[bookmark: _Toc490213514][bookmark: _Toc498003447][image:]

	MO Services and SOIS Electronic Datasheets

Draft Record
CCSDS 870.10-Y-0
Draft Yellow Book
FEB 2019

AUTHORITY

	
	
	
	

	
	Issue:
	Draft Record, Issue 0
	

	
	Date:
	Feb 2019
	

	
	Location:
	Washington, DC, USA
	

	
	
	
	

(WHEN THIS CCSDS RECORD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF AUTHORITY:)
This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS). The procedure for review and authorization of CCSDS documents is detailed in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4).

This document is published and maintained by:

CCSDS Secretariat
National Aeronautics and Space Administration
Washington, DC, USA
E-mail: secretariat@mailman.ccsds.org
FOREWORD
Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Record is therefore subject to CCSDS document management and change control procedures, which are defined in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4). Current versions of CCSDS documents are maintained at the CCSDS Web site:
http://www.ccsds.org/
Questions relating to the contents or status of this document should be sent to the CCSDS Secretariat at the e-mail address indicated on page i.
At time of publication, the active Member and Observer Agencies of the CCSDS were:
Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.
· Canadian Space Agency (CSA)/Canada.
· Centre National d’Etudes Spatiales (CNES)/France.
· China National Space Administration (CNSA)/People’s Republic of China.
· Deutsches Zentrum für Luft- und Raumfahrt (DLR)/Germany.
· European Space Agency (ESA)/Europe.
· Federal Space Agency (FSA)/Russian Federation.
· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
· Japan Aerospace Exploration Agency (JAXA)/Japan.
· National Aeronautics and Space Administration (NASA)/USA.
· UK Space Agency/United Kingdom.
Observer Agencies
· Austrian Space Agency (ASA)/Austria.
· Belgian Federal Science Policy Office (BFSPO)/Belgium.
· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
· China Satellite Launch and Tracking Control General, Beijing Institute of Tracking and Telecommunications Technology (CLTC/BITTT)/China.
· Chinese Academy of Sciences (CAS)/China.
· Chinese Academy of Space Technology (CAST)/China.
· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
· Danish National Space Center (DNSC)/Denmark.
· Departamento de Ciência e Tecnologia Aeroespacial (DCTA)/Brazil.
· Electronics and Telecommunications Research Institute (ETRI)/Korea.
· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.
· European Telecommunications Satellite Organization (EUTELSAT)/Europe.
· Geo-Informatics and Space Technology Development Agency (GISTDA)/Thailand.
· Hellenic National Space Committee (HNSC)/Greece.
· Indian Space Research Organization (ISRO)/India.
· Institute of Space Research (IKI)/Russian Federation.
· Korea Aerospace Research Institute (KARI)/Korea.
· Ministry of Communications (MOC)/Israel.
· Mohammed Bin Rashid Space Centre (MBRSC)/United Arab Emirates.
· National Institute of Information and Communications Technology (NICT)/Japan.
· National Oceanic and Atmospheric Administration (NOAA)/USA.
· National Space Agency of the Republic of Kazakhstan (NSARK)/Kazakhstan.
· National Space Organization (NSPO)/Chinese Taipei.
· Naval Center for Space Technology (NCST)/USA.
· Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
· Scientific and Technological Research Council of Turkey (TUBITAK)/Turkey.
· South African National Space Agency (SANSA)/Republic of South Africa.
· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.
· Swedish Space Corporation (SSC)/Sweden.
· Swiss Space Office (SSO)/Switzerland.
· United States Geological Survey (USGS)/USA.
DOCUMENT CONTROL

	Document
	Title
	Date
	Status

	CCSDS 870.10-Y-0
	MO Services and SOIS Electronic Datasheets, Draft Record, Issue 0
	May 2018
	Current draft

	
	
	
	

	
	
	
	

CONTENTS
Section	Page
1	Introduction	1-1

1.1	Rationale	1-1
1.2	References	1-2

2	INTRODUCTION TO SOIS EDS	2-1

2.1	Overview	2-1
2.2	Terminology	2-2
2.3	SOIS Reference Architecture	2-3
2.4	Simple Example of Datasheet Use	2-9
2.5	Other CCSDS Services and the OSI ModeL	2-10

3	INTRODUCTION TO MO SERVICES	3-1

3.1	Overview	3-1
3.2	MO and Other CCSDS Services	3-3

4	Analysis	4-1

4.1	Areas of Overlap Between the Standards	4-1
4.2	Specifying Interfaces	4-4
4.3	Detailed Comparative Analysis	4-5

5	SOIS EDS and MO services integration	5-1

5.1	Overview	5-1
5.2	Mapping between SOIS EDS and a generated bespoke MO Service	5-1
5.3	Using MO M&CS Action and Parameter services with EDS	5-3
5.4	Using device-CATEGORY MO services with EDS	5-5

6	RECOMMENDATIONS AND CONCLUSION	6-1

ANNEX A	Abbreviations and Acronyms	A-1
Figure
1-1	Two Hypothetical Missions Using CCSDS Standards	1-1
2-1	SOIS EDS Concept	2-1
CONTENTS (continued)
Figure	Page
2-2	Terminology Used	2-2
2-3	SOIS Reference Architecture	2-4
2-4	Device Services Details	2-6
2-5	Sample Realization of SOIS Reference Architecture	2-9
2-6	OSI Model	2-11
3-1	CCSDS MO Scope	3-1
3-2	Details of an MO Service	3-2
3-3	Transformation of MAL into Technology-Dependent Interface Specifications	3-3
3-4	MO, SOIS, and Other CCSDS Services	3-4
4-1	Binary interface to the Device Expressed as a CCSDS EDS	4-1
4-2	Sequence Diagram: Adjusting a Setting on a Device at the Request of the End User	4-2
4-3	XML Structure of EDS and MAL	4-5
4-4	MAL Interaction Patterns	4-6
4-5	EDS Interaction Patterns	4-7
5-1	MO Action Service Implemented Using the Action Provider API Onboard	5-3
5-2	MO Action Service Implemented Using the Action Provider API On Ground	5-4
5-3	Bespoke MO Camera Service Implemented Using the Camera Provider API Onboard	5-5

Table
2-1	OSI Layering of SOIS Reference Architecture	2-11

DRAFT CCSDS RECORD CONCERNING MO SERVICES AND SOIS EDS

CCSDS 870.10-Y-0	Page iv	Feb 2019
[bookmark: _Toc514327169]Introduction
[bookmark: _Toc490213515][bookmark: _Toc498003448][bookmark: _Toc514327170][bookmark: _Ref138744327][bookmark: _Toc138744508]Rationale
Founded in 1982 by the major space agencies of the world, the CCSDS is a multinational forum for the development of communications and data systems standards for spaceflight, with the goal of enhancing governmental and commercial interoperability and cross support, while also reducing risk, development time, and project costs. Within that organization, two areas and their working groups have been tasked with looking at different areas of interoperability, specifically:
· Mission Operations and Information Management Services (MOIMS), covering the interfaces between the ground mission control, planning and scheduling systems, and the spacecraft;
· Spacecraft Onboard Interface Services (SOIS), covering interfaces between the spacecraft and onboard electronic devices.
These two areas of standardization are focused separately, on the ground up to the spacecraft (MOIMS) and on spacecraft only (SOIS). But we need to describe how the MOIMS services interface to the spacecraft environment, and there is the possibility of migrating some of the MOIMS applications layer services into the on-board environment. Three possible cases of MOIMS migration on-board were developed following recent agreement between SOIS and MOIMS:
a) Case 1: traditional case with SOIS covering the interfaces between spacecraft and on-board devices while MOIMS is only on ground. Interfaces between flight and ground are “traditional” telemetry, tracking, and commanding (TT&C) with mapping from MOIMS to TT&C done on the ground.
b) Case 2: intermediate integrated case with MOIMS service interfaces extended across the spacelink to a Proxy interface on-board that maps to traditional TT&C. SOIS continues to covering the same interfaces as before.
c) Case 3: onboard integrated case with MOIMS based services and frameworks migrated on-board and adapted to the Real Time environment. The same SOIS spacecraft and on-board sub-network services are used. Some devices may even integrate directly with the MOIMS service framework.
This division of responsibility can be illustrated by an example whereby a hypothetical client institution designs, builds, and is involved in the operation[footnoteRef:1] of a simple onboard instrument on both ESA and NASA spacecraft. [1: This involvement could potentially take the form of real-time commanding, requests for planning the scheduling of an activity, or be entirely delegated to the agency. The institute in question may or may not be part of either agency.]

