[image: image1.emf]
	Common ServiceS Prototype Test plan AND REPORT

DRAFT CCSDS Record

CCSDS 000.0-Y-0

Draft Yellow Book

August 2019
FOREWORD

[Foreword text specific to this document goes here. The text below is boilerplate.]

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This document is therefore subject to CCSDS document management and change control procedures, which are defined in the Procedures Manual for the Consultative Committee for Space Data Systems. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· British National Space Centre (BNSC)/United Kingdom.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· China National Space Administration (CNSA)/People’s Republic of China.

· Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Federal Space Agency (FSA)/Russian Federation.

· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency (JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Belgian Federal Science Policy Office (BFSPO)/Belgium.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· Centro Tecnico Aeroespacial (CTA)/Brazil.

· Chinese Academy of Sciences (CAS)/China.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· Danish National Space Center (DNSC)/Denmark.

· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· Korea Aerospace Research Institute (KARI)/Korea.

· MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

· Ministry of Communications (MOC)/Israel.

· National Institute of Information and Communications Technology (NICT)/Japan.

· National Oceanic and Atmospheric Administration (NOAA)/USA.

· National Space Organization (NSPO)/Chinese Taipei.

· Naval Center for Space Technology (NCST)/USA.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· United States Geological Survey (USGS)/USA.

DOCUMENT CONTROL

	Document
	Title and Issue
	Date
	Status

	CCSDS 000.0-Y-0
	COMMON SERVICES PROTOTYPE TEST PLAN AND REPORT, Draft CCSDS Record, Issue 0
	August 2019
	Current draft

	
	
	
	

	
	
	
	

CONTENTS

Section
Page

iiiDOCUMENT CONTROL

ivCONTENTS

1-11
Introduction

1-11.1
Purpose

1-11.2
scope

1-11.3
structure of this report

1-11.4
References

12
OVERVIEW

12.1
TEST APPROACH

22.2
TESTS OVERViEW

22.3
Test Results SUMMARY

43
Compliance matrix

43.1
Common Services

54
Test Scenarios

54.1
Directory Service test cases

384.2
Login Service test cases

514.3
Configuration Service test cases

1 Introduction

1.1 Purpose

This test report provides a record of the interoperability testing that occurred in support of the production of the CCSDS recommendation 522.0, MISSION OPERATIONS—COMMON SERVICES.
1.2 scope

This test report addresses primarily the formal prototype interoperations that occurred between the ESA developed prototype and the CNES developed prototype, against the formally released RED 1 version of the COMMON SERVICES recommendation identified in 1.1.

1.3 structure of this report

This test report is organized as follows:

a) Section 1 provides purpose and scope, definitions and references used throughout the report;

b) Section 2 gives an overview of the test report and a summary of the test results;

c) Section 3 gives the compliance matrix.

d) Section 4 defines the test scenarios;

1.4 References

The following documents are referenced in this document. At the time of publication, the editions indicated were valid. All documents are subject to revision, and users of this document are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS documents.

[1]
Spacecraft Monitor and Control—Common Services. Draft Recommendation for Space Data System Standards, CCSDS 522.0-R-1. Red Book. Issue 1. Washington, D.C.: CCSDS, September 2018.
2 OVERVIEW

This document provides a record of the prototype interoperations conducted in support of the development of the CCSDS recommendation for Mission Operations Common Services.

The European Space Agency (ESA), and the Centre National d’Etudes Spatiales (CNES) of France each developed prototype implementations of the draft CCSDS recommendation.
2.1 TEST APPROACH

The tests check that two independent implementations of the Common specification adhere to the standard as specified by the CCSDS recommendation.
Two distinct stacks are built by assembling the following components:
· Test client
· Test provider
· Service specific API

· Service stubs and skeletons

· MAL API

· MAL implementation

· Security API

· Security implementation

· Transport API

· Transport adapter implementation

· Message transport

The figure below presents the two stacks:
[image: image2.emf]ProviderClient

Messaging Middleware

Message transport

MAL API

MAL Implementation

Standard Transport API

Sec API

Sec

Impl

MAL API

MAL Implementation

Standard Transport API

Sec API

Sec

Impl

Transport Adapter

Implementation

Transport Adapter

Implementation

Test Application

Service Specific API

Service Stub/Skeletons

Service Specific API

Test Application

Service Stub/Skeletons

Test Client

Test Provider

Figure 2‑1 Initial Common prototype

The following components are separately produced by ESA and CNES as new components for testing of this specification:
· Test client

· Test provider

· Service specific API

· Service stubs and skeletons
The following components are reused from ESA and verified by the MAL testbed:
· MAL API

· MAL implementation

· Security API

· Security implementation

· Transport API

The following components are reused from ESA and verified by the MAL SPP testbed:

· MAL SPP Transport adapter implementation

· Test MAL SPP Message transport
This deployment provides a complete and verified MAL stack up to the service API layers (which is the layer being tested).

2.2 TESTS OVERViEW
Three test scenarios are developed each verifying an aspect of the Common book:
· Directory service
· Login service

· Configuration service

2.3 Test Results SUMMARY

The parts of the test bed are built as a set of Maven (http://maven.apache.org/) components and hosted in a shared component repository (no code only binaries shared). This permits not only automated build and dependency management or the two application stacks but also the use of automated test tools.
Tests are a set of FitNesse (http://fitnesse.org/) pages, tests are defined using a special Wiki language, and test output is HTML web pages. The top level test application provides a set of methods for performing the various tests and these are invoked by the Wiki pages, the output of which is formatted into a HTML report.
Total of 369 individual tests were defined as outlined in the previous section.
2.3.1 TEST RESULTS

2.3.1.1 Overview

Each of the sub-sections in section 4 outline the test and include the test result in the form of a table, an example of which is shown below:

	script
	data type scenario

	check
	explicit duration type works
	OK

	check
	explicit Fine Time type works
	OK

	check
	explicit Identifier type works
	OK

Each row of the table represents a test of the test, the first row being the test name. If the test step in completed with success the row will be highlighted green, if it fails then it is highlighted red. A row without highlighting is a step that does not produce a result.
2.3.1.2 Result summary

	Total of 369 individual tests

	55 Directory Service tests
	All passed

	36 Login Service tests
	All passed

	278 Configuration Service tests
	All passed

3 Compliance matrix
This section lists all the requirements specified in the Common book that are checked by the test scenarios.

The tables below gather the Common requirements and indicate either the test procedure responsible for checking it.

3.1 Common Services

3.1.1 Directory Service (book section 3.2)
	Test procedures
	Test result

	4.1.1 Get Service XML test case
	PASS

	4.1.2 Lookup Provider test case
	PASS

	4.1.3 Publish Provider test case
	PASS

	4.1.4 Withdraw Provider test case
	PASS

3.1.2 Login Service (book section 3.3)
	Test procedures
	Test result

	4.2.1 Handover test case
	PASS

	4.2.2 Login test case
	PASS

	4.2.3 Logout test case
	PASS

	4.2.4 List roles test case
	PASS

3.1.3 Configuration Service (book section 3.4)
	Test procedures
	Test result

	4.3.1 List test case 1 of 2
	PASS

	4.3.2 List test case 2 of 2
	PASS

	4.3.3 Add test case
	PASS

	4.3.4 Remove test case
	PASS

	4.3.5 Get Current test case
	PASS

	4.3.6 Activate test case
	PASS

	4.3.7 Store Current test case
	PASS

	4.3.8 Import/Export XML test case
	PASS

4 Test Scenarios
4.1 Directory Service test cases
4.1.1 Get Service XML

This tests the get service XML operation and ensures all specified requirements for this operation are satisfied

	script
	directory service scenario

	ensure
	directory service has been created

	ensure
	directory test service has been created

	$null<-[null]
	null reference

	clear directory entries

	$fooProviderServiceKey<-[(keyArea=1, keyService=2, keyAreaVersion=3)]
	create service key with area number
	1
	and service number
	2
	and area version
	3

	* a) The providerObjId field shall hold the COM object instance identifier for the ServiceProvider[?] to obtain the service XML for.

