Queue when it reaches a level or 20.

	SUCCESS
	f) Verify User received notification that production is interrupted.

	SUCCESS
	g) Have the User send a valid Stop-Invocation. Verify that the Provider does not read and process it.

	SUCCESS
	h) Wait for the heartbeat dead factor to expire. Verify that the Provider aborts the session with diagnostic ‘heartbeat receive timeout’ (value 132) and transitions to the Unbound state.

	SUCCESS
	i) Verify that the TCP socket connection goes away.

3.6 COMPLETE MODE – COMPLETION REPORT
This test starts a buffered data processing procedure prototype service in complete mode and the user transfers Process-Data invocations requesting process completion reports. The provider transmits a completion report notification for each successfully processed P-D invocation. It includes a ‘bind’ and ‘unbind’ so that an entire session is tested.

Provider Configuration:

	Provider Type
	buffered-complete

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	Production Rate
	2 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	d) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	e) Have the User send 100 Process-Data Invocations containing user defined data and the process-completion-report set to the value ‘produce report’. Verify that the Provider received all 100 P-D invocations and the recorded data is correct. Verify that the User received 100 ‘data unit processing completed’ notifications

	SUCCESS
	f) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	g) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	h) Verify that the TCP socket connection goes away.

3.7 COMPLETE MODE - USER PEER ABORT WHILE READING STOPPED

This test verifies the Stop Invocation is not received while the Provider is not reading from the socket but that a Peer Abort does get through immediately.

Provider Configuration:

	Provider Type
	buffered-complete

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	Production Rate
	2 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	d) Interrupt production and verify the Provider transitions to the Interrupted state.

	SUCCESS
	e) Have the User send 100 Process-Data Invocations containing user defined data.

	SUCCESS
	f) When the Provider’s Input Queue is filled up and is no longer reading from the socket, have the User send a Stop invocation. Verify that the Provider does not receive and process the Stop invocation.

	SUCCESS
	g) Have the User send a Peer Abort. Verify that the Provider receives the Peer Abort immediately and clears and discards all remaining Process-Data invocations remaining in the Input Queue and terminates the session.

	SUCCESS
	h) Verify that the TCP socket connection goes away.

3.8 COMPLETE MODE - SERVICE INTERRUPTION NOTIFICATION
This test exercises the production state change notification requirements.

Provider Configuration:

	Provider Type
	buffered-complete

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	Production Rate
	2 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	d) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	e) Have the User send 100 Process-Data Invocations containing user defined data. Verify that the Provider received all 100 P-D invocations and the recorded data is correct.

	SUCCESS
	f) After the previous step has completed and there is no active data flow, interrupt production and verify the Provider transitions to the Interrupted state. Verify that the User does NOT receive notification of the interruption.

	SUCCESS
	g) Have the User send 1 Process-Data Invocations containing user defined data. Verify that the User receives a processing interrupted notification.

	FAIL – no notification operational sent
	h) Start production and verify that the User receives a ‘production operational‘ notification and the queued Process-Data invocation gets processed properly.

** Error found in the Provider Prototype source code

	INCOMPLETE
	i) Have the User send 100 Process-Data Invocations containing user defined data. While this is in progress, interrupt production. Verify that User receives a ‘production interrupted” notification immediately.

	INCOMPLETE
	j) Start production and verify the Provider transitions to the Operational state. Verify all Process-Data invocations get processed properly with the possibility of one interrupted P-D invocation being discarded.

	INCOMPLETE
	k) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	INCOMPLETE
	l) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	INCOMPLETE
	m) Verify that the TCP socket connection goes away.

3.9 COMPLETE MODE - STOP INVOCATION

This test verifies the Stop Invocation stopping production and clearing all Process-Data invocations that are in the Input Queue at time of receipt.

Provider Configuration:

	Provider Type
	buffered-complete

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	Production Rate
	2 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	d) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	e) Have the User send 100 Process-Data Invocations containing user defined data.

	SUCCESS
	f) While the Provider is processing Process-Data Invocations and the Input Queue is full, have the User send a Stop Invocation. Verify that the Provider responds with a positive Stop Result, stops processing and clears and discards all remaining Process-Data invocations remaining in the Input Queue.

	SUCCESS
	g) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	h) Verify that the TCP socket connection goes away.