[image:]
[bookmark: F_101TwoHypotheticalMissionsUsingCCSDSSt][bookmark: _Toc514327192]Figure 1‑1	: Two Hypothetical Missions Using CCSDS Standards
In such a case:
· SOIS is responsible for the information the client institution supplies to the spacecraft prime contractor, in order to integrate the instrument into the overall onboard platform;
· MOIMS is responsible for the information the client institution supplies to the spacecraft prime contractor, and further to the operator (agency), in order to operate the instrument during the mission lifecycle.
[bookmark: _Toc490213516]If two copies of similar devices fly on different spacecraft built by different prime contractors under the responsibility of, and operated by, different agencies, then, if the CCSDS standards are applied in all cases, the result is minimal extra work for the client, for the prime, and for the operator. The same principles apply in more complex cases, where the client, designer, manufacturer, and operator are not the same, or where there are multiples of each.
However, for SOIS and MOIMS, both sets of standards are new. This report is aimed at investigating how these aspects of a mission using both standards would interact, with a view to ensuring those interactions are well-defined, well-understood, and unproblematic. It will also provide a limited treatment of the three different migration cases that may be adopted by different missions.
Following this introduction, this report:
· provides a brief overview of both sets of standards;
· performs an analysis of the relation between the two standards;
· describes how the two standards could interoperate on a mission, as in the above example;
· provides some recommendations and conclusions.
[bookmark: _Toc498003449][bookmark: _Toc514327171]References
The following publications are referenced in this document. At the time of publication, the editions indicated were valid. All publications are subject to revision, and users of this document are encouraged to investigate the possibility of applying the most recent editions of the publications indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS publications.
[bookmark: R_876x0r2SoisXMLSpecificationforElectron][bookmark: _Ref417832291][1]	Spacecraft Onboard Interface Services—XML Specification for Electronic Data Sheets. Issue 2. Draft Recommendation for Space Data System Standards (Red Book), CCSDS 876.0-R-2. Washington, D.C.: CCSDS, June 2016.
[bookmark: R_520x0g3MoServicesConcept][2]	Mission Operations Services Concept. Issue 3. Report Concerning Space Data System Standards (Green Book), CCSDS 520.0-G-3. Washington, D.C.: CCSDS, December 2010.
[bookmark: R_521x0b2MoMal][3]	Mission Operations Message Abstraction Layer. Issue 2. Recommendation for Space Data System Standards (Blue Book), CCSDS 521.0-B-2. Washington, D.C.: CCSDS, March 2013.
[bookmark: R_522x1b1MoMonitorandControlServices][4]	Mission Operations Monitor & Control Services. Issue 1. Recommendation for Space Data System Standards (Blue Book), CCSDS 522.1-B-1. Washington, D.C.: CCSDS, October 2017.
[bookmark: R_660x0g1XMLTelemetricandCommandExchange][5]	XML Telemetric and Command Exchange (XTCE). Issue 1. Report Concerning Space Data System Standards (Green Book), CCSDS 660.0-G-1. Washington, D.C.: CCSDS, July 2006.
[bookmark: R_876x1r2SoisSpecificationforDictionaryo][6]	Spacecraft Onboard Interface Services—Specification for Dictionary of Terms for Electronic Data Sheets. Issue 2. Draft Recommendation for Space Data System Practices (Red Book), CCSDS 876.1-R-2. Washington, D.C.: CCSDS, June 2016.
[7] 	ECSS PUS, ECSS-E-70-41C, Ground systems and operations: Telemetry and telecommand packet utilization.
[8]	RASDS, CCSDS 311.0-M-1, Reference Architecture for Space Data Systems. Magenta Book. Issue 1. September 2008.
[9]	SCCS-ARD, CCSDS 901.1-M-1, Space Communications Cross Support--Architecture Requirements Document. Magenta Book. Issue 1. May 2015.
[10]	Mission Operations - MAL Space Packet Transport Binding and Binary Encoding, Recommendation for Space Data System Standards (Blue Book), CCSDS 524.1-B-1, Washington, D.C.: CCSDS, August 2015.
[bookmark: _Toc490213518][bookmark: _Toc498003451][bookmark: _Toc514327172]INTRODUCTION TO SOIS EDS
[bookmark: _Toc514327173]Overview
Electronic Data Sheets (EDS) (see reference [1]) is a concept that has been proposed to allow capturing relevant information about electronic equipment. This should capture the relevant aspects of a device, not just to enable an efficient exchange of information (easing its maintainability, enforcing consistency, etc.), but also to enable the development process of related software to be supported by the use of model-based software engineering techniques.
[image:]
[bookmark: F_201SOISEDSConcept][bookmark: _Toc514327193]Figure 2‑1	: SOIS EDS Concept
In the course of the mission lifecycle, different parts of the overall system (which includes both space and ground) will need to represent, or interact with, an onboard device, including:
· tools used for the design and validation of the device itself;
· system design and analysis tools modelling a system using the device, for example, to check bus bandwidth and schedulability;
· tools used for the design and implementation of the Flight Software (FSW), which executes on the central onboard computer, and is in charge of communication with, and autonomous operation of, the device;
· mission control and Electronic Ground Support Equipment (EGSE) systems, in cases where the device contributes to some portion of the spacecraft TM/TC definition;
· software validation facilities and operational simulators that model device behavior in order to validate the interaction of the FSW and the device;
· tools that generate portions of the system documentation.
[bookmark: _Toc490213519]This wide range of usages means that no one tool could plausibly meet them all, hence the need for a standardized data format. Consequently, the SOIS Recommended Standard for Electronic Data Sheets (SEDS) takes the form of an eXtensible Markup Language (XML) schema designed for tool interchange, i.e., exchanging device data between two software systems.
[bookmark: _Toc498003452][bookmark: _Toc514327174]Terminology
[image:]
[bookmark: F_202TerminologyUsed][bookmark: _Toc514327194]Figure 2‑2	: SOIS Terminology Used
SOIS uses the following terms to describe hardware and software elements of a mission:
Interfaces: Describe the set of interactions performed by an object for participation with another object for some purpose, along with constraints on how they can occur.
Service Interface: Defines patterns of information exchange.
Component: A unit of software that requires access to interfaces and executes in an execution environment.
Application: A component that performs some function, autonomously or directly at user request.
Service Component: A component that provides one or more service interfaces to other components.
System: Area of analysis that can be described in terms of:
· components that communicate via internal service interfaces;
· external interfaces to one or more devices each of which belongs to a single subnetwork.
Internetwork: System of end-to-end network layer communication paths, either direct or indirect, such as TCP/IP or CCSDS Bundle Protocol.
Subnetwork: System of direct communication paths between hardware units such as milbus or spacewire. It is the link layer part of an internetwork.
Device: One or more units of hardware that could run embedded software or be supported by software running on the main OBC.
Hardware Unit: A unit of hardware that is part of a device.
Computing Platform: Supports one or more execution environments such as Onboard Computer, Ground Segment Computer and Programmable Unit for software and is integrated within a hardware unit.
Execution Environment: context in a computing platform within which software may be installed and executed including Basic Software (BSW) layer, Time and Space Partitioned (TSP) kernel, operating system (OS) or Virtual Machine (VM).
By definition above, device includes:
· hardware devices;
· smart devices running embedded software that might be at a specific version and result in changing to the datasheet;
· devices supported by associated software running on the main OBC (as in the case of Integrated Modular Avionics (IMA));
· devices directly attached to the main OBC board, and those attached via a data link such as milbus;
· sensors, actuators and instruments.
However, device does not include:
· platforms into which devices are integrated, as opposed to vice-versa;
· trivial components integrated into a device as part of the process of manufacture, such as screws and wires;
· software components or functions in general (other than in the case of Integrated Modular Avionics (IMA));
Some known example of devices are: Star Trackers, Gyroscopes, Mass Memory Units (MMUs), Power Control and Distribution Units (PCDUs), Remote Terminal/Interface Units (RTU/RIU), Reconfiguration Modules (RM), Telemetry, Telecommand, Reconfiguration and Safeguard memory (TTRS), and etc.
The goal of SOIS is to define how to take an external entity, such as a device, and make it accessible from within a system. This is done by creating a set of device services. These are accessible on that same basis as any other service, and support all functions of the device by communicating with it using lower-level mechanisms.
[bookmark: _Toc498003453][bookmark: _Toc514327175]SOIS Reference Architecture
The SOIS Reference Architecture describes how SOIS standards and recommendations fit together to specify and implement the communications between an On-board System (i.e., On-Board Computer [OBC] and Flight Software (FSW)), and other on-board Devices.
[image:]
[bookmark: F_203SOISReferenceArchitecture][bookmark: _Toc514327195]Figure 2‑3	: SOIS Reference Architecture
In the above diagram:
· <<sois>> indicates elements defined by SOIS standards; these have the standard in question specified;
· <<std>> indicates elements defined by other standards;
· <<arch>> indicates architecture or mission-specific elements;[footnoteRef:2] [2: From the point of view of the SOIS reference architecture, such elements may follow any standards, or none.]