	* d) The list of XML files supplied during the publishProvider operation for the matched provider shall be returned.

	add xml file for next published provider with name
	fooFile

	add xml file for next published provider with name
	barFile

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	$lastPublishedProviderId<-[1]
	last published provider obj id

	check
	get service xml file names with id
	$lastPublishedProviderId->[1]
	[fooFile, barFile]

	* b) If the supplied instance identifier is '0' an INVALID error shall be returned.

	get service xml file names with id
	0

	check
	error type of last get service xml exception
	INVALID

	* c) If the supplied identifier does not match an existing ServiceProvider[?] COM object then an UNKNOWN error shall be returned.

	get service xml file names with id
	23489

	check
	error type of last get service xml exception
	UNKNOWN

	* e) If no XML files were supplied by the provider then an empty list shall be returned.

	publish provider with provider id
	providerWithNoXmlFiles
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	$lastPublishedProviderId<-[2]
	last published provider obj id

	check
	get service xml file names with id
	$lastPublishedProviderId->[2]
	[]

4.1.2 Lookup provider
This tests the lookup provider operation and ensures all specified requirements of the filtering functionality are satisfied.

The filter field shall define the lookup query, the specifics of the ServiceFilter fields are defined in the following requirements.
	script
	directory service scenario

	ensure
	directory service has been created

	ensure
	directory test service has been created

	$null<-[null]
	null reference

	clear directory entries

	$fooProviderServiceKey<-[(keyArea=1, keyService=2, keyAreaVersion=3)]
	create service key with area number
	1
	and service number
	2
	and area version
	3

	$barProviderServiceKey<-[(keyArea=4, keyService=5, keyAreaVersion=6)]
	create service key with area number
	4
	and service number
	5
	and area version
	6

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	publish provider with provider id
	barService
	and domain
	barDomain
	and network id
	barNetwork
	and session type
	SIMULATION
	and session name
	barSession
	and service key
	$barProviderServiceKey->[(keyArea=4, keyService=5, keyAreaVersion=6)]

	*b) If the serviceProviderId field is NULL then all service provider names shall be matched.

	create filter

	with provider id
	$null->[null]

	with domain ids
	$null->[null]

	lookup directory

	check
	provider ids for last lookup
	fooService, barService

	create filter

	with null provider id

	lookup directory

	check
	provider ids for last lookup
	fooService, barService

	c) If the final identifier of the domain field of the filter is the wildcard '', then all sub-domains shall be searched for matches.

	create filter

	with domain ids
	fooDomain, *

	lookup directory

	check
	provider ids for last lookup
	fooService

	*d) If the wildcard is used in any other part of the domain other than the final one then an INVALID error shall be returned.

	create filter

	with domain ids
	*, fooDomain

	lookup directory

	check
	last lookup provider error
	INVALID

	*e) If the domain field is NULL then all domains shall be matched.

	create filter

	with domain ids
	$null->[null]

	lookup directory

	check
	provider ids for last lookup
	fooService, barService

	*f) If the network field is NULL then all networks shall be matched.

	create filter

	with network id
	$null->[null]

	lookup directory

	check
	provider ids for last lookup
	fooService, barService

	*g) If the sessionType field is NULL then all session types shall be matched.

	create filter

	with session type
	$null->[null]

	lookup directory

	check
	provider ids for last lookup
	fooService, barService

	*h) If the sessionName field is NULL then all session names shall be matched.

	create filter

	with session name
	$null->[null]

	lookup directory

	check
	provider ids for last lookup
	fooService, barService

	*i) If the serviceKey field is NULL then all areas, services and versions shall be matched.

	create filter

	with null service key

	lookup directory

	check
	provider ids for last lookup
	fooService, barService

	*j) If the area field is the wildcard '0' then all areas names shall be matched.

	create filter

	with area
	0

	with service
	2

	with area version
	3

	lookup directory

	check
	provider ids for last lookup
	fooService

	*k) If the service field is the wildcard '0' then all services shall be matched.

	create filter

	with area
	1

	with service
	0

	with area version
	3

	lookup directory

	check
	provider ids for last lookup
	fooService

	*l) If the version field is the wildcard '0' then all area versions shall be matched.

	create filter

	with area
	1

	with service
	2

	with area version
	0

	lookup directory

	check
	provider ids for last lookup
	fooService

	*m) If the requiredCapabilitySets field is NULL or an empty list then all service capability sets shall be matched.

	create filter

	with required capabilities
	$null->[null]

	lookup directory

	check
	provider ids for last lookup
	fooService, barService

	*n) The operation shall return a list of service providers that match the filter.

	create filter

	with provider id
	fooService

	lookup directory

	check
	provider ids for last lookup
	fooService

	create filter

	with network id
	barNetwork

	lookup directory

	check
	provider ids for last lookup
	barService

	create filter

	with domain ids
	fooDomain

	lookup directory

	check
	provider ids for last lookup
	fooService

	create filter

	with session type
	SIMULATION

	lookup directory

	check
	provider ids for last lookup
	barService

	create filter

	with session name
	fooSession

	lookup directory

	check
	provider ids for last lookup
	fooService

	*o) If no service providers match the supplied filter then NULL shall be returned.

	create filter

	with provider id
	missingService

	lookup directory

	check
	provider ids for last lookup
	$null->[null]

	close directory service

4.1.3 Publish provider
This tests the publish provider operation and ensures all specified requirements related to publishing a provider are satisfied
The newProviderDetails field shall hold the provider details of the service to be added or updated in the directory service.
	script
	directory service scenario

	ensure
	directory service has been created

	ensure
	directory test service has been created

	clear directory entries

	$fooProviderServiceKey<-[(keyArea=1, keyService=2, keyAreaVersion=3)]
	create service key with area number
	1
	and service number
	2
	and area version
	3

	$barProviderServiceKey<-[(keyArea=4, keyService=5, keyAreaVersion=6)]
	create service key with area number
	4
	and service number
	5
	and area version
	6

	b) If any of the fields of the newProviderDetails domain/sessionType/SessionName/network fields are either empty or contain the wildcard '' an INVALID error shall be returned.

	* session type ignored - cannot be empty or contain a wildcard due to it being an enum

	* check domain invalidates

	publish provider with provider id
	fooService
	and domain
	*
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	publish provider with provider id
	fooService
	and domain
	
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	* check session name invalidates

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	*
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	* check network id invalidates

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	*
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	c) If the providerId field of the PublishDetails[?] structure is empty or contains the wildcard '' an INVALID error shall be returned.

	publish provider with provider id
	*
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	publish provider with provider id
	
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	*d) If the area/service/version fields of the PublishDetails[?] structure contain '0' or the supportedCapabilitySets list is empty or contains '0' then an INVALID error shall be returned.

	* check area field invalidates

	$serviceKeyWithInvalidAreaNumber<-[(keyArea=0, keyService=2, keyAreaVersion=3)]
	create service key with area number
	0
	and service number
	2
	and area version
	3

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$serviceKeyWithInvalidAreaNumber->[(keyArea=0, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	* check service field invalidates

	$serviceKeyWithInvalidServiceNumber<-[(keyArea=1, keyService=0, keyAreaVersion=3)]
	create service key with area number
	1
	and service number
	0
	and area version
	3

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$serviceKeyWithInvalidServiceNumber->[(keyArea=1, keyService=0, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	* check area version invalidates

	$serviceKeyWithInvalidAreaVersion<-[(keyArea=1, keyService=2, keyAreaVersion=0)]
	create service key with area number
	1
	and service number
	2
	and area version
	0

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$serviceKeyWithInvalidAreaVersion->[(keyArea=1, keyService=2, keyAreaVersion=0)]

	check
	last publish provider error
	INVALID

	* check supported capabilities invalidates

	prepare service capability for next published provider with service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]
	and capabilities
	0,2,3

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	prepare service capability for next published provider with service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]
	and capabilities
	

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	*e) For each contained ProviderAddressDetails[?] structure if the supportedLevels list is empty or the priorityLevels field is '0' then an INVALID error shall be returned.