3.10 TIMELY MODE –PROCESS-DATA INVOCATIONS

This test starts a buffered data processing procedure prototype service in timely mode and the user transfers 100 Process-Data invocations. The procedure writes the data from the P-D invocations to its production file for verification. It includes a ‘bind’ and ‘unbind’ so that an entire session is tested.

Provider Configuration:

	Provider Type
	timely

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	processing-latency-limit
	2000 ms

	Production Rate
	5 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	d) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	e) Have the User send 100 Process-Data Invocations containing user defined data. Verify that the Provider received all 100 P-D invocations and the recorded data is correct.

	SUCCESS
	f) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	g) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	h) Verify that the TCP socket connection goes away.

3.11 TIMELY MODE – FORWARD-BUFFERS

This test starts a buffered data processing procedure prototype service in timely mode and the user transfers 100 Process-Data invocations using Forward-Buffers containers. The procedure writes the data from the P-D invocations to its production file for verification. It includes a ‘bind’ and ‘unbind’ so that an entire session is tested.

Provider Configuration:

	Provider Type
	timely

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	processing-latency-limit
	2000 ms

	Production Rate
	5 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	d) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	e) Have the User send 10 Forward-Buffer Invocations each containing 6 Process-Data Invocations containing user defined data. Verify that the Provider received all 10 Forward-Buffer Invocations and processed each of the 60 P-D invocations and the recorded data is correct.

	SUCCESS
	f) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	g) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	h) Verify that the TCP socket connection goes away.

3.12 TIMELY MODE –FORWARD-BUFFER TOO LARGE

This test starts a buffered data processing procedure prototype service in timely mode and the user attempts to transfer a Forward-Buffer containing too many Process-Data invocations. The provider aborts the session with diagnostic ‘forward buffer too large’.

Provider Configuration:

	Provider Type
	buffered-complete

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	processing-latency-limit
	2000 ms

	Production Rate
	5 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	d) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	e) Have the User send a Forward-Buffer Invocation containing more than 6 Process-Data Invocations containing user defined data. Verify that the Provider aborts the session with diagnostic ‘forward buffer too large’ (value 70) and transitions to the Unbound state.

	SUCCESS
	f) Verify that the TCP socket connection goes away.

3.13 TIMELY MODE – INPUT QUEUE FILLS UP

This test starts a buffered data processing procedure prototype service in timely mode and the user transfers 100 Process-Data invocations while the Provider is in the Interrupted state. When the Input Queue fills up, the Provider will discard the oldest Process-Data invocation in the queue to make room for the newest received one.
Provider Configuration:

	Provider Type
	buffered-complete

	input-queue-size
	25

	maximum-forward-buffer-size
	6

	processing-latency-limit
	60000 ms

	Production Rate
	5 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	d) Interrupt production and verify the Provider transitions to the Interrupted state.

	SUCCESS
	e) Have the User send 100 Process-Data Invocations containing user defined data. When the Input Queue fills up, verify that the Provider discards the oldest P-D invocations to make room to insert the newer invocations.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state and only the last 25 Process-Data invocations are processed.

	SUCCESS
	g) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	h) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	i) Verify that the TCP socket connection goes away.

3.14 TIMELY MODE – LATENCY TIMER EXPIRATION

This test starts a buffered data processing procedure prototype service in timely mode and the user transfers 10 Process-Data invocations while the Provider is in the Interrupted state. When the Input Queue fills up, the Provider will discard the oldest Process-Data invocation in the queue to make room for the newest received one. Once
Provider Configuration:

	Provider Type
	buffered-complete

	input-queue-size
	100

	maximum-forward-buffer-size
	6

	processing-latency-limit
	10000 ms

	Production Rate
	2 PDIs/sec

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state. Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	c) Have the User send a valid Start-Invocation to the Provider, specifying the buffered data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	d) Interrupt production and verify the Provider transitions to the Interrupted state.

	SUCCESS
	e) Have the User send 100 Process-Data Invocations containing user defined data. When the Input Queue fills up, verify that the Provider discards the oldest P-D invocations as their processing latency limit time expires.

	SUCCESS
	f) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	g) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	h) Verify that the TCP socket connection goes away.