· <<derived>> indicates run-time elements that can be manually or automatically derived from the indicated specifying elements.
In that architecture, the On-board System is considered as two layers:
· Application Layer where application and services components communicate according to defined service interfaces. This includes the Device Services, which make the functionality of a device available at this layer, and are logically derived from the datasheet for that device. Also at this layer are Internetwork Transfer Services; protocols such as CCSDS File Delivery Protocol (CFDP) that allow communication across different subnetworks. MO Services may be part of the on-board application layer, as well as on the ground, and this is addressed in Section 4.
· Subnetwork Layer where binary data flows between endpoints according to a stack of communications protocols across one or more subnetworks. The services exposed include both the standardized SOIS Communication Services, and also architecture-specific Management Services, which are logically derived from the parts of the System Model that specify how everything is connected together.
· Not shown in this diagram is the SPACELINK interface to ground, as that is outside the scope of SOIS. This spacelink may be handled:
· at application level;
· by the Internetwork Transfer Services;
· as a dedicated subnetwork with its own SPACELINK subnetwork convergence protocols.
The SOIS EDS for a device (a Device Datasheet) forms part of the overall System Model, describing the details of one particular model of on-board device. This includes how the services it provides at the application layer can be implemented in terms of subnetwork-layer services. In this SOIS model MO Services are not shown. They are concerned with what may be considered “business level objects”, typically at a level above SOIS applications.
[image:]
[bookmark: F_204DeviceServicesDetails][bookmark: _Toc514327196]Figure 2‑4	: Device Services Details
Such a Device Datasheet uses the EDS schema and the Dictionary of Terms (DoT) to define the contents and interpretation of messages exchanged by applications and the device across the subnetwork layer. It also may define the state machines describing message exchange protocols and device states. By specifying the device data interface in terms of this abstract model, it becomes possible to determine the correctness and completeness of a device datasheet in isolation from the actual FSW that will be used to communicate with the device in any particular case.[footnoteRef:3] This validated datasheet can then be used as an input to the development and testing of those systems that interact with the device (i.e., the spacecraft FSW, system engineering database, checkout systems, etc.). [3: For example, this can be done by using the datasheet to process logs taken during hardware testing, or ideally by doing such testing using a tool with EDS support.]

For flexibility, the Device Services are conventionally defined in two parts:
· a Device Specific Access Protocol (DSAP), consuming a subnetwork interface and exposing an access interface, which defines the lowest-level access to all raw decoded data transmitted to and from a particular class of device;
· a Device Abstraction Control Procedure (DACP), consuming that access interface and exposing a Functional interface, which provides higher-level access to calibrated values or derived parameters, and restrictions on how the device can be operated based on its current state.
Both of these service interfaces are device-specific because different devices support different sets of data. These are split to allow missions the option of supporting either one, or both.[footnoteRef:4] [4: It is common for there to be no requirement to perform calibration onboard. In such cases the FSW uses only the access-level interface, while the datasheet still contains calibration data for the sake of ground systems, simulators, etc.]

In the typical case, there will be a distinct single component providing each interface, and the component implementing the higher-level interface will be defined in terms of the lower-level one. The lowest-level component will require one or more subnetwork-level interfaces. However, interfaces in a datasheet can be defined in multiple parts, and collected together using inheritance. This allows a part of the interface of a device to be standardized, or pre-specified, while other parts are manufacturer additions or customizations.[footnoteRef:5] [5: For example, for a GPS device there might be a standardised interface for positional data, supplemented by device-specific diagnostic and recovery interfaces.]

A key characteristic of SEDS interfaces is that, while they support 2-way data exchange, they are partitioned into:
· parameters:[footnoteRef:6] messages coming from the device, plus those 2-way exchanges whose sole purpose is to get or set a discrete value on a device; [6: SEDS parameters are commonly aggregates of primitive values; as such they arguably more resemble packets than the individual parameters of typical datapool-based software architectures.]

· commands: messages sent to a device, plus 2-way exchanges with any purpose other than reading or writing a single parameter.
In some cases, the classification of a particular exchange as a parameter or command with a single argument is debatable; however, this conceptual split, which was taken from XML Telemetric & Command Exchange (XTCE) (reference [5]), reflects the way mission control systems and operations teams work.
Mapping the device-specific interfaces defined in the datasheet to actual Application Programming Interfaces (APIs) or messaging interfaces used by a specific FSW architecture is explicitly not the concern of a datasheet. This is intentional since the same device datasheet can be used when the same hardware device is used for missions of different software architectures. Instead, the information required to do this is the concern of the code generation toolchain, which would either be architecture specific, or highly configurable. The result is code that uses the required coding standards and the native synchronization and communication APIs of the target architecture, not an additional universal wrapper layer.
All interfaces provided and required are explicitly defined within a datasheet; there is no privileged treatment or special-casing for standardized interfaces. The datasheet construct used to define interfaces can be used to specify both high-level functional interfaces,[footnoteRef:7] and low-level binary interfaces containing data encoded in a specific way, as commonly produced by device hardware. Such subnetwork interfaces can be directly mapped to specific logical data links supported by the communications service of subnetwork layer. This mapping is typically static, i.e., done at system design time and recorded in a Deployment Description.[footnoteRef:8] [7: This can take the form of an API, or a messaging interface following known systematic encoding rules.] [8: In some cases, the mapping may be modifiable though the management services; the consequences of doing so should be carefully analysed in the scope of the mission architecture, technology, and requirements.]