	$addressDetailsWithEmptyQoSLevels<-[(supportedLevels=[], QoSproperties=[], priorityLevels=10, serviceURI=null, brokerURI=null, brokerProviderObjInstId=null)]
	create address details with priority levels
	10
	and qos levels
	

	prepare service capability for next published provider with service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]
	and address details
	$addressDetailsWithEmptyQoSLevels->[(supportedLevels=[], QoSproperties=[], priorityLevels=10, serviceURI=null, brokerURI=null, brokerProviderObjInstId=null)]

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	*f) If an error is being returned then no changes shall be made.

	clear directory entries

	publish provider with provider id
	
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	last publish provider error
	INVALID

	create filter

	with domain ids
	*

	lookup directory

	check
	provider ids for last lookup
	null

	*g) If the providerId field of the PublishDetails[?] structure matches an existing ServiceProvider[?] COM object, the operation shall update the existing details of that provider.

	clear directory entries

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	publish provider with provider id
	fooService
	and domain
	barDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	create filter

	with domain ids
	*

	lookup directory

	check
	provider ids for last lookup
	fooService

	*note that both the following requirements are asserted by the following test, the ProviderID (ServiceProvider[?] COM object) and ProviderDetails[?] (ProviderCapabilities[?] COM object) must be created to publish and filter

	*h) If the providerId field of the PublishDetails[?] structure does not match an existing ServiceProvider[?] COM object, then the operation shall create a new ServiceProvider[?] COM object to represent the new service provider.

	*i) A new ProviderCapabilities[?] COM object shall be created to store the capabilities of the provider.

	clear directory entries

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	publish provider with provider id
	barService
	and domain
	barDomain
	and network id
	barNetwork
	and session type
	LIVE
	and session name
	barSession
	and service key
	$barProviderServiceKey->[(keyArea=4, keyService=5, keyAreaVersion=6)]

	create filter

	with domain ids
	*

	lookup directory

	check
	provider ids for last lookup
	fooService, barService

	*j) The created objects should be stored in the COM archive by the service provider.

	*k) The operation shall return the COM object instance identifiers of the ServiceProvider[?] and ProviderCapabilities[?] COM objects representing the provider.

	clear directory entries

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	check
	service provider id from archive using last publish provider response
	fooService

	ensure
	provider details from archive using last publish provider response is not null

4.1.4 Withdraw provider
This tests the withdraw provider operation and ensures all specified requirements related to withdrawing a provider from the directory service are satisfied
	script
	directory service scenario

	ensure
	directory service has been created

	ensure
	directory test service has been created

	clear directory entries

	$fooProviderServiceKey<-[(keyArea=1, keyService=2, keyAreaVersion=3)]
	create service key with area number
	1
	and service number
	2
	and area version
	3

	publish provider with provider id
	fooService
	and domain
	fooDomain
	and network id
	fooNetwork
	and session type
	LIVE
	and session name
	fooSession
	and service key
	$fooProviderServiceKey->[(keyArea=1, keyService=2, keyAreaVersion=3)]

	* a) The providerObjId field shall hold the object instance identifier for the ServiceProvider[?] COM object to remove from the directory service.

	* b) If the supplied identifier is '0' an INVALID error shall be returned.

	withdraw provider with id
	0

	check
	error type of last withdraw provider exception
	INVALID

	* c) If the supplied identifier does not match an existing ServiceProvider[?] COM object then an UNKNOWN error shall be returned.

	withdraw provider with id
	293

	check
	error type of last withdraw provider exception
	UNKNOWN

	* d) If an error is being returned then no changes shall be made.

	create filter

	with domain ids
	*

	lookup directory

	check
	provider ids for last lookup
	fooService

	withdraw provider with id
	0

	create filter

	with domain ids
	*

	lookup directory

	check
	provider ids for last lookup
	fooService

	* e) The matched provider shall be removed from the directory service.

	$lastPublishedProviderId<-[9]
	last published provider obj id

	create filter

	with domain ids
	*

	lookup directory

	check
	provider ids for last lookup
	fooService

	withdraw provider with id
	$lastPublishedProviderId->[9]

	create filter

	with domain ids
	*

	lookup directory

	$null<-[null]
	null reference

	check
	provider ids for last lookup
	$null->[null]

4.2 Login Service test cases
4.2.1 Handover operation
This tests the handover operation of the login service.
	script
	login service scenario

	initialise login services

	create user with username
	Mr Test
	and password
	correct password
	and role
	10

	create user with username
	Mrs Test
	and password
	correct password
	and role
	10

	login with username
	Mr Test
	and password
	correct password
	and role
	10

	ensure
	no login errors

	*a) The newUserDetails field shall contain the details of the new user and role combination.

	handover login with username
	Mrs Test
	and password
	correct password
	and role
	10

	ensure
	no handover errors

	logout

	b) If the username field of the supplied Profile structure is either NULL, the wildcard '', or empty an INVALID error shall be returned.

	handover login with username
	
	and password
	correct password
	and role
	10

	check
	last handover error
	INVALID

	handover login with username
	*
	and password
	correct password
	and role
	10

	check
	last handover error
	INVALID

	note
	statements c) and d) below have been raised as a possible ambiguities so they are currently untested - we currently can't determine whether a role is required or not as it's an implementation detail that is outside the scope of the login service

	*c) If roles are required by the system and the role field of the supplied Profile structure is NULL then an INVALID error shall be returned.

	*d) If roles are not used by the system the role field of the supplied Profile structure shall be ignored and may be set to NULL.

	*e) An UNKNOWN error shall be returned if the username, password and role combination are not correct for the system i.e. unknown user/role or incorrect password.

	handover login with username
	Mrs Test
	and password
	invalid password
	and role
	10

	check
	last handover error
	UNKNOWN

	*f) A DUPLICATE error shall be returned if the username and role combination is currently in use.

	login with username
	Mrs Test
	and password
	correct password
	and role
	10

	clear auth id

	login with username
	Mr Test
	and password
	correct password
	and role
	10

	handover login with username
	Mrs Test
	and password
	correct password
	and role
	10

	logout using previous auth id

	check
	last handover error
	DUPLICATE

	note
	the following statement (g) is deployment specific so cannot be tested in its current form

	*g) A TOO_MANY error shall be returned if the username or role are already used and exceed the permitted maximum usage value (deployment dependent).