4 SEQUENCE-CONTROLLED DATA PROCESSING PROCEDURE PROTOTYPE TESTS
4.1 PROCESS-DATA INVOCATIONS WITH NULL START TIMES
This test starts a sequence-controlled data processing procedure prototype service and the user transfers 100 Process-Data invocations with NULL values for the process start times. The procedure writes the data from the P-D invocations to its production file for verification. It includes a ‘bind’ and ‘unbind’ so that an entire session is tested.

Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send 100 Process-Data Invocations with ‘null’ start times containing user defined data. Verify that the Provider received all 100 P-D invocations and the recorded data is correct.

	SUCCESS
	i) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	j) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	k) Verify that the TCP socket connection goes away.

4.2 INPUT QUEUE FILLS UP – ‘unable to store’
This test starts a sequence-controlled data processing procedure prototype service and the user transfers 100 Process-Data invocations at a rate faster than the Provider is processing them. When the input queue fills up, the provider issues a negative Process-Data Return message indicating ‘Unable to Store’. If subsequent Process-Data Invocations do not attempt to resend the rejected DataUnitId then they will receive a negative Process-Data Return message indicating ‘Out of Sequence’.

Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	2 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	20 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send 100 Process-Data Invocations will NULL or valid start times containing user defined data. Verify that the Provider received all 100 P-D invocations and the recorded data is correct.

	SUCCESS
	i) When the Provider’s Input Queue fills up, verify that a negative Process-Data Return is sent to the User indicating ‘Unable to Store’

	SUCCESS
	j) If the User continues to send Process-Data Invocations with an incremented DataUnitId then verify that a negative Process-Data Return is sent to the user indicating ‘Out of Sequence’

	SUCCESS
	k) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	l) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	m) Verify that the TCP socket connection goes away.

4.3 PRODUCTION HALTED – ‘unable to process’
This test starts a sequence-controlled data processing procedure prototype service and the user transfers 10 Process-Data Invocations while production is operational. Production is then halted and the user attemtps to send 10 more Process-Data Invocations. The provider issues a negative Process-Data Return message indicating ‘Unable to Process’. If subsequent Process-Data Invocations do not attempt to resend the rejected DataUnitId then they will receive a negative Process-Data Return message indicating ‘Out of Sequence’.

Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send 10 Process-Data Invocations with NULL or valid start times containing user defined data. Verify that the Provider received all 10 P-D invocations and the recorded data is correct.

	SUCCESS
	i) Halt production while no Process-Data Invocations are pending.

	SUCCESS
	j) Have the User send 10 Process-Data Invocations containing user defined data.

	SUCCESS
	k) Verify the Provider sends a negative Process-Data Return indicating ‘Unable to Process’ upon receiving the Process-Data Invocations.

	SUCCESS
	l) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	m) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	n) Verify that the TCP socket connection goes away.

4.4 INVALID PRODUCTION TIMES
This test starts a sequence-controlled data processing procedure prototype service and the user transfers a Process-Data Invocation with a latest start time that is less than the earliest start time. The provider issues a negative Process-Data Return message indicating ‘Inconsistent Time Range’. If subsequent Process-Data Invocations do not attempt to resend the rejected DataUnitId then they will receive a negative Process-Data Return message indicating ‘Out of Sequence’.

Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send a Process-Data Invocation specifying earliest and latest processing times such that the “latest” time is earlier than the “earliest” time.

	SUCCESS
	i) Verify the Provider sent a negative Process-Data Return indicating ‘Inconsistent Time Range’ upon receiving the first Process-Data Invocation.

	SUCCESS
	j) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	k) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	l) Verify that the TCP socket connection goes away.

4.5 PROCESS-DATA INVOCATION WITH FUTURE EARLIEST START TIME
This test starts a sequence-controlled data processing procedure prototype service and the user transfers a Process-Data Invocation with an earliest process start time that is in the future. The provider must delay processing until the specified earliest start time.

Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send a Process-Data Invocation specifying earliest processing start time that is 20 seconds in the future.

	SUCCESS
	i) Verify the Provider begins processing at the specified earliest processing start time.

	SUCCESS
	j) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	k) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	l) Verify that the TCP socket connection goes away.