As a consequence of the above, SEDS interfaces are able to not only specify a new interface (a capability shared by many other similar component systems), but to capture an existing interface. This includes cases where that interface was designed and implemented without knowledge of the SEDS or SOIS. In other words, SEDS allows wrapping an existing, well-tested, and certified legacy device as an interface of a component within a system. This avoids the costs and risks associated with producing custom variants of a device containing support for the technology stack of a particular agency.
[bookmark: _Toc473176265][bookmark: _Toc436389152][bookmark: _Toc480998915][bookmark: _Toc490213520][bookmark: _Toc498003454][bookmark: _Toc514327176]Simple Example of Datasheet Use
[image:]
[bookmark: F_205SampleRealizationofSOISReferenceArc][bookmark: _Toc514327197]Figure 2‑5	: Sample Realization of SOIS Reference Architecture
The above diagram provides an example of how the SOIS Reference Architecture could be realized to manage a particular model of on-board device, in this case the Jena AS400 Star Tracker, of which prime and redundant instances are available as Remote Terminals (RTs) on a MILSTD.1553 bus, of which the On-board System is the bus controller. In it:
· The device datasheet is used as an input for code generation of the DSAP, which in this case is a simple set of functions that perform encoding, classification, and decoding of device data.
· A mission-specific Device Handler uses the corresponding Access Interface (i.e., calls those functions) to implement:
· commanding of the device, either from the ground, or on-board autonomy functions;
· reading of telemetry from the device and storing it in a data pool, from where it can be reported to the ground and accessed by on-board autonomy functions;
· Triggering Fault Detection, Isolation, and Recovery (FDIR) logic on failures.
· The Memory Access Interface is known to map directly to polling of a specific Sub-Address (SA) to read fixed-size, high-priority data, so the code generator creating the DSAP implementation translates calls to that interface in the datasheet to the corresponding calls to the corresponding architecture-specific implementation.
· The Packet Interface is known to use the ECSS.1553 protocol to asynchronously transfer blocks of data (using multiple SAs per cycle), so the code generator creating the DSAP implementation translates calls to that interface in the datasheet to the corresponding calls to the corresponding architecture-specific implementation.
In this simple example, there is no explicit Deployment Description; the corresponding data is available as a set of hand-written on-board tables recording:
· the RT address of each instance of the device;
· the polling schedule for the device.
These are used in the implementation of each of the protocols, and adjusted via the Management Interface (e.g., to adjust the polling schedule based on spacecraft mode).
[bookmark: _Toc498003455][bookmark: _Toc514327177]Other CCSDS Services and the OSI ModeL
All CCSDS standards follow the OSI model, shown in Figure 2-6, where logical communication between peer entities at each layer, shown horizontally, is implemented by messages going down the stack to the lowest layer, across the physical medium, and up the stack on the other side.
[image: Related image]
[bookmark: F_206OSIModel][bookmark: _Toc514327198]Figure 2‑6	: OSI Model
The relationship between SOIS and other areas of standardization within CCSDS is well established:
· CCSDS SPACELINK standards specify communications between spacecraft and ground, or pairs of spacecraft, for OSI layers physical(1) and data link(2).
· Cross Support Services (CSS) standards allow interoperability of ground stations by standardizing their interface with the Operations Control Centre, for all OSI layers.	Comment by Sam Cooper: Not sure how this is relevant to this discussion? I could understand this in the MOIMS section, where we do interface to CSS, but I feel that SOIS is a step or two back from CSS
· Spacecraft Internetworking Service (SIS) standards govern application-to-application communication onboard a single spacecraft, communications among multiple spacecraft, and communications between space-based applications and their counterparts on Earth and/or other planetary bodies, for OSI layers network(3) through application(7).
[bookmark: T_201OSILayeringofSOISReferenceArchitect][bookmark: _Toc514327211]Table 2‑1	: OSI Layering of SOIS Reference Architecture
	Layer
	Function
	Per-Device
	Cross-subnetwork
	Per-Subnetwork

	7
	Application
	Device Services
	

	6
	Presentation
	
	

	Communications Service Interfaces

	5
	Session
	
	Internetwork Transfer Services
	Subnetwork Convergence Protocols

	4
	Transport
	
	
	

	3
	Network
	
	
	

	2
	Datalink
	
	
	

	1
	Physical
	
	
	

Looking at the overall SOIS reference architecture, each component that does communication-related processing can be statically assigned to a range of OSI functional layers, as shown in Table 2-1, above.
· A SOIS EDS specifies the interface to a device at the presentation layer (6).[footnoteRef:9] Consequently, while the encoding is fixed, it can be layered over any lower-level protocols by specifying the details of the transport technology used. This is done by defining subnetwork terms for each subnetwork interface referenced by the device. This means that the processing performed by the Device Services component specified by the datasheet will be at OSI layers 7 and 6. [9: As previously discussed, this is required for capturing the interface of an existing hardware device, as opposed to providing a specification to which a hardware device should be constructed.]

· The Communications Service Interfaces (i.e., PS, MAS, and SYNC) sit immediately below the datasheet, carrying encoded data, and so are below level 6.
· The Subnetwork Convergence Protocols do all the processing necessary to deliver blocks of data to and from a known endpoint within a single known subnetwork. Depending on the subnetwork in question, this may involve processing at any OSI layer[footnoteRef:10] from 5 to 2. In some cases, the subnetwork does not actually require that level of processing. That can be modelled by treating the corresponding layering function as a null or identity transform. This leads to a uniform treatment of all subnetworks.[footnoteRef:11] [10: Some existing protocols, such as TCP/IP and SPACELINK packets, do not cleanly separate the processing of all OSI layers; however, in all known cases, they fit within the range of layers assigned to each component.] [11: A specific software implementation is of course free to optimise this case.]

· The Internetwork Transfer Services do all the processing necessary to deliver a block of data to and from a known endpoint within any accessible subnetwork. This corresponds to OSI layers 5 to 3.

[bookmark: _Toc490213521][bookmark: _Toc498003456][bookmark: _Toc514327178]INTRODUCTION TO MO SERVICES
[bookmark: _Toc514327179]Overview
CCSDS Mission Operations (MO) (reference [2]) is a set of standard end-to-end services based on a Service Oriented Architecture (SOA) intended to be used for mission operations of space assets.
Monitor and Control
Common Infrastructure
Planning
Navigation
Data Product Distribution
Plan Execution
Software Management
File Transfer and Management

[bookmark: F_301CCSDSMOScope][bookmark: _Toc514327199]Figure 3‑1	: CCSDS MO Scope
CCSDS Mission Operations (MO) define specifications for a set of standard operations services (reference [2]) for the spacecraft operations.
To support these standardized services MOIMS has also defined an open architecture and framework that is:
· independent from implementation, message encoding, and communication technology;
· able to integrate new and legacy systems of different organizations;
· designed to support the long lifetimes of space missions;
· based on an SOA;
· allows defining new bespoke services for a mission-specific need.
Service
Provider
Consumer
Operation

[bookmark: F_302DetailsofanMOService][bookmark: _Toc514327200]Figure 3‑2	: Details of an MO Service
Each MO service, whether standardized or bespoke, is defined by a set of operations that the provider of the service makes available to be used by the service consumer. Each operation is defined from a template specified by an interaction pattern; one of send/submit/request/invoke/progress/pubsub. Each such pattern has a list of the messages that are exchanged between service provider and consumer to implement the operation.
The MO concept is supported by the MO framework, which, in an abstract manner, allows the specification of an MO service, its operations, its data model, and the related generic facilities, such as archiving.
At the core of the framework is the Message Abstraction Layer (MAL) (reference [3]), which defines a standard XML notation for service and data specifications. These abstract specifications then get transformed into the appropriate message encoding and transport technology that are specific to the target deployment and used at implementation time. This approach allows the use of the most appropriate encoding/transport for each deployment, for instance, XML over HTTP for a service deployed on the ground, Binary over Space Packet Protocol (SPP) for a service deployed on the space-to-ground link, and Binary over SOIS subnet for a service deployed onboard.
Figure 3-3 is a graphical representation of this transformation from abstract services to a deployable implementation framework.
[image:]
[bookmark: F_303TransformationofMALintoTechnologyDe][bookmark: _Toc514327201]Figure 3‑3	:	Transformation of MAL into Technology-Dependent Interface Specifications
[bookmark: _Toc498003457][bookmark: _Toc514327180]MO and Other CCSDS Services
In the OSI model, an MO Service as defined in MAL is at the application layer (7). Consequently, it can be layered over any lower-level protocols by specifying the details of the encoding and transport technology used. The abstract MAL must be bound to a data representation and a transport binding in order to provide a deployable service, but different bindings will typically not directly interoperate. The MAL defines a process for different choices of bindings to be connected by using a protocol matching bridge.
Regardless of which of the deployment three deployment cases that are adopted (see Section 5 for details) all of the communications between MO terrestrial services and the spacecraft and SOIS onboard devices will utilize other CCSDS services for space link communications, cross support access and control of ground station communications assets, space internetworking services (where employed), and other services like navigation, radiometric, security that are defined elsewhere in CCSDS. For details of how all of those other CCSDS services and protocols work see Space Communications Cross Support--Architecture Requirements Document, reference [9].
[image:]
[bookmark: F_304MOSOISandOtherCCSDSServices][bookmark: _Toc514327202]Figure 3‑4	: MO, SOIS, and Other CCSDS Services
Figure 3-4 outlines how this works:
· The client institute uses a MO service to monitor or control a device. Logically, the corresponding set of messages flow to and from the device.
· Those messages pass through each of:
· a suitable MO transport (e.g., HTTP) to get to the control center;
· Cross Support Services (CSS) protocols are used to get to the ground station;
· SPACELINK (SLS) protocols are used to communicate over RF to the satellite;
· SOIS protocols are used to get to the device.
· At each stage, the messages may be either translated into, or layered inside, the protocols used in the next step.[footnoteRef:12] [12: For example, the control center typically generates SPACELINK TC transfer frames which are then encapsulated into appropriate CSS SLE messages.]