	*i) If the handover is successful the provider shall create a new LoginInstance[?] COM object and store it in the COM archive.

	check
	username of login instance from archive using last handover response
	Mrs Test

	*j) The related link of the new LoginInstance[?] COM object shall be set to the requested LoginRole[?] COM object.

	check
	role of login instance from archive using last handover response
	10

	*k) If an error is raised then the handover operation shall fail and the original login remain active.

	create user with username
	Mr Foo
	and password
	correct password
	and role
	10

	login with username
	Mr Foo
	and password
	correct password
	and role
	10

	handover login with username
	Mrs Test
	and password
	invalid password
	and role
	10

	check
	last handover error
	UNKNOWN

	login with username
	Mr Foo
	and password
	correct password
	and role
	10

	check
	last login error
	INVALID

	logout

	*l) The source link of the new LoginInstance[?] COM object shall be set to the LoginInstance[?] COM object that represents the previous login.

	login with username
	Mr Foo
	and password
	correct password
	and role
	10

	handover login with username
	Mrs Test
	and password
	correct password
	and role
	10

	ensure
	last handover login instance source is set to last login instance id

	logout

	*m) If the handover operation is successful a LogoutEvent[?] COM event shall be generated for the previous login and a LoginEvent[?] COM event shall be generated for the new login.

	login with username
	Mr Foo
	and password
	correct password
	and role
	10

	wait for next event

	*which should be the login event

	clear usernames of previous logout events

	clear usernames of previous login events

	handover login with username
	Mrs Test
	and password
	correct password
	and role
	10

	wait for next event

	* which should be the logout event of Mr Foo

	wait for next event

	* which should be the login event of Mrs Test

	check
	usernames of previous logout events
	Mr Foo

	check
	usernames of previous login events
	Mrs Test

	*n) The returned newAuthId field shall be used as the authenticationId field in future MAL messages by the consumer MAL for authentication. The token is specific to the new user and role in use.

	* to test this we log out which will only succeed if we correctly set the auth ID on the header. We then attempt to login with the same user and role which would return a DUPLICATE error if the log out has failed

	handover login with username
	Mr Foo
	and password
	correct password
	and role
	10

	logout

	login with username
	Mr Foo
	and password
	correct password
	and role
	10

	ensure
	no login errors

	logout

	*o) The returned newLoginInstId field shall contain the new LoginInstance[?] COM object instance identifier that was created by the operation.

	handover login with username
	Mrs Test
	and password
	correct password
	and role
	10

	ensure
	no login errors

	check
	username of login instance from archive using last handover response
	Mrs Test

	logout

4.2.2 Login operation
This tests the login operation of the login service.
	script
	login service scenario

	initialise login services

	*a) The authenticationId field of the REQUEST message must be NULL otherwise an INVALID error shall be returned.

	create user with username
	Mr Foo
	and password
	correct password

	login with username
	Mr Foo
	and password
	correct password

	login with username
	Mr Foo
	and password
	correct password

	check
	last login error
	INVALID

	logout

	b) If the username field of the supplied Profile structure is either the wildcard '' or empty an INVALID error shall be returned.

	login with username
	
	and password
	password

	check
	last login error
	INVALID

	login with username
	*
	and password
	password

	check
	last login error
	INVALID

	note
	statements c) and d) below have been raised as a possible ambiguities so they are currently untested - we currently can't determine whether a role is required or not as it's an implementation detail that is outside the scope of the login service

	*c) If roles are required by the system and the role field of the supplied Profile structure is NULL then an INVALID error shall be returned.

	*d) If roles are not used by the system the role field of the supplied Profile structure shall be ignored and may be set to NULL.

	*e) An UNKNOWN error shall be returned if the username, password and role combination are not correct for the system i.e. unknown user/role or incorrect password.

	create user with username
	Mr Test
	and password
	correct password

	login with username
	Mr Test
	and password
	wrong password

	check
	last login error
	UNKNOWN

	*f) A DUPLICATE error shall be returned if the username and role combination is currently in use

	create user with username
	Mr Test
	and password
	correct password

	login with username
	Mr Test
	and password
	correct password

	clear auth id

	login with username
	Mr Test
	and password
	correct password

	logout using previous auth id

	check
	last login error
	DUPLICATE

	note
	the following statement (g) is deployment specific so cannot be tested in its current form

	*g) A TOO_MANY error shall be returned if the username or role are already used and exceed the permitted maximum usage value (deployment dependent).

	*h) If the login is successful the provider should create a new LoginInstance[?] COM object and store it in the COM archive.

	create user with username
	Mrs Test
	and password
	correct password
	and role
	5

	wait for next event

	clear usernames of previous login events

	login with username
	Mrs Test
	and password
	correct password
	and role
	5

	ensure
	no login errors

	check
	username of login instance from archive using last login response
	Mrs Test

	logout

	wait for next event

	*i) The related link of the new LoginInstance[?] COM object shall be set to the requested LoginRole[?] COM object.

	check
	role of login instance from archive using last login response
	5

	*j) A LoginEvent[?] COM event shall be generated at this point.

	check
	usernames of previous login events
	Mrs Test

	*note the below requirement is consumer specific and has no effect on the login service itself.

	*k) The returned authId field shall be used as the authenticationId field in future MAL messages by the consumer MAL for authentication. The token is specific to the user and role in use.

	* to test this we log out which will only succeed if we correctly set the auth ID on the header. We then attempt to login with the same user and role which would return a DUPLICATE error if the log out has failed

	login with username
	Mrs Test
	and password
	correct password
	and role
	5

	ensure
	no login errors

	logout

	login with username
	Mrs Test
	and password
	correct password
	and role
	5

	ensure
	no login errors

	logout

	*l) The returned objInstId field shall contain the LoginInstance[?] COM object instance identifier that was created by the login operation.

	login with username
	Mrs Test
	and password
	correct password
	and role
	5

	check
	username of login instance from archive using last login response
	Mrs Test

	logout

4.2.3 Logout operation
This tests the logout operation of the login service.
	script
	login service scenario

	initialise login services

	create user with username
	Mr Test
	and password
	correct password

	*a) Upon reception of the message the operation shall remove the matched user from the set of logged in users in the login service provider.

	login with username
	Mr Test
	and password
	correct password

	ensure
	no login errors

	wait for next event

	login with username
	Mr Test
	and password
	correct password

	clear auth id

	login with username
	Mr Test
	and password
	correct password

	* assert that the implementation is aware the Mr Test user is already logged in using the DUPLICATE error

	check
	last login error
	DUPLICATE

	clear usernames of previous logout events

	logout using previous auth id

	wait for next event

	login with username
	Mr Test
	and password
	correct password

	wait for next event

	ensure
	no login errors

	*b) A LogoutEvent[?] COM event shall be generated at this point.

	check
	usernames of previous logout events
	Mr Test

	logout

4.2.4 List roles operation
This tests the list roles operation of the login service.
	script
	login service scenario

	initialise login services

	$null<-[null]
	null reference

	create user with username
	Mr Test
	and password
	correct password

	*a) The username field shall hold the details of the user.

	b) If the username field is either the wildcard '', NULL or empty an INVALID error shall be returned.

	list roles with username
	*
	and password
	*

	check
	last list roles error
	INVALID

	list roles with null username

	check
	last list roles error
	INVALID

	*c) An UNKNOWN error shall be returned if the username and password combination are not correct for the system i.e. unknown user or incorrect password.

	list roles with username
	wrong username
	and password
	wrong password

	check
	last list roles error
	UNKNOWN

	*d) The operation shall return a list of LoginRole[?] object instance identifiers that are permitted for the user or NULL if roles are not used by the system.

	add login roles for username
	Mr Test
	with ids
	9,10,11

	check
	list roles with username
	Mr Test
	and password
	correct password
	[9, 10, 11]

4.3 Configuration Service test cases
4.3.1 List test case 1/2
This checks assertions in the definition of the list operation.

	script
	configuration scenario

	note
	3.4.2.a.b: The configuration service shall provide the capability: list available configurations;

	init script

	note
	3.4.8.2.g: The operation shall return the list of matched configuration objects known to the configuration service provider.

	note
	3.4.8.1: To appear in the response from the list operation a configuration must have either been added to the configuration service provider using the add operation or alternatively known to the configuration service by another implementation specific mechanism.

	note
	3.4.8.2.h: If no configurations matched then an empty list shall be returned.

	ensure
	create and register hc configuration

	ensure
	list configurations
	SERVICE
	for service
	configurationTestHc

	reject
	check configuration is in last list result
	sHcConf1

	check
	last list result size
	0

	ensure
	add configuration
	sHcConf1

	ensure
	list configurations
	SERVICE
	for service
	configurationTestHc

	ensure
	check configuration is in last list result
	sHcConf1

	note
	3.4.8.2.a: The configurationType argument shall hold the type of configuration to be listed.