4.6 PROCESS-DATA INVOCATION RECEIVED WITHIN TIME RANGE
This test starts a sequence-controlled data processing procedure prototype service and the user transfers a Process-Data Invocation with an earliest process start time that is in the past and a latest process start time that is in the future. The provider should begin processing immediately.
Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send a Process-Data Invocation specifying earliest and latest processing times such that the “earliest” time is 10 seconds in the past and the “latest” time is 50 seconds in the future.

	SUCCESS
	i) Verify the Provider accepts and processes the Process-Data Invocation immediately.

	SUCCESS
	j) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	k) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	l) Verify that the TCP socket connection goes away.

4.7 PROCESS-DATA INVOCATION RECEIVED WITH EXPIRED TIME RANGE
This test starts a sequence-controlled data processing procedure prototype service and the user transfers a Process-Data Invocation with a latest process start time that is in the past. The provider issues a negative Process-Data Return message indicating ‘late data’.
Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send a Process-Data Invocation specifying earliest and latest processing times that are in the past.

	SUCCESS
	i) Verify the Provider sent a negative Process-Data Return indicating ‘late data’.

	SUCCESS
	j) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	k) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	l) Verify that the TCP socket connection goes away.

4.8 PROCESS-DATA START INVOCATION RECEIVED WHILE INTERRUPTED
This test starts a sequence-controlled data processing procedure prototype service and the user transfers a Process-Data Invocation while production is interrupted. The provider issues a negative Process-Data Return message indicating ‘unable to comply’.
This test starts a sequence-controlled data processing procedure prototype service and the user issues a Start Invocation while production is interrupted. The provider issues a negative Start Return message indicating ‘unable to comply’.

Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

Incorrect Test Procedure (2014-09-30):
** The ‘unable to comply’ negative return is for the START invocation and not the PROCESS-DATA Invocation as stated in this incorrect test procedure.
	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Interrupt Production for the Provider.

	SUCCESS
	i) Have the User send a valid Process-Data Invocation.

	FAIL – set positive
	j) Verify the Provider sent a negative Process-Data Return indicating ‘unable to comply’ upon receiving the first Process-Data Invocation.

	SUCCESS
	k) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	l) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	m) Verify that the TCP socket connection goes away.

New Test Procedure (2015-03-31):
	Result
	Test

	
	a) Verify that the association is ‘unbound’.

	
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	
	e) Verify that the User accepts the positive result Bind-Return.

	
	f) Start production and verify the Provider transitions to the Operational state.

	
	g) Interrupt Production for the Provider.

	
	h) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure.

	
	i) Verify the Provider sent a negative Start Return indicating ‘unable to comply’.

	
	j) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	
	k) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	
	l) Verify that the TCP socket connection goes away.

4.9 PRODUCTION INTERRUPTED WHILE PROCESSING – Locked state
This test starts a sequence-controlled data processing procedure prototype service and the user transfers Process-Data Invocations. While production is in progress, production is manually halted. The provider issues a Notfiy message indicating the error and enters the locked state.
Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send 100 Process-Data Invocations.

	SUCCESS
	i) Interrupt Production for the Provider while a P-D Invocation is being processed.

	SUCCESS
	j) Verify the Provider sent a Notification indicating service production was interrupted.

	SUCCESS
	k) Verify the Provider sent a Notification indicating service provider is locked.

	SUCCESS
	l) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	m) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	n) Verify that the TCP socket connection goes away.

4.10 CLEAR LOCKED STATE WITH STOP INVOCATION
This test starts a sequence-controlled data processing procedure prototype service and the user transfers Process-Data Invocations. While production is in progress, production is manually interrupted. The provider issues a Notfiy message indicating the error and enters the locked state. The user then clears the locked state using the Stop Invocation and resumes transmission and issuing a new Start Invocation.
Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send 100 Process-Data Invocations.

	SUCCESS
	i) Interrupt Production for the Provider while a P-D Invocation is being processed.

	SUCCESS
	j) Verify the Provider sent a Notification indicating service provider was interrupted.

	SUCCESS
	k) Verify the Provider sent a Notification indicating service production is locked.

	SUCCESS
	l) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	m) Verify the Provider cleared the input queue.

	SUCCESS
	n) Restart production and verify the Provider transitions to the Operational state.

	SUCCESS
	o) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	p) Have the User send 100 Process-Data Invocations.

	SUCCESS
	q) Verify Provider processes the Process-Data Invocations.

	
	r) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	s) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	t) Verify that the TCP socket connection goes away.