· In many cases the original commands may be translated into very different forms suitable for the different operating / communications environments.
· The opposite path is followed for a reply from the device to the user.
Space Internetworking Services (SIS) protocols would be used in the case of a relay satellite (not shown).
This top-level view naturally leaves out many of the details, which are discussed in subsequent sections.

[bookmark: _Toc490213522][bookmark: _Toc498003458][bookmark: _Toc514327181]Analysis
[bookmark: _Toc490213523][bookmark: _Toc498003459][bookmark: _Toc514327182]Areas of Overlap Between the Standards
The two standards have different scopes and purposes, but do have two areas of overlap:
· Interfaces, which include the protocol bindings and are the place where the behavior of an object is exposed. Objects may have one or more interfaces.
· Types, which describe and constrain the contents of the messages between two or more communicating entities.
In the case of the hypothetical mission shown in Figure 1‑1, if the hardware device produced by the client institute has a certain number of configurable settings and modes, the spacecraft FSW can adjust those settings according to an interface specified in the EDS datasheet for the device. Figure 4-1 shows a device interface expressed as an EDS.
[image:]
[bookmark: F_401BinaryinterfacetotheDeviceExpressed][bookmark: _Toc514327203]Figure 4‑1	: Binary interface to the Device Expressed as a CCSDS EDS
NOTE	–	The above formatted EDS extract shows how the Protocol Data Units (PDU) exchanged with the device are split into fields with associated encodings, types and semantics.
The same interface could also be expressed in MAL, allowing operators or high-level software applications to configure those settings on the device.
When such an interface is expressed in MAL, the encoding and layout details are left out. This is suitable for the intended usage of MAL, as it allows decisions on how to efficiently encode data in each deployment to be taken centrally, and therefore consistently.
For interfacing directly with hardware, things are different, as any such decision on how data should be encoded does not affect the fact that the hardware does encode it a particular way. Figure 4-2 is a sequence diagram showing the flow of different data objects among the different functions on the end-to-end path.
[image:]
[bookmark: F_402SequenceDiagramAdjustingaSettingona][bookmark: _Toc514327204]Figure 4‑2	:	Sequence Diagram: Adjusting a Setting on a Device at the Request of the End User
The client request, or "Action", in Figure 4-2 could be "Take a Picture". There is no implication that users at this point have to think in terms of "command packet" or "device access" data structures. Note that the diagram also shows both use Case 1 and Case 2 of MOIMS integration with the only difference being where the encoding of the MO request into/out of a space packet takes place.
In effect, a subset of the electronic device interface, as defined in the CCSDS EDS, is made available, via CCSDS MO services, to the end user. The migration of MO functionality on-board is reflected in the three integration use cases introduced in Section 1. In the next section, these cases will be described in detail.
Of course, in some cases, devices, such as thermal control, would not be directly managed by the end user, but instead by autonomous onboard services which themselves have configuration settings managed by the client. In such a case, the above diagram would be simply split into two parts for the communication between the end user and on-board thermal control, and between thermal control and the device.
[bookmark: _Toc490213524][bookmark: _Toc498003460][bookmark: _Toc514327183]Specifying Interfaces
IEEE defines the verb to interface as ‘To connect two or more components for the purpose of passing information from one to the other’. The noun form, an interface, is a specification of how this is done, exactly what categories of data can be exchanged in what sequences. All components have interfaces and behavior in both the application and functional senses. Interfaces have bindings to a particular H/W port, technology, and protocol stack. Each protocol layer in the stack has PDUs, interactions on the wire, and behaviors at the protocol level and within protocol entities. The top level protocol in the stack, and the binding interface, is the one that exhibits the behavior at that interface.
Between different programming languages, standards, middleware tooling, etc., there is a large variety of ways to formally specify an interface. Each such specification makes certain assumptions about what an interface is, in order to describe it.
For the purposes of this document, these formalisms can be categorized according to the following set of properties:
· Message Encoding: how the data in the messages passing across the interface is represented in terms of octets and bits. It can be:
· Implicit: left to a tool to work out according to a set of defined rules;
· Explicit: specified as part of the interface;
· Optional: a choice of either of the above.
· Cardinality: the number of components connected. Can be 1:1, 1:Many or Many:Many.
· Directions: From which of the ends of the interface message groups can be initiated. Can be one-way or two-way.
· Message Grouping: whether the messages are always entirely standalone, or can be implicitly grouped together by some underlying mechanism. It can be:
· None: each message is standalone.
· Paired: each message can have a single reply.
· Patterned: messages can be organized into arbitrarily large groups according to a set of predefined interaction patterns.
	Formalism
	Terminology
	Encoding
	Cardinality
	Directions
	Message Grouping

	C family[footnoteRef:13] [13: The programming language C is included because of its historical influence on both other languages like C++ and Java, on middleware targeted at those languages such as CORBA, RMI and ESA’s SMP2, and also on formalisms designed largely to generate code in such languages, such as UML and SysML. Some of those have an explicit ‘interface’ construct corresponding to a set of functions.]

	set of functions
	implicit[footnoteRef:14] [14: The compiler selects the actual layout of data in memory, according to properties of the target CPU.]

	1:many
	one-way
	paired[footnoteRef:15] [15: The return value of a function is inherently associated with the corresponding call.]

	PUS[footnoteRef:16] [16: ESA Packet Utilisation Standard, ECSS-E-ST-70-41C.]

	service
	explicit
	many:many
	two-way
	none

	RASDS[footnoteRef:17] [17: Reference Architecture for Space Data Systems (RASDS), CCSDS 311.0-M-1]

	port
	explicit
	many:many
	two-way
	none specified

	EDS
	interface
	optional
	unspecified
	two-way
	paired

	MAL
	service
	implicit
	1:1[footnoteRef:18]	Comment by Sam Cooper: I’m not sure I agree with this. I see a MO service like a C++ class, many objects can use that class instance.
So similar to how PUS is many:many I would expect to see MO as the same. [18: Except a PubSub operation, which has 3 classes of participants, including any number of subscribers.]