	note
	3.4.8.3.1: ERROR:INVALID Requested configuration is not a valid configuration object type [...]

	reject
	list configurations
	NULLTYPE
	for service
	configurationTestHc

	check
	last list error
	INVALID

	note
	3.4.8.2.b: The domain request argument shall contain the domain of the configuration objects to return.

	note
	3.4.8.2.c: The domain field supports the wildcard value of '*' only in the last part of the domain, otherwise an INVALID error shall be returned. See section 3.5.6.5.g in R[2].

	ensure
	set temporary domain
	

	reject
	list configurations
	SERVICE
	for service
	configurationTestHc

	check
	last list error
	INVALID

	ensure
	reset domain

	ensure
	set temporary domain
	*.domain

	reject
	list configurations
	SERVICE
	for service
	configurationTestHc

	check
	last list error
	INVALID

	ensure
	reset domain

	ensure
	set temporary domain
	*

	ensure
	list configurations
	SERVICE
	for service
	configurationTestHc

	ensure
	reset domain

	note
	3.4.8.2.e: Wildcard values of '0' are not accepted in the serviceKey fields, an INVALID error shall be returned in this case.

	reject
	list configurations
	SERVICE
	for service
	wrongKey1

	check
	last list error
	INVALID

	reject
	list configurations
	SERVICE
	for service
	wrongKey2

	check
	last list error
	INVALID

	reject
	list configurations
	SERVICE
	for service
	wrongKey3

	check
	last list error
	INVALID

4.3.2 List test case 2/2
This checks assertions in the definition of the list operation.

	script
	configuration scenario

	init script

	note
	3.4.8.2.f: For other types of configuration the serviceKey field shall be ignored and may be set to NULL in the request.

	ensure
	list configurations
	PROVIDER
	for service
	wrongKey1

	ensure
	check configuration is in last list result
	pConfBasic

	note
	

	note
	3.4.8.2.d: If the request configuration type is SERVICE, then an optional filter may be supplied in the serviceKey field where the ServiceKey[?] composite holds the service area, service, and version values to match on.

	ensure
	list configurations
	SERVICE
	for service
	

	check
	last list result size
	2

	ensure
	check configuration is in last list result
	sHcConf1

	ensure
	check configuration is in last list result
	sNcConf1

4.3.3 Add test case
This checks assertions in the definition of the add operation.

	script
	configuration scenario

	note
	3.4.2.a.c: The configuration service shall provide the capability: manage the available configurations;

	init script

	note
	3.4.11.1: The Configuration must already exist in the COM archive to be added to the Configuration Service.

	note
	3.4.11.2.d: If [...] the configuration objects are unknown then an UNKNOWN error shall be returned.

	note
	3.4.11.3.3.b: A list of the indexes of the error values shall be contained in the extra information field.

	note
	3.4.11.2.f: If an error is raised then no new configurations shall be added as a result of this operation call.

	ensure
	list configurations
	SERVICE
	for service
	configurationTestNc

	check
	last list result size
	0

	reject
	add configuration
	sNcConf1

	check
	last add error
	UNKNOWN

	check
	last add error indexes
	0

	ensure
	list configurations
	SERVICE
	for service
	configurationTestNc

	check
	last list result size
	0

	ensure
	create and register nc configuration

	note
	

	note
	3.4.11.2.d: If either the service provider or [...] are unknown then an UNKNOWN error shall be returned.

	ensure
	set temporary provider id
	100

	reject
	add configuration
	sNcConf1

	ensure
	reset provider id

	check
	last add error
	UNKNOWN

	note
	

	note
	3.4.11.2.e: If any of the supplied configuration objects are not provider or service configuration objects then an INVALID error shall be returned.

	note
	3.4.11.3.1.b: The extra information field contains a list of the indexes of the erroneous values from the originating list supplied.

	note
	3.4.11.2.f: If an error is raised then no new configurations shall be added as a result of this operation call.

	reject
	add configuration
	noConf

	check
	last add error
	INVALID

	check
	last add error indexes
	0

	ensure
	list configurations
	SERVICE
	for service
	configurationTestNc

	check
	last list result size
	0

	note
	

	note
	3.4.11.2.b: The first argument shall contain the domain and object identifier of the ServiceProvider[?] COM object which the configurations are being added to.

	note
	3.4.11.2.c: The second argument shall contain a list of service and/or provider configurations to add to the list of configurations available for the specific service provider.

	ensure
	add configuration
	sNcConf1

	ensure
	list configurations
	SERVICE
	for service
	configurationTestNc

	check
	last list result size
	1

	ensure
	check configuration is in last list result
	sNcConf1

	note
	

	ensure
	create and register com configuration

	ensure
	create and register provider configuration

	ensure
	add configuration
	pConfBasic

4.3.4 Remove test case
This checks assertions in the definition of the remove operation.

	script
	configuration scenario

	note
	3.4.2.a.c: The configuration service shall provide the capability: manage the available configurations;

	init script

	note
	3.4.12.2.d: If a provided object identifier does not match an existing configuration object then this operation shall fail with an UNKNOWN error.

	note
	3.4.12.3.1.b: A list of the indexes of the error values shall be contained in the extra information field.

	note
	3.4.12.2.f: If an error is raised then no configurations shall be removed as a result of this operation call.

	ensure
	list configurations
	SERVICE
	for service
	configurationTestNc

	check
	last list result size
	1

	reject
	remove configuration
	sNcConf1,uConf

	check
	last remove error
	UNKNOWN

	check
	last remove error indexes
	1

	ensure
	list configurations
	SERVICE
	for service
	configurationTestNc

	check
	last list result size
	1

	ensure
	check configuration is in last list result
	sNcConf1

	note
	

	note
	3.4.12.2.e: If any of the supplied configuration objects are not provider or service configuration objects then an INVALID error shall be returned.

	note
	3.4.12.3.2.b: The extra information field contains a list of the indexes of the erroneous values from the originating list supplied.

	reject
	remove configuration
	sNcConf1,noConf

	check
	last remove error
	INVALID

	check
	last remove error indexes
	1

	ensure
	list configurations
	SERVICE
	for service
	configurationTestNc

	check
	last list result size
	1

	ensure
	check configuration is in last list result
	sNcConf1

	note
	

	note
	3.4.12.2.b: The first argument shall contain the domain and object identifier of the ServiceProvider[?] COM object which the configurations are being removed from.

	note
	3.4.12.2.c: The second argument shall contain a list of provider configurations to remove from the list of configurations available for the specific service provider.

	note
	3.4.12.2.g: Matched configuration objects shall not be removed from the COM archive only the list of configuration objects in the provider.

	ensure
	list from archive
	SERVICE_CONFIGURATION

	show
	last list archive result size
	4

	ensure
	mark last list archive result size
	

	ensure
	remove configuration
	sNcConf1
	

	ensure
	list configurations
	SERVICE
	for service
	configurationTestNc
	

	check
	last list result size
	0
	

	ensure
	list from archive
	SERVICE_CONFIGURATION
	

	show
	last list archive result size
	4

	ensure
	check last marked list archive result size
	

	note
	
	

	ensure
	add configuration
	sNcConf1
	

4.3.5 Get Current test case
This checks assertions in the definition of the getCurrent operation.

	script
	configuration scenario

	note
	3.4.2.a.d: The configuration service shall provide the capability: get [...] the current configuration;

	init script

	note
	3.4.9.2.d: An UNKNOWN error shall be returned if the combination of service provider and service filter fields don't match an existing [...] configuration.