4.11 CLEAR LOCKED STATE WITH RESET EXECUTE-DIRECTIVE
This test starts a sequence-controlled data processing procedure prototype service and the user transfers Process-Data Invocations. While production is in progress, production is manually interrupted. The provider issues a Notfiy message indicating the error and enters the locked state. The user then clears the locked state using the Reset Execute-Directive and resumes transmission.

Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	Data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send 100 Process-Data Invocations.

	SUCCESS
	i) Interrupt Production for the Provider while a P-D Invocation is being processed.

	SUCCESS
	j) Verify the Provider sent a Notification indicating service production was interrupted.

	SUCCESS
	k) Verify the Provider sent a Notification indicating service production is locked.

	FAIL – User timed out waiting for Ack or Return?
	l) Have the User send a valid Reset Execute-Directive. Verify that the Provider responds with a positive Execute Directive Acknowledgement.

** Additional testing with the Provider Prototype indicates that the Execute-Directive Acknowledgement does get sent properly. Did the User prototype time out waiting for the Acknowledgement or the Return? There should not be a time limit on the Return.

	INCOMPLETE
	m) Verify the Provider cleared the input queue.

	INCOMPLETE
	n) Restart production and verify the Provider transitions to the Operational state.

	INCOMPLETE
	o) Verify the Provider sends a positive Execute-Directive Response.

	INCOMPLETE
	p) Have the User send 100 Process-Data Invocations.

	INCOMPLETE
	q) Verify Provider processes the Process-Data Invocations.

	INCOMPLETE
	r) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	INCOMPLETE
	s) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	INCOMPLETE
	t) Verify that the TCP socket connection goes away.

4.12 PROCESS-DATA INVOCATION EXPIRES
This test starts a sequence-controlled data processing procedure prototype service and the user transfers Process-Data Invocations with a short process start range. Processing is at a slower rate than transmission so eventually an ‘expired’ event will be forced. The provider issues a Notify message indicating the error and enters the locked state.

Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	100

	Production Rate
	1 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send 100 Process-Data Invocations with a latest start time set at 10 seconds in the future.

	SUCCESS
	i) Verify the Provider sent a Notification indicating that a Process-Data Invocation ‘expired’ before it could be processed.

	SUCCESS
	j) Verify the Provider sent a Notification indicating service production is locked.

	SUCCESS
	k) Have the User send a valid Reset Execute-Directive. Verify that the Provider responds with a positive Execute Directive Acknowledgement.

	SUCCESS
	l) Verify the Provider cleared the input queue.

	SUCCESS
	m) Verify the Provider sends a positive Execute-Directive Response.

	SUCCESS
	n) Have the User send 100 Process-Data Invocations.

	SUCCESS
	o) Verify Provider processes the Process-Data Invocations.

	SUCCESS
	p) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	q) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	r) Verify that the TCP socket connection goes away.

4.13 PRODUCTION INTERRUPTED WHILE NOT PROCESSING
This test starts a sequence-controlled data processing procedure prototype service and the user transfers Process-Data Invocations with a future earliest start time range and a NULL latest start time. Production is interrupted before the earliest start time. The provider does not issue any Notify messages and processing resumes when production transitions to operational again.
Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send a Process-Data Invocation specifying an earliest start time that is 20 seconds in the future and a ‘null’ latest start time.

	SUCCESS
	i) Manually interrupt production before the specified earliest start time is reached.

	SUCCESS
	j) Verify that the Provider does not process the Process-Data Invocation and it stays in the queue when the earliest start time would trigger.

	SUCCESS
	k) Manually set production to operational.

	SUCCESS
	l) Verify that the Process-Data Invocation is processed.

	SUCCESS
	m) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	n) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	o) Verify that the TCP socket connection goes away.

4.14 PROCESS-DATA INVOCATION RECEIVED WHILE SERVICE LOCKED
This test starts a sequence-controlled data processing procedure prototype service and the user transfers Process-Data Invocations. Production is interrupted during processing of a P-D Invocation. The provider issues a Notify operation and transitions to the Locked substate. The user then tries to send a P-D invocation with next expected DataUnitId and should receive a negative return indicating ‘service instance locked’.
Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	h) Have the User send 100 Process-Data Invocations.

	SUCCESS
	i) Interrupt Production for the Provider while a P-D Invocation is being processed.