	one-way
	patterned

[bookmark: _Toc490213525][bookmark: _Toc498003461][bookmark: _Toc514327184]Detailed Comparative Analysis
Figure 4-3 shows a graphical comparison of the different kinds of structures that appear in the XML schema for EDS and MAL. Elements that are syntactically similar are shown at the same layer.
[image:]
[bookmark: F_403XMLStructureofEDSandMAL][bookmark: _Toc514327205]Figure 4‑3	: XML Structure of EDS and MAL
Areas marked with ‘A’ are abstract, hiding further detail.
When an EDS is used to define an interface:
· a device has one datasheet;
· a datasheet contains several namespaces;
· namespaces define data types, declare interfaces and contain components;
· interfaces have protocol stack binding signatures, use inheritance, and contain parameters and commands;
· commands have arguments and use interaction patterns, see Figure 4-5;
· arguments and parameters have a data type and semantics, which define their meaning by referencing an associated ontology (reference [6]);
· a component can specify behavioral mappings and constraints on and between interfaces.
When MAL is used to define a service:
· a specification covers several areas;
· areas define data types and services;
· services have interfaces that are bound in a given deployment via the data representation and transport bindings, but they are not explicit in the model;
· a service can define data types, and has optional capability sets, each of which defines a set of related operations;
· each operation has a sequence of messages, organized by interaction pattern (see figure 4-4);
· each message has a number of named fields;
· each field has a data type.
[image:]
[bookmark: F_404MALInteractionPatterns][bookmark: _Toc514327206]Figure 4‑4	: MAL Interaction Patterns
NOTE	–	In MO, any operation must follow one of the six supported MAL interaction patterns, governing which messages must be specified to define the operation.
[image:]
[bookmark: F_405EDSInteractionPatterns][bookmark: _Toc514327207]Figure 4‑5	: EDS Interaction Patterns
NOTE	–	EDS has five distinct interaction patterns for commands, based on whether the command mode is async or sync, and whether it has only input arguments, only output arguments, or both.
Four of the EDS interaction patterns map directly to the MAL patterns Send, Submit, and Request. The other, async + outArgsOnly, corresponds to a partial PubSub pattern with no filter or broker.
In many ways the biggest difference between EDS and MAL interface descriptions is that EDS provides means direct means for mapping to concrete realizations of interfaces and operations, whereas MAL employs abstract definitions that must be mapped in a separate step, through encoding and protocol bindings, to a concrete realization. EDS also provides the means to describe software and hardware deployments and composition, deployment of software on computing platforms, and to produce concrete descriptions of specific deployments.
[bookmark: _Toc490213526][bookmark: _Toc498003462][bookmark: _Toc514327185][bookmark: _Toc480998921]SOIS EDS and MO services integration
[bookmark: _Toc514327186]Overview
SOIS EDS and MO services are two independent technologies that can be integrated together. The different possibilities of their integration are captured in this section.
Three different cases of MO integration with SOIS on-board functions are presented in detail:
a) Case 1: SOIS device interfaces, subnets, and services are deployed on-board with the usual Real Time flight software for GNC, M&C, C&DH, FDIR, power & thermal management and the usual resource constraints. MO is only on ground, with typical TT&C interfaces between flight and ground. This is a traditional case without any overlapping areas of interfaces between MO and SOIS on-board.

b) Case 2: The same SOIS services and RT FSW is deployed on-board, but MO Proxy interfaces are provided on-board connecting to the usual RT FSW. This case uses MAL message exchanges over TT&C to the MAL Proxy on board. This is a transitional deployment in which MO service interfaces are integrated with the on-board environment, but the on-board environment and services continue to operate in a normal fashion.

c) [bookmark: _Toc490213527][bookmark: _Toc498003463][bookmark: _Toc514327187]Case 3: The same underlying SOIS services and RT FSW on-board, but MOIMS MAL based services and frameworks are adapted to the RT environment and migrated on board as appropriate. MAL message exchanges are done over TT&C. Some devices may also have "MAL native" interfaces. This is an integrated situation in which MO interfaces are adapted and operated in Real Time in the on-board environment.
[bookmark: _GoBack]Mapping between SOIS EDS and a generated bespoke MO Service
An interface specified in EDS can be mapped to MAL by the following algorithm:
a) Within the EDS datasheet:
1) each Parameter X is replaced with the equivalent list of getX, setX and/or updateX commands, according to the read-only and mode attributes;
2) any types defined inline are replaced with explicit named type definitions.
b) A MAL Specification corresponding to the EDS Datasheet is Generated.
c) For each EDS Namespace involved, a corresponding MAL Area is created.
d) For each EDS Datatype involved, a corresponding MAL Datatype is referenced or created.
e) A MAL Service description corresponding to the instantiated Interface specification as provided by a particular component is defined.
f) A MAL Capability Set for each Interface Specification involved in defining that interface is defined. Note: grouping of interfaces into capability sets depends on which interfaces are stand-alone meaningful and which ones can be grouped together
g) A MAL Operation for each EDS Command is defined, with interaction pattern set according to:
1) the value of the mode attribute;
2) the mode attributes of all arguments to the command.
h) A MAL Message for each slot in the selected interaction pattern is created.
i) A MAL Field for each input or output argument of the command, using the matching datatype is created.
The result of this will be the equivalent description of a bespoke MO service.
Such a service could be:
· made available to ground directly;
· consumed by an autonomous device management application which is in turn made available to higher-level management, and configuration services;
· consumed by the standard MO M&CS Action and Parameter service.
[bookmark: _Toc480998922][bookmark: _Toc490213528][bookmark: _Toc498003464][bookmark: _Toc514327188]Using MO M&CS Action and Parameter services with EDS	Comment by Sam Cooper: General comment for this section:

The worked example are very critical for building a shared understanding, unfortunately at the moment they are quite confusing as they do not seem to relate to the cases given in section 5.1 (which seemed quite clear to me) but also that they disagree with themselves.
This subsection describes how, as an example, the MO Action service could be directly implemented in terms of a device described by an EDS. Two cases are considered, depending on whether MO is supported onboard (case 2) or not (case 1).
[image:]	Comment by Sam Cooper: This figure should be in section 5.3.1.

It is very confusing it being here
[bookmark: F_501MOActionServiceImplementedUsingthe1][bookmark: _Toc514327208]Figure 5‑1	: MO Action Service Implemented Using the Action Provider API On Ground (Case 1 example)
NOTE	–	Usage of the parameter service would be similar.
Case 1 Deployment
In Case 1, for its electronic device, the Client provides an electronic datasheet, which, in the EDS Device Access interface, gives the set of parameters and commands supported by the device. This allows establishing a logical link to communicate to the Device.
To implement that logical link, it establishes a consumer link to the Action Service of the MO ground segment using a prearranged domain id, e.g., mySc.payload.myDevice.prime.	Comment by Sam Cooper: Who/what is the “it” here?
The client sends an action ‘configureMode(STANDBY)’ using the MO Action Consumer API. The action service in the ground segment can logically, at the peer-to-peer layer, talk to the same layer onboard, using the standard MO Action Provider API.	Comment by Sam Cooper: I don’t think this is case one as outlined in section 5.1, case one has no MO aspects on board as the translation from MO into “traditional” TT&C protocols is done on ground.

If the naming of these worked examples is not related to those cases from section 5.1 I suggest that firstly these should be worked examples of those cases, but that secondly we at least rename them so that there is no confusion.
To implement this, it encodes those messages using the MO space packet encoding, and sends them to the Agency layer as a CCSDS TC packet. This physically sends the space packets up to the satellite over a standard spacelink.
Onboard, the implementation at the action service layer is the Device Handler. This, when it receives the corresponding MAL-level message, translated on the ground into TM/TC Packets, uses the subnetwork interface described by the datasheet to physically talk to the device to send the command on the MILBus, SpaceWire, or other link, and determine its success or failure. This action status data is then relayed back to the ground in space packets. A device datasheet contains all the information required to specify the behavior of a Device Handler using this model, meaning that part of the implementation can be automatically generated.
[image:]	Comment by Sam Cooper: As above, this figure should be in section 5.3.2.

It is very confusing it being here
[bookmark: F_502MOActionServiceImplementedUsingtheA][bookmark: _Toc514327209]Figure 5‑2	:	MO Action Service Implemented Using the Action Provider API On Ground (Case 2)
NOTE	–	Again, usage of the parameter service would be similar.
Case 2 Deployment
For Case 2 a straightforward adaptation of the above approach works in the case where the full MO framework is not supported onboard.[footnoteRef:19] The Device Handler is now implemented using the same techniques as the rest of the spacecraft platform, and supports standard TM/TC packet interfaces, as defined in a spacecraft database. The ground-side MO implementation translates MO calls and maps them into standard TT&C protocols. On-board an MO Proxy translates TM/TC encoded action provider calls into the standards TM/TC Packet calls that would have been made using the onboard approach. In other words, the MO Proxy implements an MO services translation allowing communication with a legacy onboard architecture using TM/TC Packets. In this case, not only the Device Handler, but the relevant portions of the spacecraft database and the MO Adapter would be able to be generated from, and/or verified against, the device datasheet.	Comment by Sam Cooper: But the previous sentence just said that a ground side MO implementation translates MO calls into standard TT&C protocols. [19: This is the case of today’s spacecraft operated by any of the space agencies participating in CCSDS.]