	reject
	get current
	configurationTestHc

	check
	last get current error
	UNKNOWN

	note
	

	note
	3.4.9.2.b: If the serviceKey field is not NULL, then the operation shall return the configuration of the selected service, as specified in the field.

	note
	3.4.9.2.f: If a service configuration was requested, serviceKey was not NULL, the response shall contain a list of a single item of the matched ServiceConfiguration[?] COM object.

	ensure
	activate configuration
	sHcConf1

	ensure
	get current
	configurationTestHc

	check
	last get current result size
	1

	ensure
	check configuration is in last get current result
	sHcConf1

	note
	

	note
	3.4.9.2.a: The serviceProvider field shall contain the domain and object instance identifier of the ServiceProvider[?] COM object being queried.

	note
	3.4.9.2.d: An UNKNOWN error shall be returned if the combination of service provider and service filter fields don't match an existing service provider, [...].

	ensure
	set temporary provider id
	100

	reject
	get current
	configurationTestHc

	ensure
	reset provider id

	check
	last get current error
	UNKNOWN

	note
	

	note
	3.4.9.2.d: An UNKNOWN error shall be returned if the combination of service provider and service filter fields don't match an existing [...] service key [...].

	reject
	get current
	wrongKey

	check
	last get current error
	UNKNOWN

	note
	

	note
	3.4.9.2.e: No wildcards are supported, an INVALID error must be returned in this case.

	reject
	get current
	wrongKey1

	check
	last get current error
	INVALID

	reject
	get current
	wrongKey2

	check
	last get current error
	INVALID

	reject
	get current
	wrongKey3

	check
	last get current error
	INVALID

	ensure
	set temporary domain
	*.domain

	ensure
	set temporary provider id

	reject
	get current
	configurationTestHc

	check
	last get current error
	INVALID

	ensure
	reset provider id

	ensure
	reset domain

	ensure
	set temporary domain
	domain.*

	ensure
	set temporary provider id

	reject
	get current
	configurationTestHc

	check
	last get current error
	INVALID

	ensure
	reset provider id

	ensure
	reset domain

	note
	

	note
	3.4.9.2.c: For retrieval of the provider level configuration the serviceKey field shall be set to NULL in the request.

	note
	3.4.9.2.g: If a provider configuration was requested, serviceKey was NULL, the response shall contain a list of the matched ProviderConfiguration[?] COM object followed by the list of active ServiceConfiguration[?] objects active for that provider.

	reject
	get current
	NULLKEY

	check
	last get current error
	UNKNOWN

	ensure
	activate configuration
	pConfBasic

	ensure
	activate configuration
	sNcConf1

	ensure
	get current
	NULLKEY

	check
	last get current result size
	2

	ensure
	check configuration is in last get current result
	pConfBasic

	ensure
	check configuration is in last get current result
	sNcConf1

	reject
	check configuration is in last get current result
	sHcConf1

	reject
	get current
	configurationTestHc

4.3.6 Activate test case
This checks assertions in the definition of the activate operation.

	script
	configuration scenario

	note
	3.4.2.a.a: The configuration service shall provide the capability: activate a configuration;

	init script

	note
	3.4.7.1: The requested configuration must have either already been added to the configuration service provider using the add operation or alternatively known to the configuration service by another implementation specific mechanism.

	note
	3.4.7.2.g: If the object instance identifier held in the configObjId field does not reference a valid configuration for the service provider an INVALID error shall be returned. A valid configuration is one that is returned from the list operation for the matched service provider.

	ensure
	list configurations
	SERVICE
	for service
	configurationTest

	reject
	check configuration is in last list result
	sComConf1

	reject
	activate configuration
	sComConf1

	check
	last activate error
	INVALID

	ensure
	add configuration
	sComConf1

	ensure
	list configurations
	SERVICE
	for service
	configurationTest

	ensure
	check configuration is in last list result
	sComConf1

	note
	

	note
	3.4.7.2.a: The serviceProvider field shall contain the domain and object instance identifier of the ServiceProvider[?] COM object being (re)configured.

	note
	3.4.7.2.b: If the service provider referenced by the serviceProvider field is not known an UNKNOWN error shall be returned.

	ensure
	set temporary provider id
	100

	reject
	activate configuration
	sComConf1

	ensure
	reset provider id

	check
	last activate error
	UNKNOWN

	note
	

	note
	3.4.7.2.c: The configObjId field shall hold the COM object identifier that identifies the configuration to activate.

	note
	3.4.7.2.e: An UNKNOWN error shall be returned if the object instance identifier held in the configObjId field does not match an existing configuration.

	reject
	activate configuration
	uConf

	check
	last activate error
	UNKNOWN

	note
	

	note
	3.4.7.2.d: The configObjId field shall reference either a ProviderConfiguration[?] or ServiceConfiguration[?] object.

	note
	3.4.7.2.f: An INVALID error shall be returned if the object instance identifier held in the configObjId field does not reference either a ProviderConfiguration[?] or ServiceConfiguration[?] object.

	reject
	activate configuration
	noConf

	check
	last activate error
	INVALID

	note
	

	note
	3.4.7.2.h: A ConfigurationSwitch[?] COM Event shall be published if no errors are being returned containing the ObjectId[?] of the service or provider configuration to use, i.e. the contents of the configObjId field of this operation.

	note
	3.4.7.2.i: The acknowledgement message shall be sent at this point.

	ensure
	activate configuration asyn start
	sComConf1

	ensure
	wait for short time

	ensure
	get next configuration event

	ensure
	check last configuration event type is
	EVT_SWITCH

	ensure
	mark last switch configuration event id

	show
	last switch configuration event id
	208

	note
	3.4.4.a: A ConfigurationSwitch[?] COM event shall represent a request change in active configuration.
	

	note
	3.4.4.b: The ConfigurationSwitch[?] COM event body shall hold the configuration to be activated.
	

	ensure
	check last switch configuration event body is
	sComConf1
	

	note
	3.4.4.c: The ConfigurationSwitch[?] COM event related link shall point to the COM ServiceProvider[?] object that is required to attempt the configuration switch.
	

	ensure
	check last switch configuration event related is expected provider
	

	note
	
	

	note
	3.4.7.2.j: The service provider that implements the selected service shall, after the reception of the ConfigurationSwitch[?] event, reconfigure itself and publish a ConfigurationSwitched[?] COM event.
	

	ensure
	activate configuration asyn complete
	

	ensure
	wait for short time
	

	ensure
	get next configuration event
	

	ensure
	check last configuration event type is
	EVT_SWITCHED
	

	ensure
	get current
	configurationTest
	

	ensure
	check configuration is in last get current result
	sComConf1
	

	note
	3.4.4.e: A ConfigurationSwitched[?] COM event shall be raised when a configuration is made active.
	

	note
	3.4.4.f: The ConfigurationSwitched[?] COM event body shall hold the result of the activation attempt.
	

	note
	3.4.4.g: If the activation was successful then the body of the ConfigurationSwitched[?] event shall be set to TRUE, otherwise FALSE for failure.
	

	ensure
	check last switched configuration event body is
	true
	

	note
	
	

	note
	3.4.4.h: The ConfigurationSwitched[?] COM event related link shall point to the ConfigurationSwitch[?] event that triggered the switch attempt.
	

	show
	last switched configuration event related
	208

	ensure
	check last switched configuration event related is expected switch event
	

	note
	
	

	note
	3.4.7.2.n: The response message shall be sent when the configuration is [...] made active [...].
	

	note
	3.4.7.2.o: If the activation was successful then the activationResult field shall be set to TRUE [...].
	

	check
	last activate result
	true
	

	note
	
	

	note
	3.4.7.2.p: The previousConfig field shall point to the previous active configuration or be NULL if no configuration was previously active.
	

	ensure
	check previous configuration is
	
	

	note
	
	

	note
	3.4.7.2.k: If the operation fails the previous configuration shall remain active.
	