	SUCCESS
	j) Verify the Provider sent a Notification indicating service production was interrupted.

	SUCCESS
	k) Verify the Provider sent a Notification indicating service production is locked.

	SUCCESS
	l) Have the User send a Process-Data Invocation with the next expected DataUnitId.

	SUCCESS
	m) Verify the Provider responds with a negative return specifying ‘service instance locked’

	SUCCESS
	n) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	o) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	p) Verify that the TCP socket connection goes away.

4.15 DATA UNIT ID WRAP AROUND

This test starts a sequence-controlled data processing procedure prototype service and the user transfers Process-Data Invocations with a DataUnitId that starts close to the 32 bit max value and forces a wraparound of the counter. The provider should not issue any errors as a result of the DataUnitId wraparound.
Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	False

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Start production and verify the Provider transitions to the Operational state.

	FAIL – User sent value as negative number
	g) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure and a start value of 4,294,967,245. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

** Error found in the User Prototype source code

	INCOMPLETE
	h) Have the User send 100 Process-Data Invocations starting with a DataUnitId value of 4,294,967,245 (UINT32_MAX - 50).

	INCOMPLETE
	i) Verify the Provider processes all 100 Process-Data Invocations without error.

	INCOMPLETE
	j) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	INCOMPLETE
	k) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	INCOMPLETE
	l) Verify that the TCP socket connection goes away.

4.16 DATA-CHECK FAILURE
This test starts a sequence-controlled data processing procedure prototype service and the user transfers a Process-Data Invocation with a data length greater than the size allowed. The Provider issues a negative return indicating ‘data error’.

Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	True

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	220

	Result
	Test

	SUCCESS
	a) Verify that the association is ‘unbound’.

	SUCCESS
	b) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	c) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	d) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	e) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	f) Verify that Data-check is enabled

	SUCCESS
	g) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	h) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	i) Have the User send a Process-Data Invocation with a data length greater than the max allowed.

	SUCCESS
	j) Verify the Provider sent a negative Process-Data Return indicating ‘data error’ upon receiving the first Process-Data Invocation.

	SUCCESS
	k) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	l) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	m) Verify that the TCP socket connection goes away.

4.17 DATA-CHECK PASS
This test starts a sequence-controlled data processing procedure prototype service and the user transfers a Process-Data Invocation with a data length greater than the size allowed. The Provider issues a negative return indicating ‘data error’.

Provider Configuration:

	Provider Type
	sequence-controlled

	input-queue-size
	25

	Production Rate
	5 PDIs/sec

	Max Data Length
	100

	data-check
	True

User Configuration:

	Transmit Rate
	5 PDIs/sec

	Data Length
	100

	Result
	Test

	SUCCESS
	n) Verify that the association is ‘unbound’.

	SUCCESS
	o) Verify that the system-time at the User closely matches the system-time at the Provider.

	SUCCESS
	p) Verify that the use of credentials for Bind is disabled at both the User and Provider – i.e. that within ISP1 the authentication-level is set to ‘none’.

	SUCCESS
	q) Have the User send a valid Bind-Invocation to the Provider. Verify that the Provider responds with a positive Bind-Invocation and transitions to the Bound-Ready state.

	SUCCESS
	r) Verify that the User accepts the positive result Bind-Return.

	SUCCESS
	s) Verify that Data-check is enabled

	SUCCESS
	t) Start production and verify the Provider transitions to the Operational state.

	SUCCESS
	u) Have the User send a valid Start-Invocation to the Provider, specifying the sequence-controlled data processing procedure. Verify that the Provider responds with a positive Start-Return and transitions to the Bound-Active state.

	SUCCESS
	v) Have the User send a Process-Data Invocation with a data length equal to the max allowed.

	SUCCESS
	w) Verify the Provider successfully processes the Process-Data Invocation.

	SUCCESS
	x) Have the User send a valid Stop-Invocation. Verify that the Provider responds with a positive Stop-Return and transitions to the Bound-Ready state.

	SUCCESS
	y) Have the User send a valid Unbind-Invocation to the Provider (reason = ‘suspend’). Verify that the Provider responds with a positive Unbind-Return and transitions to the Unbound state.

	SUCCESS
	z) Verify that the TCP socket connection goes away.

62