It is necessary to point out that this use of MAL CCSDS Packet Encoding across the space link (in both directions) comes with an overhead as shown in the MAL message mapping to the space packet. Tables 5-1 and 5-2, from reference [10], show the space packet primary and secondary header formats used in MAL Space Packet. Figure 5-3 shows the mapping of the MAL abstract message header to the extended version of the Space Packet (SPP) secondary header that the MAL uses. 	Comment by Sam Cooper: These tables actually show how to encode to Varint encoding, I’m not sure of the relevant of that?

You may mean Table 3-3?
As shown in Table 5-1 the native SPP header is six (6) bytes long. As shown in Table 5-2 the MAL version of the SPP secondary header is a minimum of 37 octets, not counting another 4, optional, variable length fields that could be a minimum of 20 more octets but have a potential maximum length of thousands of bytes (each variable length field has a 32 bit length field). As a result the minimum length translation of a one byte length MAL message (if such a small MAL message existed), using the SPP and binary encoding is at least 6 times longer than a minimum length encoding of a one byte command in the SPP user data field. 	Comment by Sam Cooper: Its actually a minimum of 21 bytes
Of course, the user data fields are seldom one byte, many traditional commanding approaches use fields of a few bytes up to 10’s of bytes. MAL messages, since the data fields themselves may also include variable length strings, will themselves be lengthy. For Cases 2 and 3 the effect of this overhead, on uplink and downlink bandwidth, must be considered when any such deployment being contemplated.

 [image:]
Figure 5-3: MAL Message Mapping to Space Packet
Table 5-1: Space Packet Primary Header Format
[image:]
Table 5-2: MAL Space Packet Secondary Header Format
[image:]
Using device-CATEGORY MO services with EDS
The final implementation option considered is for MO services to be defined with semantically meaningful data for a specific category of device (example: Camera service, GPS service, etc.), with operations logically necessary for that category of device, independent of the actual vendor and model. This is a Case 3 example in which MO is integrated onboard.
For this example MO is directly supported onboard with MAL based services and framework adapted to work in the Real Time environment. In this case devices might be interfaced with as in Cases 1 & 2, or devices could directly implement MAL native interfaces instead of relying an MO compliant device handler to take in MAL-level messages and convert them to the efficient SOIS on-board devices services. Figure 5-4 shows the MO Action Service used to invoke the on-board MO compliant Device Handler behavior.
[bookmark: _Toc490213529][bookmark: _Toc498003465][bookmark: _Toc514327189][image:]Figure 5‑4	: MO Action Service Implemented Using the Action Provider API Onboard (Case 3)
Figure 5-5 shows a variant of this where a bespoke, MO compliant, Camera Service is used to control the behavior of a bespoke, on-board, MO compliant Device Handler.
For instance, considering a camera as the device, it is possible to specify an MO Camera Service that has semantically meaningful operations such as:
· take a picture;
· preview picture;
· zoom in;
· etc.
These operations are common to all cameras, independent of the vendor of the device (e.g., Sony, Panasonic, etc.). The exchange of semantically meaningful information from the ground to the spacecraft can be done using this MO compliant Camera service.
[image:]
[bookmark: F_503BespokeMOCameraServiceImplementedUs][bookmark: _Toc514327210]Figure 5‑5	: Bespoke MO Camera Service Implemented Using the Camera Provider API Onboard
The implementation is very similar to the one presented for a standardized MO service, with the only difference being that instead of interacting with the generic Action service, the client would use the device-specific MO Camera service.

[bookmark: _Toc490213530][bookmark: _Toc498003466][bookmark: _Toc514327190]RECOMMENDATIONS AND CONCLUSION
The CCSDS MOIMS and SOIS working groups have different scopes, but there is some convergence in technical approach since both use XML schema for their respective device and service specifications. As described in Section 4 it should be evident that SOIS EDS and MOIMS MAL have a certain degree of overlap in terminology, especially as related to the concepts of services and interfaces.
However:
· That overlap is limited to perhaps 15 to 20% of the scope of each specification.
· The express purpose of the two sets of specifications are distinct, where MO is all about abstract definitions of services that must be mapped in a separate step, and EDS provides direct means for mapping to concrete realizations of interfaces and operations, describing software and hardware and concrete descriptions of specific deployments.
· Analysis of scenarios where both MO services and SOIS EDS interfaces were in use for Case 1 there is no need to translate between the two, as they operate on different levels of abstraction.
· For Case 2 there will be a need to translate directly from MO MAL messages using an on-board proxy. This has the advantage of adopting a standard service-oriented paradigm, makes minimal incursion into the on-board, real-time, and typically resource constrained environment, but at the cost of potentially significantly increasing uplink and downlink bandwidth.
· For Case 3, there is a need to have direct interface between MO services and SOIS EDS interfaces. This has the Case 2 benefits, but also the Case 2 added costs, with an even greater impact to on-board resources.	Comment by Sam Cooper: I see no justification for this comment. I suggest it be removed or justified
· Just for service interfaces, translating between the two representations is, in any case ,straightforward.
Therefore it can be deduced that attempting to create a common core specification, which the two usages would then differently extend, would be unlikely to be a worthwhile exercise.
Instead, lessons learned from this analysis should be fed back into the corresponding specification development processes, in order to improve areas where either is lacking in capability or excessively complicated. For EDS, these could include:
· replacing the term ‘namespace’ with ‘area’, as that avoids confusion with XML namespaces;
· replacing the term ‘interface instance’ with ‘port’, for better compatibility with Universal Modelling Language (UML) 2.0, and avoiding the potential confusion between ‘interface definition’ and ‘interface instance’;
· replacing the ‘mode’ SYNC/ASYNC flag on parameters and commands with a Boolean value ‘oneway’, by analogy with Common Object Request Broker Architecture (CORBA); this avoids overloading the term ‘mode’, also used for arguments.
For MAL:
· It has types and data structures defined in the abstract. It gets to real syntax only when a binding is specified and several different are available, leading to potential interoperability challenges. Semantics are defined only when actual services are defined that use the MAL structures and interaction templates. At this point few of these services are fully defined.	Comment by Sam Cooper: Not sure this is a recommendation rather more just a statement
· In order to be efficient for use in a real-time, on-board, environment significant effort must be invested to develop mappings that will be efficient across the space communication links as well as to develop instances of on-board deployments that minimize the impact on these typically resource constrained environments.
· For most of the resource constrained space environments a Case 1 style deployment is likely to be the most efficient, even if it involves a translation step from the MAL environment on the ground to a more traditional TT&C environment in space. It should be noted, however, that a large, relatively resource-rich, habitat or space station deployment might benefit from an interoperable service-based framework built on something like the MAL, but this is not the place to address the needed cost/benefit analyses.