	ensure
	add configuration
	sComConf2
	

	ensure
	activate configuration asyn start
	sComConf2
	

	ensure
	wait for short time
	

	ensure
	get next configuration event
	

	ensure
	check last configuration event type is
	EVT_SWITCH
	

	ensure
	check last switch configuration event body is
	sComConf2
	

	ensure
	activate configuration asyn complete
	false
	

	ensure
	wait for short time
	

	ensure
	get next configuration event
	

	ensure
	check last configuration event type is
	EVT_SWITCHED
	

	ensure
	get current
	configurationTest
	

	ensure
	check configuration is in last get current result
	sComConf1
	

	note
	3.4.4.g: [...] the body of the ConfigurationSwitched[?] event shall be set to [...] FALSE for failure.
	

	ensure
	check last switched configuration event body is
	false
	

	note
	
	

	note
	3.4.7.2.n: The response message shall be sent when the configuration is either made active or fails.
	

	note
	3.4.7.2.o: [...] the activationResult field shall be set to [...] FALSE for failure.
	

	check
	last activate result
	false
	

	note
	
	

	note
	3.4.7.2.m: If a provider level configuration is successful, and a COM archive is being used, then the service provider that implements the selected service shall store in the COM archive a new ProviderConfigurationLink[?] COM object that links its ServiceProvider[?] object to the new activated ProviderConfiguration[?] COM object.
	

	ensure
	list from archive
	PROVIDER_CONFIGURATION_LINK
	

	show
	last list archive result size
	1

	ensure
	mark last list archive result size
	

	ensure
	activate configuration
	pConfBasic
	

	check
	last activate result
	true
	

	ensure
	check previous configuration is
	pConfBasic
	

	ensure
	list from archive
	PROVIDER_CONFIGURATION_LINK
	

	show
	last list archive result size
	2

	ensure
	check last marked list archive result size increased
	1
	

	note
	
	

	note
	3.4.4.i: The ConfigurationSwitched[?] COM event source link shall point to the previous active configuration or be NULL if no configuration was previously active.
	

	ensure
	get next configuration event
	

	ensure
	get next configuration event
	

	ensure
	check last switched configuration event source is
	pConfBasic
	

4.3.7 Store Current test case
This checks assertions in the definition of the storeCurrent operation.

	script
	configuration scenario

	note
	3.4.2.a.d: The configuration service shall provide the capability: [...] store the current configuration;

	init script

	note
	3.4.13.2.b: The serviceProvider field shall contain the domain and object instance identifier of the ServiceProvider[?] COM object that must store its current configuration.

	note
	3.4.13.2.c: If the service provider is not known an UNKNOWN error shall be returned.

	ensure
	set temporary provider id
	100

	reject
	store current service
	configurationTestHc
	with auto add
	false

	ensure
	reset provider id

	check
	last store current error
	UNKNOWN

	note
	

	note
	3.4.13.2.e: Wildcard values of '0' are not accepted in the serviceKey fields, an INVALID error shall be returned in this case.

	reject
	store current service
	wrongKey1
	with auto add
	false

	check
	last store current error
	INVALID

	reject
	store current service
	wrongKey2
	with auto add
	false

	check
	last store current error
	INVALID

	reject
	store current service
	wrongKey3
	with auto add
	false

	check
	last store current error
	INVALID

	note
	

	note
	3.4.13.2.f: If the serviceKey field is not NULL and the referenced service is not supported by the service provider an UNKNOWN error shall be returned.

	reject
	store current service
	wrongKey
	with auto add
	false

	check
	last store current error
	UNKNOWN

	note
	

	note
	3.4.9.1 if the provider of a specific service has modified their configuration by some other means, and this has not been stored using the storeCurrent operation, then this operation will return the unmodified configuration.

	ensure
	activate configuration
	sNcConf1

	check
	last activate result
	true

	ensure
	set test parameter value
	2

	ensure
	get current
	configurationTestNc

	ensure
	check configuration is in last get current result
	sNcConf1

	note
	

	note
	3.4.13.2.g: The operation shall publish a ConfigurationStore[?] event containing the selected configuration to be stored.

	ensure
	store current service
	configurationTestNc
	with auto add
	true

	ensure
	get next configuration event

	ensure
	check last configuration event type is
	EVT_STORE

	ensure
	mark last store configuration event id

	show
	last store configuration event id
	215

	note
	
	

	note
	3.4.4.j: A ConfigurationStore[?] COM event shall represent a request to store the current configuration.
	

	note
	3.4.4.k: The ConfigurationStore[?] COM event body is may contain the ServiceKey[?] of the service to store [...].
	

	ensure
	check last store configuration event body is
	configurationTestNc
	

	note
	
	

	note
	3.4.4.l: The ConfigurationStore[?] COM event related link shall link to the ServiceProvider[?] object that represents the provider that must store its configuration.
	

	ensure
	check last store configuration event related is expected provider
	

	note
	
	

	note
	3.4.13.2.h: The service provider that implements the selected service shall, after the reception of the event, store its current Configuration in the COM Archive.
	

	note
	3.4.6.b: The COM objects that hold the actual configuration definition details must be stored in the COM archive by the provider of the relevant service if the implementation of the Configuration service uses a COM archive.
	

	note
	3.4.13.2.d: If the serviceKey field is not NULL then only the specified service of the provider shall be stored.
	

	note
	3.4.13.2.l: The response shall contain the object identifier of the new configuration object if successful [...].
	

	ensure
	check last store current result type is
	SERVICE
	

	ensure
	check and load last store current result
	

	ensure
	last store current result is
	sNcConf2
	

	note
	
	

	note
	3.4.13.2.i: Once the relevant service provider has finished storing its configuration it shall publish a ConfigurationStored[?] event with TRUE as its body if successful and FALSE if failed.
	

	note
	3.4.4.n: A ConfigurationStored[?] COM event shall be raised when a configuration has been stored.
	

	ensure
	get next configuration event
	

	ensure
	check last configuration event type is
	EVT_STORED
	

	note
	
	

	note
	3.4.4.o: The ConfigurationStored[?] COM event body shall hold the ObjectId[?] of the new Configuration object if the store was successful [...].
	

	note
	The ObjectId[?] should be the result of the operation. The assertion has already been checked on the result.
	

	ensure
	check last stored configuration event body is last store current result
	

	note
	
	

	note
	3.4.4.p: The ConfigurationStored[?] COM event related link shall point to the ConfigurationStore[?] event that triggered the store attempt.
	

	show
	last stored configuration event related
	215

	ensure
	check last stored configuration event related is expected store event
	

	note
	
	

	note
	3.4.4.q: The ConfigurationStored[?] COM event source link shall be NULL.
	

	ensure
	check last stored configuration event source is null
	

	note
	
	

	note
	3.4.13.2.k: If the autoAdd field is set to TRUE then, once the stored event has been published, and if it indicates success, the configuration service provider shall add the new configuration to the list of available configurations for the selected service provider. In effect call the add operation.
	

	ensure
	list configurations
	SERVICE
	for service
	configurationTestNc
	

	ensure
	check configuration is in last list result
	sNcConf2
	

	note
	
	

	note
	Check that the stored configuration is returned as the current configuration of the service. This is not an explicit assertion of the standard, but it is implicitely stated in the assertion in 3.4.9.1.
	

	note
	3.4.9.1 if the provider of a specific service has modified their configuration by some other means, and this has not been stored using the storeCurrent operation, then this operation will return the unmodified configuration.
	

	ensure
	get current
	configurationTestNc
	

	ensure
	check configuration is in last get current result
	sNcConf2
	

	note
	
	

	note
	3.4.13.2.j: If the request is for a hard-coded configuration then the relevant service provider must fail the store request.
	

	note
	3.4.13.2.l: The response shall contain [...] NULL if not [successful].
	

	ensure
	store current service
	configurationTestHc
	with auto add
	false
	

	check
	last store current error
	null
	

	ensure
	last store current result is null
	

	note
	
	

	note
	3.4.4.o: The ConfigurationStored[?] COM event body shall hold [...] NULL for failure.
	

	ensure
	get next configuration event
	

	ensure
	get next configuration event
	

	ensure
	check last configuration event type is
	EVT_STORED
	

	note
	
	

	note
	3.4.4.k: The ConfigurationStore[?] COM event body [...] shall be NULL if the provider configuration is to be stored.
	

	ensure
	store current service
	NULLKEY
	with auto add
	false
	

	ensure
	check last store current result type is
	PROVIDER
	

4.3.8 Import/Export XML test case
This checks assertions in the definition of the import/exportXML operations.

	script
	configuration scenario

	note
	3.4.2.a.e: The configuration service shall provide the capability: import/export configurations from/to XML.

	init script

	ensure
	list from archive
	PARAMETER_OBJECT

	show
	last list archive result size
	2

	ensure
	mark last list archive result size
	

	note
	3.4.14.2.b: The supplied file contained in the xmlFile argument shall be read and converted to COM objects.
	

	note
	3.4.14.2.i: If an error is raised then [...] operation shall end.
	

	note
	3.4.14.2.c: If there is a problem converting the XML then an INVALID error shall be returned.
	

	note
	3.4.14.2.h: The newly generated Configuration object should be checked for consistency. An INVALID error shall be raised if the configuration is not valid.
	

	reject
	import xml file
	invalidConf1.xml
	

	check
	last import xml error
	INVALID
	

	note
	3.4.3.a: The object body shall hold a name to identify the provider configuration.
	

	reject
	import xml file
	invalidConf2.xml
	

	check
	last import xml error
	INVALID
	

	note
	3.4.3.b: The ProviderConfiguration[?] COM object related link shall link to the ConfigurationObjects[?] COM object that contains the objects that form the provider configuration.
	

	reject
	import xml file
	invalidConf3.xml
	

	check
	last import xml error
	INVALID
	

	note
	3.4.3.e: The object body shall hold the service key that identifies the service it is a configuration of.
	

	reject
	import xml file
	invalidConf4.xml
	

	check
	last import xml error
	INVALID
	

	note
	3.4.3.f: The ServiceConfiguration[?] COM object related link shall link to the ConfigurationObjects[?] COM object that contains the objects that form the service configuration.
	

	reject
	import xml file
	invalidConf5.xml
	

	check
	last import xml error
	INVALID
	

	note
	3.4.3.i: The object body shall hold a configuration object details structure that links to the objects that form the configuration.
	

	reject
	import xml file
	invalidConf6.xml
	

	check
	last import xml error
	INVALID
	

	note
	3.4.14.2.i: If an error is raised then no objects shall be stored in the COM archive [...].
	

	ensure
	list from archive
	PARAMETER_OBJECT
	

	show
	last list archive result size
	2

	ensure
	check last marked list archive result size
	

	note
	
	

	note
	3.4.14.2.j: The return response shall contain in the objInstId field the object identifier of the new configuration object.
	

	ensure
	import xml file
	sComConf7.xml
	

	note
	3.4.14.2.d: For every object present within the XML file that does not exist in the COM Archive, the Configuration service shall create a new object with the same content and store the object in the COM Archive.
	

	ensure
	list from archive
	PARAMETER_OBJECT
	

	show
	last list archive result size
	3

	ensure
	check last marked list archive result size increased
	1
	

	ensure
	mark last list archive result size
	

	note
	3.4.14.2.g: The newly generated Configuration object shall always reference existing objects in the Archive.
	

	ensure
	check and load last imported configuration
	

	ensure
	last imported configuration is
	sComConf7
	

	note
	
	

	note
	First set of assertions for the exportXML operation
	

	note
	3.4.10.2.b: The confObjId argument shall contain the type, domain and COM object instance identifier of the configuration object to return the XML representation of.
	

	note
	3.4.10.2.c: An UNKNOWN error shall be returned if the confObjId field does not match an existing COM object.
	

	reject
	export xml
	uConf
	with return complete
	false
	

	check
	last export xml error
	UNKNOWN
	

	note
	
	

	note
	3.4.10.2.d: An INVALID error shall be returned if the confObjId does not refer to either a ProviderConfiguration[?] or a ServiceConfiguration[?] object.
	

	reject
	export xml
	noConf
	with return complete
	false
	

	check
	last export xml error
	INVALID
	

	note
	
	

	note
	3.4.10.2.e: An INVALID error shall be returned if the confObjId refers to either a hard-coded or a non-COM configuration..
	

	reject
	export xml
	sHcConf1
	with return complete
	false
	

	check
	last export xml error
	INVALID
	

	reject
	export xml
	pConfBasic
	with return complete
	false
	

	check
	last export xml error
	INVALID
	

	note
	
	

	note
	3.4.10.2.f: [...] otherwise it will be in the compact standardised format.
	

	note
	3.4.10.2.g: The returned File object shall contain the configuration XML.
	

	note
	We check the result of the export operation through the success of the subsequent import operation
	

	ensure
	export xml
	sComConf7
	with return complete
	false
	

	ensure
	import last exported configuration
	

	show
	list parameters in last exported configuration
	0

	note
	
	

	note
	3.4.10.2.h: The Configuration object shall not be deleted from the COM Archive.
	

	ensure
	check configuration in archive
	sComConf7
	

	note
	
	

	note
	3.4.10.2.f: The returnComplete Boolean shall be set to True if the returned XML is to be in the complete standardised format [...].
	

	note
	We check the result of the export operation through the success of the subsequent import operation
	

	ensure
	export xml
	sComConf7
	with return complete
	true
	

	ensure
	import last exported configuration
	

	show
	list parameters in last exported configuration
	1

	note
	
	

	note
	3.4.14.2.e: If the object already exists in the COM Archive, nothing shall be created.
	

	ensure
	list from archive
	PARAMETER_OBJECT
	

	show
	last list archive result size
	3

	ensure
	check last marked list archive result size
	

	note
	
	

	note
	3.4.14.2.f: If the object already exists in the COM Archive but contains a different content a DUPLICATE error shall be raised.
	

	ensure
	createDuplicateInLastExportedConfiguration
	

	reject
	import last exported configuration
	

	check
	last import xml error
	DUPLICATE
	

	note
	
	

	ensure
	clearIdsInLastExportedConfiguration
	

	ensure
	import last exported configuration
	

	ensure
	list from archive
	PARAMETER_OBJECT
	

	show
	last list archive result size
	5

	ensure
	check last marked list archive result size increased
	2
	

	note
	
	

	note
	3.4.3.p: The object body is not used and shall be NULL.
	

	note
	3.4.3.q: The ProviderConfigurationLink[?] COM object related link shall link to the ServiceProvider[?] COM object that represents the service provider in the Directory Service.
	

	note
	3.4.3.r: The ProviderConfigurationLink[?] COM object source link shall link to the ProviderConfiguration[?] COM object in use by the provider.
	

	ensure
	import xml file
	pConf8.xml
	

	ensure
	check and load last imported configuration
	

	ensure
	last imported configuration is
	pConf8
	

	ensure
	list from archive
	PROVIDER_CONFIGURATION_LINK
	

	reject
	checkProviderConfigurationLinkFromLastListArchiveWithSource
	pConf8
	

	ensure
	add configuration
	pConf8
	

	ensure
	activate configuration
	pConf8
	

	check
	last activate result
	true
	

	ensure
	list from archive
	PROVIDER_CONFIGURATION_LINK
	

	ensure
	checkProviderConfigurationLinkFromLastListArchiveWithSource
	pConf8
	