[bookmark: _Toc514327191]

Abbreviations and Acronyms
	Term
	Definition

	AMS
	Asynchronous Message Service

	API
	application programming interface

	CCSDS
	Consultative Committee for Space Data Systems

	CFDP
	CCSDS File Delivery Protocol

	CORBA
	Common Object Request Broker Architecture

	CSS
	Cross Support Services

	DACP
	Device Abstraction Control Procedure

	DSAP
	Device Specific Access Protocol

	ECSS
	European Cooperation for Space Standardization

	EDS
	Electronic Data Sheet

	EGSE
	electronic ground support equipment

	FDIR
	fault detection, isolation, and recovery

	FSW
	flight software

	ICD
	interface control document

	IRD
	interface requirement document

	M&CS
	Monitoring and Control Services

	MAL
	Message Abstraction Layer

	MCS
	mission control system

	MO
	Mission Operations

	MOIMS
	Mission Operations and Information Management Services

	OBC
	on-board computer

	OSI
	Open Systems Interconnection

	PDU
	protocol data unit

	PUS
	Packet Utilisation Standard

	QoS
	quality of service

	RASDS
	Reference Architecture for Space Data Systems

	RMAP
	remote memory access protocol

	RMI
	Remote Method Invocation

	RT
	remote terminal

	S/C
	Spacecraft

	SEDS
	SOIS EDS

	SLE
	Space Link Extension

	SOIS
	Spacecraft Onboard Interface Services

	SPP
	Space Packet Protocol

	SVF
	software validation facility

	TC
	Telecommand

	TCP
	Transmission Control Protocol

	TM
	Telemetry

	UDP
	User Datagram Protocol

	UML
	Universal Modelling Language

	XML
	eXtensible Markup Language

	XTCE
	XML Telemetric & Command Exchange

image2.emf
NA SA ESA MOIMS MOIMS SOIS SOIS Specifies, builds, operates

image3.emf
EDS Interchangeable Model of data interfaces Devices specification testing Documentation IRDs, ICDs V erification Reports Flight Software interface code unit tests integration tests SVF/Simulators Device models MCS/EGSE S/C database System Design trade-o ff analysis constraint checking translate validate generategenerate transform transform

image4.png
SOIS Hardware vlew\

@) component

Unit of software that
requires access to
interfaces

(©) senice component

. Application

requires Provides one or more Performs some function,

interfaces to other autonomously or directly
components at user request
provides

(©) senice Interface

Defines patterns of
information exchange

@© internetwork

System of communications paths,
both direct and indirect

(©) subnetwork

System of direct

TCPIP
CCSDS Bundle Protocol

N executes in
\

(©) Execution Environment

Context within which software
may be installed and executed

BSW layer
TSP Kernel
Operating System
Virtual Machine

ications paths
between hardware units

Milbus.
Spacewire

(@) Haraware uni
sub

Unit of Haraware

devi

(©) Computing Platform

Supports one or more execution
environments for software

Onboard Computer
Ground Support Equipment
Programmable Unit

image5.emf

image6.emf
«derived» Device Services «derived» Device Abstraction Control Procedure High-level behavioral mapping calibrations, derivations,limits,states «derived» Device Specific Access Protocol Low-level behavioral mapping commands, parameters, types, encodings, timings Access «derived» Functional «derived» Subnetwork «sois»

image7.emf
System Model Onboard System Application Services «Jena AS400» Device Services Subnetwork Services Communication ServicesManagement Services Subnetwork Convergence Protocols «Jena AS400» Device Datasheet Datapool «arch» Device Commanding «arch» FDIR «arch»Access «derived» «derived» DSAP «mission» Device Handler «arch» Mission Information Base On-boardTables milbusRT per logical device milbus polling schedule Packet «sois» Memory Access «sois» Management «mission» «arch» ECSS.1553 «arch» MILSTD.1553 «Jena AS400» DeviceA «Jena AS400» DeviceB code generation

image8.jpeg
OSI Model

Application]+ +[Application
Presentation | - +|_ Presentation
Session - - Session
Transport E - Transport
Network E - Network
DataLink E - DataLink
Physical b - Physical

N Ty

0000100001011110001010100001111010111010100000111011110001110100.

image9.emf

image10.emf
SPAC ELINK

MO (logical)

SOIS

MO (physical)

CSS

image11.png
3.1.2.1 PDU: TelecommandModeType

Bit Field

Fixed

Offset | Range | Name | WP® Eaceding) Value | Description
o 0.0 e TelecommandTypeEnumType UNSIGNED Mode
1 031 mode | ModeType UNSIGNED
Fixed byte length s 5
PDU Binary Encoding for elecommandHodeType
3.1.2.2 PDU: TelecommandUserDataType
Byte | Bit Field 5 Fixed i
Offset | Range | Name Type Encoding | yajue Eempen
o 00| tpe TelecommandTypeEnumType UNSIGNED | UserData
1 0.7 | userDatalengh | Octet UNSIGNED
2 07| userData octet UNSIGNED

Repeat previous 1 entries a total of userDataLength'times

Length is variable.

PDU Binary Encoding for TelecommandUserDataType.

image12.png
oF)
o o
e o

x

confirmgtion

5

cli

image13.png
MAL’

(@ sreciainn
£

@ veiesne]
¥

lcontains

declares
@ rimessacefo @) e s

defines \defines

contains

declares consists of
@i @seveele @ cwanins
¥

defines

(@ comvore

@ oserann

by pattern

defines lefines lefines (®) wessace

image14.png

image15.png
X i

e pray
T T —
Lo v |
g0, +

— i

B

e

— ;

Sermraz

e

e o]

image16.PNG
Device

milbus:

ceas»

Client EDS Device Access

Device Access

MO Action Consumer API

Action Service

IMO Action Provider API (CCSDS TM/TC packets

MO Adapter

CCSDS TM/TC packets

Spacelink

image17.png
EDS Device Access

Device Access

MO Camera Consumer API -

(CCSDS TM/TC Space packets

e ‘mo B

Camera Service MO Proxy

MAL CCSDS Space Packet Encoding MAL CCSDS Space Packet Encoding

“agency”

S L

image18.PNG
T
281l ey il
£ Rl

Space Packet
User Data Field

image19.PNG
Application Packet
Packet Version Secondary | Process | Sequence | Sequence | PacketData
Number | Packet Type | Header Flag | _Identifier Flags Count Length
Binary value | Binary value | Binary value | Unsigned 11-bit | Binary value |Unsigned 14-bit| Unsigned 16-bit
integer integer infeger
(3tits) (1bit) (1bit) (11 bits) (2bits) (14 bits) (16 bits)

Abways equal to
000

fways equal
P

image20.PNG
Secondary Desti- Time-
Version| SDU | Service Area | IsEror Secondary | APID | Transaction | Source | nation | Priority | stamp
Number | Type | Area |Service | Operation | Version | Message | QoSlevel | Session | APID | Qualifier [} IdFlag | IdFlag | Flag | Flag
Binary nsignedUnsignedUnsigned| Unsigned | Unsigned | Binary | Unsigned | Unsigned [Unsigned 11-\Unsigned 16{ ~ Signed | Binary | Binary | Binary | Binary
value | 5bit | 164t | 164t | 16bt | 84t | vae | 2bt | 2bit bit bit 646t | value | value | value | vaiue
Integer | Integer | Integer | Integer | Integer Integer | Infeger | Infeger | Ineger | Integer
(3tits) | (5bits) | (16 bis) (16 bts)| (16bits) | (@bis) | (1b) | (2bits) | (2bits) | (11bis) | (16bits) | (64bits) | (thit) | (1bit) | (b | (1bi)
Network | Session Authen-
Zone | Name | Domain | tication Destination | Segment Network | Session Authentication
Flag | Flag | Flag |ldFlag | Sourceld id Counter | Priority | Timestamp | Zone Name Domain 1d
Binary | Binary | Binary | Binary | Unsigned | Unsigned | Unsigned | Ulnteger | Time Identifier | Identiier | List<ldentfier> Blob
valie | value | value | vaue | 8bit 84t 32bit | (see518) | (see522) | (see512) | (see512) | (see55) (see57)
Integer | Integer | Integer | (var. muit. | (var, mult. of | (var., muit of | (var., mult of | (var, mult of | (var. mult of
abity | o) | (teig | (thi) | (8bits) | @bits) | (32bits) | ofoctet) | octet) octet) octet) octet) octet)
If ‘Source Id If Destination [If“Sequence| If Priorty |If Timestamp| 1 "Network | If ‘Session | If Domain Flag'[If ‘Authentication
Flag'ist" | IdFlag'is | Flags'is | Flag'is"t" | Flag'is™t" | Flag'is't' | Flag'is’ s 1dFlag is 1
either 00,
0, or'10°

image21.PNG
-

o

mo
Action Service

Device

Action Provider API

MAL CCSDS Space Packet Encoding

“ ”

mo
Device Handler

«agency»

Spacelink

MAL CCSDS Space Packet Encoding

image22.PNG
-

o

mo
Camera Service

Camera Provider API

MAL CCSDS Space Packet Encoding

“

mo

”

Device Handler

«agency»

Spacelink

MAL CCSDS Space Packet Encoding

image1.emf

